
Research Article

Interface Data Modeling to Detect and Diagnose Intersystem
Faults for Designing and Integrating System of Systems

Kyung-Min Seo and Kwang-Phil Park

Naval and Energy System R&D Institute, Daewoo Shipbuilding and Marine Engineering, Seoul 04521, Republic of Korea

Correspondence should be addressed to Kyung-Min Seo; kmseo.kumsung@gmail.com

Received 25 April 2018; Revised 16 July 2018; Accepted 1 August 2018; Published 14 October 2018

Academic Editor: Zhiwei Gao

Copyright © 2018 Kyung-Min Seo and Kwang-Phil Park. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In system of systems engineering, system integrators are in charge of compatible and reliable interfaces between subsystems. This
study explains a systematic solution to identify and diagnose interface faults during designing and integrating systems of systems.
Because the systems targeted in this study are real underwater vessels, we first have anatomized 188 interface data transferred
between 22 subsystems of them. Based on this, two interface data models are proposed, which include data sets regarding
messages and inner fields and transition and decision functions for them. Specifically, a structure model at the message level
evaluates how inner fields belong to a message, and a logic model at the field level assesses how each field is interpreted and if
the interpreted value is understandable. The software that supports the modeling is implemented using the following concepts:
(1) a model-view-viewmodel pattern for overall software design and (2) a computer network for representing sequential
properties of field interpretations. The proposed modeling and software facilitate diagnostic decisions by checking the
consistency between interface protocols and obtained real data. As a practical use, the proposed work was applied to an
underwater shipbuilding project. Within 10 interfaces, 14 fault cases were identified and diagnosed. They were gradually
resolved during the system design and integration phases, which formed the basis of successful submarine construction.

1. Introduction

A complex system such as automotive, marine, or aerospace
system of systems (SoS) contains diverse subsystems that
must be designed and integrated to work together [1–3]. In
an underwater vessel, for example, an inertial navigation sys-
tem (INS) receives speed over water and locational informa-
tion from an electromagnetic log (EM log) and Global
Positioning System (GPS), respectively [4]. They enable the
INS to enhance the computational accuracy of its orientation
and velocity. In this context, the input data of the INS have
been utilized for computing the INS’s outputs precisely;
besides, the outputs also are a basis of estimating the geo-
graphic location of the vessel in water. Thus, understandable
and reliable interfaces between the subsystems are the main
prerequisite to organize the subsystems as an integrated
system at the corporate level [5–7].

When designing and integrating the complex SoS, a sys-
tem integrator has difficulty figuring out interface faults for
the following reasons. First, both subsystems of an interface
are commonly developed by different manufacturers, which
gives rise to disparate implementations of the same interface
protocols [8]. Furthermore, for easy modifiability and scal-
ability, the manufacturers still prefer customized protocols
to those that are standardized [9, 10]. In this regard, the
protocols are occasionally revised during the system design
phase as well as the integration phase.

This study suggests a systematic solution about how a
subsystem successfully interacts with a counterpart one
when they are designed and integrated for the whole sys-
tem. Specifically, we have focused on resolving the inter-
face faults (i.e., anomalies) during node-to-node delivery
over the digital network. Our goal in this study is to
ensure compatible and reliable interfaces by checking the

Hindawi
Complexity
Volume 2018, Article ID 7081501, 21 pages
https://doi.org/10.1155/2018/7081501

http://orcid.org/0000-0003-1017-1674
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/7081501

consistency between the interface protocols and obtained
interface data.

In order to transfer sensitive information, a sending sys-
tem encodes interface data (i.e., messages) so only authorized
receivers can understand [11]. The encoding rules contain
what payloads (i.e., fields in this study) are structured in a
message or how each field is logically converted, which are
described in the interface protocols [12]. Because the pro-
tocols including the structural and logical rules are diverse
and complicated, they should be preferentially explored for
overcoming the interface faults. To this end, we have analyzed
interface protocols used in domestic ship systems that are
already in operation or under construction. Messages
transmitted via radar, navigation, acoustic, and optical
sensor systems as well as several control systems were
investigated in this study. We atomized 188 message types
that interacted between 22 subsystems for message struc-
tures and field logics.

Based on the preanalysis, we proposed two modeling
formulas, which contain data sets and functions [13]. A
structure model at the message level formalizes how many
fields belong to a message and what makes it to be struc-
tured, and a logic model at the field level assesses how
each field is interpreted and whether the interpreted value
of the field is understandable or not for receiving systems.
The models fundamentally receive interface data as input.
Then, they detect and diagnose the faults via the transition
functions and output the results through the decision
functions. In the proposed modeling, we practically classi-
fied five structure types at the message level and modular-
ized several transition functions at the field level. With the
proposed formalism, a modeler can specify the interface
protocols and diagnose the faults containing messages
and inner fields in a systematic rather than an ad hoc
manner [14–16].

Over the last decade, several studies for fault detection
and diagnosis methods have been developed for various
systems and applications. Some researchers have developed
system models for representing real systems by checking
model-predicted outputs and obtained system outputs
[17–19], and others have centered on output signals of
the systems to analyze their features or patterns for fault
detection and diagnosis [20–22]. This study combined
these two methods. We focused on input/output (I/O) sig-
nals within digital interfaces; at the same time, the signals
are explicitly formalized in the two-level models to detect
and diagnose interface faults of an arbitrary interface. To
the best our knowledge, no work has been reported toward
focusing on fault detection and diagnosis during the sys-
tem design and integration phases.

To realize the proposed models in an effective way, we
have used the model-view-viewmodel (MVVM) design
pattern in Windows Presentation Foundation (WPF) tech-
nology [23]. In the developed software, block libraries for
modeling elements have been provided to illustrate the ben-
efits of a graphical modeling environment. In addition, a
computer network concept has been applied, which is based
on the concept of using nodes and connections to create an
overall logic modeling. Thus, it facilitates intuitive modeling

via libraries regarding structural delimiters and logical oper-
ations and allows flexible modeling through their creation
and revision.

As a practical use, the proposed work was applied to an
underwater shipbuilding project, namely, a submarine reno-
vation project [24]. Ten digital interfaces connected to
improved subsystems were examined to resolve the interface
faults. Seven tests were performed at sea to find the faults for
various operational situations, and two tests that allow the
ideal preparation for sea-trial tests were conducted in a har-
bor. The empirical results showed that 14 fault cases, which
are either structural or logical, were detected and diagnosed
during designing and integrating the renovated submarine.
These incorrect patterns in the interfaces were successfully
resolved during this project.

The study is organized as follows. Section 2 describes our
focus of fault scope, and Section 3 analyzes previous works.
Section 4 proposes modeling methods and realization of the
modeling as a software tool. Section 5 explains and discusses
an application for the shipbuilding project. Finally, Section 6
presents our conclusions.

2. Background

A fault is defined as an unpermitted deviation of at least one
characteristic property or parameter of a system from the
acceptable, usual, or standard condition [25]. Because the
various cases of faults can occur when a system is under
development as well as in operation, the fault scope inter-
ested in this study needs to be clarified here.

2.1. Interface Faults in Complex System Development.
Figure 1 shows a simplified illustration of how a fault is iden-
tified and diagnosed in complex shipbuilding engineering. As
explained in the introduction, the basic concept for resolving
the fault is to evaluate the consistency by comparing with the
interface data and the interface protocol including structural
and logical rules.

The ship system as an SoS is generally composed of
diverse sensing equipment and dynamic systems, which are
incorporated into an integrated system [26, 27]. It has been
noted that the majority of end systems such as sensors or
actuators do not plug directly into the central network [28].
Instead, they connect to a local proxy with each point-to-
point link, which in turn is distributed across a central bus
network. The signal-processing unit, data integration system
(DIS), and integrated management system in Figure 1 act as
such proxies.

When designing and integrating the subsystems for
the overall system, faults can be found in the central
network as well as the outside of the network, specifi-
cally in the point-to-point links between the local subsys-
tems [29]. In this study, we focused on the local faults
rather than the central faults for the following reasons.
First, the local faults occur more frequently than the
central faults due to disparate implementation of the
same protocol. This problem accords with the current
industrial tendency that interoperability testing for

2 Complexity

communication between the connected systems becomes
more important [30, 31].

Next, the local faults need to be preferentially identi-
fied, because these failures obviously influence the central
part [32]. For example, if an EM log sends speed infor-
mation with the wrong unit or resolution, other subsys-
tems using the speed (e.g., navigation sensor or echo
sounder) have abnormal behaviors sequentially. Thus,
the local faults often have been ascribed to uncontrolled,
unanticipated, and unwanted interactions between the
subsystems [33, 34].

In this respect, this study focuses on the local faults
during node-to-node delivery over digital interfaces when
designing and integrating the SoS. The local faults were clas-
sified into structural and logical levels, which are explained in
the following subsection.

2.2. Classification of Local Faults. Figure 2 illustrates
exchanging digital data between two subsystems. In digital
communication, the data are a sequential stream of bytes at
the physical layer [35]. In this study, we assumed that the
byte stream was already transformed into manageable data
units (i.e., messages).

An individual message has a common format to be
distinguished with different types of messages [36]. For
example, a message may be determined to have a fixed-
length structure or may include several fields for transmitted
information as well as supplemental delimiters such as a
header and a footer. Since the message is usually encoded
for information security, it eventually needs a conversion
process that returns into the original sequence of information
[36]. These structural and logical rules are comprised in

communication protocol, which have to do with an agree-
ment between both-sided manufacturers and a system
integrator.

As shown in Figure 2, the faults in an individual interface
data are hierarchically classified into two levels: a structural
and a logical fault. The structural fault is incorrectness about
the exterior of a message. The wrong length of the message or
different delimiters in the message are the structural fault. On
the contrary, the logical fault occurs when a field conveyed in
the message is semantically incorrect. Uninterpretable data,
unmeasurable values, or unspecified status information in
the field corresponds to this level.

Because the structural and logical rules are diverse and
complicated, they should be preferentially explored to detect
and diagnose their faults. To this end, we analyzed interface
protocols for real messages transferred in domestic naval ves-
sels. Table 1 shows the preinvestigation regarding two types of
real submarine systems. The first-generation submarines
have been in operation domestically, and those that are
third-generation are under construction. In total, 188 mes-
sage types in 22 subsystems were anatomized for message for-
mats and field logics. We generalized how the messages were
constructed to distinguish from others and which rules were
required to interpret the fields for meaningful information.

