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ABSTRACT

Motivation: Structural prediction of protein interactions currently

remains a challenging but fundamental goal. In particular, progress

in scoring functions is critical for the efficient discrimination of near-

native interfaces among large sets of decoys. Many functions have

been developed using knowledge-based potentials, but few make use

of multi-body interactions or evolutionary information, although multi-

residue interactions are crucial for protein–protein binding and protein

interfaces undergo significant selection pressure to maintain their

interactions.

Results: This article presents InterEvScore, a novel scoring function

using a coarse-grained statistical potential including two- and three-

body interactions, which provides each residue with the opportunity

to contribute in its most favorable local structural environment.

Combination of this potential with evolutionary information consider-

ably improves scoring results on the 54 test cases from the widely

used protein docking benchmark for which evolutionary information

can be collected. We analyze how our way to include evolution-

ary information gradually increases the discriminative power of

InterEvScore. Comparison with several previously published scoring

functions (ZDOCK, ZRANK and SPIDER) shows the significant pro-

gress brought by InterEvScore.
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1 INTRODUCTION

Protein–protein interactions play a pivotal role in virtually all
cellular processes (Goodsell and Olson, 2000). Despite the grow-

ing number of available 3D structures for protein complexes

in the Protein Data Bank (Berman et al., 2000), computational
prediction of protein interfaces turns out as an important tool for

the exploration of interactomes (Mosca et al., 2013; Vakser,

2013; Zhang et al., 2012). A large variety of methods have
been developed in the past years to improve the success rate of

computational protein–protein docking, and the combination of

various methods can improve the accuracy of docking results

(Janin, 2010; Stein et al., 2011; Vajda and Kozakov, 2009).

Docking methods can be classified in two broad and complemen-

tary categories: template-based (homology) docking (Kundrotas
et al., 2012; Sinha et al., 2010) based on the availability of 3D
complex structures similar to the complex of interest and tem-

plate-free docking. In the present work, we focus on the second
type of approach.
Classically, the template-free docking procedure can be divided

in two steps (Vajda and Kozakov, 2009). The first step consists in
sampling a large number of candidate interfaces (also called
decoys). This sampling is often performed using a rigid-body
method, which allows for fast search in the large decoy conform-

ational space; in particular, Fast Fourier transform-based algo-
rithms are highly efficient (Ritchie et al., 2008). The most recent
strategies often succeed in generating several near-native conform-

ations; however, the second step of the docking process, which
involves scoring and ranking the many decoys that have been
generated, often fails to distinguish these near-native conform-

ations from incorrect models, and there is still room for improve-
ment of the scoring functions used in protein–protein docking
(Lensink et al., 2007; Lensink and Wodak, 2010).
Scoring functions can be divided in three categories: physics-

based functions, which provide an estimate of the free energy of
binding using physico-chemical principles, knowledge-based (em-
pirical) potentials relying on statistics and hybrid potentials com-

bining the two. Those methods are embodied in the programs of
the most successful participants in the Critical Assessment of
PRediction of Interactions (CAPRI) docking and scoring experi-

ments (Lensink and Wodak, 2010). Among the successful pro-
grams, some rely mainly on physico-chemical scoring functions
such as HADDOCK (Dominguez et al., 2003), ATTRACT

(Fiorucci and Zacharias, 2010), ZDOCK (Chen et al., 2003;
Mintseris et al., 2007), pyDock (Cheng et al., 2007) or
FireDock (Andrusier et al., 2007), whereas others such as
ITScorePP rely on an iterative knowledge-based scoring function

