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ABSTRACT Addressing many of the world's contemporary challenges requires a multi-
faceted and integrated approach, and interdisciplinary research (IDR) has become increas-
ingly central to both academic interest and government science policies. Although higher
interdisciplinarity is then often assumed to be associated with higher research impact, there
has been little solid scientific evidence supporting this assumption. Here, we provide verifi-
able evidence that interdisciplinarity is statistically significantly and positively associated with
research impact by focusing on highly cited paper clusters known as the research fronts
(RFs). Interdisciplinarity is uniquely operationalised as the effective number of distinct dis-
ciplines involved in the RF, computed from the relative abundance of disciplines and the
affinity between disciplines, where all natural sciences are classified into eight disciplines. The
result of a multiple regression analysis (n=2,560) showed that an increase by one in
the effective number of disciplines was associated with an approximately 20% increase in the
research impact, which was defined as a field-normalised citation-based measure. A new
visualisation technique was then applied to identify the research areas in which high-impact
IDR is underway and to investigate its evolution over time and across disciplines. Collectively,
this work establishes a new framework for understanding the nature and dynamism of IDR in
relation to existing disciplines and its relevance to science policymaking.
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Introduction: a new testbed for evaluating interdisciplinary
research

any of the world’s contemporary challenges are inher-

ently complex and cannot be addressed or resolved by

any single discipline, requiring a multifaceted and
integrated approach across disciplines (Gibbons et al., 1994;
Frodeman et al., 2010; Aldrich, 2014; Ledford, 2015). Given the
widespread recognition today that cross-disciplinary commu-
nication and collaboration are necessary to not only pursue a
curiosity-driven quest for fundamental knowledge but also
address complex socioeconomic issues, interdisciplinary research
(IDR) has become increasingly central to both academic interest
and government science policies (Jacobs and Frickel, 2009; Roco
et al,, 2013; NRC, 2014; Allmendinger, 2015; Van Noorden, 2015;
Davé et al, 2016b; Wernli and Darbellay, 2016). Accordingly,
various national and international programmes, focusing espe-
cially on promoting IDR, have recently been launched and
developed in many countries through specialised research fund-
ing and grants or through staff allocations (e.g., Davé et al., 2016a;
Gleed and Marchant, 2016; Kuroki and Ukawa, 2017; NSF, 2019).

Driving these pro-IDR policies and the attendant rhetoric is an
implicit assumption that IDR is inherently beneficial and has a
more substantial impact compared with traditional disciplinary
research. However, this assumption has rarely been supported by
solid scientific evidence, and in most cases, the supposed merit of
IDR has been based on anecdotal evidence from specific narrative
examples or case studies (for related perspectives, see e.g., Jacobs
and Frickel, 2009, p. 60; Weingart, 2010, p. 12). Considering the
fact that significant resources have been and are being invested in
promoting IDR, better clarity regarding the relationship between
interdisciplinarity and its potential benefit, particularly the
research performance, could help increase accountability for such
policy actions.

Extant literature has investigated the relationship between
interdisciplinarity and the research performance by using various
data sources and methodologies, with different operationalisation
of both dimensions (e.g., Steele and Stier, 2000; Rinia et al., 2001;
Rinia et al., 2002; Adams et al., 2007; Levitt and Thelwall, 2008;
Lariviere and Gingras, 2010; Chen et al., 2015; Elsevier, 2015;
Yegros-Yegros et al., 2015; Leahey et al., 2017). Owing to such
diverse investigation approaches, it is unsurprising that the results
are usually neither consistent nor conformable and sometimes are
even contradictory among the literature. Given this situation, it is
desirable that a more robust and reproducible methodology be
developed and implemented to systematically assess the value of
IDR in practice. The present study seeks to contribute to this goal
by developing a new testbed for IDR evaluation. The focus is
especially placed on highly cited paper clusters known as the
research fronts (RFs), which are defined by a co-citation clus-
tering method (Small, 1973). In this new approach, the research
interdisciplinarity is characterised by the disciplinary diversity of
the papers that compose the RF, and the research performance is
operationalised and measured as a field-normalised citation-
based measure at the RF level.