In summary, this study introduces a practical concept for
identifying and diagnosing the structural and the logical
faults during the design and integration of the complex SoS.
Based on the preanalysis, we formalize a structure model at
the message level and a logic model at the field level. The pro-
posed models are implemented to a software tool, which
facilitates intuitive and flexible modeling to detect and diag-
nose the interface faults.

Signal
processing unit

Data
integration

system (DIS)

Integrated
management

system

Multifunction
operational

console

Bus network

Echo
sounder

Message format
(structural rules)

Field interpretation
(logical rules)

Interface protocol
(specification)

SoS-based ship system

Local fault detection
by comparing with
interface protocol

Depth sonar
Navigation

sensor

(i)

(ii)

Figure 1: Local faults in SoS-based ship system.

3Complexity

3. Literature Review

Over the last decade, several studies for fault detection and
diagnosis have been developed for various systems and appli-
cations. In this section, we have classified them into three
approaches, which are summarized in Table 2.

In model-based approaches, system models are
developed to describe the relationships among main system
variables [39–41]. Based on the models, fault diagnosis algo-
rithms have been developed to monitor the consistency
between the measured outputs of the practical systems and
the model-predicted outputs [42]. For example, Cai et al.
[17] used object-oriented Bayesian networks (OOBN) to
model complex systems. The OOBN-based modeling is clas-
sified into structure and parameter modeling that are built
with sensor historical data and expert knowledge. Lamperti
and Zhao [18] focused on the diagnosis of active systems,
and the diagnosis of rules in the proposed finite system
machine (FSM) has been specified based on associations

between context-sensitive faults and regular expressions.
Poon et al. [19] used a model-based state estimator to gener-
ate an error residual that captures the difference between the
measured and estimator outputs. These model-based
approaches require explicit models, whose accuracy deter-
mines the diagnosis performance.

On the contrary, signal-based approaches decide diag-
nostic decisions based on features or patterns of the extracted
signals rather than the system models [43, 44]. For example,
Loza et al. [20] proposed a nonhomogeneous high-order slid-
ing mode observer to estimate sensor signal faults in finite
time and in the presence of bounded disturbances. In Do
and Chong’s work [21], the vibration signal was translated
into an image; the local features were then extracted from
the image using scale-invariant feature transform for fault
detection and isolation under a pattern classification frame-
work. Pan et al. [22] proposed an acoustic fault detection
method, which was addressed for the gearbox based on the
improved frequency-domain blind deconvolution flow. The
signal-based approaches generally extract the major features
of the output signals for fault diagnosis, but they pay less
attention to system inputs [45].

This study has combined the two approaches. To detect
and diagnose interface digital signals, signal patterns under
a normal status were generalized, which were known from
the interface protocols. Input signals as well as output signals
were targeted because the interfaces interested in this study
generally had both-sided signals. Then, the patterns were for-
malized with mathematical models (i.e., interface data
models). The proposed models had explicit sets and func-
tions, and the fault diagnosis within the modeling was carried

Table 1: Preinvestigated interface protocols in 2 types of
submarines.

Submarine type
Number of
subsystems

Number of
interfaces

Number of
messages

First-generation class 11 12 74

Third-generation class 11 31 114

Total number 22 43 188

Subsystems to be analyzed are (1) radar, navigation, acoustic, and optical
sensor systems and (2) control systems such as plotting boards and
weapons control systems.

Data integration system
(DIS)

Depth sonar
transmitter-receiver

Transmission media

Interface

1 1 1 0 1 0 1 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 1 0 1

Structural
faults

Size

Header FooterData1 DataN⋯

‘CR’‘LF’ ‘CR’⋯
19.14 deg
(course)

Normal
(status)

Logical
faults

Interface data

Fields
interpretation

Message
formatting

⋯ ⋯

Figure 2: Classification of local faults in point-to-point link: structural and logical faults.

4 Complexity

T
a
b
l
e
2:
Su
m
m
ar
y
o
f
re
la
te
d
w
o
rk
s.

A
p
p
ro
ac
h

P
re
vi
o
u
s
w
o
rk

M
o
ti
va
ti
o
n

M
et
h
o
d

A
p
p
li
ca
ti
o
n

M
o
d
el
-b
as
ed

ap
p
ro
ac
h

C
ai
et
al
.
[1
7]

T
o
el
im

in
at
e
sy
st
em

fa
u
lt
s
im

m
ed
ia
te
ly

o
n
ce

th
ey

o
cc
u
r
in

co
m
p
le
x
sy
st
em

s

St
ru
ct
u
re

an
d
p
ar
am

et
er

m
o
d
el
s
u
si
n
g

o
b
je
ct
-o
ri
en
te
d
B
ay
es
ia
n
n
et
w
o
rk
s

ar
e
p
ro
p
o
se
d
.

Su
b
se
a
p
ro
d
u
ct
io
n
sy
st
em

L
am

p
er
ti
an
d
Z
h
ao

[1
8]

T
o
d
ia
gn
o
se

co
m
p
o
n
en
t
fa
u
lt
s
in

co
m
p
le
x
d
is
cr
et
e-
ev
en
t
sy
st
em

s
d
u
ri
n
g
th
e
sy
st
em

ev
o
lu
ti
o
n

A
fi
n
it
e-
st
at
e
m
ac
h
in
e
m
o
d
el
is

b
u
il
t
fo
r
fa
u
lt
d
ia
gn
o
si
s.

M
il
it
ar
y
sy
st
em

P
o
o
n
et
al
.
[1
9]

T
o
re
so
lv
e
fa
u
lt
s
in

co
m
p
o
n
en
ts
an
d

se
n
so
rs

in
sw

it
ch
in
g
p
o
w
er

co
n
ve
rt
er
s

A
m
o
d
el
-b
as
ed

st
at
e
es
ti
m
at
o
r
is
p
ro
p
o
se
d

b
as
ed

o
n
a
li
b
ra
ry

o
f
fa
u
lt
si
gn
at
u
re
s
fo
r

p
o
ss
ib
le
co
m
p
o
n
en
t
an
d
se
n
so
r
fa
u
lt
s
in

al
l
4
co
n
ve
rt
er
s.

Sw
it
ch
in
g
p
o
w
er

co
n
ve
rt
er

sy
st
em

Si
gn
al
-b
as
ed

ap
p
ro
ac
h

L
o
za

et
al
.
[2
0]

T
o
re
co
n
st
ru
ct
si
gn
al
fa
u
lt
s
as

ea
rl
y
as

p
o
ss
ib
le

A
n
o
n
h
o
m
o
ge
n
eo
u
s
h
ig
h
-o
rd
er

sl
id
in
g

m
o
d
e-
b
as
ed

o
b
se
rv
at
io
n
ap
p
ro
ac
h
is
p
ro
p
o
se
d
.

A
ir
cr
af
t
tr
an
sp
o
rt
sy
st
em

D
o
an
d
C
h
o
n
g
[2
1]

T
o
d
et
ec
t
an
d
d
ia
gn
o
se

vi
b
ra
ti
o
n

si
gn
al
s
o
f
th
e
in
d
u
ct
o
r
m
o
to
r

T
h
e
sc
al
e
in
va
ri
an
t
fe
at
u
re

tr
an
sf
o
rm

al
go
ri
th
m

is
p
ro
p
o
se
d
to

ge
n
er
at
e
th
e
fa
u
lt
y
sy
m
p
to
m
s.

T
h
re
e-
p
h
as
e
A
C
m
o
to
r

P
an

et
al
.
[2
2]

T
o
an
al
yz
e
ac
o
u
st
ic
al
si
gn
al
fo
r

m
o
n
it
o
ri
n
g
n
o
rm

al
o
p
er
at
io
n
o
f
ge
ar
b
o
x

T
h
e
co
m
p
le
x-
va
lu
ed

fi
xe
d
p
o
in
t
al
go
ri
th
m

w
as

u
se
d
fo
r
fr
eq
u
en
cy

d
o
m
ai
n
si
gn
al
.

P
o
w
er

tr
an
sf
er

sy
st
em

In
te
ro
p
er
ab
il
it
y
te
st
in
g

V
ij
ay
ar
ag
h
av
an

et
al
.
[4
9]

T
o
p
ro
vi
d
e
a
co
m
m
o
n
m
ea
n
s
fo
r

co
m
m
u
n
ic
at
io
n
b
et
w
ee
n
d
ev
ic
es

A
d
at
a
ex
ch
an
ge

st
an
d
ar
d
w
as

p
ro
p
o
se
d
.

M
an
u
fa
ct
u
ri
n
g
sy
st
em

Sh
in

et
al
.
[3
8]

T
o
an
al
yz
e
th
e
o
p
er
at
in
g
si
tu
at
io
n
s
o
f
th
e

sy
st
em

s
at

th
e
sy
st
em

-i
n
te
gr
at
io
n
p
h
as
e

A
m
es
sa
ge
-d
es
cr
ip
ti
o
n
la
n
gu
ag
e
w
as

u
se
d

to
co
n
ve
rt
th
e
ra
w
in
te
rf
ac
e
d
at
a
in
to

th
e
in
te
rp
re
te
d
d
at
a
fo
rm

at
.

Sh
ip

sy
st
em

5Complexity

out by checking the consistency between the structural and
logical patterns and the measured signals. In short, we
focused on the interface signals and developed explicit data
models with deterministic criteria [46, 47].

Most of all, the above studies have been utilized in oper-
ating the complex systems. For system design and integration
phases, the interoperability testing is a similar concept to our
approach [37, 48]. For example, Vijayaraghavan et al. [49]
proposed an open communication standard for data interop-
erability. The proposed open protocol provides the mecha-
nism for process and system monitoring and optimization
concerning resources. Shin et al. [38], which is similar to that
of the present study, involved the development of an analysis
tool to confirm the integrated performance of the complex
system. To analyze the data, a message-description language
was used to convert the raw interface data into the inter-
preted data format. Despite their practical contributions,
however, they cannot diagnose the faults within the inter-
faces. To the best our knowledge, no work has been reported
toward focusing on fault detection and diagnosis during the
system design and integration phases.

