Interface-Based Design

James A. Rowson Alberto Sangiovanni-Vincentelli
Alta Group of Cadence Design Systems Inc. University of California at Berkeley
jimr@altagroup.com alberto@eecs.berkeley.edu
Abstract .
Design

A new system desigh methodology is proposed that separates com-
munication from behavior. To demonstrate the methodology we
applied it to a simple ATM design. Since verification is clearly a

major stumbling block for large system design, we focussed on the

verification aspects of our methodology.

In particular, a simulator was developed that is based on the com- e
munication paradigm typical of our methodology. The simulator
gives substantial performance improvements without sacrificing
user access to detail.

Finally, the potential for this methodology to improve verification,
modeling and synthesis is explored.

1. Introduction

The design of large electronic systems such as an ATM network, a
computer network, an automotive engine control unit, a multipro- . i .
cessor system, is indeed very complex. Complexity arises not only Figure 1: Separating Behavior

from the ever increasing functionality of the systems but also from from Communication

more and more stringent requirements imposed upon them: time- o
to-market constraints, safety and performance requirements ar® Formalization, which consists of capturing the design and its

populating the nightmares of system designers. specification in an unambiguous, formal "language” with
precise semantics.

Time-to-market pressure together with the multitude of compo-) . - . .
nents that are needed to implement the required functionality make® ~ Abstraction, which eliminates details that are of no importance
it impossible for a single company to design and manufacture an ~ When dealing with high-level design or checking whether a

entire electronic system in time and within reasonable cost. Hence, ~ design satisfies a particular property.
design re-use and Intellectual Property (IP) trading should now bem Decomposition, which consists of breaking the design at a
considered a necessity. The recent Virtual Socket Initiative (VSI) given level of the hierarchy into components that can be

[1] is a fist step towards a methodology supporting the trade of IP designed and verified almost independently.

blocks. However, present design methodologies are at a loss Wheﬁ‘hese three theoretical tools can be used to simplify design and

IP blocks coming from different design groups are mixed and P . ; :
matched to create a new product. In particular, verifying whether al\'/erlflcatlon In many different ways. An important one consists of
orthogonalizing" the properties of a design. For example, decom-

design satisfies all constraints and requirements is today a mOS[})osing the verification problem into a functional verification

difficult design step. To address this problem, we emphasized tha - h - .
design o0 are ot enouh, ne methocologies have 1o be pul 1 75 16 18 TG SSPects of e emgr e ancre, 2 e
place [2]. This paper is concerned with an important aspect of a 9 P ' y

design methodology that favors design re-use and verification:funCt'O”"’1|Ity Is considered, has been a major design methodology

interface-based design Improvement.

In this paper, we propose a way of orthogonalizing an electronic
design along different dimensionbehavior and communica-
tions. This idea is based on the realization that there is a common
structure of electronic systems consisting of a set of entities (either
hardware, software or both) that are connected together. Each of
the entities may either be a similar structure consisting of other
inteconnected entities or a basic block of the design, the leaf of the
hierarchy. The interconnection is a symbolic way of indicating
communication that takes place among entities. In fact, an inter-
connection of software models is certainly an abstraction since
there are no wires there to use for the communicating entities!

The design methodology originally proposed in [2] was based on
three cornerstones:

Permission to make digital/hard copy of all or part of this work
for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication and its
date appear, and notice is given that copying is by permission of Examining most of the methods used to design such systems
ACM, Inc. To copy otherwise, to republish, to post on servers or shows that communication is often intertwined with behavior

to redistribute to lists, requires prior specific permission and/or a and/or with its physical carrier so that it is difficult to talk about the
fee. "abstract" communication aspects of a design. This is particularly
DAC 97, Anaheim. California true at the RTL level and below.

