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Topological insulators are characterized by a non-trivial band topology driven by the spin-orbit 

coupling. To fully explore the fundamental science and application of topological insulators, 

material realization is indispensable. Here we predict, based on tight-binding modelling and 

first-principles calculations, that bilayers of perovskite-type transition-metal oxides grown 

along the [111] crystallographic axis are potential candidates for two-dimensional topological 

insulators. The topological band structure of these materials can be fine-tuned by changing 

dopant ions, substrates and external gate voltages. We predict that LaAuO3 bilayers have 

a topologically non-trivial energy gap of about 0.15 eV, which is sufficiently large to realize 

the quantum spin Hall effect at room temperature. Intriguing phenomena, such as fractional 

quantum Hall effect, associated with the nearly flat topologically non-trivial bands found in eg 

systems are also discussed. 
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S
ince the discovery1,2 of the quantum Hall e�ect (QHE), the 
quest for topologically ordered states of matter has become 
a major subject of interest in condensed matter physics.  

Haldane3 �rst proposed that electrons hopping on a honeycomb  
lattice could realize the QHE in the absence of Landau levels, point-
ing out the possibility of non-trivial topology in simple band insula-
tors. Along this direction, recent e�orts have culminated in the the-
oretical prediction4–7 and subsequent experimental realization8–10 
of the so-called topological insulators (TIs) in materials with strong 
spin-orbit coupling (SOC). Many interesting phenomena, includ-
ing giant magneto-electric e�ects11 and the appearance of Majorana 
fermions12, have been predicted. Once realized in real materials, 
these phenomena could lead to entirely new device paradigms for 
spintronics and quantum computing.

However, so far, the material realization of TIs has been limited 
to narrow band-gap semiconductors based on Hg or Bi, in which 
the electronic properties are dominated by s and p orbitals. Here, 
we report our theoretical investigation of topological insulating 
behaviour in a completely di�erent materials class—heterostruc-
tures of transition-metal oxides (TMOs) involving d electrons. Our 
motivation is twofold. First, arti�cial heterostructures of TMOs are 
becoming available owing to the recent development13–15 in the 
�elds of oxide superlattices and oxide electronics16. In particular, 
layered structures of TMOs can be now prepared with atomic preci-
sion, thus o�ering a high degree of control over important mate-
rial properties, such as lattice constant, carrier concentration, SOC 
and correlation strength. As we show below, these advantages can 
be readily exploited in the design of TIs. Second, TMOs constitute 
a wide class of compounds that exhibit a variety of intriguing prop-
erties and electronic states associated with the electron–electron 
interactions, encompassing superconductivity, magnetism, ferro-
electricity and Mott insulators. Combined with the TI phase, TMO 
heterostructures provide a very promising platform to explore vari-
ous topological e�ects.

Our main results are summarized below. We �rst demonstrate 
the design principle for realizing two-dimensional (2D) TIs in bilay-
ers of perovskite-type TMOs grown along the [111] crystallographic 
axis by using phenomenological tight-binding (TB) modelling. 
Based on this design principle and �rst-principles calculations, a 
number of candidate materials are identi�ed. �e topological band 
structure of these materials can be �ne-tuned by changing dopant 
ions, substrates and external gate voltages, which will enable also 
the control of the topological quantum phase transition. In particu-
lar, we predict that LaAuO3 bilayer has a topologically non-trivial 
energy gap about 0.15 eV, which is su�ciently large to realize the 
quantum spin Hall e�ect at room temperature. When electron–elec-
tron interaction is included, our system with topologically non-triv-
ial band structure could have far more interesting physics. Here, we 
demonstrate this possibility by focusing on the TMO bilayers of eg 
systems, which are characterized by nearly �at topologically non-
trivial Z2 bands. We argue that when these bands are partially �lled, 
electron correlation could give rise to the quantum anomalous Hall 
(QAH) e�ect and the fractional QHE. Our results may open new 
directions focusing on topological phenomena in the rapidly grow-
ing �eld of oxide electronics.