4. Proposed Work

4.1. Software Architecture. Having introduced the concept of
interface data and their faults, the overall design of the
developed software will be introduced in this subsection.
The focus of the software is to (1) represent hierarchies of
the interface data (i.e., project, interface, message, and field)
and (2) realize structure and logic modeling with graphical
user interface (GUI).

To provide flexible GUI for modelers, a specific software
design pattern was used. The MVVM design pattern in WPF
technology facilitates to decouple the GUI from model logic

and data [50, 51]. The model in the MVVM pattern is an
implementation of the application’s domain model that
includes a data model along with business logic, and the view
is responsible for defining the layout and appearance of what
the user sees on the screen. The view model acts as an inter-
mediary between the view and the model and is responsible
for handling the view logic. Because the view model retrieves
data from the model and then makes the data available to the
view, in this subsection, we will focus on view models to
realize the proposed modeling.

A class diagram for major view models of the developed
software is described in Figure 3. TwoViewModelBase classes
serve as base classes for other view model classes. The left
part of Figure 3 indicates hierarchies for interface data
modeling from a project to a field, and the right part shows
specific elements to model a field logically.

The ProjectViewModel class takes charge of resolving
interface faults for a particular project. After a project is
determined, TagViewModel manages multiple tests in the
project. In the following application section, nine tests for
the submarine renovation project were managed by this class.
The InterfaceViewModel ensures operations regarding evalu-
ating an individual interface (e.g., loading interface data, ana-
lyzing them with interface protocols, and visualizing fault
results). Therefore, it is mainly composed of the following
properties: Messages for the interface data, MessageSpecs for
the interface protocols, and MessageReports for the fault
reports. Finally, the MessageModelingViewModel facilitates
structure modeling at the message level, and the FiledMode-
lingViewModel enables logic modeling at the field level. On
this wise, the architecture fundamentally facilitates a hierar-
chical modeling: an interface provides the means for an arbi-
trary number of messages and a message also comprises
multiple fields.

TagViewModel

+Key

EditableValidationViewModelBase

ComparisonFunctionViewModel

UserDefinedFunctionViewModel

ConversionFunctionViewModel

ArithmaticFunctionViewModel

RegularExpressionViewModel

AsciiExpressionViewModel

ConditionalFlowViewModel

FlowJunctionViewModel

FieldElementViewModelBase

FaultedOutputViewModelNormalOutputViewModel

ProjectViewModel

+Tags

InterfaceViewModel

+MessageReports

+Interfaces

+Messsages

+MessageSpecs

+CommunicationParameter

MessageModelingViewModel

+FieldSpecs

+MessageDelimiters

FieldModelingViewModel

+FieldElements

+Tags

+Interfaces

+MessageSpecs

+FieldSpecs +FieldElements

InputFieldViewModel

Figure 3: Simplified class diagram of developed software for fault detection and diagnosis.

6 Complexity

In particular, the logic model at the field level recognizes
logical rules and diagnoses faults by comparing received field
data to the rules. The logical rules generally contain multiple
steps to decode the raw data to interpretable information.
Therefore, to model a field in stages, the developed software
provides eight elements for the rules, which are illustrated
in the right parts of Figure 3 (from ConversionFunctionView-
Model to FlowJunctionViewModel). The remaining view
models (i.e., InputFieldViewModel, NormalOutputViewMo-
del, and FaultOutputViewModel) are for inputs and outputs
of the logic model. Because these elements have their own
views in the MVVM pattern, the developed software
offers a graphical modeling approach that helps the mod-
elers visualize every element to model a field. In the fol-
lowing subsections, we explain methodological aspects for
structure and logic modeling at the message and the field
levels, respectively.

4.2. Structure Modeling at Message Level. Figure 4 illustrates
elements of the proposed model that is either a structure or
a field model. The model fundamentally receives interface
data (Χ in Figure 4) as input and sends fault results (Y) as
output. Inside the model are one total state and three func-
tions. These are depicted with circle and squares in
Figure 4. The model state S is updated after performing
two transition functions, which contain received data, condi-
tions for the rules, and functional results.

If an input occurs, δext interprets the input data with
the rules and updates S (① and ② in Figure 4). As
explained in the previous subsection, the logical rules need
multiple interpretations. In this instance, after δext, δint
updates S without any input. Note that δint is carried out
sequentially until the interpretations are completed (③
and ④). This is a general situation for logic modeling at
the field level, which will be explained in the following
subsection. Finally, when all δext and δint are fulfilled, ω
decides fault results based on the updated state and out-
puts the decision (⑤ and ⑥).

The proposed models are derived from the discrete event
system specification (DEVS), which is a general mathemati-
cal representation for discrete event systems [52–54]. The
main difference between the DEVS and our models is targets

to be modeled. The DEVS focuses on the system itself. Thus,
it should represent behaviors of the system as time passes. On
the contrary, because our models aim at the interface data
rather than the system, they have no concept of time. In other
words, our models are static in which the output depends on
the input at the same time.

According to Figure 4, the proposed structure model is
5-tuple consisting the following:

SMMessage = <X, Y , S, δext, ω >

X is an input set of n fields comprised of a message,
where

X = f i, li ∣ 1 ≤ i ≤ n ,

f i is the value of the i-th field within the message,

li is the length of f i;

Y is an output set of structural faults, where

Y = d j, r j ∣ 1 ≤ j ≤ k, d j ∈D, r j ∈ true, f alse ,

d j is the j-th delimiter in D,

r j is the fault result for d j;

S =D × R is a total state set, where

D is a set of delimiters for structural rules,

R = true, f alse is a set of transition results;

δext 2X ×D→ S is the message transition function;

ω S→ Y is the fault decision function.

Components of SMMessage are contained within . Every

notation in SMMessage is based on set theory. For example,
means a set; × indicates the Cartesian product (i.e., all possi-
ble ordered pairs); 2X means the power set of X; and →
means the function mapping.

The structure model evaluates how many fields belong
to a message and what distinguishes the message. Specifi-
cally, the external transition function, δext, receives all the
fields comprising a message and appropriate delimiters.

Interface data model

Fault decision
function

(�)

State transition
function

with input
(�ext)

State transition
function

without input
(�int)

Output
(Y)

Fault
result

Model
state
(S)

Input (X)

Interface data
(message or field)

①

①

② ③

④

⑤

⑥

Figure 4: Elements of proposed interface data model.

7Complexity

And it updates the transition result, indicating if the mes-
sage has a correct format. Because one or more fields are
mapped into one delimiter, δext needs X in the form of
the power set. Note that the internal state transition func-
tion is not required in the structure model. Finally, the
fault decision function, ω, checks the current state and
produces a fault result.

Based on the preinvestigation in Table 1, the message
structures were divided into five types, which is shown in
Table 3. The structure types are classified depending on
how to use the following delimiters: a header, a footer, and
a message length. In case of types with the header and the
footer, ω checks whether the first and the last fields are satis-
fied with the header and the footer, respectively. The length is
known in two ways: (1) it is computed by adding length of all
the fields, or (2) it can be found within a specific field, for
example, f i, li in Table 3. The structure model is relatively
simple to design because it decides the correctness of the
message exterior. As explained in the previous subsection,
the MessageModelingViewModel in Figure 3 realizes the
structure model.

The following specifications are a modeling example for a
message in the GPS that will be explained in Section 5.3:

SMGPS−1 = <X, Y , S, δext, ω >

X = f 1, l1 , f 2, l2 , f 3, l3 , f 4, l4 , f 5, l5 , f 6, l6 ,

f 7, l7 , f 8, l8 , f 9, l9

Y = dhdr , rhdr , d f tr , r f tr ;

S = dhdr , d f tr × true, f alse , where

dhdr = 0x3A58 as a hexadecimal number,

d f tr = 0x0D0A as a hexadecimal number;

δext f 1, l1 × dhdr →
dhdr , true if f 1 = dhdr ,

dhdr , f alse if f 1 ≠ dhdr ;

f 9, l9 × d f tr →

d f tr , true if f 9 = d f tr ,

d f tr , f alse if f 9 ≠ d f tr ;

ω

dhdr , true → dhdr , true ;

dhdr , f alse → dhdr , f alse ;

d f tr , true → d f tr , true ;

d f tr , f alse → d f tr , f alse

4.3. Logic Modeling at Field Level. The logic model assesses if
each field is understandable for receiving systems. Because
the interpretation process is complicated, the initial value of
the field data needs a sequence of transition functions to
decode to an understandable information. The proposed
logic model is formalized as follows:

LMField = <X, Y , S, δext, δint, ω >

X is an input set of fields, where

X = vtgt , vref ,

vtgt is the initial value of the target field,

vref is the initial value of the reference field;

Y is an output set of logical faults, where

Y = v, r ∣ v = vtgt ∈ X, r ∈ true, f alse ,

v is the initial data of the target field,

r is the fault result of the target field;

S = F × P × R is a total state set, where

F = f int, f dec ∣ f int = vtgt ∈ X is a set of values

for the target field, where

f int is the initial value of the target field,

f dec is the decoded value of f int after the previous
transition function,

P = pj ∣ 1 ≤ j ≤ n is a set of parameters for logical

rules,

R = rt,r f ∣ rt,r f ∈ f alse, idle, true is a set of

transition results, where

rt is the transient result after the interim transi-
tion function,

r f is the final result after the last transition

function;

δext X × P × R→ F × R is the field transition func-
tion with X;

δint F × P × R→ F × R is the field transition
function

without X;

ω F × R→ Y is the fault decision function.

A key element of LMField is the field transition functions,
(i.e., δext and δint); thus, we have summarized their practical

Table 3: Examples of X and D depending on type of message
structure.

Structure type x ∈ 2X d ∈D

Header and footer
f1, l1 dhdr

f n, ln d f tr

Header and length
f1, l1 dhdr

X or f i, li dlength

Header f1, l1 dhdr

Footer f n, ln d f tr

Length X or f i, li dlength

f1 and f n mean the first and last fields, respectively. f i , li means a specific
field containing the length information of the message.

8 Complexity

types in Table 4. In common with Table 3, the functions also
were induced from Table 1.

