

Citation for published version:
Davenport, JH, Wilson, D, Graham, I, Sankaran, G, Spence, A, Blake, J & Kynaston, S 2014, 'Interdisciplinary
teaching of computing to mathematics students: Programming and discrete mathematics', MSOR Connections,
pp. 1-8. https://doi.org/10.11120/msor.2014.00021

DOI:
10.11120/msor.2014.00021

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication

Publisher Rights
Unspecified
This is the pre-peer reviewed version of the following article: ames H. Davenport, David Wilson, Ivan Graham,
Gregory Sankaran, Alastair Spence, Jack Blake, and Stef Kynaston: (2014) Interdisciplinary Teaching of
Computing to Mathematics Students: Programming and Discrete Mathematics. MSOR Connections, which has
been published in final form at http://dx.doi.org/10.11120/msor.2014.00021"

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 24. Aug. 2022

https://doi.org/10.11120/msor.2014.00021
https://doi.org/10.11120/msor.2014.00021
https://researchportal.bath.ac.uk/en/publications/a95eb388-5f08-49cc-a696-458628638657

Interdisciplinary Teaching of Computing to

Mathematics Students: Programming and

Discrete Mathematics

James H. Davenporta David Wilsona Ivan Grahamb

Gregory Sankaranb Alastair Spenceb Jack Blakeb

Stef Kynastonb

Departments of Computer Scienceaand Mathematical Sciencesb,
University of Bath, Bath BA2 7AY

J.H.Davenport@bath.ac.uk

Abstract

The teaching of programming to mathematics students has been a thorny
pedagogical issue for many years. Should the mathematicians do it, or
the computer scientists? Here we outline Bath’s solution to the issue,
which is “both, in close collaboration, to an interdisciplinary syllabus”.
This solution (using MatLab) is now in its fifth year, and is taught to 300
students/year. It has been received well by the students, and by other
lecturers who can build with confidence on the skills learned in this course.

1 Introduction

This paper describes a novel approach to the integrated teaching of computing
and discrete mathematics to mathematics students, based on:

• Close collaboration, and team teaching, by the Departments of Mathe-
matical Sciences and Computer Science;

• Development of a bespoke interdisciplinary syllabus, 50% discrete mathe-
matics and 50% computing, rather than an “off-the-shelf” Computer Sci-
ence syllabus;

• Using programming concepts as concrete instantiations of the mathemat-
ics concepts taught in the course, for example recursion as a counterpart
to induction, viewing Fast Fourier Transforms as a “divide and conquer”
algorithm;

• Choice of a programming delivery vehicle (MatLab) close to the immediate
needs of the students;

1

• Attention to the pedagogy of the craft of programming. Many of our ideas
are similar to those of Vihavainen, Paksula and Luukkaine (2011), though
this postdates our early work.

2 Background

Until 1997, the University of Bath had a School of Mathematics Sciences, in-
cluding a Computing Group. Programming was taught in Fortran, until in 1984
the first author led a move to C. Relevance to, and preparation for, the future
computing streams was the principal criterion. Then a separate Computer Sci-
ence degree, with a different first year, was introduced. This paper focuses on
the evolution and practice of computing as it is taught to mathematics students.

Until 2009, first year Mathematics students (of which there are currently
304) took a programming course provided by the Computing Group and later
by the separate Computer Science Department. The emphasis was on program-
ming per se in a general-purpose language: C until 2000, then Java. The main
weaknesses of this, frequently identified by students, were the lack of apparent
relevance and the lack of connection with the rest of the curriculum where pro-
gramming was used in later years, either in MatLab or R. In fact R is very similar
to MatLab from a programming point of view. We now give students a one-
page list of the differences and expect them to adapt, and they do with no fuss.
Following restructuring and detailed curriculum review (though a complete cur-
riculum review is not a necessary requirement!) the current model evolved. The
course is called, and delivers, Programming And Discrete Mathematics.
It runs thoughout the first year, as one of five streams: the others are Algebra,
Analysis, Mathematical Methods and Probability/Statistics. The course is 50%
Programming and 50% Mathematics, so the “programming” share of the first
year is 10%, which is unchanged, but its effectiveness has greatly increased.