This proposed RF-based approach has three major advantages
over common approaches that focus, for instance, on individual
papers (Steele and Stier, 2000; Adams et al., 2007; Lariviere and
Gingras, 2010; Chen et al,, 2015; Elsevier, 2015; Yegros-Yegros
et al,, 2015) to investigate the potential effect of interdisciplinarity
on high-impact research. First, through the analyses of RFs, it is
possible to capture a snapshot of the most lively, animated and
high-impact research currently being undertaken in the academic
sphere, since the papers composing RFs are classified as the most
highly cited papers for each science discipline. As science pol-
icymakers, leaders, funders and practitioners are often most
interested in promoting and supporting high-impact research, the

evidence and insights obtained through this investigation of RFs
can assist them in formulating more accountable policy recom-
mendations that otherwise cannot be adequately addressed. Sec-
ond, the RF is a unique manifestation of knowledge integration
from different science disciplines. By construction, the inter-
disciplinarity operationalised at the RF level does not represent a
mere parallel existence of discrete knowledge sources from mul-
tiple disciplines; rather, it indicates the state of the knowledge
integration from multiple disciplines to create new knowledge
syntheses. This organic scientific knowledge structure can be
captured more effectively and robustly through RFs than through,
for instance, an individual paper’s reference list. Consequently,
the emergence of a new high-impact research area will also be
more reliably detected at the RF level than at the paper level. The
third advantage of the proposed RF-based approach is related to
the technicalities. As discussed, RFs are unique self-organised
units of knowledge in which bibliographically important infor-
mation is effectively compressed and integrated. As this study
considers thousands of papers, it is considerably more efficient
and effective to handle RFs compared with a multitude of papers
while conducting data retrieval, analysis and visualisation. These
multifold advantages of the RF-based approach enable this study
to comprehensively and uniquely assess the value of
interdisciplinarity.

Methods: through the lens of emergent research fronts

The analyses in this study were based on the data retrieved from
the Essential Science Indicators (ESI) database, published by
Clarivate Analytics, and data published by the National Institute
of Science and Technology Policy (NISTEP) of Japan. In this
section, the definitions for the main terms used in this paper—the
RFs, the research areas, the research impact and the inter-
disciplinarity index—are provided. Subsequently, the regression
model specification used in this study and the rationale behind it
are detailed.

Research fronts and (broad) research areas. The bibliometric
data for the research papers (regular scientific articles and review
articles) and citation counts were derived from more than 10,000
journals indexed in the Web of Science Core Collection published
by Clarivate Analytics. The master journal list is updated reg-
ularly, with each journal being assigned to only one of the 22 ESI
research areas (see Supplementary Table S1). Given a pre-set co-
citation threshold, the original ‘ESI-RFs’ were defined based on
the number of times the pairs of papers had been co-cited by the
specified year and month within a five-year to six-year period.
The ESI-RF investigation in this paper was focused on papers
classified as ‘Highly Cited Papers’ in the ESI database, which are
the top 1% for annual citation counts in each of the 22 ESI
research areas based on the 10 most recent publication years.

Based on the ESI framework, the NISTEP’s Science Map dataset
(NISTEP, 2014, 2016, 2018) defines a set of ‘aggregate RFs’ using
a second-stage clustering in each of the three data periods:
2007-2012, 2009-2014 and 2011-2016, which are denoted in this
study as Syp12, Szo14 and S,gp6 respectively. Each dataset
comprised approximately 800-900 of such ‘aggregate RFs’
(hereinafter referred to as ‘RFs’). The i-th RF in the aggregate
dataset S= 82012 U 52014 U 82016 was denoted by RF, After
excluding two RFs with missing data, there were |S|=2,560
RFs collected for the total data period (2007-2016), with a
cumulative number of 53,885 papers (Table 1).

For this study’s purpose, the 22 ESI research areas were
reorganised into nine broad categories based on the classification
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Table 1 Distribution of papers by research area by data period

By research area:

1. Env. and Geo. Sciences

. Physics and Space Sciences
. Comp. and Math

1,038 (5.8%)
3,333 (18.8%)
904 (5.1%)

3,810 (21.5%)
3,759 (21.2%)

. Clinical Medicine
. Basic Life Sciences

oONONUT DN~ WN

Data period [2007-2012] [2009-2014] [2011-2016] Total
No. of research fronts 823 843 894 n=2,560
No. of papers 17,748 17,729 18,408 53,885

975 (5.5%)
3,128 (17.6%)
1173 (6.6%)

. Engineering 1,327 (7.5%) 1,400 (7.9%)
. Materials Science 804 (4.5%) 905 (5.1%)
. Chemistry 2,773 (15.6%) 2,675 (15.1%)

3,831 (21.6%)
3,642 (20.5%)

997 (5.4%)
3,183 (17.3%)
1,428 (7.8%)
1,534 (8.3%)
1,045 (5.7%)
2,784 (151%)
3,839 (20.9%)
3,598 (19.5%)

