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Abstract: Titin is the largest protein in humans, composed of more than one hundred immunoglobulin
(Ig) domains, and plays a critical role in muscle’s passive elasticity. Thus, the molecular design of this
giant polyprotein is responsible for its mechanical function. Interestingly, most of these Ig domains
are connected directly with very few interdomain residues/linker, which suggests such a design
is necessary for its mechanical stability. To understand this design, we chose six representative Ig
domains in titin and added nine glycine residues (9G) as an artificial interdomain linker between
these Ig domains. We measured their mechanical stabilities using atomic force microscopy-based
single-molecule force spectroscopy (AFM-SMFS) and compared them to the natural sequence. The
AFM results showed that the linker affected the mechanical stability of Ig domains. The linker mostly
reduces its mechanical stability to a moderate extent, but the opposite situation can happen. Thus,
this effect is very complex and may depend on each particular domain’s property.

Keywords: titin; force spectroscopy; interdomain linker

1. Introduction

The giant muscle protein titin is a tandem modular construction designed polyprotein
containing more than two hundred individually folded domains, such as immunoglobulin-
like (Ig) and fibronectin-type III domains [1]. These domains are similar in size (~2 nm)
and length (~90 residues). Interestingly, these domains are closely connected with very
few residues in-between. Functionally, the I-band part of titin is extensible and plays a
critical role in the passive elastic properties of muscles (Figure 1a). Thus, the molecular
design for such a giant polyprotein is of great interest in understanding its mechanical
function [2–5]. Here, we are particularly interested in whether the interdomain amino acid
sequence/linker affects the mechanical stability of the Ig domains in titin, which has been
studied with great interest [6–8].

To examine the linker effect, we used atomic force microscopy-based single-molecule
force spectroscopy (AFM-SMFS) to measure the mechanical stability of human Ig domains.
SMFS can manipulate a single molecule mechanically [9–22] and AFM-SMFS has been
widely used to study the mechanical stability of proteins [23–29], protein-protein interac-
tions [30–43], and chemical bonds [44–56]. Many titin domains have been studied [57–59].
For example, I27, the 27th Ig domain in titin (also called I91 based on a different nomen-
clature), is one of the first and most studied protein domains by AFM-SMFS, showing a
force of ~200 pN and a contour length increment (∆Lc) of 28 nm upon unfolding [60]. In
addition, the effect of the disulfide bond in I27 has been studied in detail [61,62].

Thus, we choose six consecutive Ig domains of titin, including I27, I28, I29, I30, I31, and
I32, as a representative unit (I27–I31), to study the interdomain linker effect (Figure 1b). The
structures and mechanical stabilities of many of these domains have been well determined.
The crystal structure of I27 is available, while structures for other domains are constructed
by the I-TASSER server (Figure 1b). It is noted that I27 is a historical nomenclature,
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especially in the AFM-SMFS field, and we used it here. It is renamed I91 later [63]. There
are 89 extensible residues in each Ig domain except for I30, leading to ∆Lc of ~28 nm, as
shown for I27. For I30, a disulfide bond may be formed between the Cys23 and Cys73,
leading to a smaller ∆Lc with only 51 extensible residues (Figure 1c). In addition, we
designed nine glycines (9G) as an artificial linker due to its simple structure without a
self-secondary structure.
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Figure 1. (a) Schematic architecture of one-half of the sarcomere highlights the polyprotein structure 
of giant protein titin (colored in purple), not in scale. (b) Structure shows human titin segment I(27–
32) chosen for mechanical stability measurements. Except for I27 (PDB:1TIT), all others are simu-
lated structures. (c) The cartoon shows the structure of I30 with a possible disulfide bond between 
Cys73 and Cys23, while no disulfide is present in other Ig domains. (d) The schematic shows how 
high-precision AFM-SMFS measures the mechanical stability of Ig domains with an artificial linker. 

Thus, we choose six consecutive Ig domains of titin, including I27, I28, I29, I30, I31, 
and I32, as a representative unit (I27-I31), to study the interdomain linker effect (Figure 
1b). The structures and mechanical stabilities of many of these domains have been well 
determined. The crystal structure of I27 is available, while structures for other domains 
are constructed by the I-TASSER server (Figure 1b). It is noted that I27 is a historical no-
menclature, especially in the AFM-SMFS field, and we used it here. It is renamed I91 later 
[63]. There are 89 extensible residues in each Ig domain except for I30, leading to ΔLc of 
~28 nm, as shown for I27. For I30, a disulfide bond may be formed between the Cys23 and 
Cys73, leading to a smaller ΔLc with only 51 extensible residues (Figure 1c). In addition, 
we designed nine glycines (9G) as an artificial linker due to its simple structure without a 
self-secondary structure. 

