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Abstract

In this paper we propose an algorithm for lossless conversion of data between Cartesian and polar
coordinates, when the data is sampled from a two dimensional real-valued function (a mapping :
ℝ2 ↦ ℝ) expressed as a particular kind of truncated expansion. We use Laguerre functions and
the Fourier basis for the polar coordinate expression. Hermite functions are used for the Cartesian
coordinate expression. A finite number of coefficients for the truncated expansion specifies the
function in each coordinate system. We derive the relationship between the coefficients for the
two coordinate systems. Based on this relationship, we propose an algorithm for lossless
conversion between the two coordinate systems. Resampling can be used to evaluate a truncated
expansion on the complementary coordinate system without computing a new set of coefficients.
The resampled data is used to compute the new set of coefficients to avoid the numerical
instability associated with direct conversion of the coefficients. In order to apply our algorithm to
discrete image data, we propose a method to optimally fit a truncated expression to a given image.
We also quantify the error that this filtering process can produce. Finally the algorithm is applied
to solve the polar-Cartesian interpolation problem.
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1 Introduction

In two dimensional real space (ℝ2), polar and Cartesian coordinates are very common and
widely used. Many measurement devices such as ultrasound equipment and radar systems
gather data in polar coordinates [8], [9]. On the other hand, since conventional display
systems have a rectangular grid and corresponding mathematical expressions are more
straightforward (e.g., the Euclidean distance between points is easy to compute and products
of Fourier expansions follow naturally), Cartesian coordinates are widely used for image
display and most mathematical manipulations. Therefore, in order to display data obtained
from polar-coordinate-based transducers and deal with them using Cartesian-based
mathematical tools, we need a concrete way of converting between polar and Cartesian
coordinates. Of course, existing coordinate conversion techniques and interpolation methods
have been suggested before, including: [5], [6], [9]. However, all of these techniques are
approximate in nature, and so the conversion from polar to Cartesian and back (or Cartesian
to polar and back) results in the destruction of some information. Existing methods are
therefore not a lossless process. And if one restricts the discussion to Fourier expansions
(i.e., Fourier series in Cartesian coordinates and Fourier-Hankel transform in polar
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coordinates) then there will never be an exact conversion. Even though one can reconstruct a
bandlimited function to within a desired error bound using an optimal sampling window
with Fourier-based analysis techniques [7], it is generally not possible to describe the same
function as simultaneously bandlimited in both of these two classical bases 1. The basis
considered in this work is therefore special.

Conversion between polar and Cartesian coordinates is given as

Using this relation, we can have two representations of a two dimensional real-valued
function(mapping : ℝ2 ↦ ℝ) as

where the superscripts, (·)c and (·)p denote the representation in the Cartesian and polar
coordinate systems, respectively. If the function is continuous, the conversion is very
straightforward and has no ambiguity. However, if the function is defined on a discrete and
equally spaced grid, the conversion can not be defined in the same way, because the two
grid systems are not matched as shown in Fig.1. Therefore, when we display the data from a
polar grid on a Cartesian grid, we have to perform interpolation computations to obtain data
on the Cartesian grid using the data available on the polar grid. A similar problem can occur
in tomographic reconstructions [4].

In Section 2 we investigate the truncated expansions of a two-dimensional function both in
the Cartesian and polar coordinate systems. In Section 3 we show how to compute a set of
coefficients that specifies the truncated expansion fit to given discrete data. The error in this
filtering process is investigated. In Section 4 we show that the two sets of coefficients have a
special relationship, with which we define the lossless coordinate conversion of a two
dimensional function. In Section 5 we show how our algorithm works with numerical
examples. Section 6 gives conclusions and discussions.

2 Truncated Expansions in Cartesian and Polar Coordinates

In this section we review Hermite and Laguerre functions, and how they are used to
construct orthonormal expansions of functions over two-dimensional domains.

