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Interface evolution with Neumann boundary condition

MOTO-HIKO SATO

§1. Introduction. In this paper we aim at constructing generalized
solutions for interface equation introduced in [1] and [6] for Neumann problem.
We are concerned with the motion of a hypersurface in a domain . The speed
of the hypersurface depends on the normal vector field and its derivative. The
hypersurface is assumed to intersect to the boundary 89 perpendicularly. We
suppose that {2 is divided into phasel region and phasell region by the hyper-
surface at time t. Let I3, D and D/, respectively, denote the hypersurface,
phasel region and phasell region at time t. The union of D;f, D; and I equals
to ). Let n denote the unit exterior normal vector on I from D;f to D . It
is convenient to extend n to a vector field (still denoted by n) on a tubular
neighborhood of I3 such that n is constant in the normal direction of I;. We
consider the following equation for Iy :

(1.1a) V= f(t,n(z),Vn(z)) on I
(1.1b) (v(z),n(z)) =0 on b, =00NnT;.

Here V = V(t,z) denotes the speed at z € I in the normal direction of I},
¥(z) is the outer unit normal of 8Q and f is a given function . The set b}
is the intersection of the boundary 99 and the closure of I in R™. A typical
example of (1.1a) is '

(1.2) V = —divn,

where the hypersurface I is moved by its mean curvature and (1.2) is known
as the mean curvature flow equation.

Our goal is to construct a global-in-time unique generalized solution I of
(1.1a)-(1.1b) for a given initial data I'y provided that the problem is degenerate
parabolic. In the case that the initial interface is graph of a smooth function,
Huisken [11] constructed a unique global smooth evolution of interface where
1 is a cylindrical domain. In this paper we regard a surface I} as a level set
of an auxiliary function » as in [1] and [6]. Let us adapt their strategy to our
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problem. Suppose that w > 0in D, v =0 on I} and » < 0 in D;. If u(t, z)
is C? and Vu # 0 near I} for = € Q, we see

Vu

(13) n= "]_ﬂy

= —I—,fTI(Qp(vzu»

and Qs(X) = RyXR; with Ry =1 - p® p, p = Vu/|Vu|, where ® denotes a
tensor product of vector, where Vu and V?u denote respectively the gradient
of u and the Hessian of u in space variables. It follows from (1.3) and V =
8,uf|Vu| that (1.1a), (1.1b) is formally equivalent to

(1.42) 8w + F(t, Vu,Vzu) =0 on QNI
(1.4b) {(7(z),Vu) =0 on bl

with F uniquely determined by f (cf.{7]). Here 8, = 8/0¢ denote the time
derivative of u. To construct a generalized solution we consider the level set
equations (1.4a)-(1.4b) not on I3 but on Q. In this paper for a bounded convex
domain 2 we establish a comparison principle and construct a unique continu-
ous viscosity solution of the level set equation (1.4a)-(1.4b) for any given initial
data u(0,z) = uo(x). We also show that the zero level set I} of u is independent
of the choice of up and is essentially determined by I3. Thus we can construct
a unique generalized solution I7.

In [1] this programme of constructing generalized solutions was carried out
when = R® with no boundary condition for motion of compact hypersurfaces.
Nearly at the same time Evans and Spruck [6] carried out this programme in
a slightly different way and only for the mean curvature flow equation (1.2).

The first step to carry out this programme is to establish a comparison
principle for the Neumann boundary value problem on a convex domain. For
the Neumann problem this principle was first established by Lions [15] for
Hamilton-Jacobi equations and was established by Ishii and Lions [14] for
nonsingular degenerate elliptic equations. See also [4][5][13] for more general
oblique boundary condition. The method of Ishii and Lions [14] does not apply
to our problem since the equation is singular. So we adapt the method of (3]
to this problem. We regard 9 as the space infinity in the theory of [8].

The second step is to show the existence of global solution by Perron’s
method. We need to construct sub-and supersolution of (1.4a)-(1.4b) with a
given initial data. For this purpose we use local coordinate patches near 80Q0.
Our construction of sub-and supersolution does apply even if 2 is nonconvex.
In the forthcoming paper [10] we shall establish the comparison principle even
if Q is nonconvex; see [9] for announcement. Thus it turns out that the level
set approach does apply to the Neumann problem in arbitrary smooth domain
Q.