2. Results 
A high-precision AFM measurement system has been used for accurate measure-

ment and comparison of Ig domains in titin [64–67] (Figure 1d). In short, the target poly-
protein designed with a specific peptide sequence NGL was immobilized on a GL peptide-
coated surface through AEP (asparaginyl endopeptidase)-mediated protein ligation be-
tween the two peptide sequences [68]. A GB1-XDoc coated-AFM tip was used to probe 
the target polyprotein (Figure 2c). Here, GB1 with known properties (Force = 180 pN, ΔLc 
= 18 nm) was added, serving as an internal force caliper [69]. The reversible protein-pro-
tein interaction Cohesion:XDockerin (Coh:XDoc) was used to enable efficient protein pick-
up [64]. 

Thus, we built polyprotein Coh-I(27-32)/9G-NGL with a 9G linker for measurement. 
The 9G linker is present between each Ig domain except for the two end I27 and I32 do-
mains (Figure 2a). By approaching the AFM tip towards the surface, the polyprotein was 
picked up between the Coh:XDoc interaction. Upon stretching, the polyprotein was under 
mechanical manipulation and its corresponding force-extension curve showed character-
istic sawtooth-like peaks from the stepwise unfolding of each domain, and a final rupture 
peak with a higher force of ~600 pN was observed from the break of Coh:XDoc complex. 
By fitting the elasticity of the curve using the worm-like chain model [70], five unfolding 

Figure 1. (a) Schematic architecture of one-half of the sarcomere highlights the polyprotein structure
of giant protein titin (colored in purple), not in scale. (b) Structure shows human titin segment
I(27–32) chosen for mechanical stability measurements. Except for I27 (PDB:1TIT), all others are
simulated structures. (c) The cartoon shows the structure of I30 with a possible disulfide bond
between Cys73 and Cys23, while no disulfide is present in other Ig domains. (d) The schematic
shows how high-precision AFM-SMFS measures the mechanical stability of Ig domains with an
artificial linker.

2. Results

A high-precision AFM measurement system has been used for accurate measurement
and comparison of Ig domains in titin [64–67] (Figure 1d). In short, the target polyprotein
designed with a specific peptide sequence NGL was immobilized on a GL peptide-coated
surface through AEP (asparaginyl endopeptidase)-mediated protein ligation between the
two peptide sequences [68]. A GB1-XDoc coated-AFM tip was used to probe the target
polyprotein (Figure 2c). Here, GB1 with known properties (Force = 180 pN, ∆Lc = 18 nm)
was added, serving as an internal force caliper [69]. The reversible protein-protein interac-
tion Cohesion:XDockerin (Coh:XDoc) was used to enable efficient protein pick-up [64].

Thus, we built polyprotein Coh-I(27–32)/9G-NGL with a 9G linker for measurement.
The 9G linker is present between each Ig domain except for the two end I27 and I32 domains
(Figure 2a). By approaching the AFM tip towards the surface, the polyprotein was picked up
between the Coh:XDoc interaction. Upon stretching, the polyprotein was under mechanical
manipulation and its corresponding force-extension curve showed characteristic sawtooth-
like peaks from the stepwise unfolding of each domain, and a final rupture peak with a
higher force of ~600 pN was observed from the break of Coh:XDoc complex. By fitting the
elasticity of the curve using the worm-like chain model [70], five unfolding events from
Ig domains were obtained, showing a ∆Lc of 28 ± 2 nm (Figure 2b), agreeing well with
the theoretical value. Moreover, the unfolding forces of different Ig domains are similar.
The force histogram showed a single peak with an average unfolding force of 308 ± 64 pN
(ave. + stdv. n = 1148, Figure 2c). Besides, an additional peak with a ∆Lc of 11 ± 2 nm
was observed, which was from the partial unfolding of I30 (Figure 1c). As described, a
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disulfide bond is indeed presented in I30. Thus, only 40 residues can be unfolded, leading
to a theoretical value of 10.4 nm (40 × 0.36 − 4.0 nm).
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stretching these polyproteins resulted in a shorter force-extension curve with only two 28 
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Figure 2. (a) Scheme of AFM-SMFS setup to measure the mechanical stability of polyprotein I(27–32).
(b) Representative force-extension curves show the unfolding events of Ig domains (marked by a
star). The top two curves are from the unfolding of polyprotein with an artificial 9G linker (colored in
purple) and the bottom curves are from the natural polyprotein sequence without the linker. The
I30 domain shows a peak with ∆Lc of 11 nm (in orange), the remaining five Ig domains all show a
peak with ∆Lc of 28 nm, and GB1 shows a ∆Lc of 18 nm. (c,d) Histograms show the unfolding force
(c) and ∆Lc (d) from the five Ig domains. (e) The histogram shows the ∆Lc of I30.

