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ABSTRACT

Content-Centric Networking (CCN) is an emerging network
architecture designed to overcome limitations of the current
IP-based Internet. One of the fundamental tenets of CCN is
that content is named and addressable. Consumers request
content by issuing interests with the desired content name.
These interests are forwarded by routers to producers, and
the requested content is returned and optionally cached at
each router along the path.

In-network caching makes it difficult to enforce access con-
trol policies on sensitive content since routers only use inter-
est information for forwarding decisions. This motives our
work on Interest-Based Access Control (IBAC) – a scheme
for access control enforcement using only information con-
tained in interest messages. IBAC makes sensitive content
names unpredictable to unauthorized parties. It supports
both hash- and encryption-based name obfuscation. Interest
replay attacks are addressed by formulating a mutual trust
framework between producers and consumers that enables
routers to perform authorization checks before satisfying in-
terests from local caches. We assess computational, storage,
and bandwidth costs of each IBAC variant. Proposed design
is flexible and allows producers to arbitrarily specify and en-
force any type of content access control, without having to
deal with content encryption and key distribution. This is
the first comprehensive CCN access control design that only
uses information contained in interest messages.
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1. INTRODUCTION
The purpose of the original Internet in the 1970-s was to

provide end-to-end communication for a few thousand users
to access scarce and expensive resources via terminals. Since
then, the number of Internet users has grown exponentially,
exceeding 3 billion, each using a wide variety of applica-
tions: from dynamic web to content distribution. This shift
of usage exposed certain limitations of the IP-based Internet
design and motivated exploration of new Internet architec-
tures.

Content-Centric Networking (CCN) is an approach to inter-
networking exemplified by two well-known research efforts:
CCNx [19] and Named-Data Networking (NDN) [12]. CCN’s
main goal is to develop the next-generation Internet archi-
tecture with an emphasis on efficient content distribution,
security, and privacy. Unlike current IP-based networking
where data is requested by addressing the machine host-
ing the data, each CCN content is assigned a unique name.
Users (called consumers) request content objects by issuing
an interest for a given name. This interest can then be sat-
isfied or served from any entity (i.e., producer or router)
as long as the replied content’s name matches that of the
interest.

To facilitate efficient content distribution, a CCN router
maintains a cache. This enables routers to satisfy interests,
which reduces end-to-end latency and decreases bandwidth
utilization when requesting popular content. Since interest
messages may be satisfied by any cached version of the con-
tent, interest messages may not, and need not, reach the
producer. Therefore, enforcing content access control within
the network is a challenge. Furthermore, even if all interests
are forwarded to producers, the latter might not be able to
enforce access control since interest messages, by design, do
not carry any form of consumer identification or authenti-
cation information.

In this paper, we propose an access control scheme based
on interests – Interest-Based Access Control (IBAC). The in-
tuition is that if consumers are not allowed access to certain
content, they should not be able to generate the correspond-
ing interests, i.e., they should not be able to learn the con-
tent’s name. IBAC may also be used with or alongside con-

1

147



tent encryption to conceal both the name and the payload of
the content object.1 However, using IBAC in isolation is ad-
vantageous in scenarios where content object payloads may
need to be modified by an intermediary service, e.g., a media
encoding application or proxy. In this case, content encryp-
tion prevents such modifications by services or applications
besides the producer. Moreover, although IBAC involves
the network layer, we believe that this is necessary to allow
routers (with caches) to enforce access control. To be more
specific, we claim that, to support IBAC, any entity which

serves content should also be able to authorize interests for

said content.
The main contributions of this paper are:

• Architectural modifications to support IBAC without
diminishing caching benefits.

• Amutual trust scheme wherein routers can verify whether
consumers are authorized to access cached content.

• A security analysis of the proposed IBAC scheme.

• Evaluation of router performance overhead when serv-
ing content via IBAC compared to publicly accessible
content.

The rest of this paper is organized as follows. Section 2
presents a CCN overview. Then, Section 3 provides an sum-
marizes CCN access control techniques. Next, Section 4
presents security definitions and the adversary model, fol-
lowed by Section 5 that presents the IBAC scheme. Security
considerations are discussed in Section 6 and IBAC costs are
assessed in Section 7. The paper concludes in Section 8.

2. CCN OVERVIEW
Content Centric Networking (CCN) is one of the main

Information-Centric Networking (ICN) architectures. Re-
lated architectures, such as Named Data Networking (NDN)
[25], are similar, albeit with some small protocol and packet
format differences. This section overviews ICNs in the con-
text of the CCN protocol and CCNx reference implementa-
tion. Given familiarity with either CCN or NDN, it can be
skipped without loss of continuity.

In contrast to TCP/IP, which focuses on end-points of
communication and their names and addresses, ICN archi-
tectures such as CCN [12, 19] focus on content by mak-
ing it named, addressable, and routable within the net-
work. A content name is a URI-like [2] name composed
of one or more variable-length name components, each sep-
arated by a / character. To obtain content, a user (con-
sumer) issues a request, called an interest message, with
the name of the desired content. This interest will be sat-

isfied by either (1) a router cache or (2) the content pro-
ducer. A content object message is returned to the consumer
upon satisfaction of the interest. Moreover, name match-
ing in CCN is exact, e.g., an interest for lci:/facebook/

Alice/profile.html can only be satisfied by a content ob-
ject named lci:/facebook/Alice/profile.html.2

Aside from the content name, CCN interest messages may
include the following fields:

1As we will discuss, IBAC does not replace access control
based on content encryption. It is a complementary form of
access control.
2Name matching is not exact in NDN [25].