3 Overall Design

3.1 Aims

In practice, the aim, which underpinned all the thinking as the course was being
designed, was

The course should be, and be seen to be, relevant to the rest of the
mathematics curriculum, and not just as “a useful skill for later on”.

From this followed the fact that it could not be just a computing course. Certain
amounts of discrete mathematics (using the term slightly loosely) were added
or moved from elsewhere, and we ended up with a 50:50 mixture with the pro-
gramming (in MatLab). This mathematics included orders of growth and the
O-notation (which students seem to find more approachable with a concrete ap-
plication), elementary graph theory, Fast Fourier Transforms, elementary coding
theory and cryptography (Diffie–Hellman and RSA). The coding theory relies

2

on the linear algebra taught in the algebra stream: moreover, it uses and em-
phasises the fact that it is taught over an arbitrary field. The cryptography part
is helped by the fact that the MatLab Symbolic Toolbox allows examples with
realistic-sized numbers: indeed the students do two problem sheets, identical
except that one has two-digit numbers for hand calculation, and the other has
60-digit numbers for MatLab-assisted computation. However, by far the most
important in terms of relationship with the programming was the teaching of
induction.

The first few weeks of the course are based around the thesis that the Math-
ematical definition of induction is equivalent to programming implementation
by recursion.

The first example, literally in week 1, is the Fibonacci numbers, which are
defined by induction, programmed by recursion, and in the next four weeks
have theorems on growth proved by induction, and have these related to the O-
complexity of the programs produced earlier. More specifically, three families
of solutions to the Fibonacci problem are presented, with the lecturers and
students proving the complexity results.

Exercise 1 (Directly recursive) Use Fn = Fn−1+Fn−2 to work down to the

base cases. The complexity is exponential in n: O
((

1+
√
5

2

)n)
.

Exercise 2 (Iterative) Define the base cases and use Fi = Fi−1 + Fi−2 to
work up until i = n. The complexity is linear in n: O(n).

Exercise 3 (Matrix-based) Therefore playing to the strengths of MatLab:(
Fn

Fn−1

)
=

(
1 1
1 0

)(
Fn−1
Fn−2

)
hence

(
Fn

Fn−1

)
=

(
1 1
1 0

)n−1 (
F1

F0

)
,

and using “divide-and-conquer” (recursive) exponentiation we can compute Fn

in time logarithmic in n: O(log n).

3.2 Reinforcing the Link

One challenge when teaching an interdisciplinary course is convincing the stu-
dents of the benefit of learning a topic outside of the perceived scope of their
degree. Whilst many mathematicians use programming, or the thought pro-
cesses behind programming, in their daily lives, this is not obvious to first year
mathematics undergraduate students.

To answer the question “why are we learning programming on a mathematics
degree?” a short (five to ten minutes) talk is given fortnightly by one of the
tutors, or a lecturer who doesn’t otherwise teach on the unit, to the whole
cohort. This is at the beginning of a lecture and the tutor/lecturer explains a
little about their research, and how they use programming. These seem to have
been well-received, with thoughtful questions from the students after each one.

The link between mathematics and programming is further reinforced by
the whole teaching body. The professors and tutors are sourced from both

3

the Mathematics and Computer Science Departments, and range in specialities
from Algebraic Geometry via Computer Algebra to Numerical Analysis and
Computer Vision.

3.3 Course Text

After some debate, we decided to go for an, essentially mandatory, course text.
Ideally we would have chosen one that fitted the aims of the course, but a
fairly extensive search revealed none. We therefore opted for a portmanteau
combined book (something seen often in North America, and we were agreeably
surprised to discover how willing the U.K. arms of publishers were to produce
one, provided it contained their material), containing large portions of Chapman
(2013) and Epp (2011), with some additional material by ourselves. This book
is sold on campus and only available to University of Bath students.

The hard part was selecting the MatLab book. While there are literally
hundreds of MatLab books, nearly all of then focus on its use as a toolbox, not
as a programming engine. While designing the course, we discovered Chapman
(2009), which does focus on the programming element, and has material on pro-
gram design, debugging and documentation, and is a plausible support for the
programming side of the course. This tied us into the publisher of Chapman
(2009), i.e. Cengage. Hence in 2009 we looked at their range of Discrete Math-
ematics books and chose (the previous edition of) Epp (2011). In particular, it
had a chapter on O-notation in the context of algorithm efficiency, which filled
the major gap in Chapman (2009) from a Computer Science point of view. For
the initial custom text, we chose nearly all of Chapman (2009) and about half
of (the previous edition of) Epp (2011). In 2010 we used the same, with a small
amount of additional material, notably correcting out-of-date MatLab examples
and screen shots from Chapman (2009). In 2011 we made no changes, and in
2012 we went to (about half of) Chapman (2013), about half of the current edi-
tion of Epp (2011), and rather more own material, notably envisaging the Fast
Fourier Transform (mathematics side of the course) as a “divide and conquer”
algorithm, as already used on the programming side.

