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We present a theory for the spin-wave excitations in bilayer magnetic sys-

tems with exchange coupling across the interface between two ferromagnetic

films having the same crystallographic structure. The Hamiltonian includes

exchange and anisotropy terms within each magnetic film of the composite

system, as well as at the interface and at the free surfaces. We examine, in

particular, the effect of interface canting between the magnetization direc-

tions for each film, and we derive effective pinning parameters and dynamic

coupling parameters for the interface as functions of the canting angle. We

show that, in the special case when the magnetization directions are antipar-

allel in the bilayer system, the two films may be considered as effectively

decoupled as regards the spin-wave dynamics. We discuss the relevance of

this theory to recent experimental studies of bilayer ferromagnetic systems

that exhibit antiferromagnetic interface exchange.

PACS numbers: 75.70.Cn, 75.30.Ds

1. Introduction

For a long time now there has been an interest in the properties of multilayer

magnetic films (e.g. see [1] for a review of the earlier work). However, in the last

few years there has been an upsurge of activity concerning these stuctures. This is

partly due to recent developments in materials science enabling the preparation of
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high-quality multilayered magnetic films, including superlattices, and partly due to
the development of sensitive experimental techniques to characterize the multilay-
ers. In particular, the spin-wave properties of magnetic multilayers have attracted
a considerable amount of theoretical interest for various different geometries and
magnetic models (e.g., [2-8]). On the experimental side the studies of spin waves
in multilayers have included using ferromagnetic resonance [9-11], spin-wave res-
onance [12, 13], light scattering [14-17], and spin-polarized low-energy electron
diffraction [18, 19].

In this paper we present a theoretical study of a simple multilayer stucture
composed of just two ferromagnetic layers (of different magnetic materials having
the same crystallographic stucture) coupled by exchange interactions at their in-
terface. We are particularly concerned with investigating some novel features of the
spin-wave excitations that may occur when the directions of static magnetization
in each film are canted with respect to one another, and such systems have already
been fabricated (see later). The energies and the ampltudes of the spin waves in
this bilayer system are calculated under different conditions of interface coupling.
We include the effects of exchange and anisotropy within each constituent layer as
well as modified exchange interactions and modifled anisotropy parameters at the
interface and at the free surfaces.

In Section 2 we present the theoretical model for the bilayer ferromagnetic
system. This may be regarded as an extension of a previous paper [8] concerned
specifically with bulk conditions necessary for the observation of standing spin-wave
resonance in bilayer ferromagnetic films. The formalism is extended here by in-
cluding anisotropy effects (within each film and at the surfaces and interface) and
propagation of the spin waves parallel to the plane of the films. In fact, the parallel
propagation leads to a richer spectrum for the spin-wave excitations of the coupled
system, and this would be relevant for experimental studies. The derivation of the
spin-wave energies and amplitudes are given first in Section 3 using a microscopic
theory valid for all wavectors. Then in Section 4 we present a continuum theory
appropriate in the case of small-wavevector (long-wavelength) excitations only,
and the connexion between the two methods is established. The latter approach is
particularly useful in gaining a physical interpretation of the boundary conditions
(at the surfaces and interface). In Section 5 we analyze the spin-wave results in
terms of effective interface coupling and pinning parameters, and special cases of
the canting angle between magnetization directions are discussed.

2. The model

We consider a bilayer system composed of two ferromagnetic materials (la-
beled A and B) in the form of parallel-sided thin films, and Cartesian axes are
chosen as indicated in Fig. 1(a). Each layer is assumed to have a homogeneous
structure and to extend indefinitely in the directions parallel to the surfaces (so
that there is translational symmetry in the xy plane). In general, A and B may
have different magnetic properties (in terms of the magnitudes and directions
of magnetization, the spin quantum numbers, and the exchange and anisotropy
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parameters). however, for simplicity we shall assume that their crystallographic

stuctures are identical. The bilayer sample forms one coupled magnetic system

because of the exchange interactions assumed to exist across the interface between

the films A and B.
With the above assumptions we may consider the bilayer system as made

up of a number of lattice planes perpendicular to the z axis. Each plane will

have identical crystallographic symmetry and the separation of the planes will

be a constant denoted by α0 . Any magnetic ion will be specified by the set of

indices P, j, where B is an integer labeling the plane containing the ion and j is a

twodimensional lattice vector in the xy plane. As shown in Fig. 2 the integer E

ranges in value from 0 to L - 1, corresponding to a total thickness of (L - 1)αß for

the bilayer system, as follows:

l= 0 :Surface plane of A

l= 1, 2, ..., N - 2 : Internal planes of A

l = N- 1 :Interface plane of A

l= N :Interface plane ofB

l = N + 1, N + 2, ... , L - 2 : Internal planes of B
l =L-1 	: Surface plane of B