(c) 1997 ACM 0-89791-920-3/97/06 ..$3.50 Inspired by [3,4,5,6,7,8], we believe that it is possible to clearly

identify what role communication plays @t levels of the design)
and keep it separate from component behavior (see Figure 1). Itis _sender receiver
our intention to show how the design of an electronic system can
be carried out intdwo almost independent stepsthe design and >
selection of the functionality of the components of the design and
the way in which these components interact through a communica-
tion mechanism. In particular, we believe that a specific methodol-
ogy can be used to carry out the design of communications in a
top-down, constraint-driven fashion.

2. Interface-Based Design

We propose a new way of describing designs that includes commu-
nication abstraction. Because the focus of such a method would be
on how the modules interface with each other, we'll call this new
method interface-based design.

substitute

master slave

Telecommunication developers have long used protocol stacks to repartition
provide an abstraction mechanism for their complex communica-
tion systems. Protocols use hierarchical principles to hide complex
time or encoding behavior of the lower levels of the communica-
tion stack. Each layer of the stack provides System Access Points
(or SAPs), which are points of contact between that stack layer and

the one below. These SAPs are analogous to ports on a module.

As a more pragmatic example, a bus could be described as a sim-
ple hierarchical protocol. The top layer of the protocol is the set of

Figure 2: Refining Communication

same property as an FSM. Both DE and event broadcasting were

possible bus transactions: read, write, burst read, burst write, read o o . .
modify-write. Each of these transactions can be further describedS€!eCted because of their simplicity and generality. However, while
other more complex models of communication could be expressed

using some protocol on a given set of pins, say PCI bus or EISA . . X
bus 9 P g P y in terms of event broadcasting, it was not clear how to use this

) model to do top-down design of the communication part of the
In order to generalize these concepts to all levels and types ofgesign.

design, we need to formalize better what is the basic communica- o
tion mechanism that we propose and how to refine it. 2.2 Incrementally Refining a Model of

2.1 Models of Computation Computation

: he interface-based system design methodology that we propose
Lee [11] h h h))
ee [11] has proposed over the years that systems be OIGSIgne§dopts the token passing methodology from dataflow and discrete

using a heterogeneous collection of models of computation. A > -) -
model of computation is a self-consistent set of rules or laws of EVENt system level while providing a method to refine communica-
tion mechanisms incrementally and hierarchically.

physics that are useful for modeling at an abstract level. Com-
monly used models include Dynamic Data Flow, Communicating A token represents a complete communication between two or
Finite State Machines, Synchronous Data Flow and Discrete more design entities. Some examples of tokens include bus writes,
Event. Each of these models has certain properties that are quitbus reads, bursts, and variable length encoded data.

useful in design. The process of refining token passing down to an implementation
If the differences between the most popular system level modelsis similar to the successive refinement concept proposed by several
are analyzed, it becomes clear that the major difference is in theresearchers especially in the formal verification community. One
method of communication between concurrent objects. Dataflow simple method of communication refinement could be imple-
[9] (both dynamic and static) communicate using queues, nevermented by replacing the abstract, simple token exchange in the
losing a token. Discrete Event [10] (DE) level performance model- model of computation by another design that has two parts: a mas-
ing uses a single entry queue to hold tokens until the receiver canter and a slave (see Figure 2).

be invoked. Each model of computation relies on specific PrOPEr-The master side initiates the communication by accepting the

ties to be guaranteed by the communication mechanism. In DEyqen from the sender and breaks the token down into a series of
there is no guarantee that every event will be seen by the receivefata and handshaking events on some new communication
bec_zuze tohe {Ece“{ﬁr mﬁy r&otﬂt])e se_nsmvel tg tlhatdeve:lr: vtvhen Itbl aths.The slave recognizes the handshaking events and gathers the
en:| bel' " dn b ENO er ant » there ISI ?c?o at' or erf tha (éan. ent data, reconstructing the token for delivery to the receiver. The
established between events in unrelated portions of th€ deslgNmagier part of this new communication design will be synthesized
Dataflow guarantees the safe arrival of every token and that thewith the sender, the slave synthesized with the receiver

sequence of tokens on each communication path is defined. There ' '

is, however, no global ordering for tokens in unrelated design This methodology is clearly not limited to hardware. It is appropri-
parts. ate for describing communication between multiple software

