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Abstract. We present a formal methodology and tool for uncovering
errors in the interaction of software modules. Our methodology consists
of a suite of languages for defining software interfaces, and algorithms
for checking interface compatibility. We focus on interfaces that explain
the method-call dependencies between software modules. Such an in-
terface makes assumptions about the environment in the form of call
and availability constraints. A call constraint restricts the accessibility
of local methods to certain external methods. An availability constraint
restricts the accessibility of local methods to certain states of the module.
For example, the interface for a file server with local methods open and
read may assert that a file cannot be read without having been opened.
Checking interface compatibility requires the solution of games, and in
the presence of availability constraints, of pushdown games. Based on
this methodology, we have implemented a tool that has uncovered in-
compatibilities in TinyOS, a small operating system for sensor nodes in
adhoc networks.

1 Introduction

In structured software design, functionality and data is arranged in software
modules. Each module has a set of procedures, or methods, for accessing the
encapsulated data. Modules can be treated as components, for example, taken
from libraries, or implemented by different vendors. This raises the question of
when two modules are compatible. A limited answer to this question is given by
traditional type systems. For example, if method a of module A calls method
b of module B, then the number and types of the actual parameters of the call
of b in A must match the number and types of the formal parameters of the
implementation of b in B; otherwise, the modules A and B are incompatible.
This weak form of compatibility is resolved by type checking. Note that the type
of an external method call in module A, say b(n:int), is an assumption about
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the environment of A, namely, that it provides an implementation of b with a
single formal parameter, which is an integer. The assumption is checked when
the environment is provided.

We define and check two stronger forms of software module (SM) compatibil-
ity. The first is called stateless SM interface compatibility. Stateless SM interfaces
can express assumptions about the call graph of the environment. For example,
a common design requirement is that an initialization method must not call it-
self recursively. Consider again module A, this time with the two local methods
a-init and a-update. Suppose that the implementation of a-init calls the ex-
ternal method b, and the designer of A wants to make sure that whatever b does,
it causes no recursive call-back of a-init. This constraint about the environment
can be written as a call assumption for module A, namely, b:not{a-init}. In
general, the call assumption b:not{a_1,...,ak} for a module A with external
method b and local methods a_1, ..., a_k has the following interpretation: every
chain of method calls that can be caused by an invocation of b must not contain
any method in {a_1,...,ak}. In particular, the default call assumption for an
external method b is b:not{}; this does not constrain the implementation of b.

A second, even stronger form of software module compatibility is called state-
ful SM interface compatibility. Stateful SM interfaces can express assumptions
about the state of the module when local methods are called by the environment.
For example, a common design requirement is that an update method must not
be called before the corresponding initialization method is called. Consider again
module A with the local methods a-init and a-update. Suppose that the state
variable x of A records whether or not the method a-init has been called: ini-
tially = 0, and = changes to 1 with the first call of a-init, where it remains.
The constraint that the environment calls a-update only when x = 1 can be
written as a pair of availability assumptions for module A, namely, a-init:true
and a-update:x=1, with the following interpretation: when z = 0, then only
a-init may be called by the environment; when x = 1, then both a-init and
a-update may be called. In general, the availability assumption a:p for a mod-
ule A asserts that the local method a of A can be called only when the predicate
p is true in the current state of A. The default availability assumption for a local
method a, which does not constrain the environment, is a:true.

It is obviously undecidable to check if call and availability assumptions for
module A are satisfied by the code for environment module B.! We therefore re-
quire the designer of a module to explicitly provide an interface. An SM interface
makes guarantees about how the local methods interact with the environment,
in addition to the assumptions about how the environment is expected to in-
teract with the local methods. Then, two modules A and B are compatible if
the guarantees of A meet the assumptions of B, and vice versa. Consider again
the stateless case, where the interface of module A makes the call assumption
b:not{a-init}.If the interface of module B, which owns the method b, provides
the call guarantee b:{}, meaning that the implementation of b calls no other
methods, then the modules A and B are compatible. On the other hand, if the

! Static analysis may be used for conservative estimations.
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interface of B has the call guarantee b:{a-init}, meaning that the implemen-
tation of b calls a-init, then the modules A and B are incompatible.