We first consider the static magnetizations within the bilayer system by em-

ploying a low-temperature semiclassical approximation for the spins. We assume

the spins in films A and B to be acted on by bulk anisotropy fields ΚAb and

ΚBb , respectively, which are independent of position within each film. In addition

there are eXchange interactions which we discuss later in terms of an isotropic

Heisenberg model. The anisotropy fields may be tilted away from the z direction

through angles ΦA and ΦΒ, but for simplicity we assume them at this stage to

lie in the same vertical plane (see Fig. 1(b)), taken as the yz plane. The effec-

tive bulk anisotropy field Β (n = A, B) is obtained by taking account of the
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shape-dependent demagnetization in each film:

where i1 is a unit vector in the z direction, Μn0 is the magnitude of the static mag-
netization in film n (taken to be homogeneous because of the previous assumption
concerning Knb) ,andϕnspecifies the magnetization direction (Fig. 1(b)). In prin-
ciple the angles ϕA and ϕΒ are determined by applying a minimization procedure
to the total magnetic energy of the coupled bilayer system. However, in a first
approximation we may assume that they can be found by minimizing the energies
for each of the films separately. The resulting directions of Μ will be parallel
to the respective effective fields defined in (1), and the tilts ϕA and ϕΒ of the
magnetizations can be found from the standard equations [1]:

The canting angle δ between the static magnetization directions is therefore
|ϕΑ _ ϕΒ|.

We carry out our calculations of the spin-wave properties within the frame-
work of the Heisenberg localized spin model. With the inclusion of exchange and
Zeeman terms the Hamiltonian may be expressed in the form:

where the summations in the first term are taken over pairs of nearest neighbor
spins only. For a spin layer P the nearest neighbors will all be in the same or
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adjacent layers, so that l' is restricted to the values l - 1, l, and l + 1. We make

the following assumptions for the nearest neighbor exchange terms:  Ju' = JA if
both spins are in film A, Ju' = JB if both spins in film B, and Ju' = JAB fOr

spins coupled across the interface between A and B. The quantity ΙΙ in the
second term of (3) is an effective anisotropy field acting on spins in layer l. Its
magnitude and direction will depend on the anisotropy and on the magnetization

in each film, and we take it to be specified as follows:

Here Η and HB are the bulk fields defined in (1), while ΚAs andKsBare surface

anisotropy fields assumed to exist at the surface planes of A and B, respectively,

and correspondingly ΚiA and KiB are interface anisotropy fields. The introduc-

tion of surface and interface anisotropy terms will be shown to be important for

the spin-wave dynamics (by modifying the boundary conditions), even though we

neglect these quantities in establishing the bulk static properties. By writing the

Hamiltonian as in (3) we are taking the magnetic dipole-dipole terms to be negli-

gible for the spin-wave properties (except in giving a static demagnetizing field).

This is a good approximation provided the wavevector of the spin waves is not

too small (e.g., see [17]).

3. Microscopic theory of spin waves

The spin-wave excitations in the bilayer system may be calculated using the

Hamiltonian (3) by a direct generalization of the approach detailed in Ref. [20]

for a single magnetic film. Essentially the method consists of transforming the

spin Hamiltonian to a representation in terms of boson operators (appropriate

to the low temperature regime). A further operator transformation can then be

applied to 'diagonalize' the Hamiltonian to a quasiparticle form. This yields both

the spin-wave energies and the spatial dependence of the eigenfunctions that give

the spin-wave amplitude (in the circular spin-precession approximation) within the

finite magnetic system. In the present application to the bilayer system we need

to take account of the two coupled films with different magnetic properties, the

canting of the magnetizations, and the interface region. Consequently, the detailed

calculations are more complicated, but nevertheless they proceed in an analogous

fashion to [20] and we quote only the main results here.

