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Abstract: Acrylonitrile butadiene styrene (ABS) is the most commonly used thermoplastic printing
material for fused deposition modelling (FDM). FDM ABS can be used in a variety of complex
working environments. Notably, the thermo-mechanical coupled loads under complex operating
conditions may lead to cracking and ultimately catastrophic structural failure. Therefore, it is crucial to
determine the crack depth and location before a structural fracture occurs. As these parameters affect
the dynamic response of the structure, in this study, the fundamental frequency and displacement
amplitude response of a cracked 3D-printed ABS cantilever beam in a thermal environment were
analytically and experimentally investigated. The existing analytical model, specifically the torsional
spring model used to calculate the fundamental frequency change to determine the crack depth
and location was enhanced by the proposed Khan-He model. The analytical relationship between
the displacement amplitude and crack was established in Khan-He model and validated for the
first time for FDM ABS. The results show that a reduced crack depth and location farther from the
fixed end correspond to a higher fundamental frequency and displacement amplitude. An elevated
ambient temperature decreases the global elastic modulus of the cracked beam and results in a lower
fundamental frequency. Moreover, a non-monotonic relationship exists between the displacement
amplitude and ambient temperature. The displacement amplitude is more sensitive to the crack
change than the fundamental frequency in the initial stages of crack growth.

Keywords: fused deposition modelling; ABS; dynamic response; damage identification;
displacement amplitude

1. Introduction

Fused deposited modelling (FDM) is used in 3D-printed plastic products extensively.
It refers to heat thermoplastic materials, extrudes filaments from the nozzle and deposits on
growing works layer-by-layer [1]. FDM is now gaining widespread attention from industry
and academic research. Long et al. introduced the FDM for biomedical and pharmaceutical
applications. FDM technique can create customized drug delivery devices that contain
an accurate dose of medicine(s) and provide controlled drug released profiles [2]. Wong
and Pfahnl used ABS to print surgical instruments such as a sponge stick, towel clamp,
scalpel handle, and toothed forceps. All surgeons agreed that the printed smooth and tissue
forceps would perform adequately in simulated surgical tasks [3]. Espalin et al. reported
FDM device applications in the next-generation space exploration vehicle. The National
Aeronautics and Space Administration (NASA) launched an FDM CubeSat Trailblazer in
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November 2013 to demonstrate its durability in extreme environments [4]. Some research
discussed the applications of FDM ABS models for wind tunnel testing. The research
results showed relatively good agreement between FDM and conventional manufactured
models. The FDM model can replace metal to measure aerodynamic characteristics and
verify aerodynamic data obtained in the aerospace industry, even at transonic speeds. [5,6].

Long periods of operation under these extreme conditions pose a critical challenge to
the stability of the FDM structure. Often these extreme environments are accompanied by
complex cyclic loads, and fatigue fracture due to cyclic loads is the most common failure in
mechanical structures. To prevent fatigue fracture, predicting and estimating the severity
of structural damage is particularly critical.

Non-destructive testing (NDT) techniques are commonly used to investigate the dam-
age in mechanical structures [7]. As a representative NDT technique, the vibration method
has gained considerable attention from industries and academics in recent years [1,8]. In
general, a crack in a structure changes the local stiffness, thereby affecting the structural
global dynamic responses such as the natural frequencies, displacement amplitudes, and
mode shapes. These dynamic responses contain information regarding the locations and
sizes of the crack(s). Many researchers have focused on the vibration characteristics of
cracked beams [1,7–45]. Ostachowicz and Krawczuk (1991) modelled the crack as a tor-
sional spring model and calculated the natural frequencies of single-sided and double-sided
crack cantilever beams [46]. The analytical and experimental results highlighted that the
natural frequency of the cracked beam decreased as the crack grew. Several studies have
been performed to investigate the dynamic response of a cracked beam by using a spring
stiffness model derived based on fracture mechanics [8,10,12,13,16,19,20,28,41,47–49]. How-
ever, the torsional spring model can only represent the shallow cracks. Moreover, certain
researchers investigated the relationship between the natural frequency and crack propa-
gation [8–16,19,25,26,34,44]. Mode shapes were applied to estimate the location and size
of damage [18,22,33,43]. Other researchers proposed that changes in the curvature modes
could identify the crack [15,30,50]. Zai et al. (2019) evaluated the natural frequencies and
mode shapes for cracked aluminum cantilever beams [38].

Certain review articles reported a comprehensive examination of various vibration-
based damage detection methods that used the frequency, mode shape, or changes in
the curvature mode for assessment. However, research on the relationship between the
displacement response of the structures and damage severity remains limited. Most existing
research focused on cantilever beams by considering the Euler–Bernoulli beam theory
or Timoshenko–Ehrenfest beam theory as the cantilever beam is a significant element
in real engineering applications. Such beams can withstand high levels of mechanical
loadings [23,37,51]. However, the complex external environment introduces additional
thermal loads for FDM structures in addition to the mechanical loads. The coupled thermo-
mechanical loads and elevated temperatures can affect the structural dynamic response. In
this context, only a few researchers have considered the effect of the thermal environment on
vibration analysis. Khan et al. (2015) analytically calculated and experimentally measured
the fundamental frequency for a non-prismatic aluminum 1050 cantilever beam at different
temperatures. The different ambient temperatures were represented by a change in the
elastic modulus [31]. Furthermore, Zai et al. (2020) investigated the interdependencies of
the crack depth and location on the dynamic response of the aluminum cantilever beam
under thermo-mechanical loads. The analytical, numerical, and empirical results showed
that an increased temperature corresponded to a reduced structural natural frequency.
Several other studies reported the same conclusion [7]. Gupta et al. (2017) investigated
the fundamental frequency of a cracked isotropic aluminum microplate under a thermal
environment. However, the effect of the thermal environment was considered in terms
of the moments and in-plane forces arising due to the temperature [39]. Gillich et al.
(2019) proposed a damage detection method based on multi-modal analysis in variable
temperature conditions. As a fixed–fixed steel beam was considered, the internal load
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caused by the increased temperature and critical load caused by buckling were introduced
in the analytical model [27].

Notably, the abovementioned studies were based on metal structures, and only a few
studies have been conducted to evaluate the vibration response of cracked FDM beams.
Zai et al. (2019) proposed a method to in situ predict the depth of a propagating crack in an
FDM ABS beam via natural frequency measurements. It was noted that FDM ABS had more
residual fatigue life than a metallic structure at the same frequency drop [45]. Moreover,
only a few studies have considered the effect of thermal loads on the dynamic response
of FDM structures. Baqasah et al. (2019) evaluated FDM ABS beams’ natural frequency
and displacement amplitude with different crack locations and sizes under thermal loads.
The natural frequency response weakened at larger crack depths and temperatures as the
reduction in the elastic modulus from 25 ◦C to 70 ◦C led to a reduced natural frequency.
Moreover, a random amplitude behavior was observed in crack propagation tests [1].

The comprehensive review of the dynamic response of the structure indicates that the
existing research [1] lacks an analytical model for the relationship between the vibration
displacement response and damage severity for FDM polymers. In general, it is simpler
and more convenient to measure the structural displacement response than to monitor the
mode shapes in practical application scenarios. Moreover, it is of significance to develop a
dynamic response model that can consider the thermo-mechanical loads for FDM polymers
to reflect the actual working conditions accurately.