(Huang and Zou, 2010). Hybrid approaches were also imple-
mented in scoring functions such as ZRANK (Pierce and
Weng, 2007) or PIPER (Kozakov et al., 2006) and in the

switch from low to high resolution scoring functions in the
Rosetta program (Chaudhury et al., 2011).
An ideal scoring function would describe the energetics of

the protein interface in atomic detail. However, in a context
where low-resolution approaches are needed, given the highly
combinatorial nature of protein docking, rigid-body sampling is

largely favored as a first step. Coarse-grained knowledge-based
potentials, less sensitive to atomic details such as side-chain*To whom correspondence should be addressed.
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positioning, seem appropriate for discriminating false interfaces
from rigid-body near-native decoys and have been shown in sev-
eral occasions to retain most of the useful information contained

in all-atom potentials (Fitzgerald et al., 2007; Zhang et al., 2004).
A limitation of most statistical potentials developed so far is

the decomposition of interface contacts into pairs, leaving out

multi-body interactions, which are known to be important for
binding. A few statistical potentials developed for protein struc-
ture prediction take into account three-body and four-body

interactions (Feng et al., 2007; Krishnamoorthy and Tropsha,
2003; Li and Liang, 2005; Ngan et al., 2006). Most recently,
the SPIDER scoring function has been developed for protein

interface scoring based on multi-residue patterns with no theor-
etical size limitation (Khashan et al., 2012). One of the major
difficulties toward the development of multi-body docking po-

tentials is the scarcity of interface contact statistics. We recently
designed the InterEvol database to explore the structure and
evolution of protein complexes (Faure et al., 2012). This data-

base contains418 000 non-redundant interfaces, including41500
non-obligate heteromeric interfaces, which form a large and
robust basis for the extraction of reliable two- and three-body

interaction statistics.
A complementary source of information about protein inter-

faces comes from the conservation of quaternary structures and

binding modes, which is observed above 30% sequence identity
(Aloy et al., 2003; Faure et al., 2012; Levy et al., 2008). To pre-
dict the location of binding sites and the structure of complexes,

different types of evolutionary information were used. They con-
sist either in the analysis of correlated mutations, in the mapping
of evolutionary rates or in the detection of residue contact

complementarities. The use of correlated mutations, successful
in some cases (Tress et al., 2005), was found to have strong
limitations (Halperin et al., 2006), and sophisticated statistical

treatments together with a large number of sequences were
found beneficial to reach high precision (Weigt et al., 2009).
Scores integrating conservation profiles (Ofran and Rost, 2007;

Res et al., 2005) or residue contacts likelihood extracted from
multiple sequence alignments (MSAs) (de Vries et al., 2006;
Engelen et al., 2009; Zellner et al., 2012) were found to improve

the prediction of binding sites at protein surfaces. As for dock-
ing, scoring functions have also been developed that bias
interface detection toward evolutionarily conserved residues

(Akbal-Delibas et al., 2012; Kanamori et al., 2007). The devel-
opment of the SCOTCH method (Madaoui and Guerois, 2008)
highlighted a remarkable plasticity in the way interface physico-

chemical complementarities are maintained through evolution.
Moreover, in a recent study of 41000 pairs of homologous
heteromeric interfaces, we showed that although interface con-

tacts are highly versatile, some contact conservation signal can
be extracted, in particular when considering specific interface
descriptors (Andreani et al., 2012).

In the present article, we introduce InterEvScore, a novel scor-
ing function for protein docking, which combines a multi-body
statistical potential with evolutionary information derived from

coupled MSAs for each partner in the complex and from our
previous observations on the evolution of homologous interfaces
(Andreani et al., 2012).

To our knowledge, InterEvScore is the first scoring function
for docking applications relying on both two- and three-body

statistical potentials combined with the scoring of interface con-
tacts inferred from MSAs. This way of integrating evolutionary

information was found significantly superior to solely accounting

for conserved positions. We also show that InterEvScore

achieves significant improvement compared with several scoring
functions, namely, ZDOCK, ZRANK and SPIDER, in the de-

tection of near-native conformations among large sets of decoys

from the widely used protein–protein docking benchmark

(Hwang et al., 2010). InterEvScore is freely available as a stan-

dalone Python program and can be run using different modes
to take advantage of available structural and evolutionary

information.

2 METHODS

The global InterEvScore workflow is represented in Figure 1.