We denote the wavevector component of the spin waves parallel to the sur-

faces by k|| = (k x , ky). The bulk spin waves (including standing bulk spin waves)

will additionally be characterized by a third wavevector component k t in the z

direction. The characteristic equation determining the values of kz , which will gen-

erally be different in the two films, is obtained from the diagonalization procedure
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and is described later. Utilizing the property of translation invariance parallel to
the surface we may express the spin-wave eigenfunctions in the form:

Any localized surface or interface spin waves will be characterized by k|| and one
or more decay constants, and by analogy with earlier work on surface modes [2,
3] the real k z in (5) then becomes replaced by a complex quantity describing the
decay (see later). It is also convenient at this stage to define some factors that
depend on the assumed crystallographic structure:

where	denotes any vector connecting a site in layer l  with its nearest neighbors
in the same layer, and	denotes the projection in the xy plane of any vector
connecting a site in layer C with its nearest neighbors in layer l  + 1. Also z|| and
z ┴denote the number of nearest neighbors in each case. We note thatγ||(k||)is
always real for twodimensional layers having inversion symmetry, but γ1(k||) may
be complex for some lattice stuctures and surface orientations. We introduce a
phase term ((k||) by writing:

In the special case of	= 0, we have γ1(k||) real and so ζ(k||) = 0.
If the spin-wave amplitude Ul (k|| , k,) in layer C is transformed by setting [20]:

we find from the diagonalization procedure that the terms ul (k z ) satisfy the fol-
lowing set of homogeneous finite-difference equations:

Here we have introduced the following notation (with n = A, B):
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and

In the above expressions SA and SB denote the spin quantum numbers corre-

sponding to films A and B, respectively, mA and mB are unit vection in the

directions of the static magnetizations in films A and B, and E is the energy of a

spin wave. The quantities dA and dB play the role of surface pinning parameters,

while b and c are analogous interface pinning terms. We note from (13)-(16) that

the latter quantities and the interface coupling parameters p and p' depend on the

canting angle δ through the factor mA . mB ≡ cos δ. This dependence will turn

out to have important physical consequences, as we discuss later.

We emphasize at this stage that the results given in (10)—(16) for the cou-

pled equations are, in fact, of wider validity than for the geometry of Fig. 1(b),

where the bulk anisotropy fields and static magnetizations are all in the yz plane.

In particular, it may be shown that the same formulae also apply when the bulk

anisotropy fields and the magnetizations are in the xy plane (parallel to the sur-

faces). However, in that case the magnetizations in each film are aligned along the

respective bulk anisotropy field, and so there is no need to solve an equation anal-

ogous to (2) to establish the equilibrium conditions. The canting angle δ becomes

the same as the angle between the directions of the bulk anisotropy fields in A and

B.

Equations (10)-(16) will now be used to discuss the solutions for the spin-wave

modes of the bilayer system. The set of Eqs. (10) has already been solved exactly by

one of us [21] by applying the socalled Recurrential Interface Rescaling method

especially developed for that purpose in a multilayer system. Subsequently, the

results obtained [21] were re-expressed in equivalent but simpler forms [22], and

they will be used in our following analysis. The method is a generalization of the

long-established formalism [23] for solving the corresponding set of finite-difference

equations in the case of a single ferromagnetic film.

First we define the quantities kA and kB related to each film by
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where α0 is the interlayer distance. For the case of bulk spin waves (standing

modes) in each film, kA and kB are real and have the simple interpretation of being

the z-component kz of the wavevector in the respective films. The corresponding

spin-wave energy E can be expressed in terms of either of these quantities using

(11):

or

By equating the right-hand sides of (18) and (19) we arrive at a consistency con-

dition to be satisfied by kA and kB :

This relation can be used to eliminate either of kA or kB from subsequent expres-

sions, if required.

In addition to (20) the wavevector components have to satisfy a characteristic

equation that specifically derives from the suface and interface equations in (10).

It can be written in the form:

where C(kA) is a rescaled [21] interface pinning parameter given by:

We have expressed (21) in the analogous form to the result for a single film [23],

but with the important difference that in the present case we have C(kA) as a

modifled interface pinning parameter instead of just a surface pinning parameter

for the case of a single film. We note from (20)-(22) the discrete set of allowed

values of kA and kB is determined by all the pinning and coupling parameters and

by both of the film thicknesses of the bilayer system.

The unnormalized exact solutions satisfying (10) can be expressed as [22]:
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where z-components of the wavevectors have to satisfy the relationships discussed
above, and dA and dB are the surface parameters defined by (12). The spin-wave

eigenfunctions introduced in (5) can then be written in the form:

where A is a normalization factor, Lxy denotes the number of sites in each layer

parallel to the surfaces, and ul(k) is given by (23)-(24). The quantity k denotes

either kA or kB depending on whether ß lies within the film A or the film B,

respectively.

4. Long-Wavelength continuum theory of spin waves

We now discuss an alternative formulation for the spin waves in the bi-

layer system by using a continuum theory valid for long-wavelength excitations.