. . threads (shared memory, queues, posted events, etc.) or between
Others have also proposed models of computation. Chiodo et aly,, g yare-software (polling, interrupts, etc.) or software-hardware
[12] have proposed a model (Codesign Finite State Machlnes)(”O instructions, memory mapped registers, coprocessor)

based on FSMs communicating among themselves with event ’ ' '
broadcasting that allows for asynchronous communication. Note3, |nterface-based Design Examp|e
that in this case the composition of the FSMs under the event

broadcasting communication model cannot be claimed to have theHierarchical stepwise refinement is an essential part of interface-
based design. To illustrate the concepts, we use a mixed hardware/

y Figure 3: Communication
Packet ATM Transmitter Refi
—? efinement
ATM Packets

Creato

Bus Transactions

Packet = ATM Transmitter

Creato
N 2n

ATM Transmitter

Signal transitions

software design that is communicating across a network usingpacking bytes into words for efficiently, but for this example we
ATM packets. For example purposes we will only look at a small will just put each byte into a separate write (or separate part of a
portion of the overall system, namely a software thread that isburst write).

sending packets through a hardware transmitter (see Figure 3). Weyt ¢ rse we are dealing with a more complex system than just
implemented .th's ex"?‘mp"? in an exp(-_:r!mental S|mulat_0r namedthe packet creator and transmitter, so other communication paths
Cheetah that is described in more detail in the next section. will also be sharing the processor bus. We need to make sure that
At the most abstract level, the ATM packets will be modeled as aour protocols are being refined correctly, that the transmitter is
token. The token contains 53 bytes of data (5 header bytes and 4&ithfully reconstructing the packets and that other traffic on the
payload). To debug system functionality, we can pass these token®us is also getting through. At this point, we cannot yet do accurate
around without regard to how long they take to be transmitted. At performance studies (although if we made a slightly more accurate
first, it is immaterial that the packet creation is software and packetbus model, we could get a first feel of bottlenecks). Arbitration of
transmission is hardware, and in fact the exact line between hardthe bus has to be modeled at this level, and we can start to assign
ware and software should remain fuzzy as long as possible to keepnemory maps and get the programmer's model of the system
implementation options open. Simulation at this abstract level candecided upon.

be done in the DE domain by passing tokens between abstraCkjnjation results from Cheetah at this level of refinement allow
behaviors simply by exchanging pointers.

Simulation results from Cheetah at this level consist of a simple
trace of the ATM packets crossing through the interface between
the blocks.

As we refine the system we need to make design implementation
choices. We can now explicitly choose to put the packet creation in
software and transmitter in hardware. The communication between Refinement
them will be across the processor's bus. At this point we have not

ATM Packet

chosen the processor bus (or the processor, for that matter), so we M= g S g g
will model this refinement using an abstraction of a bus that han- o o |0 | o | o |0 |T |0
dles reads, writes, burst reads, and burst writes. Each of these v S 515 S 515
transactions will, for the moment, take a constant amount of time. o 1 |
. o . . 2 V[V [V |V V [V |V |V
Refining the token passing into a series of bus transactions can be ® | [[=l =NI=NI=
done in many different ways. In this example, we'll only consider LIS IS I SIBIBIB
the differences between individual writes and burst writes. Since ® I8 B |® ® ® |® |8
each ATM packet has 53 bytes, we can transmit it in several differ- E— 1 > 53

ent ways, from one byte per write to all 53 bytes in a single burst
transaction. To make the protocol a bit more robust, we will add a
write to a special location as the first bus transaction, followed by
writes of the real data to another address as shown in Figure 4. The
data transactions can be burst transactions of various lengths or Figure 4: Refining the ATM cell
could be individual writes. In a real system, we would probably be