2.1 Datasets

The training set for the statistical potential part of InterEvScore

was derived from the InterEvol database (Faure et al., 2012). First, we

collected all the non-redundant dimeric interfaces that were predicted as

both biologically relevant and non-obligate by the NOXclass algorithm, a

machine-learning based classifier, which distinguishes between obligate,

non-obligate and crystal packing interactions on the basis of structural

interface properties (Zhu et al., 2006). To avoid biases in the training and

evaluation, this set of 1554 dimeric interfaces was then filtered to exclude

all interfaces, which had430% sequence identity (on both chains) with

the interfaces in the test set (176 complexes from the protein–protein

docking benchmark version 4.0, see later in the text); the remaining

1398 interfaces were clustered to reduce internal redundancy of the train-

ing set below 40% sequence identity using Uclust (Edgar, 2010). The final

training dataset contained 1289 interfaces.

The test set was initially composed of all 176 complexes from the

protein–protein docking benchmark version 4.0 (Hwang et al., 2010).

For each of these complexes, the benchmark includes 54 000 decoys gen-

erated by ZDOCK 3.0 (Mintseris et al., 2007) using the structures of the

unbound partners. At least one near-native decoy (cf. definition in

Section 2.5) was generated for 131 of these 176 complexes. However,

evolutionary information could be extracted only for 85 complexes

(cf. Section 2.3 for details), among which 31 with no near-native decoy

generated by ZDOCK; therefore, the main test dataset used in the article

contains 54 complexes with both near-native decoys and evolutionary

Fig. 1. Workflow for the training and testing of InterEvScore
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information available. A subset of 43 complexes (excluding 11 complexes

from the benchmark, which are redundant with the SPIDER training set)

is used for comparison with SPIDER.

2.2 Statistical two- and three-body potential

We developed several scoring schemes based on two- and three-body

potentials, which are illustrated in Figure 2. They are all residue based,

most importantly because evolutionary information is available only at

the residue level. Moreover, they rely on an analytical reference state

independent from any particular set of decoys. Derivation of the two-

and three-body interface contact propensities was similar to the deriv-

ation described in (Li et al., 2003; Li and Liang, 2005) for a folding

statistical potential. Atomic contacts in all 1289 interfaces of the training

dataset were calculated on the basis of an �-shape representation of the

interface. We excluded contacts involving backbone atoms (C, N, O).

Contacts from all 1289 interfaces were then pooled to derive the observed

number counts of two- (pairwise contacts) and three-body interactions

(Fig. 2A). For two-body interactions, only inter-molecular contacts (one

residue in each partner protein) were retained; for three-body inter-

actions, only contacts involving residues from both partner proteins

were retained (contacts involving three residues from the same protein

were excluded).

The propensity p(i, j) of a given two-body interaction between residue

types i and j was defined as the ratio of the observed frequency o(i, j) and

the expected frequency e(i, j), derived as the random probability to pick

an interaction between residue types i and j:

pði, jÞ ¼
oði, jÞ

eði, jÞ

with

oði, jÞ ¼
Nij

N

where Nij is the number count of atomic contacts between residue types i

and j, N is the total number count of atomic contacts participating in all

two-body interactions and,

eði, jÞ ¼ SiSj �
ninj

nðn�niÞ þ
ninj

nðn�njÞ

� �
when i 6¼ j

eði, iÞ ¼ Si Si � 1ð Þ � nini
nðn�niÞ

� �
when i ¼ j

8<
:

with n ¼
X
l

Sl � nl

where Si is the number of surface residues of amino acid type i at the

surface of the protein (calculated over the 1289 pairs of proteins from the

training dataset), and ni is the average number of atomic contacts

in which residue type i is involved. ni is defined as the number of

atomic contacts involving all residues of type i over the total number

of atomic contacts. This term replaces the less accurate number of

atoms per residue, which was used in (Li et al., 2003), as only the average

number of atoms engaged in inter-molecular interactions is counted for

each residue.