Then, we used polyprotein Coh-I(27–32)-NGL with natural sequence for AFM mea-
surement and comparison. The same cantilever used previously for the polyprotein with
the linker was used here again to minimize the error. As expected, a similar unfolding
pattern was observed (Figure 2b,d,e). However, the force is slightly lower, with a value of
324 ± 54 pN (n = 1808, Figure 2c) (Table 1).

Table 1. Unfolding force of Ig domains for each polyprotein design.

Polyprotein 9G Linker No Linker

I(27–32) 308 ± 64 pN (n = 1148) 324 ± 54 pN (n = 1808)

I(28–30) 325 ± 35 pN (n = 965) 330 ± 36 pN (n = 860)

I(30–32) 320 ± 33 pN (n = 1120) 276 pN/345 pN (n = 1804)

To confirm this effect, we chose three Ig domains only and constructed two shorter
polyproteins, Coh-I(28–30)/9G-NGL and Coh-I(30–32)/9G-NGL, for measurement. In-
deed, stretching these polyproteins resulted in a shorter force-extension curve with only
two 28 nm-peaks from I28, I29, or I31, I32, and one 11 nm-peak from I30, as expected
(Figures 3 and 4). For Coh-I(28–30)/9G-NGL, the histogram of unfolding forces from I28
and I29 showed a single peak with an average force of 330±36 pN (n = 860). Then, AFM
measurement on Coh-I(28–30)-NGL with natural sequence showed a force of 325 ± 35 pN
(n = 965).
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black). (c,d) Histograms of their corresponding unfolding force (c) and ∆Lc (d) are shown. The star
indicates the unfolding event/peak.

For Coh-I(30–32)/9G-NGL, the histogram of unfolding force from I31 and I32 showed a
single peak with an average force of 320 ± 33 pN (n = 1120). However, AFM measurement
on the natural sequence showed a different result. Two peaks were observed in the
histogram, with a force of 276 pN and 345 pN, respectively (n = 1804), which has not been
observed before.

As a result, the unfolding force of Ig domains in titin is generally lower when the
9-glycine length amino acids sequence is present as an interdomain linker. Moreover, the
effect can be complex when considering the unfolding force of I31 and I32.

Finally, we focused on the unfolding results of I30 in each polyprotein design. First,
with an internal disulfide bond, I30 showed a unique 11 nm-peak which can be distin-
guished from other Ig domains. Thus, its unfolding force can be assigned unambiguously.
Moreover, the linker situation for I30 in the three polyproteins is different (Figure 5). For
I(27–32), 9G linker is present on both sides of I30 (Figure 5a). In this design, the unfolding
force of I30 was 203 ± 34 pN (n = 360), and 186 ± 55 pN (n = 225) without linker. For
I(28–30), 9G linker is only present on the N terminus. The force was 197 pN (n = 570), and
172 ± 24 pN (n = 910) without linker. Finally, for I(30–32), 9G linker is only present on the
C terminus. The force was 159 ± 23 pN (n = 477), and 175 ± 24 pN (n = 404) without the
linker (Table 2).
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Table 2. Unfolding force of I30 in each polyprotein design.

Polyprotein 9G Linker No Linker

I(27–32) 186 ± 55 pN (n = 225) 203 ± 34 pN (n = 360)

I(28–30) 159 ± 23 pN (n = 477) 175 ± 24 pN (n = 404)

I(30–32) 197 ± 26 pN (n = 570) 172 ± 30 pN (n = 910)

Based on these results for I30, we found that this linker effect is much more complex
than we thought before. Indeed, a few cases have been studied for the linker effect, both
mechanically and thermodynamically [71,72]. No general trend/conclusion has been
obtained. In this work, we found the linker can reduce the mechanical stability of I30 when
present in I(27–32) and I(30–32) while increasing it when present in I(28–30). Nevertheless,
it is no doubt that the linker affects the domain stability in titin.