The interesting case is the third possibility, that the implementation of b
calls some methods other than a-init. Suppose that the interface of B pro-
vides the call guarantee b:{c}, meaning that the implementation of b calls the
new method c, which is external to both modules A and B. In this case, the
call assumption b:not{a-init} of A may or may not be satisfied, depending
on whether or not the implementation of ¢ calls (directly or indirectly) a-init.
While a pessimistic approach would reject the composition of A and B, because
compatibility is not ensured for all environments —i.e., implementations of c—
we instead take the optimistic approach to compatibility [6] and compute the
derived call assumption c:not{a-init} for the combined interface of A||B. In
other words, A and B are considered compatible, because there is some envi-
ronment that makes A and B work together properly, namely, the environment
that implements ¢ without calling a-init. Note that only the chosen, optimistic
approach to compatibility is associative. Suppose that a third module C pro-
vides an implementation of method ¢ with call guarantee c:{}; that is, c calls
no further methods. Then the composition A||B||C is well-formed. While the op-
timistic approach permits all ways of assembling this system, namely, (A||B)||C
and A||(B||C) and (A]|C)||B, the pessimistic approach rejects the first one.

The optimistic approach to compatibility is made possible by the ability of
interfaces to express environment assumptions, which can then be propagated
when composing interfaces. In the stateless case, SM interface compatibility
checking, as well as the derivation of call assumptions for the composite inter-
face, are graph problems that can be solved in quadratic time. If state is involved,
checking optimistic compatibility between two interfaces A and B requires the
solution of a two-player game [9,6,7]. Player 1 represents both A and B, and
player 2 represents the environment. If player 2 has a strategy of satisfying the
call and availability assumptions of both A and B, then the two interfaces are
compatible (because there is a “helpful” environment); otherwise they are in-
compatible. Note that if the composition of A and B is closed, i.e., calls no
external methods, then the game disappears, and compatibility checking sim-
ply resolves the assumptions of A against the guarantees of B, and vice versa.
As call chains may be recursive, we need to solve pushdown games, rendering
compatibility checking and composition for stateful SM interfaces exponential.
However, SM interfaces tend to be much smaller than the underlying module
implementations: for instance, in the stateful example from above, the interface
has only two states (x = 0 and x = 1), whereas the state of module A itself may
be arbitrarily complex (depending on which data structures A contains).

We have modified the JBuilder programming environment to permit the an-
notation of Java objects with interfaces. When defining a Java object, the pro-
grammer may specify its interface as commentary, and our tool automatically
checks its compatibility with the interfaces of other objects that have already
been defined. The tool implements the compatibility check for the interface au-
tomata of [6], as well as the stateless and stateful SM interfaces presented here.
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Interface automata are based on finite-state games, and do not support recursive
call-backs between modules. This is insufficient for many software applications,
including our software driver TinyOS [13], a small operating system for sensor
nodes in adhoc networks. TinyOS is structured into six modules, which repre-
sent different service layers. We have defined stateful SM interfaces for two of
the layers, and discovered two incompatilities in their interaction. The notion of
interface state that needs to be considered in this example is considerably less
complex than the full state of the implementation, bearing out the promise of our
methodology. In other words, by aiming at certain limited but common classes of
module interaction errors, rather than intra-module errors, we are able to avoid
many of the obstacles to fully automatic and complete software verification.
We are not the first to propose a formalization of software module interfaces.
Many researchers have addressed this issue by developing languages for writing
software specifications and contracts, e.g., [16,15,17,5,11]. These languages are
typically based on pre- and postconditions, and therefore related in expressive-
ness to stateful SM interfaces (an availability assumption is a restricted kind of
precondition, which cannot refer to the parameters of method calls). The key
difference between our interfaces and software contracts is that contract viola-
tions are detected at run-time, while interface incompatibilities are uncovered
at compile-time. In this respect, interfaces are types, and the stateful SM inter-
faces are related to recent trends in type systems to capture behavioral aspects
of software [12,8,14], and type systems for module interaction [1]. Indeed, the
latter also advocates a game-theoretic view. Architecture description languages
(e.g., [3]) and software modeling languages (e.g., UML) also support various de-
grees of formality in specifying module interactions, but to our knowledge, none
of these languages capture the optimistic, game-based approach to compatibility.