For a given interface, the two-body interaction score (2B) was defined

as the sum of ln(p(i, j)) over all inter-molecular contacts between residues

i and j (Fig. 2B):

2B ¼
X
ði, jÞ

ln pði, jÞ½ �

For three-body interactions, amino acids were grouped into six residue

types according to their physico-chemical properties as in (Li et al., 2003;

Li and Liang, 2005): basic (K, R), acidic (D, E), aromatic (F, W, Y),

polar (H, N, Q, S, T), alkyl (C, I, L, M, V) and small (A, G, P). Three-

body propensities p(gi,gj,gk) were defined for any three amino acid groups

(gi, gj, gk) in a manner similar to two-body propensities, and non-addi-

tivity (cooperativity) coefficients c(gi,gj,gk) were defined as:

cðgi, gj, gkÞ ¼
pðgi, gj, gkÞ

pðgi, gjÞpðgj, gkÞpðgi, gkÞ

Bootstrap calculations performed with the same method as in (Li et al.,

2003) showed that the three-body propensities and non-additivity coeffi-

cients were more reliable when derived for the six amino acid groups than

for the 20 amino acid types (see Supplementary Material). Consequently,

for a given interface, the three-body interaction score (3B) was defined as

the sum over all interactions between residues (i, j,k) belonging to amino

acid groups (gi,gj,gk) of three 2-body terms and the non-additivity term

calculated with the reduced amino acid alphabet:

3B ¼
X

ði, j, kÞ2ðgi , gj , gkÞ

ln pði, jÞ þ ln pðj, kÞ þ ln pði, kÞ þ ln cðgi, gj, gkÞ
� �

A first set of scoring schemes was tested by summing the propensities

over all the contacts of an interface as described earlier in the text (2B and

3B scores). Given the modular organization of interfaces (Reichmann

et al., 2007), we also explored a scoring scheme in which only one score

per residue is counted, chosen as the highest one among all the contacts

the residue is involved in (Fig. 2C). These scores were short-named 2Bbest

and 3Bbest depending whether two- and three-body scores were used,

respectively. Finally, a score (short-named 2/3Bbest) was derived by choos-

ing for each residue the best two- or three-body contact. The two-body

contact propensities are represented in Supplementary Figure S1.

2.3 Integration of evolutionary information

For each of the 176 complexes in the test set, we automatically derived

couples of MSAs for both chains using the InterEvolAlign server (Faure

et al., 2012). These alignments contain couples of most likely orthologs

for each partner in a number of species. For various reasons (notably

the presence in benchmark v4 of 25 antibody/antigen complexes and

33 interfaces involving proteins from different superkingdoms, e.g. a

Fig. 2. Explanatory diagrams for the 2Bbest, 3Bbest, 2/3Bbest and 2Bevol

scoring schemes. Different scores are assigned depending residue types as

illustrated from the different shades
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human protein and a viral protein), sufficient evolutionary information

(with a minimum number of 10 sequences in the alignments) could be

derived for a restricted set of 85 complexes. The detailed procedure of

alignment derivation and filtering can be found in Supplementary

Material.

In a first approach based on conservation analysis, we derived a scor-

ing scheme termed ‘cons’ in which the conservation score of each residue

was used to weight the statistical scores. For each score described earlier

in the text (2B, 3B, 2Bbest, 3Bbest, 2/3Bbest), a corresponding score includ-

ing conservation was derived (2Bcons, 3Bcons, 2B
best
cons, 3B

best
cons and 2/3Bbest

cons).

Using the MSAs derived for each partner, conservation scores were

calculated with the Rate4Site program (Mayrose et al., 2004) running

behind the ConSurf server (Landau et al., 2005). The ‘cons’ scoring

scheme is biased toward interfaces involving more conserved residues.

We also implemented evolutionary information in a novel way

taking into account co-evolution between contacting residues rather

than simple residue conservation. In this scoring scheme termed ‘evol’,

for each (two- or three-body) contact detected in the interface, we

extracted the (two or three) corresponding residues in each couple of

sequences from the MSAs, and we calculated the evolutionary-based

score as the sum over all species of individual scores for each derived

contact (Fig. 2D). We then summed obtained scores over all contacts.