Results
Design principle. To demonstrate the design principle for 
engineering TIs in TMO heterostructures, we consider perovskite-
type TMOs as our prototype system. �ese compounds are very 
common and have the chemical formula ABO3, where O is oxygen 
and B is a transition-metal (TM) ion. �e key idea is to start with 
a band structure that possesses ‘Dirac points’ in the Brillouin zone 
without the SOC, and then examine whether an energy gap can be 
opened at those points with the SOC turned on. If an energy gap 
does open, combined with proper �lling the resulting state could 

be a TI. In an ideal perovskite structure, the TM ions sit on a simple 
cubic lattice, with the octahedral crystalline �eld splitting the TM d 
orbitals into twofold degenerate e d dg z r x y

( , )
3

2 2 2 2− −  and threefold 
degenerate t d d dg yz zx xy2 ( , , ) levels, well separated by so-called 
10Dq on the order of 3 eV. Such a lattice geometry usually does not 
support Dirac points. Instead, we consider bilayers of the perovskite 
structure grown in the [111] direction. As shown in Figure 1, the 
TM ions in the (111) bilayer are located on a honeycomb lattice 
consisting of two trigonal sublattices on di�erent layers. �is lattice 
geometry has three consequences: �rstly, it is well known from the 
study of graphene that electrons hopping on a honeycomb lattice 
generally give rise to Dirac points in the band structure; secondly, 
a layer potential di�erence can be easily created by applying a 
perpendicular electric �eld or by sandwiching the bilayer between 
two di�erent substrates, which allows experimental control of the 
band topology; and, thirdly, the honeycomb lattice further reduces 
the symmetry of the crystalline �eld from octahedral (Oh) to trigonal 
(C3v), and introduces additional level splitting of the d orbitals. 
�e last point turns out to be crucial for realizing the topologically 
insulating phase.

We �rst consider the t2g manifold, in which the on-site SOC is 
active. In our modelling, only nearest-neighbour (NN) hopping of d 
electrons between the TM sites via oxygen p orbital is included. As 
we are interested in the band topology, which is robust against small 
perturbations as long as the band gap remains open, our model is 
justi�ed and allows us to capture the essential ingredients with min-
imal parameterization. �e TB Hamiltonian is given by 
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where r and τ label the lattice sites and the t2g orbitals, respectively. 
�e �rst term is the hopping term represented by a single amplitude 
t and the dimensionless structural factor Trr′

tt ′. �e second term is 
the on-site SOC, which splits the t2g levels into a j = 1/2 doublet with 
energy λ and a j = 3/2 quadruplet with energy  − λ/2. lr and sr are the 
angular momentum and spin operators. �e third term is the trigonal 
crystalline �eld which splits the t2g manifold into a1g and eg′ manifolds 
with their level separation given by 3∆/2. V in the last term is the layer 
potential di�erence, and ξr = 1 when r is in the top or bottom layer. 
�e explicit form of the Hamiltonian is presented in the Methods.

�e large number of orbitals (six per TM site) involved in our 
model give rise to a very rich behaviour of the topological band 
structure in the parameter space. Depending on the strength of the 
SOC, the system falls into two di�erent phases. In the strong SOC 
limit (λ/t > 8/3 when Δ = 0), bands originating from the j = 1/2 and 
j = 3/2 orbitals are completely separated. �e trigonal crystal �eld 
then opens up an energy gap within each manifold, and a non-triv-
ial Z2 topology can be realized. �is is similar to the results reported 
on Iridium compounds17,18. In the weak SOC limit, bands from 
j = 1/2 and j = 3/2 orbitals become mixed away from the Γ point. 
Again, we �nd topologically non-trivial energy gaps that can be 
opened by ∆. �e Z2 topological invariant is determined using two 
di�erent methods. One can either evaluate it directly from the bulk 
band structure19 or count the number of edge states. �e calculated 
band structure for both cases together with the Z2 index is shown in  
Figure 2a–d. By inspection, we �nd that t2g

1  , t2g
2  , t2g

3  and t2g
5  TMOs 

are all possible candidates for TIs in the strong SOC limit, and t2g
2 ,  

t2g
4  and t2g

5  in the weak SOC. �e dependence of the band topol-
ogy on the layer potential di�erence V is rather interesting. While 
increasing V will eventually destroy the Z2 non-trivial phase, under 
moderate values of V, the t2g

3  system remains TI in the strong SOC 
limit, and the t2g

4  system in the weak SOC limit.