2.1 Truncated Hermite Expansions in Cartesian Coordinates

Hermite polynomials are well known in the literatures [12] [13], and are generated by the
Rodrigues formula

The Hermite functions are defined as

1The term ‘band limited’ is used commonly to denote truncated Fourier expansions, but can also be used more generally to describe
truncated expansions in any orthogonal basis. Generally, a truncated expansion in one basis will not be truncated in another. In order
to avoid any confusion, we use the word ‘truncated’ in the context of Hermite/Laguerre-Fourier expansions, since these are generally
not band limited in the Fourier sense.
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(1)

Note that the set {hn(x)} is orthonormal, which means . The Hermite
functions satisfy the recurrence formula

This recurrence formula is very useful to evaluate the Hermite functions of high orders.

The set {hn(x)} for n = 0, 1, 2… forms a basis for the set of square-integrable functions on
the line [12]. Due to this fact and their orthonormality, any f ∈ ℒ2(ℝ) can be expanded as

where

Approximately, a function can be expanded as a truncated Hermite series.

where N is a large nonnegative integer.

If the domain of a function is two-dimensional, we can employ the two-dimensional Hermite
series.

where Hermite series coefficients are defined as

(2)

Also we can use a truncated expansion of the form

(3)

where N is a large nonnegative integer. We will use the slightly different form as follows:
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(4)

or equivalently,

(5)

The reason why we use (4) or (5) instead of (3) will be explained in Section 4.

It should be noted that finite Hermite expansions have some drawbacks. For example, they
do not preserve the truncation limit under shifts, while Fourier expansions do. Furthermore,
since the Hermite functions decay exponentially outside of a bounded region, it is important
to center the image of interest within this region to obtain the highest resolution for a given
truncation. Despite these shortcomings, the Hermite function expansions are superior for
Cartesian-polar coordinate conversions for the reasons shown in the rest of the paper.

2.2 Truncated Expansions in polar coordinates using Laguerre functions and Fourier basis

The associated Laguerre polynomials are also well known and given by the Rodrigues
formula,

The associated Laguerre polynomials are orthogonal over [0, ∞) with respect to the
weighting function xke−x,

On the other hand, the Fourier series expansion of a one dimensional function with period
2π is defined as:

where

Using the Laguerre polynomials and the Fourier basis, one can define orthonormal basis
functions in two-dimensional polar coordinates as follows [1].
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(6)

where (m − |n|) and (m + |n|) are even numbers. If we define Ymn(r) and Zn(θ) as

then χm,n(ρ, θ) can be decomposed as

A two-dimensional function in polar coordinates can be expressed as

(7)

where the Laguerre-Fourier coefficients are

(8)

and χ* is the complex conjugate of χ. Note that the integer variable n in (7) increases by
multiples of 2. A truncated expansion can be written in the form

(9)

where M is a positive large integer.

One of the major contributions of this paper is to establish the equivalence of (4) and (9),
and to find how N and M and f̂mn and f̃m,n are related.

3 Filtered Image

When data is obtained from discrete images, we can not directly apply (2) and (8) to this
data to get the truncated expansion. In this section, we propose a way to obtain truncated
expansions corresponding to a discrete image. Sampling of these expansions defines a
filtering2 of the original image. We investigate the difference between the original image

2Since this filter is not shift-invariant, it is not a general filter used in Fourier-based image processing. However, we call it a filter in
the sense that it performs as a low-pass filter in the Hermite expansion.
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and its truncated (filtered) version. Of course, for this to be a filter, the number of
coefficients must be less than or equal to the number of values specified on the grid.
Otherwise, no information (or noise) would be rejected from the original image, and the
excess degrees of freedom would need to be constrained in some way, since they would not
be determined by the original image. A filtering method using Hermite expansions in the
Cartesian coordinates is presented in the manuscript [14]. A brief summary of results are
presented here without derivation. A detailed filtering method using Laguerre-Fourier
expansions in polar coordinates will be presented.