• Payload – enables consumers to push data to produc-
ers along with the request.3

• KeyID – an optional hash digest of the public key used
to verify the desired content’s digital signature. If this
field exists, the network guarantees that only content
objects which can be verified with the specified key
will be returned in response to an interest.

• ContentObjectHash – an optional hash value of the
content being requested. If this field exists, the net-
work guarantees the delivery of the exact content that
consumer requests.

CCN content objects include several fields. In this work, we
are only interested in the following three:

• Name – a URI-like name formatted as a sequence of
/-separated name components.

• Validation – a composite of validation algorithm in-
formation (e.g., the signature algorithm used, its pa-
rameters, and a link to the public verification key),
and validation payload (e.g., the signature). We use
the term “signature” to refer to this field.

• ExpiryTime – an optional, producer-recommended time
for the content objects to be cached.

There are three types of entities in CCN:4

• Consumer – issues an interest for content.

• Producer – produces and publishes content.

• Router – routes interest packets and forwards corre-
sponding content packets.

Each CCN entity maintains two components:

• Forwarding Interest Base (FIB) – a table of name pre-
fixes and corresponding outgoing interfaces. The FIB
is used to route interests based on longest-prefix-matches
of their names.

• Pending Interest Table (PIT) – a table of outstanding
(pending) interests and a set of corresponding incom-
ing interfaces.

An entity may also maintain an optional Content Store (CS)
used for content caching. The timeout for cached content is
specified in the ExpiryTime field of the content header. From
here on, we use the terms CS and cache interchangeably.

Routers use the FIB to forward interests from consumers
to producers, and the PIT – to forward content object mes-
sages along the reverse path to the consumer. More specifi-
cally, upon receiving an interest, a router R first checks its
cache to see if it can satisfy this interest locally. Producer-
originated digital signatures allow consumers to authenti-
cate received content, regardless of the entity that actually
served the content. Moreover, the Interest-Key Binding rule

3Currently, NDN interest messages do not provide an
arbitrary-length payload and therefore cannot support the
proposed IBAC scheme. However, if in the future the NDN
interest format is modified to include a field similar to the
CCNx payload, our IBAC scheme will become applicable.
4A physical entity, or host, can be both a consumer and
producer of content.
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(IKB) [9] enables routers to efficiently verify received con-
tent signatures before caching, in order to avoid content
poisoning attacks [8]. Essentially, consumers and produc-
ers provide routers with the required trust context to enable
efficient signature verification.

When a router R receives an interest for name N that is
not cached and there are no pending interests for the same
name in its PIT, R forwards the interest to the next hop
according to its FIB. For each forwarded interest, R stores
some amount of state information, including the name of
the interest and the interface from which it arrived, so that
content may be sent back to the consumer. If an interest
for N arrives while there is already an entry for the same
content name in the PIT, R only needs to update the arriv-
ing interface. When content is returned, R forwards it to all
of the corresponding incoming interfaces, and the PIT entry
is removed. If a router receives a content object without a
matching PIT entry, the message is deemed unsolicited and
subsequently discarded.

3. ACCESS CONTROL OVERVIEW
One key feature of CCN is that content is decoupled from

its source; there is no notion of a secure channel between a
consumer and producer. Consequently, ensuring that only
authorized entities have access to content is a fundamen-
tal problem. In this section, we explore complementary ap-
proaches to access control: (1) content encryption and (2)
interest name obfuscation and authorization.

3.1 Encryption-Based Access Control
The most intuitive solution to the access control prob-

lem is via encrypted content which can only be decrypted
by authorized consumers possessing the appropriate decryp-
tion key(s). This enables content objects to be disseminated
throughout the network since they cannot be decrypted by
adversaries without the appropriate decryption key(s).

Many variations of this approach have been proposed [21,
18, 11, 23]. Kurihara et al. [17] generalized these specialized
approaches in a framework called CCN-AC, an encryption-
based access control framework to implement, specify, and
enforce access policies. It uses CCN manifests5 to encode
access control specification information for a particular set of
content objects. Consumers use information in the manifest
to (1) request appropriate decryption keys and (2) use them
to decrypt the content object(s) in question.

Outside of ICN, there have been many proposed access
control frameworks based on encryption. Recently, access
control in shared cloud storage or social network services,
e.g., Google Drive, Dropbox, and Facebook, have generated
much attention from the research community [26, 22, 24,
13]. For instance, Kamara et al. [14] modeled encryption-
based access control framework for cloud storage. Microsoft
PlayReady [1] is another popular access control framework
for encrypted content dissemination over the Internet.

Despite its widespread use, encryption-based access con-
trol causes potentially prohibitive overhead for both pro-
ducers and consumers. In most cases where hybrid encryp-
tion is used, it also requires keys to be distributed alongside
each content object, which introduces another consumer-to-

5Manifests are special types of content that are used to pro-
vide structure and additional information to otherwise flat
and simple content objects [19].

producer message exchange. Also, encryption-based access
control does not provide flexibility if content objects need to
be modified by an intermediate service, e.g., a media encod-
ing or enhancement application. Content encryption pre-
vents such post-publication modifications without revealing
the secret decryption key(s) to such services.

3.2 Interest-Based Access Control
Interest-based access control (IBAC) is an alternative tech-

nique, though not mutually exclusive with content encryp-
tion, for implementing access control in CCN. It is based on
interest name obfuscation and authorized disclosure. Name
obfuscation hides the target of an interest from eavesdrop-
pers. As mentioned in [12], name obfuscation has no impact
on the network since routers use only the binary represen-
tation of a name when indexing into PIT, CS, and FIB. As
long as producers generate content objects with matching
names, the network can seamlessly route interests and con-
tent objects with obfuscated names. However, interests with
obfuscated names must contain routable prefixes so that the
interests can still be forwarded from consumers to the pro-
ducers. In other words, only a subset of name components
(e.g., the suffix of the name) can be obfuscated.