(1)(1)
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Next, we consider the eg manifold. It is well known that the SOC 
is quenched within the eg manifold so it seems that the resulting 
band topology should be trivial. However, similar to graphene20,21 
and some TM ions22,23, the SOC can still take place through the 
virtual excitation of electrons between eg and t2g levels. According to 
the second-order perturbation theory, the e�ective SOC is given by 

H
H H

E E
SO

eg

SO SO

eg

ee

t t

e t t e′

∉
= 〈 〉〈 ′〉

−∑ | | | |
,

 
where ε labels the eg orbitals. Hence, the Hamiltonian can be  
written
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where the SOC magnitude is given by l l= /
2 ∆E, with ∆E roughly 

being the energy di�erence between eg and t2g levels. (�e explicit 
form of the Hamiltonian is presented in the Methods and in Supple-
mentary Note 1.) We �nd that H SO

 r  opens up an energy gap at the Γ 
point and also the Dirac point located at K. From the inspection of 
the Z2 topological invariant and counting the number of edge states, 
we found that eg

1, eg
2 and eg

3 systems become TIs (Fig. 2e,f). Here, 
the trigonal crystalline �eld is also important—if all t2g levels are 
degenerated, even the second-order SOC vanishes. A layer poten-
tial di�erence comparable to l  closes the gap at the Dirac point,  
turning the eg

2 system into a trivial insulator. On the other hand, 
gaps at the Γ point are stable against this perturbation. Instead, these 
gaps close when the local potential di�erence between d

z r3
2 2−

 and 

d
x y2 2−  is comparable to l . �us, the TI state and the Jahn–Teller 

e�ect24 compete in real materials with the eg
1 or eg

3 con�guration.

Materials consideration. Having established that the TIs can be 
realized in (111)-bilayer TMO for both t2g and eg con�gurations, 
we now turn to real materials. We aim to realize the integer �ll-

(2)(2)

(3)(3)

ings established above using TM B ions with the formal valence  + 3 
or  + 4. For B3 + (4 + ), we choose La (Sr) for the A-site element in both 
the target TMO and the insulating substrate AB′O3, and Al (Ti) for 
the B′-site element in the insulating substrate. Controlling the strain 
e�ects and the layer potential di�erence is possible by replacing A 
and/or B′ with their isovalent elements. It is well known that some 
of the TMOs are insulating due to strong correlations25. �erefore, 
if the corresponding bulk system is heavily insulating, bilayering 
may not be useful. Even if the corresponding bulk system is metal-
lic, the low dimensionality in (111) bilayers may drive the system 
into a Mott insulator26. Further, the correlation e�ects are expected 
to reduce the e�ective band width and increase the splitting between 
occupied levels and unoccupied levels. While this e�ect does not 
change the band topology in eg electron systems, this could in�uence 
the topology in t2g systems by modifying the crystal �eld splitting 
between a1g and e′g levels. In addition, in a system with an integer 
number of electrons per site, local moments could be induced by the 
correlation e�ects resulting in the magnetic ordering. If the sym-
metry breaking by the magnetic ordering is strong, the system could 
become a trivial insulator. We do not consider such complexities by 
focusing on rather itinerant 4d and 5d electrons of TM ion, yet t2g 
electron systems are more susceptible for magnetic orderings than 
eg electron systems because of the smaller hopping intensity. �ese 
considerations somewhat limit the choice of TM and substrate mate-
rial. Our candidate materials for TIs are, therefore, LaRe3 + O3 as a t2g

4  
electron system, LaRu3 + O3, LaOs3 + O3, SrRh4 + O3 and SrIr4 + O3 as 
t2g

5  systems, and LaAg3 + O3 and LaAu3 + O3 as eg
2 electron systems. 

Most of these materials have been synthesized and their references 
are summarized in Table 1. LaReO3, LaOsO3 and LaAgO3 have yet 
to be synthesized. According to Ralle and Jansen35, bulk LaAuO3 
has CaF2 structure rather than the perovskite. We expect this mate-
rial shapes the perovskite structure by, for example, high-pressure 
synthesis and grown on a substrate with the perovskite structure. If 
properly synthesized, perovskite LaAuO3 is expected to be metallic 
as LaAgO3 predicted by the density functional theory (DFT) calcu-
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Figure 1 | Formation of the honeycomb lattice in a (111) bilayer in the cubic lattice. (a) Perovskite structure ABO3. (b) A (111) bilayer consisting of the 

top layer indicated by red circles and the bottom layer indicated by blue circles. The lattice constant is a0. The bilayer shown as solid lines in (b) forms 

the honeycomb lattice when projected on the [111] plane with the lattice constant a a= 2/3 0 (c). The real space coordinates are labelled by (x,y,z) in the 

original cubic lattice, while it is labelled by (X,Y) in the [111] plane. (d) Level structure of TM d orbital. In the cubic environment, d orbitals split into eg 

and t2g manifolds. With the SOC, t2g manifold further splits into two levels characterized by the effective total angular momentum j = 1/2 and 3/2. With 

the trigonal crystal field, t2g manifold splits into two levels denoted by a1g and e′g. With both the SOC and the trigonal field, t2g manifold splits into three 

levels and eg manifold splits into two levels, that is, all the degeneracies are lifted except the Kramers doublets. (e) ABO3 monolayer is grown on AO3-

terminated AB′O3 substrate capped by AB′O3. The direction of crystal growth is indicated by an arrow.