The five categories in Table 4 show that three types of
operations are basically provided to (1) convert the data
type of the field to another, (2) compute it arithmetically,
and (3) compare it with a criterion. To express the com-
plicated patterns in the fields, we identified 3 special func-
tions: user-defined equation, regular expression [55], and
ASCII expression (δ12 to δ14 in Table 4). For example,
we assume that a bearing field has three ASCII characters
to represent a three-digit number. The field is additionally
promised that the seventh bit of the third character is
always assigned if the bearing is not newly updated. Oth-
erwise, under normal states, the field is interpreted as the
three-digit number from zero to 359. In this case, we sim-
plified logic modeling by using two regular expressions: to
compare the field with patterns, that is, 0 − 3 0 − 5 0 − 9
for a normal state and p − s 0 − 5 0 − 9 for an abnor-
mal state. Finally, these operations are parallel in using a
flow control operation to make a conditional statement.
Parameters for the operations are specified in P in LMField.

Let us explain how the transition functions in Table 4 are
used in a real case. As explained previously, an Electronic
Support Measure (ESM) sends bearing information to be
encoded with three ASCII characters. The following steps
show the overall procedures that the receiving system
decodes the bearing information:

(1) The receiving system first identifies availability of the
bearing field by checking another reference field

within the same message (δ10ext, δ
15
ext).

(2) If the bearing field is not available, the system
confirms that its hexadecimal values are all 0x20

(δ14int).

(3) If the bearing field is available, the system next iden-
tifies if the field is newly updated by comparing its

values with predefined patterns (δ13 1
int).

(4) If the bearing field is proved to be newly updated, the
system checks if the numeric value is within the valid

range from zero to 360 (δ13 2
int).

(5) The system finally converses its current data type, that

is, ASCII characters, into unsigned integers (δ1int).

These steps are performed sequentially according to
the results of the previous step. In this case, for logic
modeling, six transition functions were used including
one conditional flow function. The overall specifications
are as follows (the bold fonts in δ mean updated parts):

LMbearing = <X, Y , S, δext, δint, ω >

X = vbrg, vref , where

vbrg is the initial value of the targeted bearing field,

vref is the initial value of the reference field for

checking the availability of vbrg;

Y = vbrg, true , vbrg, f alse ;

S = f int, f dec × p1, p2, p3, p4 × rt , r f , where

Table 4: Examples of δ classified into 5 operations.

Category δ Description

Conversion operation Type conversion (δ1) Changing one data type into another, for example, integer to string

Arithmetic operation

Addition (δ2)

Fundamental numerical functions, for example, +, − , × , ÷
Subtraction (δ3)

Multiplication (δ4)

Division (δ5)

Comparison operation

Greater than (δ6)

Inequality functions, for example, >, ≥ , < , ≤
Greater than or equal (δ7)

Less than (δ8)

Less than or equal (δ9)

Equal (δ10)
Equality functions, for example, = , ≠

Not equal (δ11)

Special operation

User-defined equation (δ12)

User-defined equation in a complex form including
arithmetical, logical, and bit-shift operations, for example,

sin x + 10 × 30, x < 90 & x > −90 , [x]<< 7

Regular expression (δ13)
Comparison of standard textual syntax for representing

patterns of text, for example, p − s 0 − 5 0 − 9 , 0 − 3 0 − 5 0 − 9

ASCII expression (δ14) Comparison of ASCII codes for example: a specific field ≡ “STS”

Flow control operation Conditional flow (δ15) Conditional function, for example, If-else statement

δ is for either δext or δint.

9Complexity

p1 = 0 × 20 as a hexadecimal number,

p2 = p − s 0 − 5 0 − 9 as a regular expression,

 p3 = 0 − 3 0 − 5 0 − 9 as a regular expression,

p4 = unsigned integer as data type;

δ
10
ext vref × p1 × idle, idle

→ f int, f dec × true, f alse if vbrg is not

available,

f int, f dec × f alse, f alse if vbrg is

available;

δ
15
ext

vtgt ×∅× true, f alse

→ f
int
, f dec × true, f alse ,

vtgt ×∅× f alse, f alse

→ f
int
, f dec × f alse, f alse ;

δ
14
int

f int, f dec × p1 × true, f alse

→ f int, f dec × true, true if vtgt is correct,

f int, f dec × f alse, f alse if vtgt is not correct;

δ
13 1
int

f int, f dec × p2 × f alse, f alse

→ f int, f dec × true, true if the comparison
is correct,

f int, f dec × f alse, f alse if the comparison
is not correct;

δ
13 2
int

f int, f dec × p3 × f alse, f alse

→ f int, f dec × true, f alse if the comparison is
correct,

f int, f dec × f alse, true if the comparison is
not correct;

δ
1
int f int, f dec × p4 × true, f alse → f int, f dec ×
true, true ;

ω f int, f dec × true, true → vbrg, true ,

f int, f dec × f alse, true → vbrg, f alse

To realize the sequential characteristics of the logic
modeling as a software, a computer network concept is
applied. Figure 5 shows a schematic illustration of a network
configuration, which is a collection of nodes and connec-
tions. The nodes are linked to each other by connections,
and the connectors in the nodes are anchor points to
attach connections between the nodes. For example, Node1
corresponds to X of LMField, Node6 and Node7 are rele-
vant to Y , and the others are represented by two transition
functions: δext or δint. A major difference from the typical
computer network is that the network in Figure 5 is a
one-way communication and not a two-way interaction;
that is, all the connections have directions to pass the data
to the node at right.

Figure 6 shows a class diagram for logic modeling based
on the network configuration. The DiagramViewModel visu-
alizes and edits the overall modeling of a field. Nodes and
Connections as properties of this class specify the collections
of nodes and connections to be displayed in the logic model-
ing. In NodeViewModel, InputConnectors, and OutputCon-
nectors are the collection of connectors that specify the
node’s connection anchor points, and AttachedConnections
retrieves a collection of the connections that are attached to
the node. The Element determines the type of the node. The
ConnectionViewModel describes a connection between
both-sided nodes, specifically two connectors in each node
(i.e., the SourceConnector and the DestConnector). This con-
nection continuously monitors its source and destination
connectors. Finally, the ConnectorViewModel indicates an
anchor point on a node for attaching a connection. The
ParentNode in this class references the node that owns
the connector.

Figure 7 shows the modeling execution of the bearing
field previously described, that is, LMbearing. The developed

software provides two views: a list view in the form of the
ribbon command bar and a model view for building the
model. The list view provides block libraries of modeling
elements, in particular transition functions in Table 4 (the
red box in Figure 7). Using the libraries, a modeler can

Node7

Node6

Node5

Node4

Node3

Node1

Node2

Figure 5: Sequential property for interpreting field.

10 Complexity

graphically build and edit the logic model in the model view.
For example, he/she can choose an appropriate element
from the list view based on the model design and drag it
to the model view. By connecting the two-sided elements
with lines, the modeler can easily build a sequence of tran-
sitions and decision functions. In Figure 7, yellow boxes
are realizations of LMbearing. In this manner, the developed

software facilitates intuitive modeling via the block libraries
and allows flexible modeling through the addition and dele-
tion of the modeling elements.

5. Application

The objective of this application is to demonstrate how we
can detect and diagnose interface faults when designing
and integrating a complex SoS. The targeted system is an
underwater vessel (i.e., a submarine system). The faults
were (1) incorrect interface protocols during the design
phase and (2) abnormal values in interface data during the
integration phase.

5.1. Shipbuilding Project Overview. Due to budget con-
straints, the Navy can no longer afford to build new ships
beyond its existing military force [28]. In this context, the
product improvement program (PIP) is a good alternative.
The PIP incorporates improvements of partial systems to
enhance overall system performance. Because it reduces
the procurement time and lowers the maintenance costs
compared to the development of an entirely new system,

PIP has become an industrial trend in several industrial
fields [56–59].

Since late 2014, South Korean shipbuilder, Daewoo Ship-
building and Marine Engineering (DSME), has undergone a
PIP for three submarine systems that corresponded to the
first-generation class of Table 1 [24]. The submarines’
onboard subsystems including navigation, acoustic, optical,
and radar sensors as well as combat systems have been reno-
vated. The PIP will be finalized in 2019.

For this PIP, the compatibility of the improved subsys-
tems with existing ones at the I/O level is a key consideration.
Thus, two phases in the system development life cycle
(SDLC) require interface fault-handling activities. To be spe-
cific, the validity of the interface protocols needs to be
assured to accurately represent the interface data between
the linked subsystems. Then, the developed subsystems
should be verified at the I/O level by comparing the interface
data with the valid protocols. In this respect, the DSME has
carried out several tests to resolve interface faults using the
proposed method and software at the design phase as well
as the integration phase. More detailed descriptions for this
PIP were informed in our previous work [12].

5.2. Design of Tests. As shown in Table 5, the proposed
modeling and software have been utilized for nine shipboard
tests over the last three years. Until the first half of 2017,
preliminary and critical design phases had been proceeded
for the first renovated submarine. During this period, eight
tests were conducted. Thereafter, all the subsystems were

AnalysisViewModelBase

+Analysis

ConnectionViewModel

+SourceConnector

+DestConnector

ConnectorViewModel

+InputPort

+OutputPort

+ParentNode

NodeViewModel

+InputConnectors

+OutputConntectors

+AttachedConnections

+Analysis

FieldModelingViewModel

PortViewModelBase
InputPortViewModel

+Model

OutputPortViewModel

+Model

+AttachedConnections

+FieldSpec

+ParentNode

+AttachedConnections

+AttachedConnections

+InputPort

+InputConnectors

+OutputConnectors

+Nodes +Connections

+SourceConnector

+DestConnector

+OutputPort

DiagramViewModel

+Nodes

+Connnections

+FieldSpec

Figure 6: Class diagram for logic modeling using network configuration.

11Complexity

1st step

2nd step

3rd step

5th step

4th step

Elements of LMField

Figure 7: Logic modeling of bearing field in ESM message.

Table 5: Overall design of tests during system design and integration phases.

SDLC Test no.
When
(yy.mm)

Test site
Subsystems of
local interfaces

Objective Test period

System design
phase

Test1 15.03 At sea
Eight sensor and one

control systems To train for detecting a surface target and
evaluate target motion analysis

72 hours

Test2 15.05 At sea
Eight sensor and one

control systems
72 hours

Test3 15.09 At the harbor
One additional
control system

To train command and control for
underwater weapon engagement

6 hours

Test4 15.12 At sea
Eight sensor and one

control systems

To measure accuracy of
passive sonars to detect a

surface target
72 hours

Test5 16.08 At sea
Eight sensor and one

control systems
To acquire navigation data 72 hours

Test6 16.11 At sea
Eight sensor and one

control systems
To measure underwater

radiation noise
72 hours

Test7 16.11 At sea
Eight sensor and one

control systems To measure self-noise of
sonar systems

72 hours

Test8 17.04 At sea
Eight sensor and one

control systems
72 hours

System integration
phase

Test9 18.01 At the harbor Four sensor systems
To evaluate systems

integration
6 hours

yy and mm in (yy.mm) mean year and month, respectively. Subsystems in the fourth column are connected to local proxies such as the DIS, the integrated
management system, or the signal processing system. These tests are extension from our previous study [12].