In this way, we derived the 2Bevol, 3Bevol, 2B
best
evol, 3Bbest

evol and 2/3Bbest
evol

scores. For ‘best’ scores, only contacts derived from the best contact

for each residue were summed.

2.4 Focus on apolar patches

In our recent study of the evolution of homologous interfaces, we found

that apolar patches constituted a major conserved interface descriptor

featuring a higher conservation of inter-residues contacts (Andreani

et al., 2012). We included a mode in InterEvScore in which evolutionary

information was used only for residues belonging to apolar patches.

In this mode, the score was calculated by adding the sum of evolution-

ary-derived scores for interface contacts with at least one residue involved

in an apolar patch and the sum of statistical scores for other contacts

(with no inclusion of evolutionary information). Apolar patches were

detected using the method described in (Andreani et al., 2012). Details

about the patches mode can be found in Supplementary Material.

2.5 Metrics for evaluation and comparison

The predictions were evaluated by calculating the interface root mean

square deviation (iRMSD) on �-carbon atoms between the native

(bound) complex and the decoys generated by ZDOCK (Chen et al.,

2003). Among the 54 000 decoys generated for each complex, near-native

decoys (also named hits) were defined as predictions with C� iRMSD

below 2.5 Å. An alternative definition of hits based on CAPRI criteria

(Mendez et al., 2005) yields similar results (see Supplementary Material).

InterEvScore was compared with the widely used methods ZDOCK

(Mintseris et al., 2007) and ZRANK (Pierce and Weng, 2007) and to the

recently published multi-body interaction scoring function SPIDER

(Khashan et al., 2012).

The capacity of each scoring method to correctly rank hits with respect

to other decoys was assessed using several metrics. Success rate (the

proportion of cases with at least one hit in the top N predictions) and hit

rate (the overall proportion of hits among the top N predictions)

were calculated for N between 1 and 1000. The integrated success rate

(ISR) and integrated hit rate (IHR) were derived from the plots of these

rates against log(N) for N between 1 and 1000 predictions: the ISR

and IHR represent the area under the curve normalized between 0 and 1

(Supplementary Fig. S2). The IHR was corrected to account for the max-

imum number of hits that can be present in the top N predictions.

The top 1000 predictions were clustered on the basis of ligand RMSD

(lRMSD) using a cutoff of 7.5 Å. The distribution of hits among the

10 largest clusters was assessed. Details about the clustering (choice

of the cutoff and alternative ranking) can be found in Supplementary

Material.

The ISR was recently developed for performance comparison of scor-

ing functions (Vreven et al., 2011). The IHR is the corresponding metric

in terms of hit rate (instead of success rate). A high ISR accounts for a

good capacity to spot at least one hit for each case, whereas a high IHR

accounts for the ability to correctly rank as many hits as possible.

To increase the robustness of a prediction and of the clustering steps,

not only a high ISR is required, but also a high IHR that guarantees that

a maximum of near-native structures can be recovered.

The statistical significance of the results presented in this article

(Tables 1–3) is assessed in the Supplementary Material.

3 RESULTS

3.1 Performance of InterEvScore

3.1.1 Statistical potential First, we assessed the scoring effi-
ciency of the statistical potentials contained in InterEvScore on

the subset of 131 complexes from the docking benchmark with at
least one hit. The results are summarized in Table 1. The metrics

used to evaluate the predictive power of the various scoring
schemes are the ISR and the IHR, based on a recent performance
comparison study (Vreven et al., 2011) and which provide a

normalized and synthetic evaluation of scoring methods (see
Section 2). Supplementary Table S1 provides complementary

metrics that were also used in other studies such as (Khashan
et al., 2012; Pierce and Weng, 2007).
The scoring schemes derived by including only the best contact

for each residue perform significantly better than the schemes
summing over all contacts. This might be due to the low reso-
lution of the rigid-body docking approach where some unfavor-

able interface contacts in generated decoys may appear by
chance, whereas local flexibility would remove them in the real

interface. By choosing only the best contact for each residue, we
retain only the most favorable sub-network of interface contacts
for each decoy. It is noteworthy that these scoring schemes do

not particularly bias InterEvScore toward larger interfaces, as
illustrated in Supplementary Figure S3 and Supplementary
Results.