ARTICLE

��

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms1602

NATURE COMMUNICATIONS | 2:596 | DOI: 10.1038/ncomms1602 | www.nature.com/naturecommunications

© 2011 Macmillan Publishers Limited. All rights reserved.

lation33. We also note that growing thin �lms of perovskite TMOs 
along the [111] direction has already started36,37. While t2g

2 systems 
are also candidates for TIs, the TI state is hard to realize because of 

the band overlap. For eg
1 and eg

3 systems, additional e�ects such as 
longer range transfer and the Jahn–Teller e�ect can easily modify 
the dispersion relations.

We �rst performed the DFT calculations for the bilayers of t2g 
systems LaReO3, LaRuO3, LaOsO3, SrRhO3 and SrIrO3 (details are 
presented in the Methods section.) �eir dispersion relations are 
shown in Figure 3a–d. We notice the remarkable agreement between 
the DFT results and the TB result, Figure 2c, especially for LaReO3 
and LaOsO3. For SrRhO3, LaReO3 and LaRuO3 (not shown), the 
Fermi level crosses several bands. �us, these systems are classi�ed 
as topological metals rather than TIs. In LaOsO3 and SrIrO3, the 
Fermi level is located inside the gap. �erefore, from the analogy to 
the TB model, (111) bilayers of LaOsO3 and SrIrO3 are TIs. From 
our DFT calculations, it is noted that the material dependence of the 
dispersion relations is rather large for t2g systems. �is is because a 
large number of band parameters are involved in the band structure 
including the local crystalline �eld.

We now move to eg
2 electron systems, LaAgO3 and LaAuO3. 

Our DFT results for these systems are shown in Figure 3e,f. As in 
the t2g case, the DFT reproduces the TB result fairly well. In both 
undoped systems, the Fermi level is inside the gap at the K point, 
and from the analogy to the TB result, these systems are TIs. �e gap 
amplitude is found to be about 150 meV for LaAuO3 and 40 meV 
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Figure 2 | Dispersion relations of the (111) bilayer. (a) and (b) t2g model 

in the strong SOC limit. The SOC is fixed as λ/t = 5 with ∆/t = 1 (red) and 

∆ = 0 (green). (c) and (d) t2g model in the weak SOC limit, ∆/t = 0.5 with 

λ/t = 1.5 (red), and ∆/t = 1.5 with λ/t = 0 (green). (e) and (f) eg model 

with l /t=0.2  (red) and l /t=0  (green). Figures (a), (c) and (e) show 

the bulk dispersion relations. The dispersions in red correspond to the 

topologically non-trivial bands with the Z2 invariants shown for each band. 

Sum of Z2 in the occupied bands gives the Z2 topological invariant for the 

corresponding filling. For example, when the lowest five bands of the t2g 

model are occupied by electrons in (a), Z2 invariant becomes 1 + 0 + 0 + 1 + 1 

mod 2 = 1. The insets in (a) and (c) show the zoom-up near the K point. 

Figures (b), (d) and (f) show the dispersion relations in finite-thick zigzag 

ribbons with the periodic boundary condition along the X direction and the 

openboundary condition along the Y direction. Parameters are the same 

as in the bulk dispersions. Edge modes supporting the spin current are 

indicated by red lines. For the t2g model with the weak SOC, there appear 

four edge channels between the third and the fourth bands as shown as 

blue lines in consistent with the Z2 number.
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Figure 3 | Density functional theory results of the dispersion relations 

of the (111) bilayer of transition-metal oxides. Symmetric bilayers: (a) 

LaReO3, (b) LaOsO3, (c) SrRhO3, (d) SrIrO3, (e) LaAgO3 and (f) LaAuO3. 