In this work, we determined the effect of the interdomain linker for the Ig domain in
titin. By measuring the mechanical stability of polyprotein containing multiple Ig domains
in titin, with/without an artificial 9G linker, we found the linker indeed affects the Ig
domain’s stability. The force is reduced when an artificial linker is present in most cases.
However, the extent can vary; sometimes the trend is reversed. Thus, we believe this linker
effect is much more complex, and the intrinsic property of each domain and the linker itself
play important roles. Nevertheless, this work provides a glimpse of the molecular design
of the giant titin, and future studies are needed to understand this important molecule for
humans and even for designing artificial muscle [73–75].

3. Method and Material

Protein engineering: The plasmid: Coh-I(27–32)/9G-NGL, Coh-I(27–32)-NGL, Coh-
I(28–30)/9G-NGL, Coh-I(28–30)-NGL, Coh-I(30–32)/9G-NGL, Coh-I(30–32)-NGL were
obtained after Gibson assembly-based method [76]. All plasmids were overexpressed in
Escherichia coli strain BL21 (DE3) and cells were cultured overnight in LB medium at 18 ◦C
by the addition of 1mM IPTG. The cells were pelleted by centrifugation and the polyprotein
purification by Ni-NTA affinity. After using wash buffer (50 mM Tris, 100 mM NaCl, 20 mM
imidazole, pH 7.4) to purify the target proteins, the polyproteins were eluted in elution
buffer (50 mM Tris, 100 mM NaCl, 200 mM imidazole, pH 7.4). Protein ligase AEP was
obtained according to literature [77].
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Protein immobilization: The glass coverslips (Sail Brand, China) and probes (MLCT-
Bio-DC, Bruker) were cleaned by plasma. Then, both probes and coverslips were immersed
in 1% (v/v) APTES toluene solution for 1 h to add the NH2 group, followed by a reaction
with Milli-Q water containing 2 mM ImSO2N3, 4 mM K2CO3, and 20 mM CuSO4 to add
the N3 group. After flushing, they were further reacted with DBCO-PEG4-maleimide for
at least 2 h to add the maleimide group. Peptide C-ELP20-NGL and GL-ELP20-C were
respectively reacted onto the probe and coverslip. For AFM-SMFS measurement, 50 µL
AFM buffer (100 mM Tris, 100 mM NaCl, pH 7.4) containing 100 µM Ig proteins and 50 µM
AEP were pipetted on the glass slides for 40 min. The cantilevers were incubated with
50 µL solution of 60 µM GL-CBM-XDoc and 50 Mm AEP in the AFM buffer.

AFM-SMFS Experiment: Measurements using Coh-Doc interaction of high rupture
force as a standard were carried out Nanowizard4 (JPK) atomic force microscope. Using
the equipartition theorem, the spring constant of ~30 pN nm−1 was obtained by calibrating
the MLCT-Bio-DC (Bruker) cantilever in the AFM buffer solution. The functionalized
cantilevers and glass coverslip immobilize polyproteins in AFM buffer at pH 7.4. All AFM
experiments were performed at a constant pulling speed of 1000 nm·s−1.

Protein sequence (I27-9G-I28-9G-I29-9G-I30-9G-I31-9G-I32)
LIEVEKPLYGVEVFVGETAHFEIELSEPDVHGQWK-

LKGQPLAASPDCEIIEDGKKHILILHNCQLGMTGEV-
SFQAANTKSAANLKVKELGGGGGGGGGPL-
IFITPLSDVKVFEKDEAKFECEVSREPKTFRWLKGTQ-
EITGDDRFELIKDGTKHSMVIKSAAFEDEAKYMFEAE-
DKHTSGKLIIEGIGGGGGGGGGRLKFL-
TPLKDVTAKEKESAVFTVELSHDNIRVKWFKNDQRLHT-
TRSVSMQDEGKTHSITFKDLSIDDTSQIRVEAMGMSSEA-
KLTVLEGGGGGGGGGGDPYFT-
GKLQDYTGVEKDEVILQCEISKADAPVKWFKDGKEIKPSK-
NAVIKTDGKKRMLILKKALKSDIGQYTCDCGTDKTSGKLD-
IEDRGGGGGGGGGEIKLVRPLHS-
VEVMETETARFETEISEDDIHANWKLKGEALLQTPDCEIKEE-
GKIHSLVLHNCRLDQTGGVDFQAANVKSSAHL-
RVKPRGGGGGGGGGVIGLLRPLKDVTVTA-
GETATFDCELSYEDIPVEWYLKGKKLEPSDKVVPRSEGKVHT-
LTLRDVKLEDAGEVQLTAKDFKTHANLFVKEP
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