Another goal of name obfuscation is to prevent unautho-

rized users from creating interests for protected content. In
other words, if a particular consumer Cr is not permitted to
access content with name N , Cr should not be able to gen-
erate N ′ = f(N), where f(·) is some obfuscation function
that maps N to an obfuscated name N ′. For routing pur-
poses, only the suffix of the name is obfuscated; there must
exist a cleartext prefix that is used to route the interest
with a partially obfuscated name to the intended producer.
Possible obfuscation functions include keyed cryptographic
hash functions and encryption algorithms. We explore both
possibilities in this paper.

Authorized disclosure is the second element of IBAC. This
property implies that any entity serving content must autho-
rize any interest for said content before it is served. In this
context, authorization is necessarily coupled with authenti-
cation so that the entity serving the content can determine
the identity of the requesting consumer. Therefore, con-
sumers must provide sufficient authentication information,
e.g., via an interest signature. Thus, to implement autho-
rized disclosure (in the presence of router caches), any en-
tity serving content must (a) possess the information neces-
sary to perform authentication and authorization checks and
(b) actually verify the provided authentication information.
This issue is discussed at length in Section 6.2. It is worth
mentioning that disabling content caching defers authorized
disclosure checks to producers. In this case, all interests
will be forwarded to producers that posses the information
needed to perform these checks. However, by itself, pro-
hibiting content from being cached is not a form of access
control and reduces the effectiveness of content retrieval.

Fotiou et. al. [5] proposed an access control mechanism
similar to IBAC for non-ICN architectures, and conjectured
that it should be applicable to ICNs. In [5], access con-
trol computation and overhead are delegated to a separate,
non-cache entity. This entity, known as the access control
provider, maintains access control policies given by a spe-
cific producer. Each content object has a pointer to a func-
tion that determines whether or not to serve the content
to the requesting consumer, and the access control provider
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is responsible for evaluating this function. Content objects
are stored at relaying parties, which are oblivious to the
specific access control policy protecting the content objects.
Similarly, the access control provider has no knowledge of
the consumer requesting the content (for user privacy pur-
poses), and just evaluates whether the relaying party should
forward the content object. The cache, in this scenario, is
not responsible for the extra computational overhead. This
approach is different from our work in that we (1) maintain
the association between content and authorization, and (2)
provide routers with an efficient authorization verification
method, thus eliminating the need for an external access
control provider.

4. SECURITY MODEL
Let U(N) denote the set of authorized consumers for a

content object with name N generated and controlled by a
producer P , and let Ū(N) be its complement, i.e., the set of
all unauthorized consumers. Let Path(Cr, P ) be the set of
all routers on the path between the consumer Cr ∈ U(N)
and P . We assume the existence of an adversary Adv who
can deploy and compromise any router R /∈ Path(Cr,P ).6

To keep this model realistic, we assume that the time to
mount such an attack is non-negligible, i.e., longer than the
average RTT for a single interest-content exchange. Table 1
summarizes the notation used in the rest of this paper.

Formally, we define Adv as a 3-tuple: (PAdv \ {P}, CAdv \
U(N),RAdv\Path(Cr, P )) where the components denote the
set of compromised producers, consumers, and routers, re-
spectively. If Adv controls a producer or a consumer then it
is assumed to have complete and adaptive control over how
they behave in an application session. Moreover, Adv can
control all of the timing, format, and actual information of
each content through compromised nodes and links.

Let Guess denote the event where Adv correctly recovers
the obfuscated form of a content name. Let Bypass denote
the event where Adv successfully bypasses the authorization
check for a protected content object. We define the security
of an IBAC scheme with respect to these two events as fol-
lows.

Definition 1. An IBAC scheme is secure, but subject to

replay attacks, if Pr[Guess] ≤ ǫ(κ) for any negligible function
ǫ and a security parameter κ.

Definition 2. An IBAC scheme is secure in the presence of

replay attacks, if Pr[Guess+Bypass] ≤ ǫ(κ) for any negligible
function ǫ and a security parameter κ.

Replay attacks are artifacts of the environment when a
CCN access control scheme is deployed. In other words,
in networks where links are insecure, passive eavesdroppers
can observe previously issued interests and replay them for
protected content. Consequently, these attacks are consid-
ered orthogonal to the security of the underlying obfuscation
scheme used for access control enforcement. The authorized
disclosure element of IBAC is intended to prevent such re-
play attacks.

To justify our adversarial limitation to off-path routers,
consider the following scenario. If Adv can compromise a
router R ∈ Path(Cr,P ), then Adv is able to observe all

6Any one of these actions can be performed adaptively, i.e.,
in response to status updates or based on observations.

Table 1: Relevant notation.
Notation Description

Adv Adversary
Cr Consumer
P Producer

prefix Producer prefix
N Content name in cleartext
N ′ Obfuscated content name
I[N ] Interest with name N

CO Content object
CO[N ] Content object with name N

ID(·, ·) Key identifier function
f(·) Obfuscation function

enc(·, ·), dec(·, ·) Symmetric-key encryption and
decryption function

Enc(·, ·),Dec(·, ·) Public-key encryption and
decryption function

H(·) Cryptographic hash function
U(N) Set of authorized consumers
Gi Access control group i

kGi
Obfuscation key of group Gi

pks
Gi

, sks
Gi

Public and private signing key pair

associated with group Gi

κ Global security parameter
C Set of all content objects
r, t nonce and timestamp
B Nonce hash table

content that flows along this path. Therefore, we claim that
on-path adversaries motivate access control schemes based
on content encryption; as such, IBAC will not suffice. More-
over, we exclude adversaries capable of capturing interests
and replaying them in other parts of the network – see Sec-
tion 6.1 for details.