3,010 (5.6%)
9,644 (17.9%)
3,505 (6.5%)
4,261 (7.9%)
2,754 (51%)
8,232 (15.3%)
1,480 (21.3%)
10,999 (20.4%)

aggregate data

In addition to the number of research fronts and the number of constituent papers, the breakdown of the number of papers based on the eight research areas is shown for each data period and for the

scheme in Supplementary Table S1. Of these, we focused on the
following eight categories composed of 19 ESI natural science
areas: ‘Environmental and Geosciences’, ‘Physics and Space
Sciences’, ‘Computational Science and Mathematics’, ‘Engineering’,
‘Materials Science’, ‘Chemistry’, ‘Clinical Medicine’ and ‘Basic Life
Sciences’, which we denote collectively as #. The other category,
composed of the three ESI ‘non-natural-science’ areas—‘Econom-
ics and Business’, ‘Social Sciences, General and ‘Multidisciplin-
ary'—was excluded from the analyses because the main research
output were books rather than journal papers and thus were
under-represented in the data.

Research impact measure. Although higher citations do not
necessarily represent the intrinsic value or quality of a paper,
research impact is commonly operationalised as citation-based
measure (e.g., Steele and Stier, 2000; Rinia et al., 2001, 2002;
Adams et al, 2007; Levitt and Thelwall, 2008; Lariviere and
Gingras, 2010; Chen et al,, 2015; Elsevier, 2015; Yegros-Yegros
et al, 2015), which is due to not only its intuitive and compu-
tational simplicity but also the data availability and tractability.
Moreover, the citation-based research impact is often defined as a
field-normalised measure, that is, the absolute citation counts
divided by the world average in each discipline, in order to take
into account for the disciplinary variations in publication and
citation practices. This study also used a surrogate field-
normalised citation-based measure of research impact; however,
in contrast to previous studies, it was defined and measured at the
RF level rather than at a paper level (Steele and Stier, 2000;
Adams et al., 2007; Lariviére and Gingras, 2010; Chen et al., 2015;
Elsevier, 2015; Yegros-Yegros et al, 2015), at a journal level
(Levitt and Thelwall, 2008) or at a research programme level
(Rinia et al., 2001, 2002).

Let N; be the number of papers comprising RF;, and let N; =
> aca Nia be its decomposition based on the research areas,
where N;4 is the number of papers in RF; attributed to each
research area A € #. Let X; be the actual citation counts received
by RF;. Let also Ca;m be the baseline citation rate for each
research area A as noted on the ESI database as of the specified
year and month (‘y/m’), which is defined as the total citation
counts received by all papers attributed to research area A divided
by the total number of papers attributed to the same research area
in the 10 years of the Web of Science. Then, the mean baseline
citation rate for each research area A, denoted (C,), was obtained
by averaging Cam over all the ESI data periods from March
2017 to January 2019 (ie., from y/m=2017/03 to 2019/01;
bimonthly) (Supplementary Table S2). Subsequently, the research

impact measure for RF; was defined by
Ii — # , (1)
>oaeaNia(Cs)
that is, the ratio of the actual citation counts earned by RF; to the
expectation value of the citation counts for the same RF.

Interdisciplinarity index. The context-dependent nature of
research interdisciplinarity has made its identification and
assessment far from trivial, hitherto without a broad consensus
on its operationalisation (Porter and Chubin, 1985; Morillo et al.,
2003; Huutoniemi et al., 2010; Klein et al., 2010; Wagner et al.
2011; Siedlok and Hibbert, 2014; Adams et al., 2016). Numerous
attempts have been made to develop methodologies for oper-
ationalising interdisciplinarity in practice, not only at the paper
level (Morillo et al., 2001; Adams et al., 2007; Porter and Rafols,
2009; Lariviere and Gingras, 2010; Chen et al., 2015; Elsevier,
2015; Yegros-Yegros et al., 2015; Leahey et al., 2017) but also at a
journal level (Morillo et al., 2003; Levitt and Thelwall, 2008;
Leydesdorff and Rafols, 2011) or at a research programme level
(Rinia et al., 2001; Rinia et al., 2002). Still, it is most popularly
defined at a paper level, either in terms of ‘knowledge integration’,
as measured through the proportion of references from different
disciplines, or ‘knowledge diffusion’, as measured through the
proportion of citations received from different disciplines (Porter
and Chubin, 1985; Adams et al., 2007; Van Noorden, 2015).
Regardless of the operationalisation level, a more refined quan-
titative approach to interdisciplinarity, conceptualised as the
disciplinary diversity, necessarily requires the following three
aspects: ‘variety’ (number of disciplines involved), ‘balance’
(distribution evenness across disciplines) and ‘dissimilarity’
(degree of dissimilarity between the disciplines) (see Rao, 1982;
Stirling, 2007). Most previous IDR studies have evaluated inter-
disciplinarity based on either variety or balance, while some
recent studies (e.g., Porter and Rafols, 2009; Leydesdorff and
Rafols, 2011; Mugabushaka et al, 2016) have made efforts to
incorporate the aspect of dissimilarity as well.