Considering these aspects, as an extension of the previous study [1,52], the natural
frequency and displacement response for a cracked FDM ABS beam are analytically investi-
gated. The influence of the thermal loads caused by the ambient temperature is investigated.
Moreover, an optimized analytical model, Khan-He model, which can accurately calculate
the natural frequency of the FDM cantilever beam with cracks, is established for the first
time. By determining the orthogonality of the mode shapes, Khan-He model can be used
to calculate the displacement response of the cracked beam. The analytical results are
validated by tests. The Khan-He model is expected to be used as an NDT method for FDM
ABS structures.

2. Analytical Modelling
2.1. Problem Description

The FDM ABS cantilever beam was chosen as the structure of interest as most prior
studies [7,36,53] considered beam structures and cantilever beams as a significant element
in real engineering applications [23,37]. The dynamic response of cracked beams under
thermo-mechanical loads was modelled and validated.

2.2. Cantilever Beam Geometry

The geometry of the beam is shown in Figure 1. The thickness of the beam was 3 mm.
An initial seeded crack with a width and depth of 0.2 mm and 0.5 mm, respectively, was
present on the top surface, close to the fixed end of the beam to ensure the maximum stress
concentration. Three crack locations were considered, at a distance of 5, 15 and 25 mm from
the fixed end of the beam. An extra-lightweight accelerometer (mass: 0.6 g) from the PCB®

company (Depew, NY, USA) was attached to the beam’s free end.

Figure 1. Beam geometry, with a length, width, and thickness of 150 mm, 10 mm, and 3 mm, respectively.
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2.3. Crack Size Modelling

The existence of cracks changes the local stiffness of the structure. A larger crack depth
decreases the local stiffness. Consequently, the crack in the beam can be represented by a
torsional spring, as shown in Figure 2 [46].

Figure 2. Cantilever beams–torsional spring–accelerometer system.

Ostachowicz and Krawczuk (1991) modelled the torsion spring stiffness corresponding
to an open single-sided crack on a beam, as indicated in Equations (1) and (2).

k =
EbH2

72π fr
( a

H
) (1)

fr

( a
H

)
= 0.6384

( a
H

)2
− 1.035

( a
H

)3
+ 3.7201

( a
H

)4
− 5.1773

( a
H

)5
+ 7.553

( a
H

)6
− 7.3324

( a
H

)7
+ 2.4909

( a
H

)8
(2)

Most of the existing studies [1] directly used Equations (1) and (2) as the relationship
between the spring stiffness and crack depth. However, in this study, it was assumed that
the stress on the crack equals the bending stress on the beam surface owing to the constant
moment. Notably, such approximate stiffness equations are suitable only for cracks near the
surface. Such assumptions may lead to increasing errors in the spring stiffness with larger
crack propagation depths. Therefore, a novel mathematical relationship is introduced, as
shown in Equation (3),

k =

(
H − a

H

)
× ETbH2

72π fr
( a

H
) (3)

The additional term (H − a)/H ensures that the spring stiffness tends to zero as the
crack depth approaches the thickness of the beam, consistent with the actual situation.
The elastic modulus ET is a temperature-dependent value. The difference in the modified
stiffness and originally modelled stiffness is illustrated in Figure 3.

Figure 3. Change in the torsional spring stiffness with crack propagation in an FDM ABS beam with
a thickness, width, and elastic modulus of 3 mm, 10 mm, and 1600 MPa, respectively.
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2.4. Natural Frequency of the System

The cracked beam is represented by two separated full beams connected by a torsional
spring, as shown in Figure 2. Similar to the existing studies, the classical Euler–Bernoulli
beam theory is applied separately for the left and right beams. As there is only one fixed end
on the left of the beam, the thermal expansion owing to thermal loads (elevated ambient
temperature) does not introduce a force and moment. Only the fundamental frequency
of the beam is calculated, and thus, the damping effect of the beam is neglected. The
governing differential equation for the two beams can be expressed as Equation (4).

ET I
∂4yL(x, t)

∂x4 + ρA
∂2yL(x, t)

∂t2 = 0ET I
∂4yR(x, t)

∂x4 + ρA
∂2yR(x, t)

∂t2 = 0I =
bH3

12
A = bH (4)

The effect of the thermal loads changes the value of the material elastic modulus
ET . Figure 4 shows the free body diagram of the beam section. According to this dia-
gram, the boundary conditions of the two beams can be expressed as follows: no rotation
occurs at the beam fixed end, and thus, ∂yL(0, t)/∂x = 0; no displacement occurs at
the beam fixed end, and thus, yL(0, t) = 0; deflection occurs at the spring location, and
thus, yL(l, t) = yR(l, t); the angular difference owing to spring rotation occurs, and thus,
∂yR(l, t)/∂x− ∂yL(l, t)/∂x = (ET I/k)

[
∂2yR(l, t)/∂x2]; the bending moment occurs at the

spring location, and thus, ∂2yL(l, t)/∂x2 = ∂2yR(l, t)/∂x2; the shearing force occurs at the
spring location, and thus, ∂3yL(l, t)/∂x3 = ∂3yR(l, t)/∂x3; no bending moment occurs at
the free tip of the beam, and thus, ET I

[
∂2yR(L, t)/∂x2]+ Jz

[
∂3yR(L, t)/∂t2∂x

]
= 0. Jz is

neglected as it is excessively small; no shearing force occurs at the free tip of the beam, and
thus, ET I

[
∂3yR(L, t)/∂x3]−m

[
∂2yR(L, t)/∂t2] = 0.

Figure 4. Free body diagram of a beam cross-section.

The general solution of Equation (4) is

y(x, t) = Y(x) sin(ωt) (5)

Substituting Equation (5) into Equation (4) yields Equation (6).

d4Y(x)
dx4 − β4Y(x) = 0 (6)

β4 =
ω2ρA
ET I

The general solutions of Equation (6) for the left and right beams are presented as
Equation (7).
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YL(x) = AL sin(βx) + BL cos(βx) + CLsinh(βx) + DL cosh(βx)
YR(x) = AR sin(βx) + BR cos(βx) + CRsinh(βx) + DR cosh(βx)

(7)

The general solution indicated in Equation (7) is introduced into the boundary condi-
tions. As at least one constant from AL to DR has non-zero solutions, according to Cramer’s
rule, the characteristic Equation (8) is obtained.

The value of β is obtained by solving Equation (8). Next, Equation (6) calculates the
natural frequencies of different orders for the cracked beam with an end mass.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

sin(βl) cos(βl) sinh(βl) cosh(βl) − sin(βl) − cos(βl) − sinh(βl) − cosh(βl)

− cos(βl) sin(βl) − cosh(βl) − sinh(βl) cos(βl) + ET I
k β sin(βl) − sin (βl) + ET I

k β cos(βl) cosh (βlL)−
ET I

k β sinh(βlL) sinh(βlL)−
ET I

k β cosh(βl)

− sin(βl) − cos(βl) sinh(βl) cosh(βl) sin(βl) cos(βl) − sinh(βlL) − cosh(βl)

− cos(βl) sin(βl) cosh(βl) sinh(βl) cos(βl) − sin(βl) − cosh(βl) − sinh(βl)

0 0 0 0 − sin(βL) − cos(βL) sinh(βL) cosh(βL)

0 0 0 0 − cos(βL) + macc β
ρA sin(βL) sin(βL) + macc β

ρA cos(βL) cosh(βL) + macc β
ρA sinh(βL) sinh(βL) + macc β

ρA cosh(βL)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(8)

2.5. Displacement Response of the System under Forced Vibration

A cracked beam with different crack locations and depths exhibits different displace-
ment responses under forced resonance. This section describes the establishment of the
relationship between the displacement response of the beam and crack location and depth
under a sinusoidal force. Moreover, the displacement amplitude under the fundamental
frequency is calculated.