4 Delivery

4.1 Overview

The course runs throughout the teaching year (October–May), and is taught
on the basis of two lectures and one whole-cohort problems class per week, the
same as the other streams. It is team taught, with a computer scientist (the first
author) and a mathematician taking responsibility for the lectures and problems
class, and tutors, typically postgraduates or final-year MMath students, taking
responsibility for the practical laboratories and mathematics tutorials.

4

4.2 Whole-Cohort Classes

In a typical week, each lecturer gives one lecture, and both share the problems
class, going over past and ongoing work. The ratio in the problems class is
dynamic, and will be roughly 25% programming and 75% mathematics, unless
more time is needed to respond to student queries on programming aspects.

4.3 Laboratory Classes

These are weekly and last for 50 minutes. We are fortunate enough to have
a 75-seater laboratory, split into five benches of 15 machines each. Each stu-
dent is assigned to a specific bench in a specific laboratory session, and the
bench/session has a designated tutor. Thus each student has the same tutor for
the whole semester.

4.4 Mathematics Tutorials

These are weekly and last for 50 minutes. One tutor teaches around 16 students
in a small classroom, and also marks the students’ problem sheets. The emphasis
is on the mathematics work, and a standard tutorial consists of a 20 minute
worked example, 20 minutes discussing solutions to the previous week’s problem
sheet, and 10 minutes discussing concepts for the coming week’s problem sheet.
Students attempt the worked example before a model solution is given, and
questions from the students are encouraged throughout.

4.5 Virtual Learning Environment

We make heavy use of the University’s Moodle VLE. Course materials and
problem sheets are distributed via it, Coursework and tickable exercises are
collected via it, feedback is given on coursework via it. In addition, the lecturers
tend to respond to student e-mail queries by posting on the Moodle Forum,
rather than replying directly, so that all students can see the (anonymised)
question/answer.

5 Assessment

We gave a great deal of thought to this in the design process. Both mathematics
and programming are subjects in which one learns by doing — no amount of
lectures on induction will make the student into a competent author of induction
proofs, and no amount of lectures on programming will make the student into
a competent programmer.

Therefore, most weeks the students have two pieces of work to do for the
following week.

5

5.1 Weekly Work — Mathematics

This is in the traditional “problem sheet” format. Until 2013, this was managed
alongside the programming work, but the students commented, rightly, that this
meant it got short shrift compared with the programming — when sat in front
of a computer one’s tendency is to pay it attention! Hence we now run separate
mathematics tutorials on the same basis as the other streams. These are proving
successful, with students commenting on their benefit in mid-semester feedback
questionnaires.

5.2 Weekly Work — Programming

In weeks when there is no significant effort on summative practical work, there
is a weekly “tickable” exercise — in practice 12 in the year. By “tickable”
we mean that they are assessed as pass/fail by the laboratory tutors in the
sessions, and the students (and tutors) are told that we expect students to be
able to pass every exercise with reasonable diligence. For example, the first such
exercise is to write a recursive MatLab function to compute Fibonacci numbers
from Fn = Fn−1 + Fn−2, by analogy (this is made explicit in the exercise)
with the supplied programme for computing factorials based on n! = n ∗ (n −
1)!. The supplied programme was constructed in front of the students in the
lecture, and hence this follows the paradigm described as modeling/scaffolding
by (Vihavainen et al. 2011, §2.1).

Lest this seem too trivial, this is the specification of the last tickable in
semester 2.

Exercise 4 Write two MatLab functions: TreeAdd and traverse, in files of the
same name. TreeAdd(t,str), where t is a binary tree of strings and counts,
and str is a string, returns the new tree with str inserted in order (or with the
corresponding count increased if str was already in the tree). traverse(t,@f)

should traverse such a tree t, calling the function f on each node in turn, in
alphabetical order of the strings. In the parlance of [the programming] lectures,
it should therefore do an inorder traversal.