This study also operationalises interdisciplinarity as an
integrated measure of the aforementioned three aspects; however,
in contrast to previous studies, it was uniquely operationalised at
the RF level. Specifically, the interdisciplinarity index for RF; was
defined and evaluated using the following ‘canonical’ formula
(Okamura, 2018):

A= [lé;:%wiﬁww(MAB)} ) @
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Fig. 1 A chord diagram representation of the affinities between research
areas. The affinity indices were defined as the time-averaged Jaccard
similarity indices and were evaluated between each pair of research areas
(Supplementary Methods and Discussion). They were assigned to each
connection between the research areas, represented proportionally by the
size of each arc, from which it is evident that the degree of affinity varied
considerably for different pairs of the disciplines (see Supplementary Table
S3 for the source data)

Here, w; o denotes the relative abundance of a research area A in
RF;, defined by, using the previous notations, w;s = N;/N;
satisfying >, ,w; » = 1. The effective affinity (i.e., similarity)
between each pair of research areas A and B in %, denoted (M,p)
in (2), was defined as the time-averaged Jaccard indices (see
Supplementary Methods and Discussion), where, as before, the
bracket (...)" represented the average over the 12 ESI data
periods. Figure 1 shows the chord diagram representation of the
affinity matrix (see Supplementary Table S3 for the source data),
from which it was evident that the degree of affinity varied
considerably for different pairs of the disciplines.

The interdisciplinarity index (2) is unique because it is
conceptualised as the effective number of distinct disciplines
involved in each RF and is robust regarding the research
discipline classification scheme. Specifically, it has the special
property of remaining invariant under an arbitrary grouping of
the constituent disciplines, given that the between-discipline
affinity is properly defined for all pairs of disciplines. For
instance, suppose one is interested in measuring the interdisci-
plinarity of RF; based on the classification scheme #; and
someone else wishes to measure the interdisciplinarity of the
same RF; based on the more aggregate classification scheme %,.
Then, for the interdisciplinarity index to be a consistent measure
of disciplinary diversity, both approaches must result in the same
value for the interdisciplinarity; that is, A;[%,] = A;[#,]. Other-
wise, it results in an inconsistent situation as the interdiscipli-
narity changes with respect to the level (or ‘granularity’) of the
research discipline classification, while the physical content of the
RF (ie., the constituent papers) remains the same. Note that
popular (dis)similarity-based diversity measures such as the Rao-
Stirling index (Rao, 1982; Stirling, 2007) and the Leinster-
Cobbold index (Leinster and Cobbold, 2012) do not generally
satisfy this invariance property; to the best of our knowledge, the
only known diversity measure that respects this invariance

property is given by the formula (2), the theoretical grounds for
which have recently been established for a general diversity/
entropy quantification context (Okamura, 2018).

Using this formula, the interdisciplinarity index for each RF in
S was obtained, from which it was found that 43.6% of the RFs
were mono-disciplinary (ie., A=1) and more than half were
interdisciplinary (Fig. 2a; median =1.2, range=2.5; see also
Supplementary Fig. Sla).

Regression model. Based on the aforementioned operationalisa-
tions of the research impact and the interdisciplinarity index, the
relationship between the two variables was analysed using a
regression analysis method. As the histogram analysis showed
that the original research impact distribution was skewed, it was
log-transformed so that the distribution curve was closer to a
normal curve (Fig. 2b; mean = 1.2, SD = 0.83; see also Supple-
mentary Fig. S1b). The scatterplot of the log-transformed
research impact against the interdisciplinarity index indicated
that these variables were relatively linearly related (Fig. 2c; see
also Supplementary Fig. S2a-c). Subsequently, the following
multiple linear regression model was investigated:

In(I;) = x;B, (3)

where, x; was a 1 x k vector for predictive variables, and f was a
kx1 vector for the regression coefficients, which were the
unknown parameters to be estimated (with k being some integer).
To deal with the possible issue of heteroscedasticity, the model
was analysed using heteroscedasticity-robust standard errors (i.e.,
the Huber-White estimators of variance). In addition, a test for
serial correlation (i.e., the Breusch-Godfrey Lagrange multiplier
test) was conducted as a post-estimation procedure, which indi-
cated that there was no serial correlation between the residuals in
each model considered (see below).