We see in Table 1 that the three-body interaction scores
appear less efficient than the two-body interaction scores. A pos-

sible explanation might be that by forcing the potential to include
only three-body terms, we disfavored local situations only favor-
able in a pairwise context. Performance similar to that of the

2Bbest score is recovered for the 2/3Bbest score when each residue
is given the opportunity to count only in its most favorable local
structural environment, whether this environment involves a

pairwise or a three-body contact.

Table 1. Benchmark v4 results of InterEvScore (statistical potential only)

on 131 complexes with at least one hit

Metric 2B 2Bbest 3B 3Bbest 2/3Bbest

ISR 0.172 0.243 0.174 0.214 0.242

IHR 0.070 0.088 0.044 0.077 0.093

Note: Highest ISR/IHR values in bold
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3.1.2 Inclusion of evolutionary information In the restricted set
of 54 complexes for which evolutionary information can be

collected, the inclusion of this information results in a large im-

provement in InterEvScore performance (see Table 2 and Fig. 3).

The leftmost columns in Table 2 and Supplementary Table S2

show that the ‘cons’ scoring schemes (involving simple weighting

of interface scores depending on residue conservation) perform

better than the scoring schemes with no evolution. However, the

‘evol’ scoring scheme, which accounts for contact (not only resi-

due) conservation, performs even better. For instance, the 2/

3Bbest
evol score ranks at least one hit in the top 10 predictions for

14 of 54 cases, versus five cases for the 2/3Bbest score and seven
for the 2/3Bbest

cons score.
As shown in Table 2, Supplementary Table S3 and Figure 3, a

major contribution is brought by the 2/3Bbest
evol scheme over the

2Bbest
evol and 3Bbest

evol schemes. This probably reflects the advantage
of providing local plasticity opportunities to each residue when
including evolution.

Individual IHRs for each of the 54 test complexes are repre-
sented in Supplementary Figure S4. Strikingly, in the vast ma-
jority of these cases, the inclusion of evolutionary information

leads to a visible improvement of the predictive capacity. In the
rare cases where the individual IHR for the 2/3Bbest

evol score is
lower than the IHR for 2/3Bbest, either both IHRs are low or

the difference between the two IHRs is small. In other words, the
inclusion of evolutionary information is often helpful and never
detrimental for the 54 cases tested here.

3.1.3 Focus on apolar patches InterEvScore can be used either

in standard ‘evol’ mode (with all interface residues contributing
similarly to the total score) or in an alternative mode (termed
‘patches mode’) in which evolutionary information is used only

for contacts including at least one residue belonging to an apolar
patch. In patches mode, there is an overall improvement of the
scoring efficiency in terms of hit rate (see IHR values in Table 2).

The fact that the IHR is improved implies that the profiles of the
scores versus iRMSDs are more likely to display a funnel-like
shape (Gray et al., 2003). As illustrated by the comparison be-

tween individual IHR values in Supplementary Figure S4 and
profiles of 2/3Bbest

evol scores versus iRMSD in Supplementary
Figure S5, we can define a cutoff of 0.1 for the individual
IHR, which corresponds to a funnel-like shape. In 8 of 17

cases with individual IHR40.1, a clear improvement by420%
of the IHR is observed, whereas in the remaining nine cases,
inclusion of patches has a neutral effect. Overall, InterEvScore

in patches mode has similar or better performance compared
with standard mode. Results are summarized in Table 2 and
Supplementary Table S4, and individual IHR values are plotted

in Supplementary Figure S4.