Figure 5: ATM packets sent over a Pl Bus
Wevoeismn] ot | commam | zomo | ebiechs i deriory 3
-l |_F
et T O AN
- Expand ATMg"

—r Llﬂl m:u| ehjacia in Maricy 117
- —l 1 |

el TR RITTITP B 1

The Cheetah simulator is an event driven simulator. Events are
used to trigger actions in modules and interfaces. Full objects
(instances of a Java class, in this case) are passed from module to
module through abstract interfaces. We can substitute different
interface implementations without changing the module code. The
ATM example shown in Figure 3 and described in the next section
has three different interface implementations that satisfy the same
abstract interface.

Speed of simulation in Cheetah is obtained by avoiding unneces-
sary events and computations within the interfaces. During simula-
tion, the interface simply passes tokens through, delaying them by
a quickly computed delay before passing them onto the receiver
and before letting the sender know the transaction has finished. No
detailed cycle accurate simulation is done although the delay rep-

I i resents the cycle accurate time.
Ol . Synchronization, as for arbitrating access to a bus, is performed
Expand Bus Transactiogs using a typical DE resource object, which knows how to allocate a
shared resource to multiple requestors. No events are posted to the
#rne =05l gt | momn| oo | stpetna ey | main event queue for handling synchronization, instead a local
Ee am] algorithm awakens the waiting requestor.
b [T A AT T A L T T T R D T A AT I T By abstracting synchronization and avoiding unnecessary events
and computation, we can get performance similar to that of other

et == L O 2 R B R

o b

token passing, queuing level performance analysis simulators.

For analysis purposes, designers would like to be able to expand
— this token level simulation into its constituent parts so that they can

SR 1o o (1 10 o 30 1 0O 1 1 I A (A LR analyze resource usage, see opportunities for optimization, and

i il . understand how a bus protocol is working. As with most simula-
bt NPT A AR R tors, Cheetah allows probes on the interfaces between modules.

The probed data captures the transaction, its beginning and end,
I | : and any synchronization or parameterization data necessary to
the user to "expand” the ATM packets into the more detailed bus'€construct the cycle accurate behavior of that interface for that
transactions that implement the protocol. transaction.
The next refinement is to select a bus implementation. We mightOn demand from the user, the probe data can then be expanded by
choose a PCI bus or an EISA bus, but for this example we choséhe interface into what appears to be more probed data of assign-
the PI-bus from the Open Microprocessor Initiative in Europe [15]. Ments to the lower level details within the interface. In effect, we
The PlI-bus is a synchronous bus intended for on-chip work. Now @€ resimulating each probed transact ion in isolation to create new
we can get cycle accurate knowledge of how each bus transactioRrobed data for display.
is happening. Buses can have multiple masters, so the arbitratiorThe interface, then, consists of a type specification (what type of
of bus access is important. Here, arbitration is modeled to the cycledata is carried by a single transaction across this interface), a delay
accurate level, as is the performance. calculation that is cycle accurate for the given transaction, and a
Simulation results here allow the user to "expand" down through Procedure to expand or resimulate a previously handled transac-
the bus transaction level and into the cycle accurate pin transitiont!on-
detail as shown in Figure 5. Within Cheetah this last level of detail Interfaces can be hierarchical, allowing the parent interface to
isn't simulated, but is instead recreated on demand from the user. break a big transaction up into a series of smaller transaction on