2.5.1. Equation of Motion

Unlike the case of free vibrations considered in the calculation of natural frequencies,
as described in Section 2.4, the damping effect of the beam must be considered when the
beam is subjected to forced vibration. The external damping owing to the air is neglected.
The equation of motion of the beam, derived considering the internal damping stress due
to the deformation along the beam and presence of the end mass and torsional spring, is
presented as Equation (9).

ET I ∂4y(x,t)
∂x4 + cI ∂5y(x,t)

∂x4∂t + ρA ∂2y(x,t)
∂t2 + m ∂2y(L,t)

∂t2 δ(x− L)− ∂
∂x

[
k
(

∂yR(l,t)
∂x − ∂yL(l,t)

∂x

)]
δ(x− l)

− ∂
∂x

[
cI
(

∂3y(l,t)
∂x2∂t

)]
δ(x− l) = 0

(9)

The external excitation source for the forced vibrations is represented by the displace-
ment excitation, and thus, the force on the right-hand side of Equation (9) is 0. δ represents
the Dirac delta function. To simplify the calculation, the internal damping is expressed as
c = αTET .

2.5.2. Orthogonality of the Mode Shapes for the System

The damping effect of the beam is neglected in the calculation of the orthogonality of
the free vibration mode shapes. Therefore, Equation (9) can be transformed as:

ET I
∂4y(x, t)

∂x4 + ρA
∂2y(x, t)

∂t2 + m
∂2y(L, t)

∂t2 δ(x− L) +
[

k
(

∂yR(l, t)
∂x

− ∂yL(l, t)
∂x

)]
δ′(x− l) = 0 (10)

Based on the method of separation of variables, we can assume that the solution for
Equation (10) is y(x, t) = Y(x)q(t), d2q(t)/dt2 = −ω2q(t). Substituting this solution into
Equation (10) yields Equation (11) for mode i.

ωi
2[ρAYi(x) + mYR,i(L)δ(x− L)] = ET IYi

′ ′ ′ ′
(x) + k

[
YR,i

′(l)−YL,i
′(l)
]
δ′(x− l) (11)

Equation (12) for mode j can be derived as
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ωj
2[ρAYj(x) + mYR,j(L)δ(x− L)

]
= ET IYj

′ ′ ′ ′
(x) + k

[
YR,j

′(l)−YL,j
′(l)
]
δ′(x− l) (12)

By multiplying Equations (11) and (12) by Yj(x) and Yi(x), respectively, and integrating
each equation over the entire length of the beam, Equations (13) and (14) can be obtained:

ωi
2
[
ρA
∫ l

0 Yi(x)Yj(x)dx + mYR,i(L)
∫ l

0 Yj(x)δ(x− L)dx
]

= ET I
∫ l

0 Yi
′ ′ ′ ′
(x)Yj(x)dx + k[YR,i

′(l)−YL,i
′(l)]

∫ l
0 Yj(x)δ′(x− l)dx

(13)

ωj
2
[
ρA
∫ l

0 Yi(x)Yj(x)dx + mYR,j(L)
∫ l

0 Yi(x)δ(x− L)dx
]

= ET I
∫ l

0 Yj
′ ′ ′ ′
(x)Yi(x)dx + k

[
YR,j

′(l)−YL,j
′(l)
] ∫ l

0 Yi(x)δ′(x− l)dx
(14)

For two arbitrary mode shapes, Ya and Yb, Equation (15) holds for any beam [54]:∫ L

0
Ya
′ ′ ′ ′
(x)Yb(x)dx = [Ya

′′′ (x)Yb(x)]L0 −
[
Ya
′′ (x)Yb

′(x)
]L

0 +
∫ L

0
Ya
′′ (x)Yb

′′ (x)dx (15)

For the considered system, Equation (16) can be derived:∫ L

0
Yi
′ ′ ′ ′
(x)Yj(x)dx =

EI
k

Yi
′′ (l)Yj

′′ (l) +
∫ L

0
Yi
′′ (x)Yj

′′ (x)dx (16)

By substituting Equation (16) into Equation (13) and simplifying, Equation (17) can
be obtained:

ωi
2
[
ρA
∫ L

0 Yi(x)Yj(x)dx + mYi(L)Yj(L)
]
=

(ET I)2

k Yi
′′ (l)Yj

′′ (l) + ET I
∫ L

0 Yi
′′ (x)Yj

′′ (x)dx + k[YR,i
′(l)−YL,i

′(l)]
[
YR,j

′(l)−YL,j
′(l)
] (17)

By performing the same treatment for Equation (14) and subtracting the results from
Equation (17), Equation (18) is obtained.(

ωi
2 −ωj

2
)[

ρA
∫ L

0
Yi(x)Yj(x)dx + mYi(L)Yj(L)

]
= 0 (18)

As the natural frequencies are distinct,
(
ωi

2 −ωj
2) does not equal zero when i 6= j.

Therefore, the mass orthogonality condition for the system is obtained, as shown in Equa-
tion (19):

ρA
∫ L

0
Yi(x)Yj(x)dx + mYi(L)Yj(L) = 0 when i 6= j (19)

Substituting Equation (19) into Equation (17) yields the stiffness orthogonality condi-
tion for the system, as shown in Equation (20).

2(ET I)2

k
Yi
′′ (l)Yj

′′ (l) + ET I
∫ L

0
Yi
′′ (x)Yj

′′ (x)dx = 0 when i 6= j (20)

2.5.3. Displacement Response and Amplitude under the First Mode Natural Frequency

As indicated in Section 2.2, one end of the cantilever beam is fixed to the excitation
source, which outputs the quasi-static sinusoidal motion. This device drives the cantilever
beam in a sinusoidal displacement under the fundamental frequency. As the driving force
varies with the displacement of the beam during vibration, the displacement of the shaker,
as a form of external force, expressed in Equation (21) is introduced in Equation (9) [55]:

u(t) = U0 sin(ωst) (21)

Therefore, the total displacement of the beam is the displacement related to the bending
of the beam described in terms of the sum of the series and shaker displacement, as
indicated in Equation (22).
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U(x, t) = y(x, t) + u(t)

y(x, t) =
∞
∑

n=1
Yn(x)qn(t)

(22)

For ease of calculation, let c = αTET . Substituting Equation (22) into Equation (9)
yields Equation (23).