3.1 Filtered Images in Cartesian Coordinates

Definition—F̄xy is a given M × M image matrix. The Hermite-filtered image function f(x,

y) is given by

where f̂m−1,n−1 is the (i, j) element of the matrix, and F̂ given by

where Hi,j = hj−1(xi). The Hermite-filtered image is sampled from this function on the grid
points of the original image.

The matrix H depends on the truncation limit N and a series of xi. For a given M × M image,
xi is determined by

where R is the range of xi and i = 1, 2, …, M. This means that the image is mapped to [−R,

R] × [−R, R] in the Cartesian coordinates. Fig. 2 shows the logarithm of the condition
number of HTH when the size of the image is 301×301. Since the small condition number of
HTH guarantees the stability in its inversion as well as the invertibility, 21 appears to be a
good number for the range of xi, making it possible to choose a larger truncation limit with
which the Hermite filtered image can describe more details of the original image.

Choice of the range of xi is related to the effect of scaling factor in Hermite transform.
Basically the Hermite transforms of the similar functions f(x) and f(10x) illustrates a
weakness of Hermite expansions. However, when we get a truncated expansion fit to a given
discrete data, we can choose the scaling factor so that the difference between the filtered
image and the original image is small and the matrix inversion is stable in the filtering
process. Since in Fig. 2, the available truncation limit is maximized at the range, 21, this
range can be chosen as a near-optimal scale regardless of the image of interest.

Fig.3 shows a 301×301 brain scanning image and corresponding Hermite-filtered image
with the truncation limit, 240. The normalized error between the original and the filtered
version is 5.0%. For the truncation limits, 150 and 200, the errors are 10.2% and 6.9% (The
images are not shown), respectively. The normalized error is defined as ∥I − IF∥/∥I∥, where I
and IF are the original image matrix and its Hermite-filtered version, respectively.
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3.2 Filtered Images in Polar Coordinates

As in Cartesian coordinates, for a given array of Mρ × Mθ sample points on a polar grid,
f̄p(ρp, θq), we minimize the following cost function to get the Laguerre-Fourier coefficients.

For a fixed ρp, we consider the two functions.

where k = 1, 2, …, Mθ. When the two functions are defined on an equally spaced grid on a
circle, Parseval's equality for the discrete Fourier transform (DFT) tells us

where the DFT is defined as

The DFT of  gives

With these relations, the cost function can be rewritten as

where S is a constant, which is not important in minimizing the cost function. Changing the
order of summations gives
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Note that in the fourth summation, the variable, m is increasing by multiples of 2. For the
filtering to be possible, the number of sample data should be greater than or equal to the
number of coefficients, which means Mθ ≥ N + 1 in the θ direction. The cost function is

Since the second term is constant, the first term is all that is of interest when performing
minimization. The new cost function is

(10)

For a fixed l, let us define the following two vectors and a matrix.

and

where [n/2] = n/2 if n is even and [n/2] = (n − 1)/2 if n is odd. The cost function is

Even though bl and xl consist of complex numbers, the pseudo inverse approach is still
possible because Al is a matrix of real numbers. As long as the condition number of Al is
small, we can have the minimizer as

The matrix Al is determined by the truncation limit and the range of ρ, much like H was in
the case of Cartesian coordinates. Fig.4 shows the condition numbers of A0, when Mρ = 151.
21 and 240 are the best choice for the range of ρ and the truncation limit, respectively. In
that case, Fig. 5 shows the condition number of Al with respect to l. Since the maximum
condition number appears at l = 0, the choice is safe. Fig.6 shows a brain image expressed in
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polar coordinates and corresponding Laguerre-Fourier-filtered images with different
truncation limits.

4 Interconversion between polar and Cartesian coordinates

In this section we find the relationship between the representations of a function in polar and
Cartesian coordinates when the truncated expansions in (5) and (9) are used. Furthermore,
we relate the truncation limits, N and M, so that there is no loss of information during
conversion.

4.1 Laguerre-Fourier coefficients in terms of Hermite coefficients

The Laguerre polynomials and the Fourier basis can be written in terms of the Hermite
polynomials as follows [2].