2 Stateless Software Module Interfaces

A stateless SM interface I = (MY, M¥ C,B) consists of the following:

— A set ML of local methods. These are the methods that are defined within
the module.?

— A set M¥ of external (or imported) methods. These are the methods that
are not defined within the module, but called from method definitions within
the module. We write M for the set of all methods known by the interface,
i.e., we define M = MF U MFE.

— Aset C={C(l) | I € M~} of call guarantees. For each local method | € M*,
the call guarantee C(I) C M specifies the (local and external) method calls
that occur in the definition of [.

— Aset B={B(m) | m e M} of call assumptions. For each method m € M,
the call assumption B(m) C M’ specifies the local methods whose execution
is forbidden as a result of an invocation of m.

2 We assume that all local methods can be called by other modules. Tt is straight-
forward to further differentiate between hidden and exported local methods.
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Note that call guarantees refer only to direct calls, that is, m € C(l) asserts
that m is called directly by the definition of [. Call assumptions, on the other
hand, refer to direct as well as indirect calls, that is, [ € B(m) asserts that there
must not be a sequence mg, my, ..., my of (local, known external, or unknown
external) methods such that mg = m and my = [ and for all 0 < ¢ < k,
the definition of m; calls m;1. Call guarantees and call assumptions may be
inconsistent. For example, for local [ and m, it must not happen that both
m € C(1) and m € B(l). Consistency is defined formally below.

Call guarantees must conform with the module implementation®; call as-
sumptions are constraints that the module designer puts on the implementation
of external methods. For example, for local [ and external e, if [ € B(e), then e
is expected to be implemented in a way that does not cause a direct or indirect
call of [. Similarly, for local I and m and external e such that e € C(m), that
is, e is called by m, if [ € B(m), then e is again expected not to cause a direct or
indirect call of [. In the latter case, the call assumption | € B(e) can be derived.
If an interface contains all derived call assumptions, then it is called complete.

Consistent and Complete Interfaces For a local method | € M% and a
method m € M, we say that [ calls m, and write m € C*(I) if there is a
sequence mg, M1, ..., mi of methods m; € M such that mg = [ and m, = m,
and m;11 € C(m;) for all 0 < i < k. Note that m; must be local for all i < k,
and my may be either local or external. We say that [ properly calls m, and
write m € C*(l), if k > 0. For a method m € M and local method I € M’,
we say that m must not call 1 if I € B(m). The call assumption B(m) of a
method m € M is complete in the interface I if for all methods m’ € M, and
all local methods 1,1’ € ML, if [ must not call m’, and [ calls m, and I calls m/,
then m must not call I’. The interface I is complete if the call assumptions of
all methods in M are complete in I. The completion I¢ = (M*, M¥ C, B¢) of I
is the (unique) stateless SM interface whose set B¢ of call assumptions is the
component-wise smallest family of sets B¢(m) such that for all methods m € M,
both B(m) C B¢(m) C M’ and B¢(m) is complete in I°¢.

The call assumption B(l) of a local method [ € ML is satisfied in the inter-
face I if [ does not properly call any method that it must not call. The interface I
is consistent if the call assumptions of all local methods in M* are satisfied in 1.
Note that consistency can be checked in time required to compute the transi-
tive closure CF of C, which is quadratic in the size of the interface (i.e., in the
number of edges of a graph). Also note that for consistency, it does not matter
whether I is complete, because if some call assumption B¢(l) is not satisfied
in the completion I¢, then there is a local method I’ € M’ such that the call
assumption B(I) is not satisfied in the original interface I. Hence we need not
insist on completeness in stateless SM interfaces.