For comparability, five different regression models correspond-
ing to different specifications of the predictive variables were
analysed and labelled Models 1-5, with the following sets of
predictive variables, respectively, defined for each model:

Model1: %) = (1, A),

Model2:  x® = (x(V, IntlCollab, IntlCiting) ,
Model3:  x0®) = (x), Year dummies),

Model 4 : = (x 3) Research Area control set) ,

Model 5 : x(s) = (x<4), Country control set) .

In Model 1, the interdisciplinarity index was used as the only
predictive variable, which was added to the intercept term
(constant). In Model 2, the variables associated with IntlCollab
and IntlCiting, denoting the proportion of internationally
collaborated papers in papers comprising an RF and in the citing
papers, respectively, were included as additional predictive
variables. Models 3, 4 and 5, in the same manner, represented
the prior model with a new set of predictive variables,
respectively, added as follows: Year dummy variables for the
different years (2012, 2014 and 2016) of the Science Map to
capture the possible time-fixed effects; a ‘Research Area’ control
set to represent the proportion of papers belonging to each
research area A € #; and a ‘Country’ control set to represent the
proportion of papers for which authors from each country of
& ={US, France, UK, Germany, Japan, South Korea, China}
contributed (measured on a fractional-count basis). The last two
control sets were introduced to, respectively, account for the
possible discipline-related and country-related effects that could
reflect such factors as research environment, practices and
cultures intrinsic to each discipline or/and country.
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Fig. 2 Relationship between research impact and interdisciplinarity. a The histogram for the interdisciplinarity index (median =1.2, range = 2.5,
interquartile range = 0.58); b The histogram for the log-transformed research impact (mean =1.2, SD = 0.83); ¢ The scatterplot showing the associations
between the interdisciplinarity index and the log-transformed research impact. The solid line in the scatterplot represents the robust linear model fit. The
shaded region and the dashed lines, respectively, indicate the 95% confidence interval based on the standard error of the mean and on the standard error
of the forecast, including both the uncertainty of the mean prediction and the residual

In interpreting the regression results, each regression coeffi-
cient f (i.e., the k-th component of f in Eq. (3)) indicated that a
one point increase in the predictive variable x; was associated
with B point increase in In(I), or equivalently, [exp(Bx)—1] %

ok . . .
1.00@ increase in the research impact. (D at .the specified Table 2 Results of the multiple regression analysis with
significance level. Care should be taken in interpreting the results
for the proportion variables (IntlCollab, IntICiting, ‘Research AL BT e
Area’ and ‘Country’ control sets) as the regression coefficients for .
each of these variables represented the effect on the criterion | Variables Coeff. S.E.
variable (ie., the log-transformed research impact) associated | Interdisciplinarity (A) 0.186*** (0.0354)
with a 100% increase in the proportion variable. For the time- | [nt/Collab 0-558*:1* (0.0888)
fixed effects, the base category was chosen as Year = 2014, against | /"t/Citing —l463™ (0.312)
which the effects of the other two data periods (corresponding to \teari 2012 (dummy) —0.176 (0.0393)
. 5 ear =2016 (dummy) 0.0375 (0.0358)
Year = 2012 and 2016) were measured. For the ‘Research Area ‘Research Ared’ control set (R)
control set, the effect of the proportion of each research area in # Env. and Geo. Sciences 1.245%++ (0.147)
was measured against the set of ‘residual’ (i.e., ‘non-natural- Physics and Space Sciences 1.430%+* (0131
science’) ESI research areas. Finally, for the ‘Country’ control set, Comp. and Math 1.334*** (0.137)
the effect of the share of each country in % was measured against Engineering 1.287*** (0.137)
the set of those countries not listed in %. Materials Science 1.420%* (0.172)
Chemistry 1.418*** (0.135)
Clinical Medicine 1.225** (0.137)
Results: interdisciplinarity as a key driver of impact at Basic Life Sciences 10957 (0129
research fronts ‘Country’ control set (C) "
The results of the multiple regression analyses for all the five Ll-:Jance 82218 58108883)
models (n = 2,560; two-tailed) are summarised in Supplementary UK 0.428** (0.156)
Table S4. Based on the adjusted-R? for each model (the bottom Germany 0.0416 0164
row of the table), Model 5 was found to be the preferred model in Japan 0.165 (0.180)
terms of the goodness-of-fit, and therefore, this model was con- South Korea —0.677*** (0151
sidered in detail in this study; see Table 2 for the summary table. China —-0.227* (0.109)
Particularly, the estimated coefficient for the interdisciplinarity [ Constant -0.129 (0181
index was found to be positive and statistically highly significant. Ob?”"at'ogs () 2560
Specifically, a one point increase in the interdisciplinarity index in Adjusted-R 0.201
an RF (i~e~’ an increase in the effective number of distinct dis- The log-transformed research impact is used as the criterion variable
ciplines by one) is, on average, associated with approximately a [ Note: Robust standard errors in parentheses
((e%186—1) x 100% =) 20% increase in the research impact, P00 P<o0n P<000
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holding other relevant factors constant (P < 0.001). This appears
to imply that, on average, a high-impact RF is more likely to be
formed either in the presence of disciplines that are more dis-
similar or with a more balanced mix of distinct disciplines, or
both. What this indicates is that while the papers composing the
RFs were already high-impact papers as they were classified as
‘Highly Cited Papers’ in the ESI database, nevertheless the degree
of the ‘high-impact’ at the RF level was found to be higher on
average as the interdisciplinarity level increased. Notably, this
implication was found to hold sufficiently generally, reproducing
the same results qualitatively for each data period separately
(Supplementary Fig. S2a—c).