It is useful to consider this because the preceding microscopic theory then sim-

plifies, and it leads to a more direct physical interpretation of the results. Also

the long-wavelength case is of interest to facilitate comparison with some of the

experimental measurements (e.g. in magnetic resonance and light scattering).

It is convenient to present the results by forming the continuum limit of

the theory in Section 3. This may be done by analogy with previous spin-wave

calculations for a single ferromagnetic film (e. g. see [24]) and we again quote

only the main results. We go over to the continuum description by making the

replacement ul → u(z) for the spin-wave amplitude, where z = lα0. For the layers

adjacent to C we make the replacements:

where higher order terms in the Taylor series expansion are neglected, and the

derivatives are evaluated at coordinate z (treated now as a continuous variable).

In practice, this will be a good approximation provided kAα0 « 1 and kBα 0 « 1

for standing bulk spin waves (where kA and kB denote z-component wavevectors

in the films A and B, as before). For localized spin waves, the validity requirement

becomes ξα0

«

 1, where represents any characteristic attenuation factor (recip-

rocal decay length). The previous set of finite-difference equations represented by
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(10) now become replaced by their corresponding differential equations as follows

(where we denote the overall thicknesses of the films Α and B by DA and DB,

respectively, and each equation is expanded to lowest non-vanishing order in the

derivatives of u(z)). Within each film we have:

The boundary conditions at the outer surfaces of the bilayer are:

The boundary conditions at each side of the interface at z = DA are:

where superscripts f indicate that u (or its derivative) are to be evaluated at the

side of the interface corresponding to z = DA ± 0+, respectively. The parameters

xΑ,xB, dA, dB, b, c, pandp'are allasdefined in Section 3. However, in the

long-wavelength limit the expressions of these quantities (with the exception of p
and p') simplify because we can then make the following approximate replacements

for the structure factors:

with α denoting the lattice constant for the layers in the xy plane. The numerical
factors μ || and μ┴, which are stucture-dependent and of order unity or less, are

quoted later for the case of a simple cubic lattice and (001) surfaces.

We note that the surface boundary conditions of (30)-(31) take the well-known

Rado-Weertman (RW) form [25] with terms proportional to u and ∂u/∂z. The in-
terface boundary conditions of (32)—(33) also involve u and ∂u/∂z, but with extra
terms that correspond to the exchange coupling across the interface (through pa-
rameters p and p'). In the special case of p = p' = 0, eqs. (32)-(33) reduce to the
usual RW form (the two films then being decoupled).

The characteristic solutions for the spin-wave modes of the bilayer system

may straightforwardly be deduced within this continuum approach. The general

solutions of (28)-(29) for the amplitude factor u(z) within each film are:
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where n = A if 0 < z < DA and n = Β if DA <z < DA +- DB . Coefficients Fn
and Gn are to be determined by application of the surface and interface boundary
conditions, and the quantities kn satisfy

For the case of standing bulk modes in each film, kA and kB are real wavevector

components and (37) is the long-wavelength continuum approximation to (17).

The corresponding spin-wave energy is given by either of the equivalent expres-

sions in (18)-(19) expanded to the second order in α2k2||, α20k2A andα20k2B.In this

approximation the consistency condition (20) relating kA and kB becomes:

This can be satisfied for small values of the wavevectors only if the term involving

the anisotropy field is not too large, and this places a limítation on the generality

of the continuum approach compared with the results of Section 3.

Apart from having standing bulk spin waves in each film, there is also the

possibility of localized modes occurring in one or both of the films. We can still

formally write u(z) as in (36), but the corresponding spin-wave energy E (which

is real, but no longer given by (18)-(19) would be such that one (or both) of

the quantities kA and kB are complex. A set of linear equations satisfied by the

coefficients FA, GA, FB and GB are obtained on applying the boundary conditions

of (30)—(31) and (32)-(33). A solvability condition can then be written down in

terms of the vanishing of a 4 x 4 determinant, and this is just the characteristic

equation for the spin waves in the bilayer system. When kA and kB are both real,

we obtain results that are just the long-wavelength limit of expressions given in

Section 3, as expected. The same method can also be used to deduce the dispersion

relations and amplitudes for localized spin-wave modes, and we discuss this in a

later paper.

5. Effective interface coupling and pinning

We now employ the results of Sections 3 and 4 to discuss the effective coupling

and pinning at the interface for the standing bulk spin waves. It is evident from

both the microscopic and the continuum approaches that the effective spin-wave

coupling across the interface is described by the quantities p and p' defined in (15)

and (16). We note that both p and p' depend on the canting angle δ through the

factor (1 + mA . mB) or, equivalently, 2 cos 2 (δ/2). Hence, they are at a maximum

when the film magnetization directions are parallel (δ = 00 ), and in the case when

the film magnetizations are antiparallel (δ = 180°) the films may be considered as

effectively decoupled as regards their spin-wave dynamics.