5. IBAC BY NAME OBFUSCATION
Recall that the intuition behind IBAC is that if consumers

are not allowed to access certain content, they should not
be able to issue a “correct” interest for it. Specifically, only
a consumer Cr ∈ U(N) should be able to derive the obfus-
cated name N ′ of an interest requesting content with name
N provided by producer P . In this section, we discuss two
types of name obfuscation functions: (1) encryption func-
tions and (2) hash functions.

5.1 Encryption-Based Name Obfuscation
Let Enc(k,N) be a deterministic encryption function which

takes as input a key k ∈ {0, 1}κ and an arbitrary long non-
empty binary name string N , and generates an encrypted
name N ′. Let Dec(k,N ′) be the respective decryption func-
tion. With encryption, the goal is for authorized clients to
encrypt components of a name so that the producer can
perform decryption to identify and return the appropriate
content object.7 Obfuscation is based on knowledge of the
encryption key and the content name under IBAC protec-
tion. In other words, even if an adversary knows the name
N , it cannot generate N ′ since it does not possess the ap-
propriate key.

To illustrate how encryption-based obfuscation would work,
assume first that Cr uses k to generateN ′ asN ′ = Enc(k,N).

7Recall that a cleartext name prefix is needed to route the
interest to the intended producer.
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P then recovers N as N = Dec(k,N ′) to identify the content
object in question and returns it with the matching name

N ′ (not N). We prove the security of this obfuscation vari-
ant of IBAC (i.e., without authorized disclosure) in [7].

Supporting Multiple Access Groups: Thus far, we as-
sumed that name encryption (obfuscation) keys are known
to all authorized consumers in U(N). However, this might
not be the case in practice. P might provide content un-
der IBAC to several access groups each with different priv-
ileges.8 Specifically, consumers in groups Gi(N) ⊂ U(N),
for i = 1, 2, . . . , might be allowed access to different re-
sources. Therefore, several obfuscation keys, one for each
group, should be utilized. For notation simplicity, we refer
to Gi(N) as Gi. Note that in an extreme scenario, each
group would only contain a single consumer, i.e., each indi-
vidual consumer has a unique key used to access the content
in question.

To decrypt the obfuscated name N ′, P must identify the
obfuscation key used to generate N ′. This can be achieved if
such consumers specify an identifier for the key used in the
interest. Such an identifier could simply be the digest of the
obfuscation key IDGi

= H(kGi
), where kGi

is Gi’s encryption
key. IDGi

can be included in the interest Payload field. Since
matching in CCN is exact, IDGi

cannot be included in the
interest name.

Recall that CCN interest messages, by design, do not
carry any source information, which provides some degree of
anonymity. However, including IDGi

enables interest linka-
bility by eavesdroppers (malicious or not). In other words,
IDGi

can reveal the access group identities to which con-
sumers belong, but not the identities of the consumers them-
selves. If this linkability is an issue for applications, H(kGi

)
can be encrypted using P ’s public key pkP in the form
IDGi

= Enc(pkP ,H(kGi
)).9 Note that for two identifier val-

ues of the same group, i.e., with the same k, to be indistin-
guishable, Enc(·, ·) must be secure against chosen plaintext
attacks [15].

5.2 Hash-Based Name Obfuscation
Let H(k,N) be a keyed cryptographic hash function. The

obfuscated name N ′ can be generated as N ′ = H(k,N) for
some key k ∈ {0, 1}κ. Since hash functions are one-way,
producers must maintain a hash table that maps obfus-
cated names to the original content name, i.e., M : N ′ =
H(k,N) → N for all deployed keys.10 The size of this hash
table is O(|K| × |C|), where K is the set of all keys and C

is set of all content objects generated or published by P
under IBAC protection. This approach provides the same
benefits of encryption-based name obfuscation, however, it
incurs additional computation and storage overhead at the
producer. Thus, while keyed hash functions are viable for

8We assume that each content object is only accessible by
a single access group. However, this assumption will be re-
laxed later in the paper.
9Since a consumer cannot be expected to know the router
from which content will be served, it is not plausible for
them to encrypt these IDs with the public key of a (set of)
router(s).

10Producers do not have to keep hash tables for all possible
keys of size κ, only tables of keys used by producers and
issued to access groups.

name obfuscation, deterministic encryption is a much better
approach.

6. SECURITY CONSIDERATIONS
In this section we discuss the security of IBAC with re-

spect to the adversary model described in Section 4.

6.1 Replay Attacks
Regardless of the obfuscation function used, both previ-

ously described IBAC schemes are susceptible to replay at-
tacks. This is because both obfuscation functions are de-
terministic. Therefore, an eavesdropper Adv ∈ Ū(N) could
issue an interest with a captured N ′ and receive the cor-
responding content under IBAC protection from either the
producer or a router cache. In other words, the same “fea-
ture” that makes it possible for authorized consumers to
fetch IBAC-protected content from router caches also makes
it susceptible to replay attacks.