3 Indeed, it would not be difficult to derive call guarantees automatically from the
module implementation by parsing method definitions.
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Interface Compatibility and Composition Two stateless SM interfaces I =
(ME,ME Cr,Br) and J = (ME, M¥ C;,B,) are proto-compatible if their local
methods are disjoint: ML N M} = (). If I and J are proto-compatible, then the
composition of I and J is the stateless SM interface I||J = (ML, M¥ C, B) with

= ME = MEUMJ and M = (MFUMP)\ M
— foralll € M%, we have C(l) = Cr(1) if | € M}, and C(I) = C;(1) if | € M%;
— for all m € M7 we have B(m) = Br(m) U Bj(m).

Note that composition is associative. The stateless SM interfaces I and J are
compatible if they are proto-compatible, and the composition I||.J is consistent.

Theorem 1. The compatibility of two stateless SM interfaces can be checked in
quadratic time.

3 Background: Pushdown Games

A labeled pushdown game G = (Q, X, 0, I co,—) consists of the following:

— a finite set @ of (control) states, partitioned into the existential states Q3
and the universal states Qv;

— a finite stack alphabet I,

— an initial configuration ¢y € Q x I'*;

— a transition relation — C (Q x I') x (Q x Cmd(I")), where Cmd(I") =
{skip, pop} U {push(v) | v € I'}.

The game tree T (G) is a the labeled tree of configurations of G with the root ¢
such that each vertex (¢,7-w) € Q x I'" has the following successors:

- (7 w) if (q,7) < (¢’ skip);
= (q,w) if (¢,7) = (¢, pop);
— (¢ -y -w) if (q,7) = (¢, push(v)).

Furthermore, the vertex (¢, w) is existential if ¢ € @3, and universal otherwise.

A two-player game is played on a game tree as follows. The game starts at
the root. At an existential vertex, the existential player chooses a successor, and
at a universal vertex, the universal player chooses a successor. The reachability
problem for pushdown games asks, given a labeled pushdown game G and a
control state f € @, if the existential player has a strategy to direct the play on
the game tree 7(G) to a node (f,w), for some w € I'*.

Theorem 2. [18] The reachability problem for labeled pushdown games is com-
plete for DEXPTIME.
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4 Stateful Software Module Interfaces

When equipping SM interfaces with state, we use interface programs to specify
the state transitions. An interface program is an abstraction of the code imple-
menting a method and must be provided by the software designer. We represent
interface programs by flow graphs, whose nodes represent control locations and
whose edges are labeled with instructions, including method calls [10]. Nondeter-
ministic branching is allowed and can be the result of abstraction. More formally,
for a set X of typed variables and a set M of methods, an interface program
P=(L,E,b, ) over X and M is a labeled graph, consisting of the following:

— A finite set L of program locations. Every program has an initial location
F € L and a terminal location 4 € L.

— Asetofedges E C VxV, and alabeling function u: E — Instr(X, M), where
Instr(X, M) is the set containing assignment and conditional instructions
over the variables in X, and calls to the methods in M.

We write Progs(X, M) for the set of interface programs over X and M. A stateful
SM interface F = (X, MY, M¥ P, A, B) consists of the following:

— A finite set X = {x1 : Di,...,xx : Dy} of typed interface variables,
where D1, ..., Dy are finite sets of values. We refer to the type-respecting
valuations of the variables in X as interface states, and write States(X) for
the set of interface states.

— A finite set M of methods, partitioned into the set ML of local methods and
the set M¥ of external methods.

— For every local method I € M%, an interface program P(l) € Progs(X, M)
over the variables X and methods M. The interface program P(l) abstracts
the implementation of I by recording method calls, and the (nondeterminis-
tic) changes in the interface state between method calls.