Though outside the main scope of the present study, the
regression results led to additional intriguing implications for the
research impact predictors. Particularly, the regression coefficient
for IntlCollab implied that a 1% increase in the international
collaboration in an RF was, on average, associated with an
approximately 0.6% increase in the research impact (P < 0.001),
which was also found to hold sufficiently generally across the
three data periods. By contrast, the regression coefficient for
IntlCiting was found to be negatively significant (P <0.001). For
the time-fixed effects, the research impact was found to be, on
average, statistically significantly lower in the 2012’ data com-
pared with the 2014" or 2016 data (P <0.001). However, no
statistically significant difference was observed between the 2014’
and 2016 data (see also Supplementary Fig. S1b, which already
indicated this trend via the kernel density estimations for the
criterion variable). Further, the coefficient for each of the
‘Research Area’ variables was found to be positively significant (P
<0.001), indicating that, on average, a paper belonging to either
area of Z is likely to have a higher research impact compared
with a paper attributed to the ‘residual’ (i.e., ‘non-natural-sci-
ence’) research area. Finally, the result for each of the country-
share variables in % provided some intriguing insights into its
effect on the research impact. For instance, the result for the
variable ‘US’ implied that, on average, replacing 1% of the con-
tributions from the ‘residual’ countries with that from the US
resulted in an approximately 0.3% increase in the research impact
(P<0.001). These observed relationships between the research
impact and each predictor variable, along with their policy
implications, should be investigated in future studies.

Discussion: evolving landscape of cross-disciplinary research
impact

To further enhance our understanding of the relationship
between interdisciplinarity and research impact, a more detailed
investigation of the finer structures and evolutionary dynamism
of high-impact research over time and across disciplines is
desirable. For this purpose, we present in the following a new
bibliometric visualisation technique and demonstrate its potential
use in the study of interdisciplinarity.

‘Science Landscape’: a novel bibliometric visualisation
approach. Significant efforts have been made to visualise scien-
tific outputs, especially bibliometric data regarding the citation
characteristics. Such efforts have been partially successful in
displaying the links between and across various research dis-
ciplines or subject categories (Small, 1999; Boyack et al. 2005;
Igami and Saka, 2007; Leydesdorft and Rafols, 2009; Porter and
Rafols, 2009; Van Noorden, 2015; Klavans and Boyack, 2017;
Elsevier, 2019). Each alternative form of ‘science mapping’ has its
own merit in particular situations, offering complementary and
synergistically beneficial implications not only for a deeper
understanding of academic (inter-)disciplinarity but also for
policy implementation. To contribute to the evidence-base in this

fast-growing and innovative field, here we present a new tech-
nique—called the Science Landscape—that visualises research
impact and its development patterns in relation to the entire
natural science discipline corpus. The same research impact
measure and the interdisciplinarity index as used in the previous
sections were employed to ensure methodological consistency
between the empirical implications drawn from this new visua-
lisation technique and the quantitative evidence already obtained
from the regression analyses.