Such replay attacks are problematic in many access con-
trol systems. Standard countermeasures include the use of
random, per-message nonces or timestamps. Nonces help
ensure that each message is unique, whereas timestamps pro-
tect against interests being replayed at later points in time.
Thus, to mitigate replay attacks, we use both nonces and
timestamps. In particular, each consumer Cr ∈ U(N) must
issue an interest with (1) nameN ′, (2) a randomly generated
nonce r, and (3) a fresh timestamp t. The reason why we use
both nonces and timestamps is to allow for loosely synchro-
nized clocks and unpredictable network latencies. Note that
if (1) clocks of consumers, producers, and involved routers
in IBAC can be perfectly synchronized, and (2) network la-
tencies can be accurately predicted, only timestamps are
sufficient for replay detection. Moreover, since nonces and
timestamps serve a purpose which is orthogonal to content
identification and message routing, they are included in the
interest payload.

Consumer nonces are random κ-bit values. If a router re-
ceives a duplicate nonce, it can safely assume that the corre-
sponding interest is replayed and should be dropped. Let w
be a time window associated with authorized content.11 To
determine if a duplicate nonce was received, producers (or
caches) must maintain a collection of nonces for each such
content. In other words, this historical information is nec-
essary to prevent replay attacks. Timestamps themselves
are not stored, they are only used to determine if the re-
ceived interest is issued within the acceptable time window
w. Once this time window elapses, all of the stored nonces
are erased and the content is subsequently flushed from the
cache.

Although using nonces and timestamps allows detection
of replayed interests, Adv capturing interests can still use
their obfuscated names N ′ to fabricate another interest with
legitimate r and t values. Therefore, we also stipulate that
r and t should be authenticated via a digital signature; their
signature σ is also included in the interest Payload field. In
order to bind r and t to their corresponding interest, N ′ is
also included in the signature computation. σ generation
and verification should be performed using the public and
private key pairs associated with each access group Gi.

11Determining the proper value of w is outside the scope of
this paper. However, a logical approach is for routers to use
the lifetime of authorized content as w.
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After adding nonces, timestamps, and a signature, interest
Payload fields take the following form:

Payload =
(

IDGi
, r, t, σ = Signsks

Gi

(

N ′||IDGi
||r||t

)

)

where IDGi
is the identity of group Gi, and sks

Gi
is a sign-

ing key distributed to all consumers in Gi. To verify σ, the
matching public key pks

Gi
must be obtained. For the remain-

der of this paper, we use the term authorization information

to refer to all information included in interest Payload fields
for the purpose of supporting IBAC.

One alternative to digital signatures would be to use a
keyed hash or a Message Authentication Code function such
as (HMAC) [16]. In this case, consumers and routers would
need to share the key used in the HMAC computation. This
means that either consumers or producers need to distribute
HMAC keys to all involved routers. This, however, is prob-
lematic for two main reasons: (1) compromising routers
leads to HMAC keys leakage, and, more importantly, (2) if
consumers provide routers with these keys, the former need
to know the set of routers that their interests traverse before
issuing them. Furthermore, since HMAC keys should only
be shared among involved entities, i.e., Cr and all routers on
Path(Cr,P ), they must be distributed securely. Regardless
of the distribution method used, this incurs extra overhead
and complexity compared to simply including, in cleartext,
signature verification (public) keys in content objects.

Finally, consider the following scenario where two routers
R1 and R2 cache content object CO[N ′] which is under
IBAC protection. Assume that consumer Cr requests CO[N ′]
by sending an interest I [N ′] with valid authorization infor-
mation that includes r and t. Assume that I [N ′] is satisfied
from R1’s cache. At the same time, Adv, an eavesdropper
between Cr and R1, records I [N ′]. In this case, Adv can
replay I [N ′] to R2 and receive CO[N ′] from the cache since
routers do not synchronize stored nonces. Therefore, there
is no way for R2 to know that r and t were already used at
R1. One way of solving this problem is to have routers share
used nonces lists for each content under IBAC they serve
from cache. For this method to be effective, such nonces
lists need to be securely shared with every single router in
the network. This might not be feasible in large networks
such as the Internet. Another approach is to have more ac-
curate synchronized clocks allowing a smaller time window
for the aforementioned attack to be carried out.

6.2 Authorized Content-Key Binding Rule
Although the aforementioned method for generating au-

thorization information mitigates replay attacks, it also raises
several questions. Firstly, how does a router efficiently ver-
ify the signature in interest Payload fields? Secondly, and
perhaps more importantly, if a router is able to obtain the
key(s) necessary to verify this signature, how can the router
be sure that such key(s) can be trusted?

To address these problems we propose a mutual trust
framework for authorized disclosure. Ghali et al. [9] first
studied the problem of trust in NDN, and ICNs in general,
as a means of preventing content poisoning attacks [8, 6].
Even if routers can verify content signatures before reply-
ing from their cache, it does not mean that said content is
actually authentic. Ghali et al. observed that this verifica-
tion process requires insight about trust in public keys (used
in verification) that is only known to applications. Conse-
quently, this requires that all interests must either supply

Algorithm 1 InterestGeneration

1: INPUT: routable prefix, N , kGi
, pks

Gi
, sks

Gi
, κ

2: IDGi
← H(kGi

)

3: N ′ ← /routable prefix/f(kGi
, Suffix(N, routable prefix))

4: r
$
←− {0, 1}κ

5: t← CurrentTime()
6: σ ← Signsks

Gi

(

N ′||IDGi
||r||t

)

7: Payload :=
(

IDGi
, r, t, σ

)

8: return I[N ′] :=
(

N ′, Payload
)

Algorithm 2 ContentObjectGeneration

1: INPUT: I[N ′] :=
(

routable prefix, N ′, Payload
)

2:
(

IDGi
, r, t, σ

)

:= Payload

3: pks
Gi
← LoopupVerificationKeyForID(IDGi

)

4: if Verifypks
Gi

(σ) then

5: ke
Gi
← LookupDecryptionKeyForID(IDGi

)

6: N ← Dec(ke
Gi

, Suffix(N ′, routable prefix))

7: data← RetrieveContent(N)
8: return CO[N ′] := (N ′, data, pks

Gi
)

9: else

10: Drop I[N ′]
11: end if

(1) the hash of the public key used to verify the signature,
or (2) the hash of the requested content. In effect, the in-
terest reflects the trust context of the issuing consumer in a
form enforceable at the network layer. This framework can
be viewed as one-way trust of content by routers. We extend
this framework to allow producers to distribute information
about authorized consumers, which can also be enforceable
at the network layer. This allows routers to make trust de-
cisions about individual interests.