∞
∑

n=1

[
ET IYn

′ ′ ′ ′
(x)qn(t)

]
+

∞
∑

n=1

[
αTET IYn

′ ′ ′ ′
(x)qn

′(t)
]
+ ρA

∞
∑

n=1
[Yn(x)qn ′′ (t)]

+ρAu′′ (t) + m
∞
∑

n=1
[Yn(L)qn ′′ (t)δ(x− L)] + mu′′ (t)

+k
{

∞
∑

n=1
[YR,n

′(x)−YL,n
′(x)]qn(t)

}
.
δ(x− l)

+αTk
{

∞
∑

n=1
[YR,n

′(x)−YL,n
′(x)]qn

′(t)
}

.
δ(x− l) = 0

(23)

By multiplying Equation (23) by Yi(x) and integrating over the entire length of the
beam, according to the orthogonality conditions of the system, as described in Section 2.5.2,
Equation (24) can be obtained:

C1qi
′′ (t) + C2qi

′(t) + C3qi(t) = C4ωs
2 sin(ωst)

C1 = ρA
∫ L

0 Yi
2(x)dx + mYi

2(L)

C2 = αT

{∫ L
0 ET I[Yi

′′ (x)]2dx + 2(ET I)2

k [Yi
′′ (l)]2

}
C3 = ET I

∫ L
0 [Yi

′′ (x)]2dx + 2(ET I)2

k [Yi
′′ (l)]2

C4 = (ρA + m)U0
∫ L

0 Yi(x)dx

(24)

Equation (24) is a differential equation in terms of qn(t) and a unique homogeneous
solution exists for it. This solution is calculated as the cracked cantilever beam vibrates in a
steady state during the test. The solution of Equation (24) can be expressed as Equation (25):

qi(t) = C5 sin(ωst) + C6 cos(ωst) (25)

Substituting Equation (25) into Equation (24) yields Equation (26).[(
ωs

2C1 − C3

)
C5 + C2ωsC6 + C4ωs

2
]

sin(ωst) =
[(

ωs
2C1 − C3

)
C6 − C2ωsC5

]
cos(ωst) (26)

Considering the arbitrariness of time, the joint cubic equation, Equation (27), can be
obtained for parameters C5 and C6:{ (

C3 −ωs
2C1
)
C5 − C2ωsC6 = C4ωs

2

C2ωsC5 +
(
C3 −ωs

2C1
)
C6 = 0

(27)

The solutions are presented as Equation (28).

C5 =

(
C3 −ωs

2C1
)
C4ωs

2

(ωs2C1 − C3)
2 + (C2ωs)

2 C6 =
−C2C4ωs

3

(ωs2C1 − C3)
2 + (C2ωs)

2 (28)

By substituting Equations (25) and (28) into Equation (22), the displacement response
of the cracked cantilever beam can be determined.

As the displacement amplitude of the beam is measured under the forced vibration
of the fundamental frequency, the response of the higher-order modes at the first mode
natural frequency is omitted, and only the first-order mode is considered. The displacement
amplitude at the beam tip is expressed in Equation (29).

Umax =

√
Yi(L)2(C52 + C62) + U02(i = 1) (29)
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2.5.4. Mathematical Approximation of the Displacement Amplitude

The analytical solution for the beam tip displacement amplitude at first-order reso-
nance, as described in Section 2.5.3, involves certain limitations.

As the torsion spring model is used to represent the crack depth, as described in
Section 2.3, the torsion spring stiffness is a fixed value for a specific crack depth. The crack
is fully opened, regardless of the position and movement of the beam. However, in practice,
the constantly vibrating beam subjects the crack tip to cyclic tensile and compressive
loads [52]. Therefore, the actual crack depth of the beam constantly varies. The crack
is fully opened when the crack tip is subjected to tensile stress for half a cycle, and at
this point, the torsion spring model can represent the crack. However, the beam can be
considered as an intact beam, and the crack is fully closed when the crack tip is subjected
to compressive stresses for another half cycle.

This time-dependent actual effective crack depth affects the structural response of the
beam. In particular, the displacement amplitude of the actual beam lies between those of an
intact beam and a fully opened crack beam. However, the time-independent torsion spring
model cannot represent this phenomenon. Therefore, the analytical model presented in
Section 2.5.3 is bound to be inaccurate compared to the actual situation. In this study, as
shown in Equation (30), a modified mathematical model is considered to reduce this error.

The term 4
(
Umax,a=0

2 −U0
2)(Umax

2 −U0
2)/(√Umax,a=02 −U02 +

√
Umax2 −U02

)2

represents the displacement amplitude related to the bending of the beam. The form of the
term is similar to the bilinear natural frequency of a breathing crack [13].

Umax,modi f ied =

√√√√ 4(Umax,a=02 −U02)(Umax2 −U02)(√
Umax,a=02 −U02 +

√
Umax2 −U02

)2 + U02 (30)

As shown in Figure 5, assuming a displacement amplitude ranging from 2 mm (fully
cracked beam) to 32 mm (intact beam) for the beam during crack propagation, the red curve
shows the corrected mathematical model value. The modified displacement amplitude is
always higher than the analytical result. Equation (30) allows the displacement amplitude
of the intact beam to dominate the corrected result when the crack starts growth, however
the value of the fully opened crack beam dominates the corrected result when the actual
displacement amplitude approaches 2 mm.

Figure 5. Analytical displacement amplitude and corresponding modified mathematical displace-
ment amplitude for a range of 2 mm to 32 mm.

3. Experimental Methodology

The analytical models proposed in Section 2 should be validated appropriately. Hence,
a series of suitable experiments were designed with the consideration of dynamic thermo-
mechanical load. The selected test parameters were determined, and the experimental
setup was developed to monitor the structural integrity and dynamic response during the
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fatigue crack growth test. The temperature-dependent elastic modulus value in analytical
models was also measured.

3.1. Specimen Preparation

As shown in Figure 6, the specimen, which has the geometry shown in Section 2.2,
was printed using the Ultimaker® 2+ printer (Utrecht, The Netherlands), with the printing
parameters listed in Table 1. The other settings corresponded to the recommended or
default values in the Ultimaker® Cura software.

Figure 6. Three specimens printed using the Ultimaker 2+ printer.

Table 1. Main printing parameters for the FDM ABS cantilever beam.

Printing Parameters Settings

Infill density 100%
Raster orientation 0◦

Nozzle size 0.8 mm
Layer thickness 0.15 mm

Nozzle temperature 245 ◦C
Bed temperature 90 ◦C

3.2. Experiment Scheme

The experiments involved two parts: First, the fundamental frequencies corresponding
to beams with different crack locations and depths were measured, along with the dis-
placement amplitude at the beam tip under the first mode forced vibration. Next, dynamic
mechanical analysis (DMA) tests were conducted for the specimens cut from the previous
beams. The elastic modulus of the beam at different temperatures was determined.

Three crack locations were considered in the experiment. The effect of thermal loading
on the dynamic response was evaluated by varying the ambient temperature to 50, 60 and
70 ◦C. The temperature range was determined by a Differential Scanning Calorimetry (DSC)
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test as in previous studies [56–58]. A Mettler Toledo Differential Scanning Calorimeter, DSC
Q 2000 (Columbus, OH, USA), was used to measure the glass transition temperature of
Ultimaker red ABS. It heated the material from 25 ◦C to 200 ◦C at a rate of 20 ◦C/min under
a nitrogen atmosphere. The test result is shown in Figure 7. It exhibits glass transition
temperatures Tg ≈ 79.83 ◦C and Tg ≈ 94.49 ◦C. Similarly, Braconnier et al. found two Tg
for Ultimaker white ABS shown in Figure 3 in their paper [59]. It is much lower than ABS
from other sources due to a higher concentration of polybutadiene. The structural strength
may become insufficient to conduct experiments owing to softening when the ambient
temperature is close to Tg [60]. Therefore, the upper limit was set as 70 ◦C.

Figure 7. DSC of Ultimaker red ABS.

Therefore, experiments were conducted in nine different configurations as each of
the three crack locations was evaluated at three temperatures. Three identical specimens
were manufactured for each configuration and tested in the same conditions to ensure the
accuracy of the experimental results.