The incentive for the tickables is that the tickables develop the students’ pro-
gramming skills, and lead up to the summative practical work: with the mo-
tivation that failure to get 80% ticks will result in the summative coursework
marks being reduced pro rata. In practice we have very rarely had to apply this
restriction: the (very few) students who do not do the tickables fail the practical
work anyway.

Many tickables from 5 onward are supported by a quiz: good students an-
swer a quiz based on running their code, and then can submit their code using
“conditional assignments” in the Moodle 2 online platform (or our own bespoke
solution in Moodle 1). This is done in advance of the laboratory session, so that
the tutors can look at it in advance, and spend the lab session concentrating on
the weaker students who have not done the quiz.

6

5.3 Summative Practical Work — 50% of course marks

There are four pieces of summative practical work, which make the 50%: the
first piece of work is worth 14%, and the following pieces are each worth 12%.

Coursework 1: 14% This is set in November and due at the end of teaching
for Semester 1, typically mid-December. It comes in four parts: the first
two are straight from previous exercises, and parts 3 and 4 are independent
of each other but essentially build on part 2. Each part is worth 20% of the
coursework (2.8% of the the course total), and is automatically marked,
which has largely been a success: the first author has already taught the
students about “black box” testing, and emphasises that marking will
be tested this way. The tutors are then asked to check the results for
reasonableness. For example, students who get arguments in the wrong
order will typically get 0 from the automatic marking, whereas the tutor
will swap the arguments and re-run the test, and report the result to the
lecturer, who will allocate the “correct” marks less an appropriate penalty.
In addition, the tutors allocate 20% for style and commenting.

Class Test: 12% This is done in the first week of Semester 2 (February),
in front of the computers, and students are expected to use them, and
submit both written answers and MatLab programs. A typical question
is the following.

Exercise 5 The sequence {xn} is defined by x1 = a and xn =
x2
n−1−2
2xn−1

for

n ≥ 2. Write a MatLab function which takes as inputs a positive integer
n and a positive real number a and produces xn.

1. When a = 50, what is x8 correct to 10 decimal places.

2. It is known that for all a > 0, xn converges to a limit as n → ∞.
What is that limit? Give your answer as a surd (a proof is not re-
quired).

Coursework 2: 12% This is as coursework 1: four parts, with parts 3 and 4
independent of each other. This exercises the more advanced programming
(data structures) taught at the start of Semester 2. In academic year
2013/14, for the first time, we are also going to exercise MatLab’s object-
oriented programming features.

Coursework 3: 12% The same structure as coursework 2, and in particular
exercises functional arguments.

5.4 Examinations — 50%

There are two examinations on the course. In both of them, students are allowed
(and strongly encouraged) to take the course text into examinations. It is
also pointed out that rote learning of MatLab features, or indeed mathematical

7

definitions, will not help as these are all in the text, and therefore will not be
examined.

January Worth 15% of the course total, and focusing entirely on the math-
ematics content of Semester 1 (October-December, with revision in Jan-
uary).

May Worth 35% of the course total, with 12% being on the year’s Programming
and 23% being on Semester 2’s mathematics.

Therefore each of Programming and Discrete Mathematics gets 50% of the
marks, split 12:38 and 38:12 respectively between examinations and practical
work.

6 The Tutor Experience

As a tutor, interactions with students are through the weekly laboratories or
tutorials. Often tutors will teach in both laboratory sessions and tutorials,
allowing them to teach both aspects of the course. The tutors are PhD or
Masters (MSc and MMath) students in both the Mathematics and Computer
Science Departments. The professors take the career development of all tutors
seriously: for example the authors of this paper include a PhD student from
each Department and a PhD (ex-MMath) student from Mathematical Sciences.