Recall that in order for routers to verify which interests are
authorized to access cached content protected under IBAC,
the signature in Payload must be verified. To achieve this,
producers should include the appropriate verification key
with each IBAC-protected content object. To better un-
derstand this, assume the following scenario. Consumer
Cr ∈ Gi, for Gi ⊂ U(N), requests content with name N
by issuing an interest with obfuscated name N ′, and IDGi

,
r, t and σ in Payload as described in Section 6.1. Assume
that the matching content is not cached anywhere in the net-
work. Once this interest reaches the producer P , the latter
verifies σ and replies with the content that also includes the
verifying key pks

Gi
.12 Router R will then cache pks

Gi
along

with the content itself. Once another interest for N ′ is re-
ceived, R uses the cached pks

Gi
to verify σ and returns the

corresponding cached content object.
We formalize this in the following policy, denoted as the

Authorized Content-Key Binding (ACKB) rule:

ACKB: Cached content protected under IBAC must reflect

the verification key associated with the authorization policy.

The protocol for IBAC-protected content retrieval relies
on this rule. Algorithms 1 and 2 outline the interest and
content object generation procedures. Note that the func-
tion Suffix(N, routable prefix) returns all name components

12The content object signature must also be computed over
pks

Gi
to bind it to the message.
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Algorithm 3 RouterAuthorizationCheck

1: INPUT: I[N ′], cached CO[N ′], B
2:

(

IDGi
, r, t, σ

)

:= Payload

3: (N ′, ·, pks
Gi

) := CO[N ′]

4: if B[N ′] contains r then

5: Drop I[N ′]; return Fail
6: else

7: if Timestamp t is invalid then

8: Drop I[N ′]; return Fail

9: else

10: if Verifypks
Gi

(σ) then

11: B[N ′] := B[N ′] ∪ r
12: return Pass
13: else

14: Drop I[N ′]; return Fail
15: end if

16: end if

17: end if

of N except the ones included in routable prefix.13 Also,
the router verification procedure is outlined in Algorithm
3. If this procedure returns Pass, then the content object
found in the cache is forwarded downstream to the associ-
ated interface. Note that Algorithms 1, 2, and 3 use obfus-
cation key kGi

and signing key pairs (pks
Gi
, sks

Gi
). For com-

pleteness, a complete sequence diagram showing multiple
interest-content exchanges is shown in Figure 1. Both con-
sumers belong to the same access group, i.e., Cr1, Cr2 ∈ Gi.

In [7], we show that this mutual trust framework for au-
thorized disclosure enables IBACwith stronger security guar-
antees in the presence of replay attacks.

6.3 Serving Content to Multiple Access Groups
One problem with encryption-based name obfuscation oc-

curs when a content object with name N is accessible by
different groups. According to Algorithms 1 and 2, the ob-
fuscated name N ′ contains a suffix encrypted with keys as-
sociated with each access group. Therefore, a single content
object might have several names depending on the number
of groups authorized to access it. Since routers employs ex-
act matching for cache lookup14, several copies of the same
content could possibly be cached.

To solve this problem, content objects should have the ex-
act same name regardless of access control groups permitted
access. This can be achieved using the hash-based name ob-
fuscation function described in Section 5.2. However, cached
content needs to contain every authorization signature ver-
ification key that could be used to access said content. In
other words, producers need to provide all possible public
keys that can be used to access the content under IBAC
protection. Consider the following scenario: a content ob-
ject CO[N ] is accessible by two access groups Gi and Gj . In
this case, the producer needs to provide both pks

Gi
and pks

Gj

with CO[N ′], i.e.,

CO[N ′] := (N ′, data, pks
Gi
, pks

Gj
)

Whenever a router R caching CO[N ′] receives an interest
issued by a consumer in any of the authorized access groups,
R uses the group identity included in the Payload field to
determine σ’s verification key.

13For instance, Suffix(/edu/uci/ics/home.html, /edu/uci/)
would return ics/home.html.

14In CCN, not in NDN.

Cr1 ∈ Gi

Cr2 ∈ Gi

R P

IDGi
← H(kGi

)

N ′ ← /prefix/Enc(kGi
, Suffix(N, prefix))

r1
$
←− {0, 1}κ, t1 ← CurrentTime()

σ ← Signsks
Gi

(N ′||IDGi
||r1||t1)

Payload := (IDGi
, r1, t1, σ)

I[N ′]1 := (N ′, Payload)
✲

I[N ′]1 := (N ′, payload)
✲

pks
Gi
← LoopupVerificationKeyForID(IDGi

)

Verifypks
Gi

(σ)

kGi
← LookupDecryptionKeyForID(IDGi

)

N ← Dec(kGi
, Suffix(N ′, prefix))

data← RetrieveContent(N)

CO[N ′] := (N ′, data, pks
Gi
)

✛

Cache CO[N ′]

CO[N ′] := (N ′, data, pks
Gi
)

✛

IDGi
← H(kGi

)

N ′ ← /prefix/Enc(kGi
, Suffix(N, prefix))

r2
$
←− {0, 1}κ, t2 ← CurrentTime()

σ ← Signsks
Gi

(N ′||IDGi
||r2||t2)

Payload := (IDGi
, r2, t2, σ)

I[N ′]2 := (N ′, payload)
✲

Verifypks
Gi

(σ), r2 and t2

CO[N ′] := (N ′, data, pks
Gi
)

✛

Figure 1: Consumer and producer exchanges for

IBAC-protected content.