3.3. Experimental Setup and Procedure
3.3.1. Dynamic Response Measurement

The experimental setup is the same as previous studies [52]. The initially seeded
cracked ABS specimen was fixed on a V55 shaker manufactured by Data Physics (Hailsham,
UK). The signal generator produced a sinusoidal output for the power amplifier, which
transmitted the signal to the shaker. A mica band heater was used to apply a constant
thermal load on the specimens throughout the experiments. The accelerometer was fixed
on the beam’s free end to measure the acceleration in real-time. The acceleration and time
data acquired by the accelerometer were imported into the Signal Express software via the
NI 9234 DAQ card and NI 9174 DAQ chassis and recorded.

The experiment was conducted via the following steps. First, the fundamental natural
frequency of the specimen was measured three times through impact tests. The mean value
of the fundamental frequency was recorded. Next, the shaker introduced the sinusoidal
motion with a displacement amplitude of 2 mm at the recorded fundamental frequency.
The beam was driven by the shaker and vibrated at the fundamental frequency, thereby
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generating the initial maximum displacement amplitude of the beam. This displacement
amplitude was recorded and used to examine the crack position and initial crack depth. The
continuously applied forced vibration led to crack propagation, which reduced the crack
area’s local stiffness and changed the complete system’s dynamic response characteristics.

The experiment was paused when the displacement amplitude displayed in real-time
through the Signal Express software was significantly reduced. The system’s fundamental
frequency was re-measured and re-recorded in addition to the new crack depth acquired
from the Dino-Lite digital microscope. Subsequently, the test was restarted. The procedures
were repeated until the final complete fracture of the beam. The experimental procedures
are shown in Figure 8. Figure 9 shows a complete crack propagation process from the
initial seeded crack at the location of 10 mm to the final fracture at 70 ◦C, as an example.
Furthermore, Figure 10 shows the SEM image for the fracture surface after the FCG test,
which clearly shows the air voids in FDM ABS structure.

Figure 8. Experimental procedures.

3.3.2. DMA Test Procedure

The DMA test was conducted using the Q800 device of TA Instruments (New Castle,
DE, USA). The device can measure the storage and loss moduli of a sample under different
temperatures through a single-clamped cantilever beam flexural test.

The test setup is shown in Figure 11. A 40-mm-long specimen was cut from the free
end of the fractured beam. The part was fixed at one end in the chamber of the DMA test
machine. The temperature in the chamber gradually increased from 30 ◦C to 70 ◦C at a
rate of 3 ◦C per minute. The free end of the specimen moved at a frequency of 1 Hz and
an amplitude of 10 µm. The storage and loss moduli values were automatically calculated
and recorded, which varied with the temperatures.
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Figure 9. Crack growth process at 10 mm crack location from initial seeded crack (0.407 mm) to final
crack (2.682 mm) at 70 ◦C.

Figure 10. Fracture surface of the specimen after fracture.
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Figure 11. Single-clamped DMA test setup.

4. Results and Discussion
4.1. Results and Analysis for the DMA Test
4.1.1. Tensile Modulus of FDM ABS

The DMA of two randomly selected samples cut from the fracture beams was evalu-
ated. The recorded data, including the storage modulus E′ and loss modulus E′′ are shown
in Figure 12. The poly2 curve fitting method was used to model the correlation between
the entities and temperature, with R-square values of 76.11% and 70.61%, respectively.

Figure 12. (a) Storage modulus and (b) loss modulus of FDM ABS.

As illustrated in Figure 12, as thermal expansion occurs when the temperature rises,
the storage modulus of FDM ABS, which represents its elastic behavior, decreases from
2104 MPa at 50 ◦C to 1976 MPa at 70 ◦C. The decrease is more rapid as the temperature
increases. This trend is similar to most materials [7,31].

The loss modulus of FDM ABS, which represents its material viscosity behavior,
exhibits an opposite trend with the temperature. Specifically, the loss modulus increases
from 24 MPa at 50 ◦C to 36 MPa at 70 ◦C. The viscosity of the FDM ABS leads to energy
dissipation caused by friction and rearrangement. A higher amount of energy is lost when
the temperature is higher. The tensile modulus E∗ of FDM ABS, as a viscoelastic material
under a thermal environment, is a complex physical entity, as shown in Equation (31).

E∗ = E′ + iE′′ (31)
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However, compared to the storage modulus, the loss modulus is two orders of magni-
tude smaller, and thus, the effect of viscosity can be neglected. In other words, the FDM
ABS can be treated as an elastic material in the considered temperature range. The storage
modulus value is equal to the tensile modulus of FDM ABS. The trend of the tensile modu-
lus with temperature is consistent with the empirical model shown in Equation (32) [61].

E = E0 − BTe−
T0
T (32)

4.1.2. Damping of the FDM ABS Cantilever Beam

Damping reduces oscillation amplitude due to the dissipated energy to overcome
friction or other resistance forms. Generally, two types of viscous damping occur for beams:
resistance of the external medium (e.g., air, water) to the motion of the beam, known as
external damping; and the distributed damping stresses that occur along with the height of
the beam section owing to the repeated deformation of the beam fibers, known as internal
damping. We ignored the effect of external damping and considered only the internal
damping owing to the fiber friction of the beam in the considered conditions. As described
in Section 2.5.1, the internal damping is numerically equal to the loss modulus.

Furthermore, the damping behavior of FDM ABS can be represented using the struc-
tural damping coefficient or loss factor tan δ, which equals E′′/E′. As the loss modulus
increases with the temperature and the storage modulus exhibits the opposite trend, tan δ
always increases as the temperature rises. Specifically, tan δ increases from 0.01143 at
50 ◦C to 0.0183 at 70 ◦C, as shown in Figure 13. In terms of the microstructure, the energy
dissipation in the viscoelastic layers generated by their shear deformation causes internal
damping. Molecular chain slippage occurs easily among the layers, and thus, a larger
amount of energy is dissipated as heat by the friction when the temperature rises.

Figure 13. (a) Visualized relationship among the storage modulus, loss modulus, and damping factor.
(b) Change in the damping factor with temperature.

Owing to the increased damping factor at higher temperatures, the FDM ABS can-
tilever beam stores less kinetic and elastic potential energy under forced vibration when
subjected to the same external force, resulting in a smaller displacement amplitude. This
phenomenon was also observed in the experiments.

4.2. Dynamic Response of the Cantilever Beam–End Mass System

Crack propagation tests were conducted for beams with different crack locations and
temperatures, as described in Section 3. The analytical models for the dynamic response
were developed with the original and modified stiffness values. The DMA results shown in
Figure 12 were considered as the elastic modulus values in the analytical model under differ-
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ent temperatures. The fundamental frequency of the beam is plotted in Figure 14. Figure 15
shows the analytical displacement amplitude at the beam tip during crack propagation.
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Figure 15. Analytical displacement amplitudes obtained experimentally and calculated using two
analytical models during crack propagation.

Due to the fact that MATLAB R2018a reached the set maximum number of intervals
when the crack depth exceeded 2 mm at the 5 mm crack location, the approximate calculated
values could not attain the target accuracy. Based on the analytical results for the crack
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depth ranging from 0 to 2 mm, the fitted curves were plotted for the fundamental frequency
when the crack depth ranged between 2 mm and 3 mm.

4.2.1. Comparison of Analytical Models with Differently Modelled Torsional Spring
Stiffness Values
4.2.1.1. Comparison and Analysis of Differences in the Fundamental Frequency

Figure 14 shows the experimental data and fundamental frequency calculation results
of the two analytical models during crack propagation at different crack locations under
different temperatures. The experimental data and calculations of the two analytical
models highlight a continuous decrease in the fundamental frequency with the initial crack
propagation until specimen fracture. This result is similar to that reported previously [1].