Bilayers shown in (a), (b), (e) and (f) are grown between LaAlO3, while 

those in (c) and (d) are grown between SrTiO3. Asymmetric bilayers of 

LaAuO3 grown between LaAlO3 and LaScO3 (g), and between LaAlO3 

and YAlO3 (h). The Fermi level is taken to be 0 of the vertical axis. Bilayers 

shown in (b), (d), (e), (f) and (h) are TIs with the band gap indicated,  

(g) is a trivial insulator and others are topological metals.

Table 1 | List of candidate materials.

Configuration Bulk Superlattice

LaReO3 t2g
4 — —

LaRuO3  t2g
5 Metallic27 —

SrRhO3  t2g
5 Metallic28 (Ref. 29)

SrIrO3  t2g
5 Metallic30,31 Metallic32

LaOsO3 t2g
5 — —

LaAgO3 eg
2 Metallic (band 

calculation)33
—

LaAuO3 eg
2 (Refs 34, 35) —
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for LaAgO3, so these systems should remain TIs at room tempera-
ture. �e band gap and topological property can be controlled by 
breaking the symmetry between top and bottom layers. As shown  
in Figure 3g, the asymmetric bilayer with LaScO3 has larger band 
gap ~300 meV, and from the inspection of the symmetry of the wave 
function at the K point, this bilayer is a trivial insulator. On the 
other hand, the asymmetric bilayer with YAlO3 has smaller band 
gap ~50 meV and remains to be a TI (Fig. 3h). Such a small band gap 
TI is especially useful to control the topological property by using 
the gate voltage. Similar to LaAgO3 and LaAuO3, we also performed 
the DFT calculations for a 3d system LaCuO3. We found that this 
system develops an instability towards magnetic ordering because 
the itinerancy is reduced compared with 4d and 5d systems.

Nearly �at Z2 topologically non-trivial bands. One of the appeal-
ing aspect of realizing non-trivial band topology in TMOs is the rich 
possibilities of novel phenomena that could emerge when electron 
correlation is considered. Here, we demonstrate one of the possi-
bilities in the eg systems with nearly �at Z2 topologically non-trivial 
bands (see Fig. 2e). Obviously, when the chemical potential is tuned 
into the nearly �at Z2 bands, we are in a novel regime of quantum 
many-body physics. From the inspection of dispersion relations 
shown in Figure 3e and f, the upper �at band appears to be more 
stable than the lower �at band. Tuning the chemical potential in the 
upper �at band corresponds to removing electrons from d10 systems 
or adding electrons to d9 systems. When such a situation is realized, 
kinetic energy is suppressed and physics is controlled mainly by 
interaction, whose energy scale is typically 1–2 eV, much larger than 
the width of �at bands W~0.2 eV. What would be the ground state 
of the system? Here, we propose several natural candidate states. 
One very likely consequence of the short-range repulsion U, when 
the doping of the nearly �at band is not too small, is to drive the 
system ferromagnetic because of Stoner’s criteria U/W1. On the 
other hand, when doping is too small, Wigner crystal phase should 
naturally occur. In the following, we assume that spontaneous fer-
romagnetic ordering occurs. �e magnetic order should be viewed 
as a breaking of a discrete symmetry, due to the SOC, instead of the 
breaking of a continuous spin rotation symmetry, which is not real-
ized in a 2D system at any �nite temperature. Our discussion is not 
limited to spontaneous ordering, because magnetism can be also 
introduced externally by using a magnetic insulator as a substrate.

We model the e�ect of ferromagnetic ordering by adding a  
Zeeman spin splitting to the Hamiltonian: 

H B d d d dZeeman = ( ).− −∑ ↑ ↑ ↑ ↓
r

r r r r
e

e e e e
 

Resulting dispersion relations for eg system with two characteristic 
Zeeman �elds are presented in Figure 4. From the inspection of the 
Chern number, the QAH-insulating state38 is realized in eg

0.5 and  

(4)(4)

eg
3.5 systems, and also eg

1, eg
1.5, eg

2.5 and eg
3 systems when the Zee-

man �eld is large. �e eg
1 con�guration with the large Zeeman split-

ting is realized in undoped perovskite manganites. More interesting 
physics occurs when the nearly �at ‘Chern’ band is partially �lled 
(see Figs 2e and 4). In this case, as pointed out recently, fractional 
quantum Hall (FQH) states are likely to be realized39–44. To elabo-
rate this possibility, we perform exact diagonalization calculation 
a�er projecting on-site repulsion and NN repulsion into the 1/3 
�lled highest Chern band (that is, at eg

3.5 + 1/6). Indeed, signatures 
of a ν = 1/3 FQH state are observed (details of the exact diagonaliza-
tion and the numerical result are presented in the Supplementary 
Note 2). We �nd that, when the NN repulsive interaction is larger 
than the width of the �at band, the ground state degeneracy is three-
fold on a torus, and the Chern number (excluding the integer Chern 
number from the �lled bands) of the ground state wave function is 
~1/3 up to �nite size correction.