The idea to represent hypersurfaces as level sets goes back to Ohta, Jasnow
and Kawasaki[16], who used the level set equation to derive a scaling law for
dynamic structure function with "random” initial data from a physical point
of view. Osher and Sethian [17] introduced a numerical method of surface
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evolution via level set equations. It is important to consider the Neumann
problem (1.1a)-(1.1b) because the mean curvature flow equation (1.2) with
(1.1b) is derived formally as a singular limit of a reaction-diffusion equation
with the Neumann condition [18].

In §2 we will first establish a comparison principle on a bounded convex do-
main for equations including (1.4a)-(1.4b) when (1.1a) is degenerate parabolic.
We remark the case when F depends on the space variable z. In §3 for a large
class of geometric degenerate parabolic equations we construct a unique global
viscosity solution u with initial data. Existence of viscosity solutions is based
on Perron’s method discussed in [12]. If Q2 is convex, the idea in [1] applies to
construction of viscosity sub-(super)solutions for the Neumann problem. How-
ever it does not directly apply to a general domain. In this paper we construct
sub-(super)solutions in a general domain by using local coordinates near Q.

In §4 we formulate a weak solution for (1.1a)-(1.1b) and apply our results
in §2 and §3 to get a unique global weak solutions for a given initial data Iy
when § is bounded convex and (1.1a) is degenerate parabolic. Assumptions on
f is the same as in [7], where the hypersurface I} is closed with no boundary
conditions.

The results in this paper have been announced in [9].

Acknowledgement: The author is grateful to Professor Yoshikazu Giga.
who brought this problem to his attention. The author is also grateful to
Professor Hitoshi Ishii for his useful advices. A

This work was done while the author was JSPS fellowships for Japanese
Junior Scientists. This work is partly supported by the Japan Ministry of
Education, Science and Culture through grant no.33186.

§2. Comparison principle. In this section we will establish a com-
parison principle of the Neumann problem on a bounded domain. To clarify
the main idea of the proof we assume here that the equation does not depend
on space variables explicitly. In the last part of this section we remark that our
method applies to more general equations depending space variables.

Let © be a bounded domain in R™ and let T be a positive number. We
denote by ¥(z) the outer unit normal of Q at z € 892. We want to study the
Neumann problem of the form

(2.1a) w+ F(, V4, V) =0 in Q=(0,T)x &,
Oou

(2.1b) o5 =0 on (0,T) x 89,

(2.1¢) u(0,z) = uo(z) in Q.

We first list assumptions on F' = F{(p, X).

(F1) F:(0,T) x (R*\{0}) x S — R is continuous, where S8” denotes the
space of real n X n symmetric matrices. '

(F2) F is degenerate elliptic, i.e., F(t,p, X +Y) < F(t,p,X) for all Y >
0,t€(0,T).
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(F3) -0 < Fu(t,0,0) = F*(1,0,0) < oo for all ¢t € (0,T) where F, and
F* are the lower and upper semicontinuous relaxation (envelope) of F on
(0,T) x R™ x S", respectively, i.e.,

F.(t,p,X) = lilrginf{F(s,q,Y);q #0,ls—t|<elp-ql<e|X-Y| <€}
[

and F* = —(—F).. Here |X| denotes the operator the norm of X as a
self- adjoint operator on R"™,
(F4) For every R > 0

cr = sup{|F(t,p, X)|;|p| < R,|z| < R,p # 0,1 € (0,T)}

is finite.

The assumption (F1) allows the possibility that (2.1) is singular at Vu = 0.
The equation (2.1a) is called degenerate parabolic if (F2) holds.

Let Qo = (0,T)xQ. A function u: Qo — R is called a viscosity subsolution
of (2.1a)-(2.1b) if it satisfies the following properties:

(i) " <oo on Qg

(i)
T+ F(t,p,X)<0 for z€Q, (r,p,X)E€ 'Pé"*'u'(t,a:)

0

(n(z),p)A{T+ Fu(t,p,X)} <0 for z€9Q, (r,p,X)E€ 'Pé’:u‘(t,x).

Similarly a function z : Qo — R is called a wviscostty supersolution of

(2.1a)-(2.1b) if

(1) Us > —00 on Qp

(if)
T+ F*(t,p,X)20 for z2z€9, (npX)E€E 'Pé’o'u.(t,x)
(n(z),p) V{r + F*(t,p,X)} 20 for z€08Q, (r,p,X)E€ 'Pé’o"u,.(t, ).