— For every local method m € MY, an availability assumption A(m) € A,
such that A(m) C States(X). The availability assumption A(m) states the
expectation on the environment that m is invoked only when the interface
state is in A(m).

— For every method m € M, a call assumption B(m) € B, such that B(m) C
M¥E. As for stateless SM interfaces, the call assumption B(m) states the
expectation on the environment that no method in B(m) is invoked as a
(direct or indirect) result of invoking m.

For the stateful SM interface F', we define the corresponding stateless SM in-
terface Ir = (M*, MF C,B), where m € C(l) iff some edge of the interface
program P(l) is labeled with a call of method m.

Pushdown Game Semantics Our aim in modeling the behaviour of a soft-
ware module is to capture its possible interactions with the environment (i.e.,
the implementations of the external methods). While the environment cannot
directly change the interface state, it can do so by calling a local method. Our
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notion of an error is a call of a local method m when the interface state is
not in A(m); such a call violates the availability assumption. For every local
method m and interface state s € A(m), we want to check that there is a
“helpful” environment, so that along every behavior of the interface that can
result from calling m in state s, no error occurs. That is, we ask if there is
a way of resolving the nondeterministic choices of the environment such that
for all nondeterministic choices of the interface, an error never occurs. The
environment has the choice, when an external method is called, to call back
any sequence of local methods; the interface has the choice, when executing
a local method [, to pursue any path in the nondeterministic interface pro-
gram P(l). As mutually recursive procedures are naturally modeled as push-
down systems [10], we need pushdown games, with the two players Interface
and Environment. Given a stateful SM interface F' = (X, MY M¥ P A, B), a
local method mg € M*, and an interface state so € S, we define the following
pushdown game G(F,mq, so) = (Q, X, 0, co,—):

— First, for every external method m € M¥ with call assumption B(m), we
define the interface program with two locations: the initial location F,, and
the terminal location ,,, an edge (b, dm) labeled by a vacuously true
condition, and an edge (F,, ) for each local method m € ML\ B(m),
labeled by the call of method m. In other words, we allow player Environment
to choose an arbitrary implementation of m by making any sequence of local
method calls that are permitted by the call assumption B(m).

— Let £ be the disjoint union of the sets of program locations of P(m) for
all methods m € M, where M = MY U M¥?. We write +,, for the initial
location of P(m), and we write ,,, for the terminal location of P(m). The
set of control states of the pushdown game is @ = States(X) x £, and the
stack alphabet is I' = £ U {L}. The control state (s,¥) is existential (i.e.,
player Environment moves) if ¢ is a nonterminal location of P(m) for some
external method m € M¥ and (s, ¢) is universal (i.e., player Interface moves)
otherwise. The initial configuration is co = ((S0,Fm,), L); that is, the stack
contains only the bottom marker L.

— The stack records the return locations for a sequence of method calls. The
transition relation < of the pushdown game is defined by the following rules.

e Method call. For every state s € States(X), edge (¢,¢') labeled with
a call of method m, and stack symbol v € I', we have ((s,¢),vy) —
((s,Fm), push(0")) iff s € A(m).

e Return from method call. For every state s € States(X), method m € M,
and location ¢ € L, we have ((s, ), ¢) — ((s,£), pop).

e Conditional. For every state s € States(X), edge (¢,¢') labeled with a
condition ¢ over States(X), and stack symbol v € I', we have ((s,£),y) —
((s,¢"), skip) if the state s satisfies the condition c.

o Assignment. For every state s € States(X), edge (¢,¢') labeled with an
assignment z := d and a stack symbol v € I', we have ((s,f),vy) —

((sld/x], £'), skip).
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A play of the pushdown game G(F,mg, s9) is a maximal sequence of configura-
tions ¢y < ¢1 < ¢y — --- starting from the initial configuration cy. Player En-
vironment wins the play if it is finite, and the last configuration is ((s, Jm,), L),
for some state s € States(X); otherwise, player Interface is the winner. Note that
if a finite play is won by player Interface, then the last configuration exhibits an
error: it corresponds to a call of a local method in a state in which the method
is not available. Note also that player Environment has a winning strategy in
the game G(F,mo, o) if it can interact with the interface F' in such a way that
if method my is called in state sg, then it can run to termination without ever
violating an availability assumption. We say that (F,mq,so) is safe if player
Environment has a winning strategy in the pushdown game G(F, my, so).