However, the comparison of the results of the fundamental frequency calculations
based on the two analytical models indicates that when the crack depth approaches the
beam top surface (less than one-third of the total thickness of the beam), the fundamental
frequency calculated using both models is identical. Notably, as the crack depth continues
to increase, the fundamental frequency curve for the original spring stiffness model tends
to level off, whereas that for the modified spring stiffness model decreases rapidly and
tends to decrease more rapidly with the increase in the crack depth. For example, in the
case of the crack growth at an ambient temperature of 50 ◦C and crack location of 5 mm,
the difference in the fundamental frequency obtained using the two models changes from
0.00036 Hz at a 0 mm crack depth to 0.44 Hz at a 1 mm crack depth and finally to 14.61 Hz
for a 2.8 mm crack depth. In terms of the percentage relative to the original stiffness model,
the difference between the two models increases rapidly from 0.001% to 84% as the crack
depth increases from 0.1 mm to 2.8 mm, corresponding to nearly five orders of magnitude.

This difference in the fundamental frequency as the crack growth can be attributed
to the use of the spring model of the crack size, as described in Section 2.3. In the original
modelling process of the spring stiffness, it was assumed that the stresses at the surface of
the bending beam crack location and stress field at the crack tip were of the same magnitude.
This estimation is applicable only for shallow cracks close to the surface of the beam. As
the crack depth increases, the error in the stresses increases larger. Even when the beam is
completely fractured, the original spring stiffness model still estimates a non-zero value,
whereas, in reality, the spring stiffness model must yield a value of zero. In the proposed
Khan-He model, the additional term (H − a)/H is introduced, which ensures that the
stiffness coefficient of the spring tends to zero when the beam is completely fractured.
Therefore, the fundamental frequency of the fractured beam is 0 Hz, consistent with the
actual scenario.

The comparison of the results of the analytical models with the experimental data
indicates a significant difference in the accuracy of the predicted values of the two models,
especially at large crack depths. As shown in Figure 14, the experimental data are further
distributed along the curves of the fundamental frequency value obtained using the Khan-
He model.

To examine the difference quantitatively, Figure 16 shows the relative differences of
the two spring stiffness models against the experimental data. In terms of the fundamental
frequencies for different crack locations at different temperatures, the overall difference be-
tween the values obtained using Ostachowicz model and experimental data is considerably
greater than pertaining to the Khan-He model.
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Figure 16. Relative difference in the results obtained using analytical models and experimental results.

Moreover, the difference in the fundamental frequency with crack growth is similar
in the conditions corresponding to each subplot. An example of crack propagation under
50 ◦C at the 5 mm crack location is considered. Table 2 summarizes the experimental data,
corresponding analytical model calculation results, and differences associated with the
crack depth measured during the crack propagation test. Figure 17 shows the relative
difference between the results obtained using the two analytical models and experimental
results. Table 2 and Figure 17 highlight the increasing difference between the fundamental
frequencies calculated using Ostachowicz model and the experimental data during the
crack propagation. The difference reaches nearly 40% when the crack depth is 2.396 mm.

In contrast, the fundamental frequencies determined using Khan-He model are in
agreement with the experimental data, with a difference of less than 5% when the crack
propagates from the initial depth of 0.317 mm to 2.026 mm. The difference in the fundamen-
tal frequency corresponding to crack depths of 0.963 mm and 1.279 mm is only 0.08% and
0.07%, respectively. Note that to determine the analytical model fundamental frequency at
a crack depth of 2.396 mm, a second-order polynomial fit was used as the accuracy yielded
by the MATLAB approach was inadequate; the use of this approach likely led to the slightly
higher discrepancy (20.55%) between the value and the experimental data.

Table 2. Fundamental frequency obtained from experiments and analytical models, along with the
difference in the values.

Crack Depth (mm) 0.317 0.963 1.279 1.632 2.026 2.396

Experimentally obtained fundamental frequency ftest (Hz) 23.39 23.26 21.88 19.88 15.99 12.96
Fundamental frequency f1 (Hz) obtained using Ostachowicz model 24.44 23.66 22.91 21.76 20.19 18.7

Fundamental frequency f2 (Hz) obtained using Khan-He model 24.42 23.27 21.9 19.42 15.59 10.3
Difference between ftest and f1 (Hz) 1.04 0.4 1.03 1.88 4.2 5.74
Difference between ftest and f2 (Hz) 1.03 0.018 0.014 0.46 0.4 2.66
Difference between ftest and f1 (%) 4.47 1.72 4.72 9.46 26.27 44.26
Difference between ftest and f2 (%) 4.42 0.08 0.07 2.33 2.49 20.55
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Figure 17. Relative difference between the fundamental frequency obtained using the two analytical
models and experimental data for crack propagation at the 5 mm crack location at 50 ◦C.

Overall, Khan-He model yielded fundamental frequency values that were similar
to the experimental data. Compared to Ostachowicz model, accurate estimates of the
fundamental frequency response of the beam could be obtained for specific crack locations
and depths. In the following discussion of the frequency response of the cracked beam,
only the fundamental frequency determined using Khan-He model is considered.

4.2.1.2. Comparison and Analysis of the Differences in the Displacement Amplitude

Figure 15 shows the analytical and experimental relationships between the beam tip
displacement amplitude and crack depth at first-order resonance. As in the case of Figure 14,
both the analytical model results and experimental data indicate that the displacement
amplitude decreases as the crack grows.

The difference in the results obtained using the two analytical models is not significant
when the crack is close to the surface of the beam. However, as the crack propagates, the
difference between the two values becomes progressively larger, and the displacement
amplitude determined using Khan-He model decreases more rapidly than that obtained
using Ostachowicz model. Eventually, the value of Khan-He model is significantly smaller
than the displacement amplitude of Ostachowicz model when the beam is completely
fractured. For similar reasons, the results are similar to those of the fundamental frequency
during crack propagation. The additional term (H − a)/H in the proposed model ensures
that the local stiffness at the crack location is smaller than that pertaining to Ostachowicz
model. Therefore, the beam oscillates similarly to the shaker vibration without displacement
due to resonated bending when the beam approaches fracture. Therefore, the displacement
amplitude is similar to 2 mm, as in the case of the shaker, when the crack depth increases
to 3 mm. Consequently, Khan-He model with the modified torsional spring stiffness is
superior to Ostachowicz model.

However, the proposed Khan-He model results are significantly different compared
to the experimental data. The experimental data are consistent with the theory described
in Section 2.5.4, as discussed in the section. The torsion spring model is not an ideal
representation of the actual effective crack depth, which varies with time during the
same cycle. Therefore, a new mathematical improved Khan-He model was proposed in
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Section 2.5.4. Figure 18 shows the displacement amplitudes obtained using the improved
mathematical method and experiments at different crack depths.
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The displacement amplitude, obtained using Khan-He and secondary improved Khan-
He models, is similar as the crack approaches the beam surface. The difference between
the two models gradually increases as the crack depth approaches the half beam thickness.
Furthermore, the displacement amplitudes obtained using both models gradually converge
to the same value, which equals the shaker’s vibration amplitude of 2 mm, when the beam
is about to fracture. This difference can be attributed to the form of Equation (30). The
nature of this equation causes the displacement amplitude of the improved Khan-He model
to be greater than that of Khan-He model when the crack depth approaches the middle of
the beam.