In the Science Landscape diagrams (Fig. 3a-c), the eight
(broad) research areas were arranged along the edge of a circular
map, with the angle of each research area being proportional to
the number of papers attributed to that research area. Each RF
was then mapped onto the circular map for each data period
(Supplementary Fig. S3a—c), so that the distance from the edge to
the centre indicated the RF’s interdisciplinarity index; that is, the
closer it was to the centre, the greater the degree of
interdisciplinarity. The angle around the centre was determined
by the disciplinary composition; that is, the closer it was to a
particular research area, the higher its share in the disciplinary
composition. A similar circular research field frame (27 subject
areas) is used in the ‘Wheel of Science’ for Elsevier’s SciVal
system based on Scopus data (Klavans and Boyack, 2017; Elsevier,
2019); however, the objectives and what is mapped and how it is
mapped are dissimilar. In particular, the Science Landscape shown
here was based on 3D mapping technology, so that the height of
each RF; was proportional to the log-transformed research
impact, In(I;), with the highest (‘over the clouds’) and lowest
(‘under the sea’) research impact levels being depicted in red and
blue, respectively. Here the heights of the RFs were not added
vertically; rather, at each map position, the maximum height
value was used to depict the surface of the landscape. The
rationale behind this method was that for the current purpose of
investigating the cross-disciplinary spectrum of research impact,
it was more meaningful and implicative to visualise ‘individually
outstanding high-impact RFs’ rather than ‘a number of low-
impact RFs additively forming high peaks’.

Moreover, each RF’s concrete disciplinary composition was
indicated by the direction(s) towards which the RF’s peak tails
(see Supplementary Fig. S4). For instance, in the Science
Landscape for 2009-2014 (Fig. 3b), there is a high research
impact peak (I =100.7) near the centre that has one tail towards
‘Comp & Math’ and another tail towards ‘Basic Life Sciences’ (the
solid square region). In light of the original NISTEP’s Science
Map dataset (NISTEP, 2016), this peak corresponds to the RF
characterised by feature words such as RNA Seq’ and ‘next
generation sequencing’. Then, intuitively, this correspondence
indicates that during this period, there was a scientific break-
through related to new sequencing technology that occurred at
the intersection of these two disciplines. Further technical and
mathematical details including the explicit functional form of the
3D research impact profile are presented in Supplementary
Methods and Discussion.

Provided the above encoding, the Science Landscape diagrams
(Fig. 3a—c) clearly illustrate how the shape of interdisciplinarity
has changed over the three data periods. It is noticeable that the
overall landscape of the research impact has never been static,
monolithic nor homogeneous; rather, it evolves dynamically, both
over time and across disciplines. One of the most remarkable
features can be seen in the northwest of the map (dashed circle
region) at the low ivory-white-coloured ‘mountains’ in
2007-2012 (Fig. 3a), where new high-impact RFs are evolving
and developing into a group of yellow-coloured mid-height
‘mountains’ in the years up to 2009-2014 (Fig. 3b) and towards
2001-2016 (Fig. 3c). This dynamic research impact growth
indicates the increased IDR focus around the region during the
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2007-2012

20092014 /|

2011-2016 /1

Fig. 3 Dynamic evolution of research impact across disciplines. Corresponding to each data period—2007-2012 (a), 2009-2014 (b) and 2011-2016 (¢)—
the Science Landscape diagrams are shown. The figures on the left show the top views and the figures on the right show the birds-eye views. The eight 'base’
research areas are arranged along the edge of the circular map, and the angle allocated to each research area is proportional to the number of papers from
each discipline. The highest and lowest levels of research impact are depicted in red and blue, respectively

data period. Thus, this visualisation can assist identifying where
the scientific community’s focus of attention is undergoing a
massive change, where high-impact IDR is underway worldwide,
and where new knowledge domains are being created. Each
landscape appears to represent the superposition of the following
two research impact evolutionary patterns; one that has steady,
stable or predictable development that accounts for the ‘global’ or
‘evergreen’ structure of the landscape, and the other that
represents a breakthrough in science or a discontinuous innova-
tion, induced ‘locally’ in a rather abrupt or unpredictable manner.

The challenge of science policy, therefore, is developing ways to
address each of these dynamic evolutionary patterns and the
mechanism thereof and to promote IDR in a more evidence-based
manner with increased accountability for the investments made.