Now that we have selected a bus, it is possible to do detailedth® children interfaces.
throughput versus latency studies. The burst mode we can use to Simulator Kernel

send ATM packets will offer high throughput for the ATM packets oSt f‘éﬁrg

at the cost of higher latency for normal bus transactions for others +

using the bus. Only with models that show a more detailed timing

model of the bus can we make these studies. Optimally we would

like a cycle accurate detail, but we at least need to be statistically o St&» _gtart

correct (what might be called a cycle approximate model). 7 | nte rface %
. ©

4. The Cheetah Simulator S finisf < —fnish 0

We have written a simulator, nam€theetah that is designed to
support interface-based design. Cheetah was developed to explore
two areas: simulation speed and modeling style. Simulation speed
comes from abstracting the interface, in particular avoiding
detailed simulation of the interface internals. Modeling style
exploration included investigations into how to simulate an inter-
face abstractly and configure different interface implementations
into the simulator easily.

ddto expand
ﬁlstory ﬁg%%ry

Simulator Ul
Figure 6: Interface interactions

an event queue than would be required in an HDL simulator. Full
.Time cycle accurate detail can be reconstructed post-simulation.

By adopting this methodology, we expect to see improvements in
three major areas: modeling and design exploration, synthesis, and
verification.

clocks 5.1 Modeling and Design Exploration

Modeling is improved in two important ways:

; m better design reuse
VSpace # signals . . .
m easier exploration of the design space

Figure 7: Performance gains from time and space By separating communication from behavior, we have orthogonal-
aized two extremely important design considerations. This separa-
tion makes it possible to mix and match communication
))) _ techniques with behaviors. We can model some behavior and then
The master starts a transaction by creating the transaction objecénap on different bus interfaces. Alternatively, we can create a

and passing it to the interface. The interface then performs itscommunication architecture and plug in different IP.

abstract implementation, which for the simplest cases is to just useDesign exploration is enhanced by providing a new place to con-

the global event queue to delay for a computed amount of time. - : . .
The slave is notified that a new transaction has started. The interflgure the c_ie5|g_n. U_smg VHDL conflgu_ratlons as the arch_etype,
we can switch in different communication architectures without

face may start building a history trace object using an optionally difving the original desi
provided probe. When the abstract implementation is done, bothMdifying the original design.
the master and slave are notified that the transaction is finished an i

the optional trace object is added to the simulation history. 5'2 SyntheS|s

Later on, the user interface can come back to the interface and asﬁy sepa_rating communication and behavior, new opportunities for
that a given trace be expanded into more detail. In the current>YNthesis are also created:

implementation of Cheetah, this procedure will then create newm improving the productivity of logic synthesis

history trace objects that show how the original transaction would
have simulated if it was being done in detail.

The Ch h simul . ‘ f b ionin b hDespite the use of synthesis for a decade, design reuse is still cited
e Cheetah simulator gains performance from abstraction in both, s 1he most important desired productivity step. By incrementally

time and space as shown in Figure 7. The time abstraction avoid§,serting the communication logic into the behavior, blocks and
multiple assignments to a single signal because we only deal with

- . > i ; . 'communication schemes can be more easily reused.
the transaction object. Similarly space abstraction avoids assign- i i)
ments to multiple signals. In the case of a bus, the space expansiofr0€lho [13] has shown that having an abstraction of the communi-
includes the address and datalines, as well as many handshakingation between modules can provide importint't careinforma-
request, acknowledge, and state signals. The best simulator perforion that leads to better synthesis results.

mance is at the most abstract level, and was approximately 25x the4igh level synthesis suffers from a lack of composition methodol-
slowest simulation we saw during the ATM methodology experi- ogy. Each block can be synthesized using high level synthesis, but
ment. no methodology exists to easily compose separately synthesized
Cheetah is in an experimental condition, so it is difficult to get an Mmodules together. By imposing a communication mechanism on a
accurate performance comparison against an RTL level simulator.Pehavior, the designer is also imposing a set of high level con-
To get some sort of relative performance comparison we use eventstraints on the two modules, which is suitable for guiding the high
as our metric. Many designs are event queue limited, which meandevel synthesis of each for smooth composition.

that their performance (in clocks simulated per second of o :

wallclock tirr?e) is proportio(nal to the number of evgnts required to 5.2.1 \Verification

simulate a clock cycle. Our bus model avoids using events to simu-perhaps the most important impact could be felt in the verification
late the detailed cycle level behavior, so each bus transaction onlygrea. Important improvements could include

requires one event. An HDL simulator would require at least one e
event per bus signal transaction. Our bus has a minimum 7 signa® Verification performance
assignments per bus transaction. m enabling formal verification

Each interface can be thought of as serving several purposes
shown in Figure 6.

solving a major stumbling block for high level synthesis.