3.2 Comparison with other scoring functions

3.2.1 Overall comparison In Table 2, Supplementary Tables S4
and S5 and Figure 3, InterEvScore is shown to perform signifi-
cantly better than the previously published scoring functions

ZDOCK, ZRANK and SPIDER. Results between brackets cor-
respond to scores restricted to the subset of 43 (of 54) complexes
in the test dataset, which are not redundant with the SPIDER
training dataset; indeed, SPIDER was tested on benchmark v3

Table 2. Benchmark v4 results of InterEvScore (2Bbest and 2/3Bbest without evolutionary information, 2Bbest
cons and 2=3Bbest

cons with residue-based conser-

vation, 2Bbest
evol and 2=3Bbest

evol with interface co-evolution) compared with ZDOCK, ZRANK and SPIDER on 54 complexes with at least one hit and

available coupled MSAs

Metric 2Bbest 2/3Bbest 2Bbest
cons 2=3Bbest

cons 2Bbest
evol 2=3Bbest

evol 2=3Bbest
evol (patches) ZDOCK ZRANK SPIDER

ISR 0.195 0.195 0.239 0.254 0.288 0.321 (0.391) 0.316 0.259 0.241 (0.265)

IHR 0.103 0.111 0.119 0.138 0.147 0.180 (0.199) 0.206 0.127 0.079 (0.071)

Note: Results between brackets correspond to the subset of 43 complexes not redundant with the SPIDER training set. Highest ISR/IHR values in bold.

Fig. 3. Benchmark results in terms of ISR and IHR. Circles represent

results on 54 test complexes. Stars represent results on the 43 complexes

not redundant with the SPIDER training set (corresponding to values

between brackets in Table 2); in particular, the star on the far right of the

panel corresponds to results for 2=3Bbest
evol on 43 test complexes

Table 3. Benchmark results of the scoring functions: number of success-

ful test cases among 54 test cases, defined by at least one hit in the top 10

predictions or at least one hit in the 5 or 10 largest clusters for each

scoring function

Predictions 2=3Bbest
evol ZDOCK ZRANK SPIDER

Top 10 predictions 14 (14) 9 7 (7)

5 largest clusters 21 (20) 18 14 (10)

10 largest clusters 25 (23) 20 19 (12)

Note: Results between brackets correspond to the subset of 43 complexes not re-

dundant with the SPIDER training set. Best results are in bold.
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and thus trained on a dataset filtered for redundancy with bench-
mark v3, but not with v4 so that 11 cases had to be filtered out

for proper comparison.

3.2.2 Clustering results In protein–protein docking, clustering is
generally applied to reduce the complexity of the conformation

space. For each scoring function, the top 1000 predictions were

clustered on the basis of their mutual lRMSD values. The 10

largest clusters were retrieved and scanned for the presence of

hits. The clustering results were compared with the hit and

success rates.
For the 2/3Bbest

evol scoring scheme, there are 14 cases with at least

one hit in the top 10 predictions before the clustering step is
applied (Table 3). Among these 14 cases, 11 have some hits

among the five largest clusters, one has hits in the seventh largest

cluster and only two have no hit in the 10 largest clusters.

Moreover, owing to the clustering, we recover an additional 10

cases with hits in the five largest clusters and three cases with hits

in the 6th to 10th largest clusters. Analyzing the five (respectively

10) largest clusters thus leads to identification of 21 (respectively
25) cases with hits. This illustrates the ability of InterEvScore to

score consistently well close groups of decoys containing near-

natives; this ability is precisely what the IHR metrics evaluates.

Indeed, the low-resolution character of InterEvScore enables

near-native interfaces that do not necessarily share common

atomic details to obtain similarly favorable scores.
In Table 3, we compare InterEvScore with other scoring func-

tions using the presence of at least one hit in either the top 10
predictions or the 5 or 10 largest clusters. The relative perform-

ance of the different scoring functions using these criteria is com-

pletely in keeping with the view provided by the ISR and IHR

metrics.
Complete clustering results are provided in Supplementary

Table S6. Interestingly, if we combine the three largest clusters

obtained using InterEvScore, ZDOCK and ZRANK (nine clus-

ters in total), these clusters contain a hit in 27 of the 54 test cases

(50%). This illustrates the complementarity of our method with
existing scoring functions.