(11)

where  and θ = atan(x, y). The function atan(x, y) returns the four-quadrant
inverse tangent, which is the angle between the vectors (x, y)T and (1, 0)T.

Using (1), (6) and (11), we can express χmn(ρ, θ) as

where n ≤ 0, x = ρ cos θ and y = ρ sin θ. If we use a new variable, α = 2r − n − s, then the

double sum is . If we define the combination symbols to be zero when they can

not be defined (e.g. ), we can extend the limits of the summations as ,
where [m/2] = m/2 if m is even and [m/2] = (m − 1)/2 if m is odd. PFinally we change the
order of summations to get

For n > 0, we use the fact that . Substituting this χmn and (5) in (8) gives

(12)

where
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A similar equation has been shown in [1]. However, (12) specifically tells us how we can
compute the Laguerre-Fourier coefficients using the Hermite coefficients. This equation also
contains some other important properties, as described below.

First, the Laguerre-Fourier coefficients (f̃) can be computed by linear combination of the
Hermite coefficients (f̂). Secondly, f̃p,q is determined only by a set {f̂n,p−n}(n = 0, 1, …, p).
In other words the relationships are localized. Thirdly, it tells us how the truncation limit
should be determined in order for the coordinate conversion to be lossless. Since we started
with (5), p in (12) cannot exceed N. Therefore, the Laguerre-Fourier coefficients from (12)
are f̂p,q, (p = 0, 1…N,q = −p, −p + 2, …p). We reconstruct the two-dimensional function,
fp(ρ,θ) as

Note that this is directly derived from (5) without approximation. Comparing this to (9), we
come to know that the truncation limits in (5) and (9), N and M should be equal in order for
there to be no loss during conversion.

4.2 Hermite coefficients in terms of Laguerre-Fourier coefficients

The Hermite polynomials can be written in terms of the Laguerre polynomials and the
Fourier basis as follows [2].

(13)

where , x = ρ cos θ, y = ρ sin θ and Re(c) gives a real part of a complex

number, c. To evaluate the associate Laguerre polynomial,  for n < 0, we use the formula
[2]

(14)

Depending on r and s in (13), the superscript of the Laguerre polynomial may be positive or
negative. Using (14), one can rewrite (13) with only positive superscript of Laguerre
polynomials. Then, applying (1) and (6) to the new version of (13), we can express the
Hermite coefficients in terms of the Laguerre-Fourier coefficients as

(15)

Park and Chirikjian Page 10

IEEE Trans Image Process. Author manuscript; available in PMC 2010 April 21.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



where

This relationship is also linear and localized. In addition, the truncation limits, N and M
should be equal for lossless conversion.

4.3 Interconversion between Truncated Hermite and Laguerre-Fourier Expansions

Now we can conclude that the following two expressions are equivalent.

(16)

where x = ρ cos θ and y = ρ sin θ, and the constraints described below are in effect.

Since f is a real-valued function, in the Cartesian coordinate expression there are

 coefficients that are real numbers. On the other hand, since n is increasing by 2

in the polar coordinate expression, there are  coefficients that are complex
numbers, which means there are (N + 1)(N + 2) independent real numbers. However, since

f̃p,0 is a real number and , there are exactly  independent real
numbers in both expressions.

As shown in (16), once we have a truncated expansion in either of the two coordinate
systems, we can easily evaluate the function on the complementary grid. This can be
rewritten as

(17)

(18)

Suppose filtered data is provided on one coordinate grid (i.e., polar or Cartesian). Evaluation
on the complementary coordinate grid is possible without using the truncated expansion
associated with the complementary grid by simply resampling when the expansions in (16)
are equivalent. It is important to realize that the justification for doing this is the lossless
interconversion between these expansions when the compatible truncation limits are
enforced via filtering. In other words, the mathematical invertibility of (12) and (15) in exact
arithmetic is what justifies resampling.