�e aforementioned FQH e�ects and QAH e�ects are both high-
temperature e�ects and fundamentally di�erent from the quantum 
Hall states realized in GaAs 2D electron gas in a magnetic �eld, 
where quasi-particle energy gap is controlled by the long-range Cou-
lomb repulsion e lB

2 2
/( )e  (ε is the dielectric constant and lB is the mag-

netic length), typically around a few Kelvin. In the present systems, 
quasi-particle energy gap is determined by the short-range repulsion 
~1–2 eV. �is indicates that room temperature FQH e�ects may be 
realized. FQH states, in particular the non-Abelian states, have been 
shown to be very useful as building blocks of a quantum compu-
ter45,46. A high-temperature non-Abelian quantum Hall states in the 
TMO heterostructures, for example, at ν = 1/2 �lling where natural 
candidate states are in the same universality class of Pfa�an states47 
or anti-Pfa�an states48,49, if realized experimentally, would have 
strong impacts on both fundamental physics and its applications, 
including the e�orts of realizing topological quantum computation.

Discussion
Before closing, we make few remarks on TIs in the TMO bilayers. 
�e direct con�rmation of the TI state is possible by measuring 
the conductance. As in Bernevig et al.5 and König et al.8, the con-
ductance should be quantized as  = 2e2/h per (111) bilayer in the 
two-terminal measurement. �e conductance can be controlled by 
using the gate voltage. In our DFT calculations, the (111) bilayers 
are repeated along the [111] axis. With the non-zero inter-bilayer 
coupling, the helical edge channels on the surface of the sample will 
turn to the two Dirac fermions at k[111] = 0 and 1/2 in the unit of 
the reciprocal lattice vector along the [111] direction. �us, strictly 
speaking, the TI is classi�ed as a ‘weak’ TI and the backward scat-
tering between the two Dirac fermions, if it exists, causes the locali-
zation. In order to avoid this, one needs to make the single (111) 
bilayer or keep the neighbouring (111) bilayers far apart so that the 
inter-bilayer coupling becomes exponentially small. When fabricat-
ing the (111) bilayer, a small number of defects would have minor 
e�ects because the edge modes surrounding them are disconnected. 
However, as the defect density increases, two surfaces are eventually 
connected through the edge modes belonging to the islands. As a 
result, the backward scattering takes place. Another source of the 
localization is islands of thicker (111) TMO layers. �e suppressed 
trigonal �eld inside such thick islands is expected to create the gap-
less bulk modes. In further thicker islands of (111) TMO layers, 
metallic state would be realized inside the sample. In addition to 
(111) bilayers, we have studied model (111) trilayers and found that 
the TI states are robust without the even–odd oscillation between 
TI and trivial insulator, as predicted for the bismuth thin �lms50. 
Structurally, a (111) trilayer forms a so-called dice lattice, which 
could also bring about interesting quantum e�ects characterized by 
the Chern number C =  ± 2 (ref. 51). Of course, if the layer structure 
is too thick then the bulk cubic symmetry is restored and the system 
is no longer a TI. So far, we did not mention the correlation e�ects 
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and competing ground states except for the previous section. For  
limiting cases, we have performed unrestricted Hartree–Fock calcu-
lations for multi-orbital Hubbard models de�ned on (111) bilay-
ers. We found that the TI states are rather robust for eg

2 systems 
and become unstable against antiferromagnetic insulating states 
when the interaction strength is comparable to the full bandwidth 
as in the 2D Hubbard model on the honeycomb lattice52. For eg

1 or 
eg

3 systems, the QAH-insulating states could be generated dynami-
cally by correlation e�ects without the SOC53,54, yet trivial-insu-
lating states due to the Jahn–Teller e�ect would also be stabilized 
depending on the relative balance between the Coulomb interac-
tion and the Jahn–Teller coupling. In this paper, we focused on 
the perovskite-type TMOs. �us, our design principle for the TI 
state works only for the [111] plane because other planes such as 
[001] and [110] do not support a honeycomb lattice. However, this 
approach is not limited to the perovskite systems. For example, the 
[0001] plane of corundum Al2O3, that is, sapphire, involves a hon-
eycomb lattice formed by Al atoms. Such a system could also be 
utilized as the substrate material to arti�cially create the TI state.