4 DISCUSSION

To take advantage of both structural and evolutionary informa-

tion toward the prediction of protein interfaces, we have
developed InterEvScore, a novel scoring function using a

multi-body potential coupled to contact evolution, which

achieves significant improvement over traditional scoring func-

tions on the 54 test cases from the docking benchmark with

available coupled MSAs and near-native decoys.
The statistical potential in InterEvScore was trained on a large

non-redundant dataset of non-obligate protein interfaces and

derived using an analytical reference state, without fitting any
parameters and with no optimization on a particular set of

decoys. This derivation method strongly reduces the risk of

overfitting.
InterEvScore is most efficient when it makes use of both two-

and three-body contact information derived through coupled se-

quence alignments, retaining only the best contact for each inter-

face residue in a fashion that gives each position the opportunity

to count only in its most favorable environment. In our study of

the evolution of homologous heteromeric interfaces (Andreani
et al., 2012), we had identified a large amount of plasticity in the
way contacts were conserved in interface evolution. This depends

on sequence identity between homologous interfaces; hence, here
we limit the divergence of our alignments by using the
InterEvolAlign threshold of 35%. We see that despite the plas-

ticity, evolutionary information derived about interface contacts
provides significant improvement of our scoring function.
Moreover, when the use of evolutionary contact information is

targeted toward residues involved in apolar patches, we keep or
reinforce the evolutionary signal; this might seem counter-intui-
tive because we restrict the set of considered interface residues,

but it probably corresponds to a trade-off between depletion of
the signal and exclusion of noisy information (because contacts

between apolar patches are more conserved than others).
However, the inclusion of other interface descriptors that we

had previously identified as important in the conservation of

interface contacts proved difficult because of the low resolution
character of our approach. Indeed, the identification of anchor
residues or the definition of core, rim and support regions in the

interface depend strongly on the interface itself, and as near-
native decoys do not necessarily share these properties with the
native interface, there is no discriminative power of such features

in a rigid-body coarse-grained context. The steps of higher reso-
lution docking such as those used in perturbation methods
(Chaudhury et al., 2011) might benefit from the use of other

conserved interface features as well. In contrast to other features,
apolar patches can be defined on the surface of the protein in-
dependently of interface regions and including apolar patches

proved useful in the discrimination of near-native decoys from
others even at the low resolution docking step.
The docking benchmark exclusively contains non-obligate

complexes (Hwang et al., 2010). In contrast with previous studies
showing that the evolutionary signal was generally too weak to

be used in predictive approaches (Halperin et al., 2006; Mintseris
and Weng, 2005) or that many sequences were needed to detect
an evolutionary signal (Weigt et al., 2009), here we find that the

use of evolution is never detrimental and often useful in the dis-
crimination of near-native interfaces, even though the number of
sequences in the coupled alignments is limited (between 10 and

100 species with an average of 35). In addition, unlike a previous
docking study using evolutionary trace analysis (Kanamori et al.,
2007), we do not find the scoring improvement on inclusion of

evolutionary data to be limited to certain categories of com-
plexes. Apart from antigen-antibody complexes to which our
approach is not applicable, InterEvScore is successful on a

variety of cases.
The strength of our approach thus relies on the use of avail-

able evolutionary information coupled to a knowledge-based po-

tential. Several fields of application can be considered for this
scoring function, especially in a context where low-resolution

strategies remain important (Vakser, 2013), and structural infor-
mation is starting to be used on a large-scale with a view toward
the prediction of interactomes (Zhang et al., 2012).

5 AVAILABILITY AND IMPLEMENTATION

InterEvScore is freely available as a Python script, whose output

contains relevant scores (with or without the inclusion of
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evolutionary information). The script can be run in standard or

patches mode. The scoring of large decoy sets can be easily

parallelized. Scoring relies on the calculation of �-shape contacts
but InterEvScore can also be run in degraded mode using

distance-based contacts (see Supplementary Data). A script to

cluster results based on lRMSD values is also provided with

InterEvScore.
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