12 Complexity

completely developed; thus, they have been integrated to the
submarine system as of late 2017. During this time, we car-
ried out one fault test. Most tests were conducted at sea to
resolve the faults for various operational situations.

Among 10 subsystems to be tested, eight were sensor
systems including acoustic and optical sensors (e.g., echo
sounder, depth sonar, periscope, CTD device, EM log, and
ESM) and the navigation suite of sensors (e.g., INS and
GPS). Two control systems were a plotting board system
and a weapon control system. The weapon control system
was an additionally renovated system during the PIP. This
means that test3 in Table 5 was unexpected and belatedly
determined just two months before the test.

5.3. Interface Data Modeling. For detection and diagnosis of
the interface faults, we first modeled message structures
and field logics in each interface. Figure 8 shows some
modeling results using the developed software. Ten inter-
faces between the 10 subsystems and local proxies were
targeted, which are based on serial communications such

as RS-232 and RS-422 (Figure 8(a)). As an example of
the interface between the GPS and the DIS, 15 groups of
messages were transferred (Figure 8(b)). One message,
Data Block 2, was modeled with nine fields including
dhdr and d f tr (Figure 8(c)). These figures are the realization
of SMGPS−1 described in Section 4.2.

Figure 8(d) shows logic modeling of the velocity field in
the EM log message. In this field, two main interpretations
are required: (1) to convert a hexadecimal number to a
floating-point number and (2) to check the valid range of
the value. Specifically, the field data has initially a hexadeci-
mal number; thus, it needs to be first converted to a decimal
number. Then the decimal number is multiplied by 0.01 to
represent two decimal places. The value is finally checked
whether it is within the valid range from −90 to +90. If the
result is out of range, the field is diagnosed with a logical
fault. The logic modeling for this process can be expressed
in a combination of various transition functions. In

Figure 8(d), four transition functions (i.e., δ1ext, δ
4
int, δ

12
int, and

δ
15
int,) were used to model the logic of the velocity field.

(a) Modeling of 9 groups of interfaces in shipbuilding system (b) Modeling of 15 groups of messages transferred in GPS

(c) Modeling of 9 fields in GPS position message (d) Modeling of velocity field in EM log message

Figure 8: Interface data modeling using developed software.

13Complexity

Table 6 summarizes key results of overall structure and
logical modeling. Thirty-two messages in the interfaces were
modeled whose lengths are 3 to 284 bytes. The number of
fields in each message, that is, N X ∈ SM , increases if the
message length is longer or if the fields are separated by bit
units. For example, MsgG-2, the longest message, has 85 fields
in 284 bytes. Whereas, MsgJ-1 has 90 fields in only 18 bytes
because it is divided by bit units as a typical example of cus-
tomized communication protocols.

Now, let us examineMsgB-2 andMsgE-1 to explain specific
types of message delimiters. First, since MsgB-2 has a fixed-
length without any header and footer, it should be classified
with a message length (i.e., dlength). On the other hand, the

length of MsgE-1 is variable because its depth field has a
floating-point number with 3 to 6 bytes. The variable length
was not actually recognized before test5, which will be
explained in the following subsection. After test5, MsgE-1 was
accepted that it cannot be classified with the message length;
instead, it should be classified into the header and the footer.
Except for these cases, all the messages are generally modeled
with dhdr and d f tr. To sum up, the messages in this study used
two structural types: (1) dhdr and d f tr and (2) dlength.

For logic modeling, the ninth column of Table 6 shows
the average number of transition functions (i.e., δext and
δint) to be used for modeling fields in each message. For
example, 5.29 in MsgD-1means that more than five transition

Table 6: Main results of interface data modeling.

Interface type Message type

Structure modeling (SM) Logic modeling (LM)

∑
n

i=1
li ∈ X

N X
d ∈D

Field division unit ∑
N SM X
i=1 N δext + N δint

N SM X

Decoded value

dhdr d f tr dlength Number Character

SensorA
MsgA-1 14 6 O O Byte 4.33 O O

MsgA-2 9 4 O O Byte 2.50 O

SensorB
MsgB-1 28 20 O O Bit 3.00 O O

MsgB-2 30 27 O Bit 3.44 O O

SensorC

MsgC-1 4 2 O O Byte 2.00 O

MsgC-2 32 9 O O Byte 2.56 O

MsgC-3 44 16 O O Byte 2.31 O

MsgC-4 50 4 O O Byte 2.78 O

MsgC-5 54 18 O O Byte 2.56 O O

MsgC-6 6 3 O O Byte 3.00 O

MsgC-7 4 2 O O Byte 3.30 O

MsgC-8 32 9 O O Byte 4.63 O O

MsgC-9 44 10 O O Byte 2.78 O O

MsgC-10 54 16 O O Byte 2.75 O O

MsgC-11 62 15 O O Byte 3.32 O

MsgC-12 52 17 O O Byte 2.50 O O

MsgC-13 6 3 O O Byte 2.50 O

MsgC-14 24 7 O O Byte 3.33 O

MsgC-15 6 4 O O Byte 3.75 O

SensorD MsgD-1 17 7 O O Byte 5.29 O O

SensorE
MsgE-1 Variable length 4 O O Byte 3.00 O O

MsgE-2 9 5 O O Byte 3.00 O O

SensorF MsgF-1 236 67 O O Byte 3.75 O O

ControlG
MsgG-1 7 4 O O Byte 5.12 O

MsgG-2 284 85 O O Byte 3.33 O O

SensorH
MsgH-1 26 16 O O Byte 7.25 O O

MsgH-2 75 17 O O Byte 3.25 O O

SensorI

MsgI-1 3 7 O O Bit 2.25 O

MsgI-2 3 7 O O Bit 2.25 O

MsgI-3 3 7 O O Bit 2.25 O

MsgI-4 3 7 O O Bit 2.25 O

ControlJ MsgJ-1 18 90 O O Bit 3.75 O O

Interface names consist of subsystems connected to local proxies and their identifiers: subsystem identifier. “O” in columns for the delimiter and interpreted
value means to be applicable as a positive answer.

14 Complexity

functions were used to model each field. In this column, most
messages have numbers larger than 2, which means that a
group of transition functions was used to interpret the field

and diagnose faults. Finally, the decoded values could be
either numbers such as velocity, yaw, pitch, and depth or
characters (e.g., textual message or behavioral mode).

(a) Read of interface signals: GPS messages (b) Signal identification and diagnosis at message level

(c) Signal identification and diagnosis at field level (d) Report of faults identification in message and field levels

(e) Analysis of time series data: Tracking status field (f) Analysis of time series data: Velocity field

Figure 9: Results of fault detection and diagnosis using developed software.

15Complexity

5.4. Test Results. Figure 9 shows some results of test5 and test6
using the developed software. All the figures except
Figure 9(e) are relevant to the GPS messages.

Figure 9(a) shows the messages transmitted between
the GPS and the DIS. During the 72 hours, 26,157
messages were monitored, which are chronologically
arranged in the main table. Because the messages had
not been evaluated yet, two columns—Message and
Analysis Result—are empty, and the number of faulted
messages at the bottom of the table is also zero. By push-
ing the Analyze All icon in the ribbon bar, the messages
were analyzed. In the main table of Figure 9(b), during
15 seconds, two message types (Data Block 05 and Data
Block 11) were identified just once, and two types (Data
Block 30 and Data Block 31) were distinguished continu-
ously. After the analysis, all the messages regarding Data
Block 31 were diagnosed with logical faults, of whose rows
in Analysis Result are shaded in red. Of the 26,157 mes-
sages, 9509 messages were faulted, which are indicated at
the bottom of the table.

To examine where and why the faults occurred in each
message, the message can be opened out so that every field
is displayed. In Figure 9(c), the opened message has a log-
ical fault at the fourth field due to the unexpected value.
To be specific, the fourth field was modeled not to send
STS. However, during test5, the relevant system actually
sent that value, which leads to a contradiction between
the modeling and the real data. Finally, the overall results
were shown by pushing the View Report icon. In
Figure 9(d), more than 80% of messages in Data Block
32 were faulted during test5.

The software also provides a time series chart for an
interpreted value of each field. Figure 9(e) shows a numeric
chart for the velocity value in the EM log message, and
Figure 9(f) represents a chart for tracking status in the GPS
message. These charts facilitate the trend of the values
according to the progressed time at a glance. For example,
test5 was for acquiring navigation data at various velocities,
and the chart exactly visualizes when the velocity is changed.
The INS needs the GPS data to calibrate the navigation data,
and the GPS status can be found on the chart regularly.

Table 7 summarizes (1) how many messages were
acquired from interfaces of all the tests and (2) how many
faults were detected among them. The numbers of the
obtained messages from each interface (i.e., Ntotal in
Table 7) are all different for the following two main reasons.
First, each interface has different message types as well as the
types have different transmission cycles. For example, Con-
trolG has two message types (i.e., MsgG-1 and MsgG-2) and
they are transferred every eight seconds. On the other hand,
SensorI has four message types with 0.125-second cycles. In
this case, NItotal of SensorI is arithmetically 128 times more
than that of ControlG if they operate in the same amount of
time 128 = 4/2 × 8/0 125 . Next, because scenarios of
the tests are all distinguished, the subsystems are operated
situationally. The periscope system for SensorA is normally
operated during the vessel moves above the specific depth
(i.e., periscope depth). This means that any messages in
SensorA will not be transferred when the vessel dives
below the depth. In this context, we can assume that test2
was carried out below the periscope depth over a longer
period than test1.

Table 7: Overall test results: fault-detection results.