Based on this relative performance argument, our most accurata testbench generation and reuse
simulation would be about 7x faster than an equivalent RTL simu-
lation. Our most abstract simulation would then be approximately
175x the performance of a cycle accurate RTL. = block-based design verification methodology

Higher level abstractions provide better performance, in general,
S. Summary but at the cost of accuracy or visibility into the fine detail. If we
We have proposed a new methodo|ogy for system level design thaﬁeparate communication from behaVior, we can avoid Simulating
separates communication from behavior. This interface-basedthe communication once it has been verified and instead abstract
design methodology seems to provide numerous advantages ifhe communication into a minimal set of delays. On demand, we
design modeling and exploration, synthesis, and verification. reconstruct the fine detail if desired by the user. A simulator that
relies on these techniques is briefly described in Section 4.

measurement of functional coverage

A simulator (Cheetah) was built to explore the performance and T))
modeling implications of this methodology and was found to given Formal verification is an extremely powerful technique that
cycle accurate simulation with substantially fewer events posted torequires abstract descriptions coupled with a formal description of

the environment around the design. By keeping the modulesm Synthesis: How can an interface description be used to set
behavioral and separate from the communication we can help keep constraints on the synthesis of a module? How can we
them simpler and more likely to be amenable to formal techniques. minimally incorporate the interface behavior into a module?
The formal specification of the communication protocols can pro-

vide the necessary environment description that can help isolate &ACKknowledgments

block, further simplifying the design to be verified. In addition,)

formal verification can be used to verify that an interface refine- This work has evolved partly because of many valuable conversa-
ment continues to uphold the original abstract properties of thetions with Dan Yoder, Chris Ditzen, A. Richard Newton, Patrick
original communication (each model of computation will have dif- Scaglia, Luciano Lavagno, Cary Ussery, Misha Burich, Rick
ferent properties that need to be checked). Balarin [16] has somévicGeer, Felice Balarin, Ken McMillan, Christopher Hoover, and
initial work in this area for CFSMs. Wendell Baker.

Testbenches are an unsung but extremely important design taskReferences

Most designers will admit to the testbench being at least as much

work as the design. A formal, perhaps declarative, description of[1] Virtual Socket Interface (VSI) website: http://www.vsi.org
the communication protocol being used on a block could be used[z] A. Sangiovanni-Vincentelli, P.C. McGeer, A. Saldanha,
to automatically generate test fixtures that stimulate and check a ~ "yerification of Electronic Systems,Proc. of 33rd IEEE/
design. Some tools like this, from companies such as InSpec, ACM Design Automation Conferendeas Vegas, 1996.
already exist as a separate add-on to an HDL design descriptionks; G gorriello "A New Interface Specification Methodology and
By putting the communication descriptions right into the design its Application to Transducer Synthesis," University of
language, test generation and checking can be a natural fallout of California Technical Report, UCB/CSD 88/430, 1988.

the design process. Further, by creating the test generation at . " : .
high level and keeping it separate from the communication mechaf4] (C::'hiél', Vgog%'nﬁgu?éb(lggaﬁieéér(c:ﬁiéllllg?rlljtgrfaEc):apeSngggiﬁcgtlitgn

nism, any manual work creating tests can be more easily reused Language,” Computer Graphics Forum, vol. 7, no. 2, pp. 117-
from design to design. 127, 1988, ’ ’ ’