Availability Consistency and Strengthening A stateful SM interface F' =
(S, ML, M¥ P, A, B) is availability consistent if (F,m,s) is safe for all local
methods m € M?% and states s € A(m). Note that the notion of availabil-
ity consistency is independent of the call assumptions B, which are not mod-
eled by the game semantics defined above. For every stateful SM interface F,
it can be shown that there is a unique most general stateful SM interface
Safe(F) = (S, M*, M¥ P, A', B) which is availability consistent, and obtained
from F by strengthening the availability assumptions; namely, A'(m) = {s €
S| (F,m,s) is safe} for all local methods m € ML. From Theorem 2 it follows
that the availability consistency of a stateful SM interface F' can be checked,
and Safe(F) constructed, in exponential time.

Composition Two stateful SM interfaces F' = (Xp, ME, ME, Pr, Ap, Br) and
G = (Xg,M& ME, Pq, Ac,Bg) are proto-compatible if Mk N ME = (. If F
and G are proto-compatible, then the proto-composition F @& G = (X, ME ME,
P, A, B) is defined as follows:

X = Xpw X

— MY = MEUME and MF = (ME UME)\ ML,

— For all local methods I € ML, we have P(m) = Pr(m) if m € ME, and
P(m) = Pg(m) if m € M{.

— For all local methods m € M, we have A(m) = Ap(m) x States(X¢g) if
m € ME, and A(m) = States(Xr) x Ag(m) if m € M§.

— For all methods m € M, we have B(m) = Bp(m) U Bg(m).

The proto-compositon F' & G may violate call assumptions as well as availabil-
ity assumptions. We first remove all violations of call assumptions by making
unavailable all local methods whose call assumptions are not satisfied, and then
we remove all violations of availability assumptions by strengthening. Define
FacG = (S,MF, MF P, A B), where for each local method | € ML, we
have A¢(l) = A(l) if the call assumption B(l) is satisfied in the stateless SM in-
terface Irge (which is the same as Ir||Io), and otherwise A°(l) = (). The com-
position of two proto-compatible SM interfaces ' and G is F||G = Safe(F®°G).
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Proposition 1. The composition of stateful SM interfaces is associative.

Theorem 3. Computing the composition of two stateful SM interfaces is in
DEXPTIME.

As in the stateless case, one might define a notion of compatibility for stateful
SM interfaces, but a meaningful definition often depends on the application
scenario. For example, one might say that two stateful SM interfaces F' and G
are compatible if they are proto-compatible, and the composition F||G has a
local method m with Apc(m) # (; that is, at least one method is available in
at least one state of the composition. In practice, as in the TinyOS case study
below, one often adopts a stronger notion of compatibility, which requires that
certain methods must be available in certain states.

An Alternative Definition of Composition If the call assumption B(l) of a
local method [ is violated in the above definition of composition, then [ is made
unavailable in all states, that is, A(l) is set to the empty set. However, if a call
of method m € B(l) occurs in the interface program P(l), it does not necessarily
mean that m is going to be invoked when [ is called; whether or not this happens
may depend on the state in which [ is called. This suggests the following way of
relaxing the definition of composition for stateful SM interfaces.