Note that content object sizes might increase significantly
depending on how many groups are allowed access. We do
not discuss this issue further, since the trade-off between
having multiple cached versions of the same content and
having longer content objects carrying all verification keys
is ultimately the application’s decision.

6.4 IBAC Variations
We do not claim that any of the IBAC variations discussed

above is superior to another. Each has its own strengths
and weaknesses. However, to help guide the decision about
which variation to use, we make the following claims based
on the application needs and assumptions. Note that some
claims provide privacy as well as access control.

1. If replay attacks are not a concern, then consumers only
need to use a name obfuscation function and include
their group identity in the Payload.

2. If replay attacks are plausible and name privacy is a
concern, then name obfuscation must be used and au-
thorization information, as described in Section 6.1,
must be included in interest Payload fields.

3. If replay attacks are plausible but name privacy is not
a concern, then only authorization information is suf-
ficient.

Claim 3 might seem counterintuitive with the idea of IBAC.
Recall, however, that router authorization checks prevent
unauthorized consumers from retrieving cached content un-
der IBAC protection. Even if content name is not obfus-
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cated, Adv cannot forge Payload authorization information,
and therefore cannot violate IBAC protection guarantees.

6.5 Revocation
Generally speaking, revocation is a challenge in all access

control schemes involving secrets shared among group mem-
bers. Recall that all consumers belonging to the same access
control group in IBAC share the same obfuscation keys. If
one of them leaves the group15, the producer will have to
create a new key and distribute it to all remaining autho-
rized consumers. We will not discuss this issue further since
we believe it is not part of the core access control protocol.

Moreover, in-network caching can cause IBAC content to
be accessed by revoked consumers. Assume content CO[N ]
is under access control and has a cached version in router R.
Assume consumer Cr, connected (directly or indirectly) to
R, is authorized to access CO[N ]. However, while CO[N ] is
cached, Cr’s access is revoked. At the same time, the lat-
ter sends an interest requesting CO[N ]. In this case, R will
grant access and reply with CO[N ] from its cache. This is
due to the fact that the cached version of CO[N ] is not up-
dated with the correct authorization information (i.e., veri-
fication key(s)). However, this can be solved by setting the
ExpiryTime field of CO[N ] to a value that reflects consumer
revocation frequency.

Online revocation protocols, such as OCSP [20], would in-
duce extra communication between R and P , which nearly
defeats the purpose of the cache entirely. In this case, R
would be better suited forwarding the interest upstream to
P . Another option for the producer would be to distribute
certificate revocation lists (CRLs) [4] with every fresh con-
tent. This, however, introduces further issues for routers
and consumers. Firstly, routers would need to store CRLs
and keep them updated frequently. Secondly, authorized
consumers would need their own public and private key pair
to compute σ. Finally, routers would need to perform addi-
tional verifications against the CLR. Overall, this approach
suffers from increased storage, consumer management, com-
putation, and bandwidth complexity.

7. ANALYSIS AND EVALUATION
In this section, we analyze the overhead induced by each

variation of the proposed IBAC scheme.

7.1 Computational Overhead
We first focus on the computational overhead for routers

and producers. This overhead is captured in terms of cryp-
tographic and data structure operations, e.g., signature ver-
ification and hash table lookup costs.16 Table 2 summa-
rizes these results. To further understand the computa-
tional overhead, we compare two cases: (1) when routers
perform authorization checks, and (2) when they do not.
Let τoverhead = τcheck + τverify + τupdate be the overhead
induced by the authorization check when routers receive in-
terests, where τcheck is the time required to check for nonce
duplication and timestamp staleness, τverify is the time to

15For instance, consumers not renewing their subscription for
a certain service.

16It is assumed that the cost of any additional checks neces-
sary to determine if an interest requires further IBAC pro-
cessing is negligible. For example, this check be done using
a simple flag in the interest. Thus, this overhead is omitted
from our estimates.

verify the Payload signature, and Tupdate is the time to up-
date the nonce data collection. Since cache lookup and in-
terest forwarding are performed regardless of whether or not
routers perform authorization checks, we omit them from
this equation. Similarly, τcheck and τupdate are negligible
when compared to the cost of signature verification τverify;
thus, they are also excluded.

A router incurs a computational cost of τoverhead for every
received interest requesting content under IBAC protection.
Therefore, we quantify τoverhead by measuring the time it
takes to perform a single signature verification. We also ex-
periment with batch verification techniques to better amor-
tize the cost of signature verification across series of inter-
ests. While this naturally increases content retrieval latency
as signatures are accumulated in case of batch verification, it
reduces router computational overhead. Whether or not to
use batch verification is up to the router’s discretion. Fur-
thermore, batch verification requires that IBAC-protected
content objects for which interests are being verified cannot
be evicted from the cache while the batch is collected. Ta-
ble 3 shows the amount of improvement using a variety of
signature verification algorithms. Note that, when model-
ing interest arrival rates using a Poisson distribution, both
individual and batch signature verification incur nearly the
same overhead in certain conditions, as we will show below.