Test no. Evaluation index
Interface

SensorA SensorB SensorC SensorD SensorE SensorF ControlG SensorH SensorI ControlJ

Test1
NItotal 677,229 1,744,894 288,906 314,987 21,403 2555 39,529 618,028 4,105,489 N/A

NIfault 0 0 0 0 0 1327 14,366 0 0 N/A

Test2
NItotal 381,452 741,652 66,487 134,920 102,586 14,013 16,862 162,438 1,537,041 N/A

NIfault 0 0 0 0 76,828 0 1168 0 0 N/A

Test3
NItotal N/A N/A N/A N/A N/A N/A N/A N/A N/A 126,533

NIfault N/A N/A N/A N/A N/A N/A N/A N/A N/A 0

Test4
NItotal 1,294,454 1,524,532 188,250 277,205 2,691,498 52,296 34,650 554,447 2,704,102 N/A

NIfault 0 0 0 0 0 0 8213 0 0 N/A

Test5
NItotal 1,021,158 1,238,562 26,157 225,154 2,132,133 12,911 28,144 450,184 1,843,669 N/A

NIfault 0 0 9509 0 0 0 0 0 00 N/A

Test6
NItotal 578,971 2,070,717 138,547 376,578 128,331 3830 47,072 489,510 4,752,324 N/A

NIfault 0 0 30,193 0 0 0 0 0 0 N/A

Test7
NItotal 197,753 629,961 56,431 112,904 85,332 68 14,003 214,499 953,452 N/A

NIfault 0 0 0 0 0 0 0 0 0 N/A

Test8
NItotal 1,151,185 2,076,729 188,025 372,984 3,664,990 991 39,169 750,569 3,610,105 N/A

NIfault 0 0 0 0 0 0 0 0 0 N/A

Test9
NItotal N/A 11,004 N/A N/A 10,582 N/A N/A 3496 8877 N/A

NIfault N/A 2331 N/A N/A 0 N/A N/A 3496 0 N/A

NItotal is the number of obtained messages from each interface. NIfault is the number of faulted messages from each interface. Some interface is not applicable for
a specific test, which is represented by N/A.

16 Complexity

In Table 7, the interfaces where local faults were detected
are marked italics. The number of the local faults (i.e., NIfault)
was counted if r j ∈ SM Y or r ∈ LM Y has False once in an

individual message. For example, in SensorC of test5, 9509
messages were detected to be structurally or logically faulty
among 26,157 messages (this is the case of Figure 9(d)). Syn-
thetically, six interfaces except SensorA, SensorD, SensorI, and
ControlJ were faulted. Note that SensorC and ControlG had
local faults in more than two tests. This implies that the
causes of the faults are distinct according to the test, which
will be explained in Table 8.

To evaluate the relative magnitude of the detected faults
in each interface, Figure 10 illustrates fault ratios. In SensorE,
SensorF, and ControlJ, more than half of the messages were

faulted. In ControlJ of test9, the 100-percent ratio means all
the messages in this interface failed to be interpretable.
Although SensorC in test6 has more faulted messages than
the case of SensorF in test1, the fault ratio of SensorF is twice
higher than that of SensorC.

Table 8 summarizes diagnostic results of the faults in the
overall tests. In total, fourteen fault cases were diagnosed
within seven message types: three cases are for structural
faults and 11 are relevant to logical faults. The structural
faults, which r j ∈ SM Y is False, came from incorrect headers

and length. The logical faults have three diagnoses: (1) wrong
field interpretations, (2) missed status information, and (3)
incorrect relations between neighboring fields. Specifically,
MsgE-1 had structural and logical faults simultaneously.

Table 8: Overall test results: fault-diagnosis results.

Test
number

Fault
case

Interface
type

Message
type

Interface data Fault diagnosis Fault category

Test1

Fault1 SensorF MsgF-1

02-30-31-30-30-39-33-37-
…-35-31-20-20-20-…-20-
20-20-30-30-33-35-…-03

The modeling should be revised that all the
fields regarding a specific section are full of

“0x20” if no targets are detected in the section.
Logical fault

Fault2 ControlG MsgG-2

0D-0A-48-32-35-31-31-
…-20-2B-30-38-35-33-

…-53-2B-…

Themodeling should be revised that the interpreted
value of the sign field can be “+” although the

precondition field is unavailable.
Logical fault

Fault3 ControlG MsgG-2

0D-0A-48-32-35-31-31-
…-20-2B-30-38-35-33-

…-53-2B-…

The modeling should be revised that the speed field
has meaningful information although the

precondition field is unavailable.
Logical fault

Fault4 ControlG MsgG-2

0D-0A-48-32-35-31-31-
…-20-2B-30-38-35-33-
…-53-2B-4F-53-2B-…

Themodeling should be revised that the interpreted
value of the headline sonar field is “O” instead of

“0” if sonar systems are available.
Logical fault

Fault5 ControlG MsgG-2

0D-0A-48-32-35-31-31-
…-00-00-00-00-20-00-00-

00-…

The modeling should be revised that every
byte of the range field can be 0x00 as

well as [0x30, 0x39].
Logical fault

Test2

Fault6 SensorE MsgE-1
2A-30-30-30-31-32-30-31-

36-0D-0A
The delimiters should be changed from header and
length to header and footer for variable lengths.

Structural fault

Fault7 SensorE MsgE-1
2A-30-30-30-31-2D-36-34-

34-35-33-39-0D-0A
The pressure field should be revised to have 4 to 7

bytes including sign characters optionally.
Logical fault

Fault8 ControlG MsgG-2
0D-0A-48-32-35-31-31-

…-00-00-00-…-30-30-35-40

The modeling should be revised that the
target field is full of “0x00” if the relevant

target is not identified.
Logical fault

Test4 Fault9 ControlG MsgG-1 05-0A-41-43-4B-20-40
The modeling should be revised that multiple

headers, that is, “0D-0A” and “05-0A” are allowed.
Structural fault

Test5 Fault10 SensorC MsgC-12
3A-32-30-30-53-43-53-31-
31-30-…30-30-53-0D-0A

Themodeling should be revised that the interpreted
value of the status field contains “STS.”

Logical fault

Test6

Fault11 SensorC MsgC-12
3A-32-30-30-49-41-43-31-
31-30-…30-30-53-0D-0A

Themodeling should be revised that the interpreted
value of the status field contains “IAC.”

Logical fault

Fault12 SensorC MsgC-12
3A-32-30-30-54-52-4B-31-
31-30-…30-30-53-0D-0A

Themodeling should be revised that the interpreted
value of the status field contains “TRK.”

Logical fault

Test9

Fault13 SensorB MsgB-1

03-01-01-00-00-00-00-
…-1B-C3-79-58-84-8A-00-

00-00-3F

SensorB needs to be refined to send “0x00” or
“0x54” for the test field although the corresponding

system is initialized.
Logical fault

Fault14 SensorH MsgH-1

0D-0A-20-20-20-…-38-43-
35-03

SensorH should be refined to send the
message with an accurate header.

Structural fault

Data in italics in interface data mean parts for fault diagnosis. Square brackets in fault diagnosis are used for regression expression. These results are extended
from our previous study [12].

17Complexity

Before test2, MsgE-1 was modeled with a header and length
for delimiters. However, real messages could not be classified
with the current delimiters due to their variable lengths;
thus, the modeling was revised to use a header and footer.
Then, we looked over logic modeling, focusing on which
field influenced the variability. It was proved that the pres-
sure field could be represented with 4 to 7 bytes, including
sign characters.

Figure 11 shows how the fault cases are influenced on the
messages with the same type. Because NMtotal in Figure 11 is
regarding the same message type, it is a subset of NItotal in
Table 7. From Figure 11, we summarized the following find-
ings. First, eight fault cases cause more than half of the
faulted messages. For example, fault5 brought about more
than 14,000 faulted messages during 72 hours. Next, fault2
and fault3 cause the same number of faulted messages,
which means that they were complementary and occurred
at the same time. Additionally, fault7 and fault12 were rel-
atively difficult to detect and diagnose because they were
scenario-dependent faults. If the scenarios are different,
the results will be different. This means that test scenarios
to cover all the cases are also important. Finally, the num-
ber of faulted messages increased as time passed since one
fault case occurred.

5.5. Discussion. For synthesized analysis, Figure 12 summa-
rizes how many fault cases were diagnosed and resolved in
each test. Note that the numbers in this graph are not total
numbers of faulted messages.

Invalid interface protocols led to unforeseen incompati-
bilities between subsystems that could not be revealed until
they were integrated. The first eight tests were carried out
to validate the interface protocols at the system design phase.
During the tests, the structure and the logic models had been
gradually revised by fixing the current faults for the next test.
For example, MsgG-2 in Table 7, whose field has “0” as an
interpretation value before test5, modified the interpreted

value after the test. Consequently, the number of fault cases
decreased as the tests progressed. Because the seventh and
eighth tests had no interface faults, the interface protocols
were almost fully assured to be validated.

Let us examine test3 as a special case. As explained in Sec-
tion 5.2, it was not considered initially in our tests. Neverthe-
less, the interface data for the weapon control system could
be evaluated because we analyzed various types of
interface data in Table 1, generalized their properties,
and formalized them with a mathematical form. Fortu-
nately, no faults were detected in this interface. Indeed,
formal representations of interface data and flexible
modeling using the software are particularly beneficial in
arbitrary system developments.

Finally, the faults in test9 made the corresponding sub-
systems resolve their unexpected behaviors at the system
integration phase. For example, SensorB needed transient
time for initialization, and during this period, it should
have been revised to send an appropriate value in the test
field. As the system development progressed, integration
problems became harder and more expensive to solve, so
it was paramount to figure out potential faults as early
as possible [21]. In this application, only two faults were
found in the ninth test, which means that the previous
eight tests significantly reduced the integration problems.

To sum up, the faults were identified until test8
induced a revision of the structural and logical modeling.
In other words, the DSME as a shipbuilding integrator
continuously revised and validated the communication
protocols based on the results of the eight tests. After that,
the DSME verified the developed systems via resolving the
faults in test9. These fault-resolving activities had been
conducted during the system design and integration
phases, which is a clear difference between the previous
fault-resolving studies. The proposed work played a vital
role in the overall submarine renovation project.

6. Conclusion

In this study, we are mainly concerned with intersystem
faults whose results are observable outside the systems. Our
goal was to find patterns in the interface data that do not con-
form to expected behaviors.