We modify the pushdown game semantics in such a way that a configura-
tion of the pushdown game (i.e., control state and stack contents) is an error
configuration if it violates a call assumption, i.e., if the method called in this
configuration must not be called by a method that occurs on the stack. Note
that by collecting all methods that occur on the stack in the control state of
the pushdown game, we can define an error configuration by referring only to
the control state. Let G*(F @& G, m,t) be the modified pushdown game for local
method m and state ¢ of the proto-composition F' & G, and define A%(m) = {t €
Srac | player Environment has a winning strategy in G*(F & G, m, t)} for each
local method m € M ﬁ@G' The alternative composition is defined as F||°G =
(Srac, M}Q@G, M}];J@G, Prea, A*, Brea). Note that F||*G is harder to compute
than F||G, because the set of control states of the modified pushdown game
G*(F @ G,m,t) can be exponentially larger than that of the original game
G(F @ G,m,t); this is why we chose our original definition of composition. On
the other hand, the alternative composition is “better” (i.e., less constraining)
in the following sense.

Proposition 2. If a local method is available at a state t in F||G, then it is
available at t in F||*G. Moreover, for all stateful interfaces H proto-compatible
with F||G, if a local method is available at a state t in (F||G)||H, then it is
available at t in (F||°G)||°H.

Ezxample 1. Consider the following two stateful SM interfaces F' and G. Inter-
face F has two states, {1, 2}; two local methods, a and b; the program for method
a is empty; the program for method b makes the deterministic choice that if in
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applicali#n Ad hoc routing application ‘

Active Messages

Interrupt

TxBytes

message RxBitEvent

packet SW

RFMPower0
. Interrupt
bit TxMode Interrupt
TxBit TxBitEvent
(a) TinyOS stack. (b) RFM. (c) RadioByte.

Fig.1. 1(a) TinyOS communication stack for adhoc networking. 1(b) State
transitions for RFM interface. 1(c) State transitions for RadioByte interface

state 1, it calls method a, and if in state 2, it calls an external method x; the
call assumption for method b is that it must not (indirectly) call itself; and both
methods a and b are available in both states. Interface G has two states, {1,2};
a local method x; the program for x makes the deterministic choice that if in
state 1, it changes the state to 2 and then calls b, and if in state 1, it calls a; there
are no call assumptions; and method x is available in both states. In the compo-
sition F'||G method b is not available in any state, because its call assumption
is not satisfied in the stateless interface Irpg g, and method x is available only
in states (1,2) and (2,2), because in the other states it calls method b and thus
violates the availability assumption for b. In the composition F'||*G, method b
is unavailable only in state (2,1) (only when called in this state does it violate
its call assumption), and method x is available in all states. O

5 Case Study: TinyOS

The Tiny Microthreading Operating System (TinyOS) [13] is an event-driven
operating system for networked embedded sensors. The design of TinyOS uses a
state-machine programming model. It consists of a scheduler and a fixed number
of finite-memory modules that are arranged in layers and communicate with each
other via events and commands, which cause state transitions in the modules.
Events are initiated at the lowest layer by hardware interrupts. Each event may
cause higher-layer events and invoke lower-layer commands, but the TinyOS
design requires that commands cannot cause events. A typical application is
shown in Figure 1(a), consisting of a low-power radio stack, a UART serial port
stack, sensor stacks, and adhoc routing.

We have used stateful SM interfaces to model the interfaces of two of the
modules of TinyOS version 4.3, namely, RFM and RadioByte. Both commands
and events are modeled as method calls; the local storage is modeled using
state variables. The availability assumptions were obtained from the designers
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of TinyOS; the call assumptions are immediate from the TinyOS call conven-
tions. The actual implementation of the modeled modules comprises about 460
lines of C code, with eight variables of type byte. Instead, each interface has
only one variable, which can take three values. The modules RFM and RadioByte
are the lowest two layers of the TinyOS stack. They both have three operating
modes (states): transmitting (Tx), receiving (Rx), and low-power (LowPow). The
state transitions are shown in Figure 1(b) and Figure 1(c).(Note, however, that
the figures have no formal meaning and are only intended to help with the in-
tuitive understanding of the TinyOS interfaces.) Invoking a local method can
start a command-event chain. For example, Interrupt may be invoked due to a
hardware interrupt when RFM is in states Tx or Rx, indicating that a bit has been
transmitted or received, and triggering the event TxBitEvent or RxBitEvent,
respectively. A detailed description of the two interfaces can be found in a tech-
nical report that accompanies this paper.