In principle, given a truncated expansion in one coordinate system, we can find the
complementary expansion by implementing (12) or (15). However, in practice there may be

an obstacle in computing them. The factorials and the combinations  for large
arguments introduce some numerical error during computation. To overcome this, we use a
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resampling technique. Given a set of f̂, we sample appropriate points of fp(ρ, θ) using (17)
and then compute the Laguerre-Fourier coefficients using the method described in Section
3.1. For an arbitrary image, there is loss of information in filtering process, but applying it to
resampled data from a truncated expansion gives exact coefficients (to within machine
precision). The whole process and the numerical examples will be presented in the next
section.

5 Numerical Examples

Fig.7(a) shows how we perform the interconversion for a given image initially defined on a
Cartesian coordinate grid. For the image on a rectangular grid, we compute the Hermite
coefficients using the filtering process suggested in Section 3.1. The truncated Hermite
expansion gives the filtered image as shown in Fig. 3. Then we evaluate the Hermite
expansion on the polar grid. Since we know that the sampled values are sample values of a
truncated expansion on the polar grid, we can compute the exact coefficients of the truncated
Laguerre-Fourier expansion using the method in Section 3.2. If we again evaluate the
truncated Laguerre-Fourier expansion on a Cartesian coordinate grid, the image is the same
(to within machine precision) as the original Hermite filtered image. The double arrows in
Fig. 7 indicate that the process is reversible. Fig. 8(a) is resampled data on polar grid using
the truncated Hermite expansion. We compute the exact Laguerre-Fourier coefficients using
this resampled data. Again, if we resampled data on Cartesian grid using the truncated
Laguerre-Fourier expansion, we have the resulting image shown in Fig. 8(b), which is the
same as the filtered image of Fig. 3(b). The normalized error between the two is 3.5 × 10−14,
which illustrates the lossless interconversion when the filtering process in Cartesian
coordinates is applied.

Similarly, Fig.7(b) shows the interconversion for a given image on a polar coordinate grid.
For the image on the polar grid, we compute the Laguerre-Fourier coefficients using the
filtering process. Fig. 9(a) is resampled data on a Cartesian grid using the truncated
Laguerre-Fourier expansion. We compute the exact Hermite coefficients using this
resampled data. When we resampled data on a polar grid using the truncated Hermite
expansion, the resulting image shown in Fig. 9(b) is the same as the filtered image of Fig.
6(d). The normalized error between the two is 3.3 × 10−14, which illustrates the lossless
interconversion when filtering in polar coordinates is applied.

As we mentioned earlier, the data obtained from a transducer or sensor in polar coordinates
often needs to be displayed on a Cartesian coordinate grid. Since equally spaced grids in the
two coordinate systems do not match as shown in Fig.1, one needs to compute a new set of
data that fit on a Cartesian grid. Displaying the data from the polar grid on the Cartesian grid
directly introduces two problems. First, it is hard to determine where to assign data at (r, θ)
on the Cartesian grid. The data may be assigned to (r cos θ, r sin θ) on the Cartesian grid,
but the equally spaced Cartesian grid can not capture (r cos θ, r sin θ) completely. Secondly,
even if one assigned the data to the approximate position, there can be some vacant pixels in
areas far from the origin as shown in Fig. 10(a). And while local interpolation methods exist
(e.g., bivariate linear), these use only local features and are not reversible.

With data provided on a polar coordinate grid, we compute the Laguerre-Fourier coefficients
by the filtering process. Evaluating the truncated Laguerre-Fourier expansion onto a
Cartesian coordinate grid gives the interpolated image as shown in Fig. 10(b). Since the
interpolated image can also be viewed as being sampled from a truncated Hermite
expansion, we then can apply existing image processing methods associated with the
Hermite transform [10] [11].
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In the strict meaning of interpolation, our algorithm has a drawback in that the filtering
process introduces some error with respect to the original image, and that error persists
through the coordinate conversion process. However, we show that the error can be
controlled at the expense of the truncation limit and the actual error does not leave critical
artifacts on the image as shown in Fig. 3 and Fig. 6. Furthermore, our algorithm also
suggests a filtering method for images that enables us to convert the images between polar
and Cartesian coordinates without loss.