Methods
TB models in the real space. First, we consider a general multiband TB model on 
a cubic lattice given by 

H t d dband = { },− +
〈 〉

′
′∑ ∑

rr
rr r r

′ ′
′ ′

s mm

mm
ms m s

†
h.c.

 
where r labels the TM sites, σ spin and µ orbitals. trr′

mm ′ is a transfer matrix, which 
depends on the pair of orbitals but not on the spin; its detail will be presented 
shortly.

For t2g electron systems, the trigonal crystal �eld directly couples with the local 
t2g level. In addition, the angular momentum is not quenched, and therefore the 
SOC is active. Including these two e�ects, a TB model for t2g systems is written as 
H H H Ht g band SO tri2

= + +  with HSO and Htri given by the second and the third 
terms of equation (1), respectively. �e explicit form of HSO for the t2g-alone model 
is given by 

H i d dSO = ⋅∑ ∑ ∑
′ ′ ′′

′ ′′ ′
′′

′l l e s
ss tt t

tt t ts ss
t

t s
r

r r
r

r rl s =
2

,
†

with the use of the following convention for the orbital index: | =|a dyz〉 〉, 
| =|b dzx〉 〉, and | =|c dxy〉 〉. στ with τ = a,b,c is the Pauli matrix, and ett t′ ′′ is the 
Levi–Civita antisymmetric tensor.

�e dependence of transfer matrices on the orbital and direction is given by the 
Slater–Koster formula55 as follows: 

t t t t
aa bb cc
r r y z r r z x r r x y, ( ) , ( ) , ( )= = = ,± ± ± pˆ ˆ ˆ ˆ ˆ ˆ

   

t t t t
aa bb cc
r r x r r y r r z, , ,= = = ,± ± ± ′dˆˆˆ

 
for the NN hopping and 

t t t t
aa bb cc
r r y z r r z x r r y z, , ,= = =± ± ± ± ± ± ′′s ,ˆ ˆ ˆ ˆ ˆ ˆ

   

ˆ ˆ ˆ ˆ ˆ ˆt t t t
ab bc ca
r r x y r r y z r r z x, ( ) , ( ) , ( )= = = ,± + ± + ± + ′p

   

t t t t
ab bc ca
r r x y r r y z r r z x, ( ) , ( ) , ( )= = = ,± − ± − ± − ′− pˆ ˆ ˆ ˆ ˆ ˆ

 
for the second-neighbour (SN) hopping. Here, x̂, ŷ and ẑ are the unit vector along 
the x, y and z direction, respectively. Although it is via weak π hybridization tpd

π 
between a TM ion and an oxygen ion, the NN hopping t t pd pdp

p∝ ( ) /
2 ∆  is the 

largest parameter in this model, thus, taken as the unit of energy t. ∆pd is the level 
di�erence between TM d orbitals and oxygen p orbitals. �e ratio between trr′

tt ′ and 
tπ is the dimensionless parameter T t trr rr′ ′

tt tt
p

′ ′
= / . tδ′ is also the NN hopping, but 

it is via weak direct overlap and, therefore, is expected to be small. tσ′′ and tπ′ are 
the SN hoppings due to the higher-order processes involving the transfer between 
two oxygen ions as t t tpd pp pd′′ ′ ∝s p

p s p
,

,
( ) /

2 2∆ . As t ′′ ′s p( ) involves relatively strong 

(weak) σ(π) hybridization between two oxygen ions t pp
s p( ), we expect | | | |t t′′ ′>s p . 

Typical transfer intensities are shown in Supplementary Fig. S1(a).
For eg electron systems, linear coupling with the trigonal crystal �eld is absent. 