We have implemented a tool for checking the compatibility of stateful SM
interfaces in Java (JDK 1.3). Composition of the two TinyOS interfaces gives a
pushdown game with 117 control states and 5 stack symbols, which induces a
state space of the size 5-117-217. Our tool runs for about 30 minutes of CPU time
on a Sun workstation with 256 MB RAM and two 200 MHz UltraSPARC CPUs.
It reports an interface incompatibility at the composite state (LowPow, LowPow);
that is, when both modules are in low-power mode. The incompatibility is that
when the module RadioByte is in LowPow mode, invoking the only available
method RBPower1 would in turn invoke RxMode. However, the method RxMode
is not available when RFM is in LowPow mode. This incompatibility has been
removed from the design in later distributions.

6 Implementation

We adapt and optimize Walukiewicz’s algorithm for solving parity games on
pushdown systems [18] to the special case of reachability pushdown games. Given
a pushdown game G, Walukiewicz constructs a finite game F of size exponential
in the size of the pushdown system such that winning strategies in the finite
game correspond to winning strategies in the pushdown game, and vice versa.
There is a state of F for every triple consisting of a state of G, a stack symbol
of G, and a state set of G. Player 1 has a winning strategy from such a state
(s,7,T) in F iff he has a winning strategy to either win from s in G with the
symbol v on the top of the stack while never popping this copy of v from the
stack, or to enter a state in the set 1" while popping the symbol v from the top
of the stack. If player 1 has a winning strategy from (s,~,7) in F, then we say
that T is a target set for s and v. Player 1 has a winning strategy from (s, 1)
in G iff he has a winning strategy from (s, L,0) in F.

We avoid the explicit construction of F by developing a symbolic algorithm
for computing the solutions of the game. Let {1,2,...,n} be the states of the
pushdown system G. For every state s and stack symbol v, we construct a BDD
Bs (T), where T = x1,...,x,, to represent the set of target sets for s and . The
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function Apply gives for every pushdown rule of G a BDD over the variables T:

Tl if r: (s,7) — (¢, pop),
Apply(r) = { By ~ if r: (s,7) — (¢, skip),
3z. (Bs,ﬁ, [Z/Z] A /\?:l(zi = Bm)) if r: (s,7) — (¢, push(v")).

Our algorithm initializes all BDDs B; ., to false and then keeps updating their
values by applying the pushdown rules in the following way:

B. . .— Bsy V'V, s o rule for (5,7) Apply(r) if s is existential,
8,y . . .
Bsy V' Avis a rule for (s,~) APply(r) if s is universal.

We briefly discuss the pop, skip, and push rules when s is an existential state;
the universal case is similar. A rule (s,v) < (s', pop) allows player 1 to instantly
win by popping the top symbol v from the stack while reaching state s’; every set
containing s’ is then a target set for s and . If there is a rule (s,7) < (s, skip),
then player 1 can apply it without any change to the stack contents, and so
every target set for s’ and v is also a target set for s and . If there is a rule
(s,7) <= (8, push(v')), then T is a target set for s and ~ if there is a set U such
that U is a target set for s’ and 4/, and T is already known to be a target set
for v and ~, for all u € U.

The symbolic implementation of Walukiewicz’s algorithm has several advan-
tages over an enumerative solution. First, it can give substantial space savings
due to the compact representation of target sets by BDDs. Second, the running
time can be significantly reduced by avoiding the explicit manipulation of large
state sets, as in the “saturation” algorithm of [4]. Third, the above simple BDD
expressions allow for a straightforward and succinct implementation of a reach-
ability pushdown games solver using any BDD package. In our implementation,
we use the CUDD package [19] with Java wrappers provided by JMocha [2].
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