The main contribution of this study is theoretical and
practical. From the theoretical viewpoint, we categorized
the interface faults into structural and logical levels, and they
were evaluated based on mathematical modeling formalism.
The core concept in the formalism is to support explicit func-
tions for transitions and fault decisions. Thus, the proposed
formalism could be applicable to customized protocols as
well as standardized ones, which is suitable for arbitrary sys-
tem development. From the practical perspective, the devel-
oped software facilitates graphical modeling via creation,
arrangement, and revision of the modeling elements. The
system integrator could constantly evaluate and supplement
the interface protocols at the design phase and the interacted
subsystems at the integration phase. It has been successfully
utilized for a submarine renovation project.

0

10

20

30

40

50

60

70

80

90

100

R
at

io
 o

f
fa

u
lt

ed
 m

es
sa

ge
s

(%
)

Test number

Interface
type

51.94

36.34

74.89

6.97

23.70

36.33

21.79 21.18

100.00

Test1 Test2 Test3 Test4 Test5 Test6 Test7 Test8 Test9

SensorA SensorF

SensorB ControlG
SensorC SensorH

SensorD SensorI

SensorE ControlJ

Figure 10: Fault ratio at interface level.

18 Complexity

All the works in this study were based on real data
acquired from submarine systems. The interface faults
regarding incorrect design and abnormal implementation
can be resolved during designing and integrating complex
systems. The proposed work have facilitated to reduce system
development time and avoid dangerous situations during a
shipbuilding project. The faults interested in this study are
relevant to individual interface data; thus, detection and diag-
nosis of a sequence of multiple interface data will remain for
future work.

Abbreviations

ASCII: American Standard Code for Information
Interchange

CTD: Conductivity, temperature, and depth

DEVS: Discrete event system specification
DIS: Data integration system
DSME: Daewoo Shipbuilding and Marine Engineering
EM log: Electromagnetic log
ESM: Electronic Support Measure
FSM: Finite system machine
GPS: Global Positioning System
GUI: Graphical user interface
INS: Inertial navigation system
I/O: Input/output
MVVM: Model-view-viewmodel
OOBN: Object-oriented Bayesian networks
PIP: Product improvement program
SLDC: System development life cycle
SoS: System of systems
WPF: Windows Presentation Foundation.

Fault ratio at message level (%)
(NMfault/NMtotal × 100)

51.94%

72.69%

72.69%

28.65%

72.69%

74.60%

1.17%

13.85%

47.39%

86.90%

84.91%

0.38%

21.56%

100.00%

NMtotal is the number of obtained messages with the same message type from each interface.
NMfault is the number of faulted messages with the same message type from each interface.

NMfault

1327

14,366

14,366

5662

14,366

76,528

1203

1168

8213

9504

30,060

133

2331

3496

NMtotal

2555

19,764

19,764

19,764

19,764

102,586

102,586

8431

17,330

10,937

35,402

35,402

10,812

3496

Massage
type

MsgF-1

MsgG-2

MsgG-2

MsgG-2

MsgG-2

MsgE-1

MsgE-1

MsgG-2

MsgG-1

MsgC-12

MsgC-12

MsgC-12

MsgB-1

MsgH-1

Fault
type

Fault1

Fault2

Fault3

Fault4

Fault5

Fault6

Fault7

Fault8

Fault9

Fault10

Fault11

Fault12

Fault13

Fault14

Figure 11: Number of faulted messages and fault ratios at message level.

0

1

2

3

4

5

6

Test number

N
u

m
b

er
 o

f
fa

u
lt

 c
as

es
 t

o
 b

e
d

et
ec

te
d

Test1 Test2 Test3 Test4 Test5 Test6 Test7 Test8 Test9

0
0

0
2

0
1

1
0

0
0

1
2

0
5

1
1

0
0

Structural fault
Logical fault

Figure 12: Number of fault cases in tests.

19Complexity

Data Availability

The interface data used to support the findings of this study
are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] M. L. Butterfield, J. S. Pearlman, and S. C. Vickroy, “A system-
of-systems engineering GEOSS: architectural approach,” IEEE
Systems Journal, vol. 2, no. 3, pp. 321–332, 2008.

[2] L. B. Rainey and A. Tolk, Eds., Modeling and Simulation
Support for System of Systems Engineering Applications, Wiley,
Hoboken, NJ, USA, 2015.

[3] M. Jamshidi, Systems of Systems Engineering: Principles and
Application, CRC Press, Boca Raton, FL, USA, 2008.

[4] P. D. Groves, Principles of GNSS, Inertial, and Multisensor
Integrated Navigation Systems, Artech house, London, UK,
2013.

[5] H. Panetto and A. Molina, “Enterprise integration and inter-
operability in manufacturing systems: trends and issues,”
Computers in Industry, vol. 59, no. 7, pp. 641–646, 2008.

[6] P. Graignic, T. Vosgien, M. Jankovic, V. Tuloup, J. Berquet,
and N. Troussier, “Complex system simulation: proposition
of a MBSE framework for design-analysis integration,” Proce-
dia Computer Science, vol. 16, pp. 59–68, 2013.

[7] A. M. Madni and M. Sievers, “Systems integration: key per-
spectives, experiences, and challenges,” Systems Engineering,
vol. 17, no. 1, pp. 37–51, 2014.

[8] L. Sassaman, M. L. Patterson, S. Bratus, and M. E. Locasto,
“Security applications of formal language theory,” IEEE Sys-
tems Journal, vol. 7, no. 3, pp. 489–500, 2013.

[9] D. C. Sturman and G. A. Agha, “A protocol description lan-
guage for customizing failure semantics,” in Proceedings of
IEEE 13th Symposium on Reliable Distributed Systems,
pp. 148–157, Dana Point, CA, USA, October 1994.

[10] D. T. Nguyen, Y. Chae, and Y. Park, “Enhancement of data
rate and packet size in image sensor communications by
employing constant power 4-PAM,” IEEE Access, vol. 6,
pp. 8000–8010, 2018.

[11] W. Stallings, Data and Computer Communications, Pearson
Prentice Hall, Upper Saddle River, NJ, USA, 2004.

[12] K.-M. Seo, K.-P. Park, and B.-J. Lee, “Achieving data interop-
erability of communication interfaces for combat system engi-
neering,” IEEE Access, vol. 5, pp. 17938–17951, 2017.

[13] J. Wang, Handbook of Finite State Based Models and Applica-
tions, CRC Press, Boca Raton, FL, USA, 2013.

[14] K.-M. Seo, C. Choi, T. G. Kim, and J. H. Kim, “DEVS-based
combat modeling for engagement-level simulation,” Simula-
tion, vol. 90, no. 7, pp. 759–781, 2014.

[15] M. Hofmann, J. Palii, and G. Mihelcic, “Epistemic and
normative aspects of ontologies in modelling and simulation,”
Journal of Simulation, vol. 5, no. 3, pp. 135–146, 2017.

[16] S. Y. Diallo, J. J. Padilla, R. Gore, H. Herencia-Zapana, and
A. Tolk, “Toward a formalism of modeling and simulation
using model theory,” Complexity, vol. 19, no. 3, 63 pages, 2014.

[17] B. Cai, H. Liu, and M. Xie, “A real-time fault diagnosis meth-
odology of complex systems using object-oriented Bayesian

networks,” Mechanical Systems and Signal Processing, vol. 80,
pp. 31–44, 2016.

[18] G. Lamperti and X. Zhao, “Diagnosis of active systems by
semantic patterns,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 44, no. 8, pp. 1028–1043, 2014.

[19] J. Poon, P. Jain, I. C. Konstantakopoulos, C. Spanos, S. K.
Panda, and S. R. Sanders, “Model-based fault detection and
identification for switching power converters,” IEEE Transac-
tions on Power Electronics, vol. 32, no. 2, pp. 1419–1430,
2017.

[20] A. F. de Loza, D. Henry, J. Cieslak, A. Zolghadri, and J. Dávila,
“Sensor fault diagnosis using a non-homogeneous high-order
sliding mode observer with application to a transport aircraft,”
IET Control Theory & Applications, vol. 9, no. 4, pp. 598–607,
2015.

[21] V. T. Do and U.-P. Chong, “Signal model-based fault detec-
tion and diagnosis for induction motors using features of
vibration signal in two-dimension domain,” Strojniški
vestnik – Journal of Mechanical Engineering, vol. 57, no. 9,
pp. 655–666, 2011.

[22] N. Pan, X.Wu, Y.-L. Chi, X. Liu, and C. Liu, “Combined failure
acoustical diagnosis based on improved frequency domain
blind deconvolution,” Journal of Physics: Conference Series,
vol. 364, article 012078, 2012.

[23] X. Li, D. Chang, H. Pen, X. Y. Liu, and Y. Yao, “Application of
MVVM design pattern in MES,” in 2015 IEEE International
Conference on Cyber Technology in Automation, Control, and
Intelligent Systems (CYBER), pp. 1374–1378, Shenyang, China,
June 2015.

[24] The Korea Economic Daily, “DSME wins 179 Bil. Won
project to renovate 3 submarines,” 2014, http://english.han
kyung.com/business/2014/07/22/1314111/spanclasskeywordd
smespan-wins-179-bil-won-project-to-spanclasskeywordreno
vatespan-3-submaries.

[25] D. V. Schrick, “Remarks on terminology in the field of super-
vision, fault detection and diagnosis,” in Proceedings of the
IFAC Symposium on Fault Detection, Supervision Safety for
Technical Processes, pp. 959–964, Kingston upon Hull, UK,
August 1997.

[26] M. R. Khaefi, J.-Y. Im, and D.-S. Kim, “An efficient DDS node
discovery scheme for naval combat system,” in 2015 IEEE 20th
Conference on Emerging Technologies & Factory Automation
(ETFA), pp. 1–8, Luxembourg, September 2015.

[27] K.-M. Seo, W. Hong, and T. G. Kim, “Enhancing model com-
posability and reusability for entity-level combat simulation: a
conceptual modeling approach,” Simulation, vol. 93, no. 10,
pp. 825–840, 2017.

[28] NAVSEA, “Combat system engineering and integration,”
2017, http://www.navsea.navy.mil/Portals/103/Documents/
NSWC_Dahlgren/LeadingEdge/CSEI/CombSys.pdf.

[29] P.-Y. Chen, S. Yang, and J. A. McCann, “Distributed real-time
anomaly detection in networked industrial sensing systems,”
IEEE Transactions on Industrial Electronics, vol. 62, no. 6,
pp. 3832–3842, 2015.