Code coverage [14] has emerged as a technique to answer the diffj5] A. Seawright, F. Brewer, "Clairvoyant: A Synthesis System
cult question: Have | simulated enough yet? The known techniques for Production-Based Specification,” IEEE Trans. on VLSI
can be used to analyze coverage of behavior. With a formal proto- Systems, vol. 2, pp 172-185, June 1994.

col description of a communication mechanism, a new kind of cov-[6] L. Lavagno, A. Sangiovanni-Vincentell, H. Hsieh,
erage analysis is possible, checking to see that all the types and = "Embedded System Co-Designiiardware/Software Co-

temporal combinations of transactions have happened. Design pp. 213-242, Kluwer Academic Publishers, 1996.
Designing complex systems by reusing large building blocks is [7] J. Oberg, A. Kumar, A. Hemani, "Grammar-based Hardware
partly difficult because of verification. By separating communica- Synthesis of Data Communication Protocols,” presented at the
tion and behavior it should be possible for the author to verify the ~ Intérnational Symposium on System Synthesis, La Jolla,

IP block against an abstract interface definition. The IP user could November 1996.

then use a high level description of the block, checking for interac-[8] S. Vercauteren, B. Lin, H. De Man, "Constructing
tions between the blocks and using functional coverage to make Application-Specific Heterogeneous Embedded Architectures
sure that all interface interactions had been investigated, but not ~ from Custom HW/SW Applications,Proc. of 33rd IEEE/
needing to dive deeply into the block to verify its functionality. ACM Design Automation Conferendas Vegas, 1996.
Different blocks can be tried out, with the correct interfaces syn- [9] E. A. Lee, D. G. Messerschmitt, "Synchronous Data Flow,"
thesized as needed between them. The separation of communica- |EEE Proceedings, September, 1987.

tion and behavior can help segment an unsolvable verification[10] P. A. Fishwick, Simulation Model Design and Executjon

problem into a collection of more manageable ones. Prentice Hall, New Jersey, 1995.

[11] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt,
5.2.2 Future Work "Ptolemy: A Framework for Simulation nd Prototyping
Future work will involve several types of research: Heterogeneous Systems,” Int. Journal of Computer

} S Simulation, special issue on "Simulation Software
m Theoretical: What are the types of properties in different Development," vol. 4, pp. 155-182, April, 1994.

models of computation and how might they be preserved 51\ chiodo, P.Giusto, H. Hsieh, A. Jurecksa, L. Lavagno, and

during refinement? A. Sangiovanni-Vincentelli, "A Formal Methodology for

m Language: What kind of description language would embody Hardware/Software Codesign of Embedded Systems," IEEE
this methodology most effectively? How can an interface be Micro, August 1994.
described declaratively so a single description can be used tqd13] C. Coelho Jr, "Analysis and Synthesis of Concurrent Digital
generate, recognize, and check its protocol? Systems Using Control-Flow Expressions,” Stanford

L) Technical Report, CSL-TR-96-690, 1996.

m Formal verification: Can we formally prove refinement of a o o .

communication style? [14] A. Hosseini, D. Mavroidis, P. Konas, "Code Generation and
Analysis for the Functional Verification of Microprocessors,"

m Simulation: With more realistic examples, what performance Proc. of 33rd IEEE/ACM Design Automation Conferehaes
improvement will we get? Vegas, 1996.

= Modeling: How can we mix together large complex IP without [15] Open Microprocessor Initiative web site:
knowing how they are built inside? http://www.omimo.be/index.htm

= Refinement: How do we refine a collection of interfaces onto [16] F. Balarin, H. Hsieh, A. Jureckska, L. Lavagno, A.

A . . Sangiovanni-Vincentelli, "Formal Verification of Embedded
a communication architecture that involves shared resources, Systems based on CFSM NetworkBfoc. of 33rd IEEE/

addressing, arbitration, etc.? ACM Design Automation Conferendeas Vegas, 1996.