We now discuss this behavior in more detail, as well as the general dependence

on the angle δ, by considering the specific case where the films have a simple-cubic
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lattice structure with (001) surfaces. The stucture faction defined in (6) and (7)
take the form:

leading to simplifications in (11)—(14). Also we have μ || = 1/4 and μl = 0 for the
expansion parameters in (34)—(35). For further simplicity we concentrate on the
case of k|| = 0 for the in-plan wavevector component (as in a spin-wave resonance
experiment). The quantities xn,  dn(n = A, B), b, and c then reduce to

and

As a numerical example of the effect of varying the canting angle δ, Fig. 3
shows the dependence of the effective interface coupling parameters p and p' (bro-
ken curves) taking arbitrarily the case of SA = SB for the spins. As commented
earlier, the interface spin-wave coupling vanishes for δ = 180° and has its max-
imum effect for δ = 0° (or 360°). We also show in Fig. 3 the corresponding vari-
ations of b and c (full curves) with angle δ, neglecting for simplicity the interface
anisotropy fields Κ and KB. The quantities b and c play the same role at the
interface as do the pinning parameters dA and dB at the surfaces of the film (e. g.
see (10) for the microscopic theory or (30)-(33) for the continuum theory): they
may therefore be termed effective interface pinning parameters. We see from Fig.
3 that the δ-dependences of the interface coupling parameters and pinning param-
eters are complementary in the sense that decreases in p and p' are accompanied
by increases in b and c, and vice versa.

Figure 4 illustrates the changes in the interface pinning and spin-wave cou-
pling parameters when the interface exchange JAB is varied over positive and
negative values. The results are plotted for b and p versus the ratio JAB/JA in
Fig. 4(a) and 4(b), respectively, for three values of the canting angle correspond-
ing to the magnetizations being parallel, perpendicular, or antiparallel. We assume
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SA = SB and Κ = 0, as for Fig. 3. Qualitatively similar results are calculated

for the dependence of c and p' on JAB/JB. It is seen from Fig. 4(a) that the ef-

fective interface pinning parameter b depends linearly on JAG /JA, in accordance

with (43), and is a constant (independent of JAG/JA ) for the case of perpendic-

ular magnetizations. The effective coupling parameter p, plotted in Fig. 4(b), is

nonzero in general except when JAB is zero, but for the special case of antiparallel

magnetizations it is zero for all values of JAB , as we discussed beforehand.

In this last case (δ = 180°) our bilayer system is effectively decoupled in

two subfilms as regards the spin wave dynamics. It is important to note, however,

that in this situation the corresponding pinning parameters b and c are not those

for the two subfilms if they existed separately. Instead, b and c are effectiυe

parameters that depend on the exchange coupling JAB across the interface. These

conclusions may be relevant to some recent experimental studies [18, 19, 26, 27] of

bilayer stuctures consisting of two Fe films that are exchange coupled through a

Cr interlayer, including some cases where the magnetization directions are canted.

For example, for an appropriate thickness of Cr, the effective exchange coupling

across the interface between the two Fe films is observed to be antiferromagnetic

giving δ = 180°. The experimental observations on this system are consistent

with our prediction of an effective dynamic decoupling for the spin waves in the

two Fe films. We shall consider further applications of our theory to experiment

(particularly for light scattering) in a later work.

The effective interface pinning for general values of the canting angle can

easily be understood on re-expressing (43) and (44) as

are effective mean fields acting on interface spins in film Α(Β) due to exchange

coupling to interface spins in film Β(Α). Therefore the contributions to b and c can

be regarded as arising from the correlation between static components of interface

spins. By contrast, we emphasize that our coupling parameters p and p' arise

dynamically due to the correlation between tranverse components of the precessing

interface spins: they are effectiυe interface coupling parameters for spin waves

and are different from the static eXchange coupling between the interface spins.

Our quoted expressions for p and p' are simplifled to some extent because we have

made a circular spin-precession approximation (as indicated in Section 3) to obtain

the set of finite-difference equations (10). In the absence of this approximation the

spin-wave diagonalization procedure for the coupled system would become much

more complicated. Hence, there are corrections to p and p' due to ellipticity of the

spin precession, but these effects are expected to be small (by analogy with earlier

work [28] for single films).
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