Denial of service (DoS) is an obvious concern if routers
perform authorization checks (the interest rate decays to 0
in our experiments as the need for verification increases).
Let λ be the rate of arrival interests for IBAC-protected
content cached in router R, and let µ be the service rate
for interests, i.e., the rate at which interests are processed
(parsed, verified, etc.). If µ < λ, then the router will be over
encumbered with interests to process [10]. We envision that
in legitimate scenarios without malicious entities generating
interests with fake authorization information, only a small
percentage δ of arrival interests will be requesting content
under IBAC protection. To assess how susceptible routers
are to DoS attacks induced by IBAC authorization checks,
we empirically analyze the effect of δ on the interest service
rate of a router. These service rates, which use different
signature verification techniques – individual and batch –
denoted µS and µB , respectively, are shown in Figure 2.

We assume that interests arrive at a base rate of λ1 = 40
[3]; larger values for λ are provided to see at which point
µ < λ due to authorization checks. By the exponential
property of the Poisson process, µ is calculated as follows:

µ =
1− δ

τprocess
+

δ

τprocess + τverify
,

where τprocess represents interest processing time not includ-
ing signature verification17, and τverify is the time required
to perform individual or batch signature verification. In our
experiment, we assume a constant τprocess = 0.005s and only
vary τverify. To do so, we assume a key size of 1024b, batch
size of 10, and signature size of 512KB. According to Table 3,
this results in τverify = 0.599s and τverify = 0.322s for indi-
vidual and batch verification, respectively. Our experiments
show that the decay of µ as a function of δ is almost iden-
tical for both batch and verification techniques. This is due
to the fact that only a small fraction of interests are affected
by the verification step. Furthermore, our results show that

17τprocess = 1/mu for interests not requesting IBAC-
protected content.

8

154



Table 2: Overview of per-interest IBAC-induced computational overhead for routers and producers.

IBAC Variation
IBAC-induced Computation Overhead

Routers Producers

Name Obfuscation
Encryption None One decryption

Hash None One hash table lookup

Interest Signatures
Encryption One signature verification, one nonce

and timestamp verification
One decryption, one signature verifica-
tion, Two hash table lookups (decryp-
tion key and signing key resolution)

Hash One signature verification, one nonce
and timestamp verification, one hash
table lookup (signing key resolution)

One signature verification, three hash
table lookups (decryption key, signing
key and name resolution)

Table 3: Individual and batch ElGamal signature

verification times.
Key Batch Sig. Indiv. Batch

Improved
Size Size Size Time Time

1024b 10 512KB 0.599s 0.322s 46%
1024b 10 8MB 0.888s 0.615s 30%
1024b 50 512KB 2.918s 1.579s 46%
1024b 50 8MB 4.315s 2.991s 30%

2048b 10 512KB 4.065s 2.207s 46%
2048b 10 8MB 4.104s 2.269s 45%
2048b 50 512KB 20.081s 11.029s 45%
2048b 50 8MB 21.301s 12.536s 41%

3072b 10 512KB 12.406s 6.789s 45%
3072b 10 8MB 12.804s 7.122s 44%
3072b 50 512KB 60.174s 32.877s 45%
3072b 50 8MB 64.347s 35.601s 45%

µ > λ is true, i.e., the router servicing process is stable for
reasonable interest arrival rates. Our experiments show that
µ < λ when λ = 160 and δ ≥ 0.2. Moreover, when a Pois-
son process is assumed, both individual and batch signature
verification perform similarly for small values of δ. How-
ever, batch signature verification prove to be advantageous
in larger δ values. For instance, for δ = 0.2, using batch
verification provides less than 1% service rate improvement,
where it provides 3% and 46% for δ values equal to 0.8 and
1, respectively.

7.2 Storage Overhead
Storage overhead varies from producer to router. If hash-

based name obfuscation is used, producers incur the cost of
maintaining a hash table to map obfuscated names to their
original values. However, if content name contains variable
name components, e.g., query string-like values in URIs, the
hash table size can grow significantly since it has to contain
all possible variations. Moreover, producers must bear the
storage cost of IBAC access group keys if encryption-based
obfuscation functions are used. Similarly, routers must bear
the cost of storing variable-length tuples of key identities
IDGi

and the actual verification keys pks
Gi
, along with a the-

oretically unbounded collection of nonces for each IBAC-
protected content. Moreover, these storage costs are paid
for every unique producer that generates IBAC content.
Clearly, router finite storage capacities can thus be abused
to mount DoS attacks.
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Figure 2: Interest service rates for various percent-

ages of IBAC-protected interests.

7.3 Bandwidth Overhead
In terms of bandwidth overhead, each interest and con-

tent object is expanded to include additional authorization
information, e.g., interest payloads with authorization in-
formation and content objects with authorization keys. In-
terests without authorization payloads will only increase (or
decrease) by the expansion factor of the obfuscated name. If
authorization payloads are included, then interest messages
will grow by |r| + |t| + |σ| + |IDG|, where |r| = κ. Content

object CO[N ] grows with length
∑L

i=1
|pks

Gi
|, where L is the

number of access groups allowed to access CO[N ] and |pks
Gi
|

is the public key size associated with group Gi.
Note that, for interests, this increased overhead may cause

them to grow beyond the MTU size, which would induce
interest fragmentation. However, given that names may
themselves be unbounded, this type fragmentation seems
unavoidable in certain circumstances.

8. CONCLUSION
We studied the problem of access control in CCN. We

proposed an Interest-Based Access Control (IBAC) scheme
that supports hash- and encryption-based name obfuscation.
We addressed the problem of replay attacks by formulating a
mutual trust framework between producers and consumers –
enforced in the network-layer – that enables routers to per-
form authorization checks before satisfying interests from
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cache. We assessed the computational, storage, and band-
width overhead induced by each variant of the proposed
IBAC scheme.
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