�erefore, the C3 lattice symmetry of a (111) bilayer does not in�uence the on-site 
eg level. On the other hand, eg degeneracy can be li�ed by the distortion of an O6 
cage surrounding a TM ion, that is, the Jahn–Teller e�ect. Focusing on the metallic 
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regime, we neglect this e�ect. �e angular momentum is quenched unless the 
coupling between eg and t2g orbitals are considered. We also neglect this e�ect at 
the moment but reconsider it later. �us, for the eg-alone model, H Heg band= . 
�e dependence of transfer matrices on the orbital and direction is again given by 
the Slater–Koster formula55. For the NN hopping, we have 

t

t t

t t

t

t
r r z

r r z r r z

r r z r r z

,

, ,

, ,

±
′ ± ±

± ±

=
















=ee
aa ab

ba bb
s 0

0 dd









 ,ˆ

ˆ

ˆ

ˆ

ˆ
    

t
t t t t

t t t t
r r x, =

1

4

3 3( )

3( ) 3
,±

′ + − −

− − +













ee s d s d

s d s d
ˆ

    

t
t t t t

t t t t
r r y, =

1

4

3 3( )

3( ) 3
,±

′ + −

− +













ee s d s d

s d s d
ˆ

  
and for the SN hopping 

t tr r x y, =
1

2

1 0

0 3
,± ±

′
′ −










ee
sˆ ˆ

    

ˆt tr r z x, =
1

2

2 3

3 0
,± ±

′
′−

−

−













ee
sˆ

    

ˆˆt tr r z y, =
1

2

2 3

3 0
.± ±

′
′−












ee
s

  
Here, ε(=α, β) labels the eg orbitals as | |a 〉 = 〉−d

z r3 2 2  and | =| 2 2b〉 〉−d
x y

. For 

eg electron systems, the NN hopping t t pd pds
s∝ ( ) /

2 ∆  is via strong σ hybridiza-

tion between a TM ion and an oxygen ion tpd
σ  and, therefore, largest. �is hopping 

integral is taken as the unit of energy t. Again, the dimensionless parameter Trr′
ee ′  

is de�ned by the ratio between trr′
ee ′ and tσ as T t trr rr′ ′

ee ee
s

′ ′
= / . �e NN hopping tδ is 

due mainly to the direct overlap between two TM ions and, therefore, expected to 
be small | | | |t td s  as tδ′ in the t2g orbital model. tσ′ is the SN hopping due to the  
higher-order processes involving the transfer between two oxygen ions as 
t t tpd pp pd′ ∝s

s s
( ) /

2 2∆ . Typical transfer intensities are shown in Supplementary  
Fig. S1(b).

TB models on the (111) bilayer. By constraining the atomic coordinate r within 
the (111) bilayer R = (X,Y), it is straightforward to derive the TB Hamiltonian 
as a function of 2D momentum k = (kx, ky). We use the convention in which the 
projection of the NN bond into the (111) plane a  is taken as the unit of the length 
scale. �is is a factor 2/3 smaller than the lattice constant of the cubic perovskite, 
and the size of the new unit cell is 3 3 2

2a / . Taking the primitive lattice vectors as 
a1 3 0= ( , )a  and a2 = ( 3 /2,3 /2) a a , the �rst Brillouin zone is a hexagon with six 
corners located at k = ( 4 /3 3 ,0),( 2 /3 3 , 2 /3 )± ± ±p p p  a a a .

For the t2g orbital model, we obtain 
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Here, the spin indices are suppressed for simplicity. V/2 is the sublattice-depend-
ent potential, which breaks the symmetry between the top (labelled 1) and bottom 
(labelled 2) layers.

For the eg orbital model, we obtain 
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DFT calculations. DFT calculations were carried out using the projector 
augmented wave method56 with the generalized gradient approximation in the 
parametrization of Perdew, Burke and Enzerhof57 for exchange correlation as 
implemented in the Vienna Ab Initio Simulation Package58. �e default plane-
wave energy cuto� for O, 400.0 eV, was consistently used in all the calculations. �e 
optimized crystal parameter is 3.81 Å for bulk LaAlO3, and 3.95 Å for bulk SrTiO3. 
�ese values are in consistent with the experimental values of 3.79 Å (Berkstresser 
et al.59) and 3.91 Å (Hellwege and Hellwege60). �e TM bilayer structures were 
simulated by a supercell consisting of 12 AO3 and 12 B layers along the [111] direc-
tion with (A,B) = (La,Al) or (Sr,Ti) with two adjacent B layers replaced by TM ions. 
In the (111) plane, the supercell contains a 1×1 unit cell. A 6×6×1 special k-point 
mesh including the Γ point (0,0,0) was used for integration over the Brillouin 
zone. Optimized atomic structures were achieved when forces on all the atoms 
were  < 0.01 eV/Å. 
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