Figure 19 shows the average relative difference between Khan-He (the model in
Section 2.5.3) and secondary improved Khan-He (the model in Section 2.5.4) models com-
pared to the experimental data for different combinations of the crack location and tempera-
tures. The difference between the results of the secondary improved model and experiment
is smaller than that for Khan-He model. Figure 20 illustrates the difference between the
results obtained using the two models and the measured values corresponding to the crack
depth during crack propagation tests. The improved Khan-He model calculation is closer
to the actual experimental values for most crack depths at different crack locations under
different temperatures.

However, both Figures 18 and 20 show that the experimental values are higher than
the displacement amplitude obtained using the improved Khan-He model at specific crack
depths, especially when the crack depth is between half and the total thickness of the beam
(for instance, in conditions of 15 mm 50 ◦C and 5 mm 60 ◦C). This observation can be
attributed to the crack closure phenomenon. To ensure that the displacement amplitude
of the shaker output to the fixed end of the beam is a constant value of 2 mm during the
experiment, the load amplitude on the beam varies with crack depth. The load applied
to the beam to make it resonate decreases as the crack grows. The reduced load reduces
the stress amplitude on the crack location, resulting in a lower stress ratio. This low-stress
ratio leads to larger crack closure during beam vibration. Although the vibrated cracked
beam can be assumed as a superposition of the intact and fully open cracked beam states, a
larger crack closure renders the structural properties of the cracked beam to be more biased
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towards the intact beam. Therefore, expectedly, the displacement amplitude response of
the beam tends to increase owing to the larger influence of the intact beam.
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Nevertheless, the difference in the fundamental frequency obtained using the analyti-
cal model and the experimental data is considerably smaller than that for the displacement
amplitude, as shown in Figures 16 and 20. This phenomenon can be attributed to two
aspects. First, different experimental methods were used to measure the fundamental
frequency and displacement amplitude. The beam was at rest when the fundamental
frequency was measured. The impact test only applied a slight disturbance to the beam.
However, the beam was required to be in resonance with a 2 mm excitation to measure the
displacement amplitude. This considerable resonance likely affected the crack growth and
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changed the displacement amplitude. Moreover, the fluctuating displacement amplitudes
during beam vibration increased measurement error. Second, the heating band was unlike
an environmental chamber and was relatively exposed. The vibration of the beam caused
air to flow, leading to fluctuations in the ambient temperature of the specimen, thereby
affecting the displacement amplitude.

4.2.2. Fundamental Frequency for the Cracked Beam
4.2.2.1. Influence of the Crack Depth on Natural Frequencies

The variation in the beam fundamental frequency during crack propagation is shown
in Figure 14. As the two analytical models and experimental data yield similar trends for
the change in the fundamental frequency with the crack depth at any crack location or
ambient temperature, the relationship between the crack growth and change in fundamen-
tal frequency at an ambient temperature of 50 ◦C at a 5 mm crack location is considered
for analysis. Figure 21 illustrates the fundamental frequency and drop percentage change
during crack growth, as determined using Khan-He model and experimental data. As
described in Section 4.2.1.1, the experimental data and analytical model indicate the reduc-
tion in the fundamental frequencies as the crack grows. Compared to an intact 3-mm-thick
beam, the fundamental frequency at a crack depth of 2.8 mm drops from approximately 24.5
Hz to 2.5 Hz, which is only approximately 10% of the initial fundamental frequency. The
beam’s cross-sectional area at the crack location decreases and the local stiffness decreases
as the crack length increases. As reflected in the analytical model, the local reduction in the
stiffness due to crack growth reduces the stiffness matrix, although the beam mass does not
change; therefore, the calculation yields a gradual reduction in the fundamental frequency.

Figure 21. Change in frequency during crack propagation at the 5 mm crack location at 50 ◦C.

Notably, the change in the fundamental frequency is insignificant when the crack
is close to the surface. However, as the beam approaches fracture, the change in the
fundamental frequency becomes more rapid as the crack grows. The frequency decreases
only by approximately 0.3 Hz (1% relative change) when a crack of 0.5 mm (one-sixth
of the beam thickness) is present in the intact beam; in contrast, the frequency decreases
by approximately 6 Hz (25% relative change) from the 2.5 mm crack depth to fracture.
The initial monitoring of small cracks is crucial in actual working conditions. In other
words, highly sensitive sensors are required to predict the crack depth when using the
fundamental frequency.
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4.2.2.2. Influence of the Crack Location on the Fundamental Frequency

Figure 22 shows the change in the fundamental frequency during crack propagation for
a beam with different crack locations. A crack located farther from the fixed end of the beam
corresponds to a higher fundamental frequency of the beam. Moreover, the difference in the
fundamental frequencies increases. However, as the crack depth approaches the thickness
of the specimen (from approximately 2.3 mm, as shown in Figure 22), the difference between
the fundamental frequencies of the beams with different crack locations rapidly converges
to zero Hz. The effect of the crack location on the fundamental frequency is not significant.
The maximum difference in the fundamental frequencies for the 15 mm and 25 mm crack
locations is only approximately 0.95 Hz.
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4.2.2.3. Influence of the Temperature on the Fundamental Frequency

Figure 23 shows the fundamental frequency of the cracked beam at different temper-
atures. The fundamental frequency of a specimen with a fixed crack depth and location
decreases gradually as the temperature increases. However, the difference in the funda-
mental frequency at different temperatures decreases as the crack depth increases. Similar
to the crack location, the effect of the temperature on the fundamental frequency is not
significant. Regardless of the crack location, the fundamental frequency of specimens with
a 0.1 mm crack depth differs only by 0.8 Hz in the experimental temperature range. This
difference decreases further with crack propagation to a theoretical value of zero Hz at the
final fracture state.
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4.2.3. Displacement Amplitude for the Cracked Beam under Resonance
4.2.3.1. Influence of the Crack Depth on the Displacement Amplitude

As the trends of the displacement amplitude of the specimens at different crack
locations during crack propagation are similar, as shown in Figure 18, the displacement
amplitude of the beam with a 15 mm crack location at 60 ◦C is discussed.

Figure 24 shows the change in the displacement amplitude with crack growth. The
displacement amplitude decreases from approximately 36 mm for the initial intact specimen
to 5 mm at the final near-fracture state. The change in the displacement amplitude is smooth
as the crack depth approaches the beam top surface or when the beam is close to fracture.
However, the displacement amplitude decreases rapidly when the crack depth approaches
half the thickness of the beam.

Figure 24. Change in the displacement amplitude for crack growth at a 15 mm crack location at 60 ◦C.

The decrease in the displacement amplitude of the beam with the crack growth can be
attributed to two reasons: First, the load to maintain the 2 mm displacement amplitude
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excitation gradually decreases as the crack propagates. In other words, the force acting on
the beam gradually decreases. The decreased excitation results in smaller displacement
amplitudes; Second, the increased crack depth increases the damping of the beam [62].
Consequently, the energy dissipated by damping increases during vibration, and the
displacement amplitude decreases.