[30] C. H. Porter, C. Villalobos, D. Holzworth et al., “Harmoniza-
tion and translation of crop modeling data to ensure interop-
erability,” Environmental Modelling & Software, vol. 62,
no. 2014, pp. 495–508, 2014.

[31] B. S. Ahmed, K. Z. Zamli, W. Afzal, and M. Bures, “Con-
strained interaction testing: a systematic literature study,”
IEEE Access, vol. 5, pp. 25706–25730, 2017.

20 Complexity

http://english.hankyung.com/business/2014/07/22/1314111/spanclasskeyworddsmespan-wins-179-bil-won-project-to-spanclasskeywordrenovatespan-3-submaries
http://english.hankyung.com/business/2014/07/22/1314111/spanclasskeyworddsmespan-wins-179-bil-won-project-to-spanclasskeywordrenovatespan-3-submaries
http://english.hankyung.com/business/2014/07/22/1314111/spanclasskeyworddsmespan-wins-179-bil-won-project-to-spanclasskeywordrenovatespan-3-submaries
http://english.hankyung.com/business/2014/07/22/1314111/spanclasskeyworddsmespan-wins-179-bil-won-project-to-spanclasskeywordrenovatespan-3-submaries
http://www.navsea.navy.mil/Portals/103/Documents/NSWC_Dahlgren/LeadingEdge/CSEI/CombSys.pdf
http://www.navsea.navy.mil/Portals/103/Documents/NSWC_Dahlgren/LeadingEdge/CSEI/CombSys.pdf

[32] S. Lin, Y. Wang, and L. Jia, “System reliability assessment
based on failure propagation processes,” Complexity,
vol. 2018, Article ID 9502953, 19 pages, 2018.

[33] S. D. Eppinger, N. R. Joglekar, A. Olechowski, and T. Teo,
“Improving the systems engineering process with multilevel
analysis of interactions,” Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, vol. 28, no. 4, pp. 323–
337, 2014.

[34] E. Santos and Y. Zhao, “Automatic emergence detection in
complex systems,” Complexity, vol. 2017, Article ID 3460919,
24 pages, 2017.

[35] B. Sklar, Digital Communications Fundamentals and Applica-
tions, Prentice-Hall, Upper Saddle River, NJ, USA, 2001.

[36] B. A. Forouzan, Data Communications and Networking,
McGraw-Hill, New York, NY, USA, 2006.

[37] Z. L. Wang, X. Yin, and C. M. Jing, “A formal method to real-
time protocol interoperability testing,” Science in China Series
F: Information Sciences, vol. 51, no. 11, pp. 1723–1744, 2008.

[38] S.-C. Shin, J.-G. Shin, and D.-K. Oh, “Development of data
analysis tool for combat system integration,” International
Journal of Naval Architecture and Ocean Engineering, vol. 5,
no. 1, pp. 147–160, 2013.

[39] R. Isermann, “Model-based fault-detection and diagnosis –

status and applications,” Annual Reviews in Control, vol. 29,
no. 1, pp. 71–85, 2005.

[40] X. Liu, Z. Gao, and M. Z. Q. Chen, “Takagi–Sugeno fuzzy
model based fault estimation and signal compensation with
application to wind turbines,” IEEE Transactions on Industrial
Electronics, vol. 64, no. 7, pp. 5678–5689, 2017.

[41] Z. Gao, X. Liu, and M. Chen, “Unknown input observer-based
robust fault estimation for systems corrupted by partially
decoupled disturbances,” IEEE Transactions on Industrial
Electronics, vol. 63, no. 4, pp. 2537–2547, 2015.

[42] Z. Gao, C. Cecati, and S. X. Ding, “A survey of fault diagnosis
and fault-tolerant techniques – part I: fault diagnosis with
model-based and signal-based approaches,” IEEE Transactions
on Industrial Electronics, vol. 62, no. 6, pp. 3757–3767, 2015.

[43] V. H. Ferreira, R. Zanghi, M. Z. Fortes et al., “A survey on
intelligent system application to fault diagnosis in electric
power system transmission lines,” Electric Power Systems
Research, vol. 136, pp. 135–153, 2016.

[44] I. V. de Bessa, R. M. Palhares, M. F. S. V. D'Angelo, and J. E.
Chaves Filho, “Data-driven fault detection and isolation
scheme for a wind turbine benchmark,” Renewable Energy,
vol. 87, pp. 634–645, 2016.

[45] X. Shuiqing, Z. Ke, C. Yi, H. Yigang, and F. Li, “Gear fault diag-
nosis in variable speed condition based on multiscale chirplet
path pursuit and linear canonical transform,” Complexity,
vol. 2018, Article ID 3904598, 8 pages, 2018.

[46] B. S. Kim, B. G. Kang, S. H. Choi, and T. G. Kim, “Data model-
ing versus simulation modeling in the big data era: case study
of a greenhouse control system,” Simulation, vol. 93, no. 7,
pp. 579–594, 2017.

[47] S. J. E. Taylor, A. Khan, K. L. Morse et al., “Grand challenges
for modeling and simulation: simulation everywhere-from
cyberinfrastructure to clouds to citizens,” Simulation, vol. 91,
no. 7, pp. 648–665, 2015.

[48] W. A. Khan, A. M. Khattak, M. Hussain et al., “An adaptive
semantic based mediation system for data interoperability
among health information systems,” Journal of Medical
Systems, vol. 38, no. 8, p. 28, 2014.

[49] A. Vijayaraghavan, W. Sobel, A. Fox, D. Dornfeld, and
P. Warndorf, “Improving machine tool interoperability using
standardized interface protocols: MTConnect™,” in Proceed-
ings of 2008 International Symposium on Flexible Automation,
pp. 1–6, Atlanta, GA, USA, June 2008.

[50] E. Sorensen and M. I. Mikailesc, “Model-view-ViewModel
(MVVM) design pattern using Windows Presentation Foun-
dation (WPF) technology,” MegaByte Journal, vol. 9, no. 4,
pp. 1–19, 2010.

[51] R. Garofalo, Building Enterprise Applications with Windows
Presentation Foundation and the Model View View Model
Pattern, Microsoft Press, 2011.

[52] B. P. Ziegler, T. G. Kim, and H. Praehofer, Theory of Modeling
and Simulation Integrating Discrete Event and Continuous
Complex Dynamic Systems, Academic Press, 2000.

[53] B.-G. Kang, K.-M. Seo, and T. G. Kim, “Communication anal-
ysis of network-centric warfare via transformation of system of
systems model into integrated system model using neural net-
work,” Complexity, vol. 2018, Article ID 6201356, 16 pages,
2018.

[54] S. Choi, K.-M. Seo, and T. Kim, “Accelerated simulation of dis-
crete event dynamic systems via a multi-fidelity modeling
framework,” Applied Sciences, vol. 7, no. 10, p. 1056, 2017.

[55] A. Backurs and P. Indyk, “Which regular expression patterns
are hard to match?,” in Proceedings of the 57th Annual Sympo-
sium on Foundations of Computer Science, pp. 457–466, New
Bruswick, NJ, USA, October 2016.

[56] Defense-Aerospace, “France awards contract for the mid-life
upgrade of its Mirage 2000D fighters,” 2016, http://www.
defense-aerospace.com/article-view/release/175655/france-
awards-mlu-contract-for-mirage-2000d-fleet.html.

[57] Navy Recognition, “Navantia & Indra to modernize Indone-
sian Navy corvette KRI Malahayati combat system,” 2016,
August 2017, http://www.navyrecognition.com/index.php/
news/defence-news/2016/november-2016-navy-navalforces-
defense-industry-technology-maritime-security-global-news/
4559-navantia-indra-to-modernize-indonesian-navy-corvette-
kri-malahayaticombat-system.html.

[58] Black&Veatch, “Plant improvement engineering services,” 2018,
https://www.bv.com/docs/energy-brochures/plant-improvement-
engineering-services.pdf.

[59] Austin Energy, “Pumping system improvement project saves
energy and improves performance at a power plant project
summary,” 2018, https://www.nrel.gov/docs/fy05osti/37537.pdf.

21Complexity

http://www.defense-aerospace.com/article-view/release/175655/france-awards-mlu-contract-for-mirage-2000d-fleet.html
http://www.defense-aerospace.com/article-view/release/175655/france-awards-mlu-contract-for-mirage-2000d-fleet.html
http://www.defense-aerospace.com/article-view/release/175655/france-awards-mlu-contract-for-mirage-2000d-fleet.html
http://www.navyrecognition.com/index.php/news/defence-news/2016/november-2016-navy-navalforces-defense-industry-technology-maritime-security-global-news/4559-navantia-indra-to-modernize-indonesian-navy-corvette-kri-malahayaticombat-system.html
http://www.navyrecognition.com/index.php/news/defence-news/2016/november-2016-navy-navalforces-defense-industry-technology-maritime-security-global-news/4559-navantia-indra-to-modernize-indonesian-navy-corvette-kri-malahayaticombat-system.html
http://www.navyrecognition.com/index.php/news/defence-news/2016/november-2016-navy-navalforces-defense-industry-technology-maritime-security-global-news/4559-navantia-indra-to-modernize-indonesian-navy-corvette-kri-malahayaticombat-system.html
http://www.navyrecognition.com/index.php/news/defence-news/2016/november-2016-navy-navalforces-defense-industry-technology-maritime-security-global-news/4559-navantia-indra-to-modernize-indonesian-navy-corvette-kri-malahayaticombat-system.html
http://www.navyrecognition.com/index.php/news/defence-news/2016/november-2016-navy-navalforces-defense-industry-technology-maritime-security-global-news/4559-navantia-indra-to-modernize-indonesian-navy-corvette-kri-malahayaticombat-system.html
https://www.bv.com/docs/energy-brochures/plant-improvement-engineering-services.pdf
https://www.bv.com/docs/energy-brochures/plant-improvement-engineering-services.pdf
https://www.nrel.gov/docs/fy05osti/37537.pdf

Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International

Journal of

Mathematics and

Mathematical

Sciences

Hindawi

www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

nalysNumerical AnalysisNumerical AnalysisericalNumerical AnalysisNumerical AnalysisericNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Discrete Dynamics in
Nature and Society

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Differential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