Most of the interactions in the laboratory sessions are done one-on-one,
whilst tutorials are more like a standard classroom environment. It is up to
the tutors to reinforce the links between the mathematics and programming in
these sessions, especially for those students struggling. A typical situation may
be a student who has never seen a recursive program before and keeps forgetting
to include base cases. Getting the student to make the link to induction proofs
(something they are more familiar and comfortable with) allows them to see
the necessity of the base cases, and work out how many they need. Obviously,
if a student is more comfortable with programming, then this can be used to
help them understand the mathematics. Due to the one-on-one nature of this
style of teaching it can be difficult for tutors to allocate their time evenly across
all students during laboratories. Each tutor tends to find their own way of
tackling this issue, but it is one of the more challenging aspects of tutoring.
Announcements to all groups at the start of a lab session explaining common
programming issues and key concepts can help.

On the practical side of things, tutors need to be proficient enough in MatLab
to handle standard issues, especially in the first few weeks. While this was a
challenge at the beginning, we are now in the position that MMath students
will themselves have taken this course in their first year. Often students arrive
having never used a programming environment and it is important that any
frustration or problems stemming from this are quickly identified and clarified
so as not to interfere with the students understanding of the concepts. Since
there are five tutors in the laboratory, at least one of whom will have tutored
the course before, it is very rare for the tutors to be stuck with a MatLab issue.

8

Once the students are working on assessed coursework, the tutors play a
different rôle. Their help is targeted at general MatLab guidance rather than
helping to complete any specific task. Students are expected to start debugging
their own work independently by this point and tutors will not point out spe-
cific errors beyond those in syntax. Help is therefore focused on the debugging
process itself, with students being encouraged to add ‘print’ statements and
not suppress variables at key points in the functions. Moreover, students are
encouraged to pay attention to any MatLab error statements, which are often
very descriptive and helpful in diagnosing runtime problems with their codes.
Students who are stuck on how to proceed with specific coursework tasks are di-
rected to relevant work (both from laboratories and tutorials) they have already
completed in order to draw parallels.

Tutors assign 20% of the coursework marks for ‘coding style’: presentation
of code and commenting. Tutors therefore can give advice to students about
what criteria they may look for, but students are left to achieve this standard
by themselves.

7 Outcomes

In an ideal world, we would present before/after student questionnaire results.
Unfortunately, the university changed both the method (paper to online) and
the questions on unit evaluations as we were introducing this course, so we
cannot present such data, and the evidence is necessarily qualitative.

1. The rhetorical “why on earth are we doing this?” questions have been
replaced with (fewer) genuine “why are we doing this?” questions, and
the Mathematical Sciences Department has a much better answer!

2. The immediate customers of such a Year 1 course are the Year 2/3 courses,
and the Numerical Analysis lecturers have noted a marked improvement
in MatLab programming skills, while R programming has ceased to be an
issue for Statistics lecturers.

3. It should be noted that Bath is largely a sandwich university, even in
Mathematics: 84 students were in placement in 2012–13. While only a
small number use MatLab directly, a common statement is

the programming skills they learnt in first year through MatLab
and R helped them in their placement.

4. While this course is frequently discussed at Staff-Student Liaison Commit-
tee and by the Directors of Studies, the focus is always on minor improve-
ments (2013’s was Mathematics tutorials), not “was this a good idea?”.

The authors believe that the interdisciplinary approach exemplified by this
course is the right approach to the thorny problem of teaching programming
to mathematics students.

9

Acknowledgements: we are grateful to the many other tutors (notably
Marios Richards and Ieuan Evans for their work on the automated coursework
marking) who have contributed, and to the students whose views have shaped
the delivery. The MSOR Connections referees have greatly improved the paper.

References

Chapman, S.: 2009, Essentials of MATLAB Programming, Cengage.

Chapman, S.: 2013, MATLAB(R) Programming with Applications for Engi-
neers, Cengage.

Epp, S.: 2011, Discrete Mathematics with Applications, 4th edition,
Brooks/Cole Cengage Learning.

Vihavainen, A., Paksula, M. and Luukkaine, M.: 2011, Extreme Apprenticeship
Method in Teaching Programming for Beginners, Proceedings 42nd ACM
technical symposium on Computer Science Education, pp. 93–98.

10

	Introduction
	Background
	Overall Design
	Aims
	Reinforcing the Link
	Course Text

	Delivery
	Overview
	Whole-Cohort Classes
	Laboratory Classes
	Mathematics Tutorials
	Virtual Learning Environment

	Assessment
	Weekly Work — Mathematics
	Weekly Work — Programming
	Summative Practical Work — 50% of course marks
	Examinations — 50%

	The Tutor Experience
	Outcomes