4.2.3.2. Influence of the Crack Location on the Displacement Amplitude

Figure 25 shows the change in the amplitude with crack growth for beams with
different crack locations. Similar to the frequency trend shown in Section 4.2.2.2, a crack
located farther from the fixed end of the beam corresponds to a smaller displacement
amplitude. The displacement amplitude of the beam is the same for different crack locations
when the crack is close to the surface of the beam and propagation is initiated. Moreover,
the displacement amplitudes tend to be 2 mm when the beam fractures. However, unlike
the fundamental frequency change, the displacement amplitude difference corresponding
to different crack locations increases as the crack depth closes to half the beam thickness
(approximately 1.4 mm).
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4.2.3.3. Influence of the Temperature on the Displacement Amplitude

Figure 26 shows the effect of the temperature on the displacement amplitude of the
cracked beam. Unlike all previous response trends, the effect of different temperatures on
the displacement amplitude of cracked beams is extremely complex. As shown in Figure 26,
the beam has the smallest displacement amplitude from the intact to fractured state at 50 ◦C.
The intact beam exhibits the largest displacement amplitude at 60 ◦C. However, when the
crack depth reaches and exceeds approximately 0.8 mm, the beam at 70 ◦C exhibits the
largest displacement amplitude.
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This seemingly random phenomenon validates the experimental results of the existing
research [1]. Specifically, this phenomenon can be attributed to the combined effect of
the varied elastic modulus and excitation loads under various temperatures. The overall
flexibility of the beam decreases, and the displacement amplitude naturally increases when
the beam is subjected to the same external excitation when the temperature rises. However,
the fundamental frequency pertaining to the rise in temperature decreases. To maintain
the two mm amplitude resonance, both the amplitude and frequency of the external forces
loaded on the beam decrease, thereby reducing the displacement amplitude of the beam.
These two opposing influences cause the final displacement amplitude response of the
beam to lose its monotonicity and become more complex.

4.2.4. Sensitivity of the Dynamic Response

Sections 4.2.2 and 4.2.3 discussed the response characteristics of the fundamental
frequency and displacement amplitude. This section describes the characteristics and
sensitivity of the dynamic response to the crack depth and location. Notably, the response
of the displacement amplitude to different temperatures, as described in Section 4.2.3.3, is
too complex to be discussed.

4.2.4.1. Sensitivity of the Dynamic Response to the Crack Depth

Figure 27 shows the fundamental frequency and displacement amplitude change at
the beam tip for a beam with a 15 mm crack location at 50 ◦C. Although the fundamental
frequency and displacement amplitude decrease with crack growth, their trends and
differences from the initial values are different.

Figure 27b shows that the fundamental frequency of the beam changes by only ap-
proximately one Hz, although the displacement amplitude of the beam decreases by eight
mm when the crack depth of the beam increases from 0.1 mm to 1 mm. In other words, a
significant change occurs in the displacement amplitude of the beam, whereas the change
in the fundamental frequency is extremely small at the beginning of the crack growth when
the crack is close to the beam surface. Figure 27c shows that compared to the initial value,
the relative difference in the displacement amplitude is always higher than that in the
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fundamental frequency for the same crack depth throughout the process from an intact
state to the final fracture.

Figure 27. (a) Dynamic response of the beam during crack growth at a 15 mm crack location at 60 ◦C
(b) Difference in the dynamic response with that for a 0.1 mm crack depth. (c) Percentage difference
in the dynamic response with that for a 0.1 mm crack depth.

Therefore, the displacement amplitude is more sensitive to changes in the crack depth
than the fundamental frequency response of the fractured beam in the early stages of crack
growth. In reality, the detection of small initial cracks is extremely critical. The accurate
prediction of initial cracks can often prevent the catastrophic failure of the structure even if
the cracks continue to grow. This finding suggests that using the displacement amplitude
to estimate the crack depth yields more accurate results than those obtained using the
fundamental frequency for small cracks. In other words, the accuracy requirements for
the sensor can be lowered if the displacement amplitude is measured. The fundamental
frequency and displacement amplitude can be analyzed in combination for longer cracks
to determine the crack depth accurately.

4.2.4.2. Sensitivity of the Dynamic Response to the Crack Location

Figure 28 shows the fundamental frequency and displacement amplitude change for
beams with 15 mm and 25 mm crack locations. The crack location moves away from the
fixed end of the beam. The fundamental frequency and displacement amplitude of the
beam decrease.

Figure 28b shows the difference in this decreasing trend. The displacement amplitude
is the most sensitive to the crack location when the crack depth is close to approximately
1.4 mm. The change in the fundamental frequency is greatest when the crack position
changes from 15 to 25 mm at a crack depth of approximately 2.3 mm.

Figure 28c illustrates the relative difference in the fundamental frequency and dis-
placement amplitude. The relative differences of the two dynamic responses for different
crack locations are minor in the early stages of crack growth. However, a 1% difference in
the displacement amplitude is considerably more significant than a 0.17% difference in the
fundamental frequency for a 0.5 mm crack depth when the crack location changes from
15 mm to 25 mm. Furthermore, throughout the crack growth, the slopes of the displacement
amplitude curve are greater than those of the fundamental frequency when the crack depth
is less than 2.3 mm.
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Figure 28. (a) Difference in the dynamic responses of the beam with 5 and 15 mm crack locations at 60 ◦C.
(b) The difference in the dynamic responses. (c) The relative difference in the dynamic response corresponding.

In other words, similar to the crack depth, the displacement amplitude is more sensi-
tive to the crack location than the fundamental frequency at the critical stage of early crack
growth and for most crack depths. Therefore, using the difference in the displacement
amplitude to determine the crack location may yield superior results than those obtained
using the fundamental frequency.

5. Conclusions

This paper proposes an analytical model (Khan-He model) to determine the dynamic
response of a cracked 3D-printed ABS cantilever beam subjected to a thermo-mechanical
load. The fundamental frequency can be modelled more precisely compared to the existing
model (Ostachowicz model). The corresponding displacement amplitudes were calculated
considering the crack breathing phenomenon. The experimental results validated the
proposed Khan-He model.

The fundamental frequency and displacement amplitude decrease as the crack grows
in terms of the dynamic responses to structural cracks. A crack located farther from the
fixed end of the beam corresponds to a higher fundamental frequency and displacement
amplitude. Moreover, the increased temperature reduces the fundamental frequency of the
fractured beam.

The displacement amplitude at the beam tip is more sensitive than the fundamental
frequency to the crack depth and change in the location at the beginning of crack growth.
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Nomenclature

a Crack depth
αT Loss factor tan δ

A Beam section
AL, AR Coefficients
b Beam width
B Coefficient
BL, BR Coefficients
c Damping
CL, CR Coefficients
DL, DR Coefficients
E Elastic modulus
E0 Elastic modulus at T0
E∗ Complex elastic modulus
E′ Storage modulus
E′′ Loss modulus
f Frequency
fr(a/H) Shape function
H Beam thickness
I Area moment of inertia
Jz Momentum of inertia
k Torsional spring stiffness
l Distance between the crack location and fixed end of the beam
L Beam length
m End mass
macc Accelerometer mass
ω Angular frequency
ωs Angular frequency of a shaker
qn(t) Modal coordinate of the n-th mode
ρ Density
t Time
T(t) Modal coordinate
u(t) Shaker displacement
U0 Shaker displacement amplitude
Umax Beam displacement amplitude
Umax,modi f ied Modified beam displacement amplitude
U(x, t) Beam total displacement
x Distance to the fixed end of the beam
y(x, t) Beam displacement due to bending
yL(x, t) Fixed end side beam displacement
yR(x, t) Free end side beam displacement
Y(x, t) Mode shape of the beam
Yn(x) n-th mode shape of the beam
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