Summary and conclusions: towards evidence-based
interdisciplinary science policymaking

This study revisited the classic question as to the degree of
influence interdisciplinarity has on research performance by
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focusing on the highly cited paper clusters known as the RFs. The
RF-based approach developed in this paper had several advan-
tages over more traditional approaches based on a paper-level or
journal-level analysis. The multifold advantages included: quality-
screening, cross-disciplinary knowledge syntheses, structural
robustness and effective data handling. Based on data collected
from 2,560 RFs from all natural science disciplines that had been
published from 2007 to 2016, the potential effect of inter-
disciplinarity on the research impact was evaluated using a
regression analysis. It was found that an increase by one in the
effective number of distinct disciplines involved in an RF was
statistically highly significantly associated with an approximately
20% increase in the research impact, defined as a field-normalised
citation-based measure. These findings provide verifiable evi-
dence for the merits of IDR, shedding new light on the value and
impact of crossing disciplinary borders. Further, a new visuali-
sation technique—the Science Landscape—was applied to identify
the research areas in which high-impact IDR is underway and to
investigate its evolution over time and across disciplines. Col-
lectively, this study established a new framework for under-
standing the nature and dynamism of IDR in relation to existing
disciplines and its relevance to science policymaking.

Validity and limitations. The new conceptual and methodolo-
gical framework developed to reveal the nature of IDR in this
paper would be of interest to a wide range of communities and
people involved in research activities. However, as with any
bibliometric research, this study also faced various limitations
that may have impacted the general validity of the findings, and
thus, its practicability in the real policymaking process is neces-
sarily limited. To conclude, some of these key issues and chal-
lenges are highlighted.

First, both the regression analysis results and the Science
Landscape visualisations should be assessed with caution as they
may be highly dependent on the research area classification scheme,
which is not unique. Research area specifications other than those
used in this study could also have been applied. For instance, a
factor-analytical approach (Leydesdorff and Rafols, 2009) to identify
a ‘better justified’ set of academic disciplines could be useful in
providing a more nuanced assessment and understanding of the
nature of interdisciplinarity and could possibly have higher
robustness and reliability. Moreover, a different research area
arrangement along the edge of the circular map would have resulted
in different Science Landscape visualisations, and the cross-
disciplinary spectrum of research impact might have been more
plentiful or profound than observed in this study.

Second, in relation to the first point, the quantification of the
affinity between the research areas could have been refined in other
acceptable ways. Our rationale behind the definition of the between-
discipline affinity based on the Jaccard-index was that papers from
closer (ie., with higher affinity) research areas were more likely to
be co-cited, and thus more likely to belong to the same ESI-RF (see
Supplementary Methods and Discussion). In this approach, the
affinity matrix was defined solely using the bibliometric method,
and therefore its matrix elements may have been more or less biased
because of the publication/citation practices of the existing
disciplines. Consequently, it may have failed to capture the inherent
‘true’ between-discipline affinities responsible for the ‘true’ inter-
disciplinarity operationalised at the RF level.

Third, it is unlikely that the regression model specification used
in this study included every salient research impact predictor. For
example, factors such as the types of research institute,
departmental affiliations, individual journal characteristics and
funding opportunities (e.g., funding agencies and programmes/
fellowships) were not considered in the model owing to their

unavailability in the dataset. Moreover, the links between the
different scientific specialties irrespective of their academic
discipline could have also influenced the research performances.
These omitted variables may also have affected the regression
results because they may be associated with both the criterion
variable (i.e., the research impact) and some predictive variables
including the interdisciplinarity index.

Finally, there are inherent limitations in using citation-based
methods to evaluate research performance. Combining biblio-
metric approaches with expert judgements from qualitative
perspectives will be favoured to extract the policy implications
and recommendations from a wider context. Although the
societal impacts of research (see e.g., Bornmann, 2013) were
beyond the scope of the present work, it is hoped that this study’s
findings can be extended to incorporate such societal aspects. In
so doing, it is also important to consider not only the benefits but
also the costs of IDR (Yegros-Yegros et al., 2015; Leahey et al,,
2017) for interdisciplinary approaches to provide viable policy
options for decision-makers.

With further conceptual and methodological improvements, it
is hoped that future studies can reveal more about the nature of
IDR and its intrinsic academic and/or societal value by
overcoming some of the aforementioned limitations. Continued
efforts will contribute to the development of the more evidence-
based and accountable IDR strategies that will be imperative for
addressing, coping with and overcoming contemporary and
future challenges of the world.

Data availability

The datasets generated and/or analysed during this study are not
currently publicly available, but are available from the corre-
sponding author on reasonable request.
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