6 Conclusions and Discussions

In this paper we have proposed a new method of interconverting images between polar and
Cartesian coordinate systems without loss of information after the filtering process. We
defined the filtering process and assessed the error that the filter can produce. Using
truncated expansions, we investigated the relationship between the two representations of a
function in polar and Cartesian coordinates. Some special functions such as the Laguerre
polynomials, the Fourier basis and the Hermite functions were used.

Conversion between the coordinates systems boiled down to conversion of the coefficients
of the two truncated expansions on the polar and Cartesian coordinates. We found that the
two sets of coefficients are linearly and locally related. From the equation expressing the
relationship, we uncovered a special truncation limit for the two expansions, which
guarantees lossless conversion.

Based on the equivalence of the two truncated expansions in polar and Cartesian
coordinates, we could get an image on a new coordinate system by resampling the points
from the truncated expansion on the original coordinate system. Additionally, we showed
that this technique can be applied to the interpolation problem. With the filtered image on
the polar grid, we could obtain an image on a Cartesian grid without losing any information
or having missing pixels by using a resampling technique.

In our expansions, an image (and its extension to values all over ℝ2) is defined by (N2)
coefficients. The Hermite filtering process is of (N3), because we invert a N × N matrix.
Resampling the Hermite expansion on polar coordinates is of (N4), while (N3)
computations are required in resampling it onto Cartesian coordinates. The Laguerre-Fourier
filtering process is of (N4), since we invert a N × N matrix N times. Note that we invert the
matrices regardless of Fourier transform. Even when employing the fast Fourier transform,
minimizing (10) still needs (N4). Resampling the Laguerre-Fourier expansion on the polar
and Cartesian coordinates needs (N3) and (N4), respectively. Therefore, the total
complexity of interconversion is (N4). If the constants in (12) and (15) are precalculated,
the direct conversion of those coefficients is of (N3). However, the direct computation
introduces numerical error as explained in Section 4.3. Even though it is possible, the
complexity of the whole interconversion process does not change because the sampling
process on the complementary grid needs (N4) computations. There presently are not fast
algorithms for the Hermite-function and Laguerre-Fourier transforms. This is an active area
of research, and as the situation changes, our algorithm may become faster.

Finally, we showed how we can use our algorithm to interpolate an image on the polar grid
and have an interpolated image on the Cartesian coordinates. If the original image is filtered
in the way we suggested in this paper, the interpolated image does not lose information of
the original filtered image. Therefore, we also propose a new filtering process that enables
the interpolation between the polar and Cartesian coordinate systems.
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Figure 1.

Equally spaced grids
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Figure 2.

Contour plot of logarithm of condition number of HTH depending on truncation limit and
range of xi (M = 301)
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Figure 3.

Original and Hermite-filtered images. Original image from
http://www.med.univ-angers.fr/discipline/radiologie/Intlatlas/t1ax11.html
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Figure 4.

Contour plot of logarithm of condition number of A0 depending on truncation limit and
range of ρ (Mρ = 151)
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Figure 5.

Logarithm of condition number of Al(Mθ = 151, N = 240)
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Figure 6.

Original and Laguerre-Fourier-filtered images viewed in a polar coordinate array
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Figure 7.

Block diagram of interconversion of data given in different coordinate systems
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Figure 8.

Images from interconversion with data on Cartesian grid. (a) Reconstructed data on polar
grid with Hermite expansion (b) Reconstructed data on Cartesian grid with Laguerre-Fourier
expansion
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Figure 9.

Images from interconversion with data on polar grid. (a) Reconstructed data on Cartesian
grid with Laguerre-Fourier expansion (b) Reconstructed data on polar grid with Hermite
expansion
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Figure 10.

Interpolation using interconversion method
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