Here a A b = min(a, b), a V b = max(a,b) and 'Pé’:' denotes the parabolic super
2-jetin Qo, i.e., 'Pé’:'u(t,x) is the set of (7,p,X) € R x R™® x S such that

w(sy) <ult,z) +7(s — ) + (p,y — 7) + -;—(X(y —2),y-2)
+o(ls =t + 1y~ z*) as (s,9) = (t,z) in Q

where {, } denotes the Euclidean inner product; similarly, ’P%’O_u = - 5';(—1;).
In this paper we call a continuous function m : [0,00) — [0,00) a modulus if
m(0) = 0 and it is nondecreasing. For U = (0,T) x D, the set

8,U = {0} x DU[0,T) x 4D
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is often called the parabolic boundary of U. We are now in position to state our
main comparison theorem for (2.1a)-(2.1c).

Theorem 2.1. Suppose that Q is a bounded conver domain with C?
boundary Q) and that F satisfies (F1)-(F4). Let w and v be, respectively,
sub-and supersolutions of (2.1a)-(2.1b) in Qq, where Qo = (0,T) x Q. Let
ug = u*(0,2) and vo = v.(0, 7).

If up <wg on 2, then there is a modulus m such that

(2.2) u*(t,z) — v(t,y) <m(z-y|]) on Uy,
where Up = (0,T) x @ x Q. In particular u* < va on Qo.
Remark 2.2. Since we may assume that « and v are bounded on Q

(see [1]), the assumption ug < vy on §) implies that there is a modulus function
mg such that

(2.3) ug(z) —vo(y) Smo(Jz —y) on O x K.

We will state several propositions to be needed to prove Theorem 2.1.
The proof is parallel to the proof of Theorem 2.1 in [8], however we give it for
completeness. Assume that u and v are, respectively, upper semicontinuous
and lower semicontinuous on Q.

For e, 8, v > 0 we set

Ot z,y) =w(t,2,9) - Ut z,y),  w(t,z,9) = u(t,z) — v(t,y),
0o Ynn =Ll 4By,
B(t,2,y) =6(¢(2) + o(v) + 26) + 7.
The function B plays the role of a barrier for boundary and ¢t = T.
Here ¢(z) € C*(Q) is taken so that ¢ < 0in Q,¢ = 0 on Ny(z) =

Veo(2)/|Vee(z)| for all = € 8Q,|¢(z)| < B for some B > 0 independent of
z € §,|V.o(z)| > 1 for all z € 8Q.

Proposition 2.3. Suppose that u and v be, respectively, upper semi-
continuous and lower semicontinuous. Assume that

(2.5) a = gﬁ}sup{w(t,a:, vilze-yl < 0,(tz,y) €U, t <T}>0.
Then there are positive constants §g and vy such that

(2.6) sup @(t,x,y) > 2
0 2
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holds for all0 < 6 < 85, 0 <4 < 49, € > 0.

Proof. Since Q) is compact, w is bounded from above. This implies
a < 00. By (2.5) there is a point (fo, Zo, o) such that w(ts, o, %0) > 3/4 and
|zo-— yo|*/4e < af4. We now observe that ®(%o,zo,%0) > af2if § and v is
sufficiently small. 1

Proposition 2.4. Let u, v, 6o, 70 be as in Proposition 2.3. Suppose
that w is upper semicontinuous in U,

(1) ® attains o mazimum over U at ({,2,9) € U withi < T.
(i1) |2 = §| is bounded as a function of 0 < e <1,0< 6 <6, 0 <y <.
(iii) |Z2—4| tends to zero as e — 0; the convergence is uniform in 0 < 6 < &

and 0 < v < 7p.

Proof.

(1) By (2.3) and the definition of B we see ® is negative outside a compact
set Win [0,T) x D, D = Q x Q. Since ® is upper semicontinuous and
sup ® > 0 by (2.5), ® takes a maximum over U at a point of W.

(i1 From (2.5) it follows ®({,#,§) > 0for 0 < § < 6,0 < v < 79, € > 0.
This yields

I* | —gl*

4e

|z -4
4e

2.7) w(i, &, §) 2 +B(f,&,7) 2
Since w(t, %, §) < M for some M >0

& - g|*
4e

(2.8) <M

which yields (ii).
(iif) Similarly, from {2.8) it follows

& - g|*

4e

< M,
which yields (iii) as ¢ — 0. &

Proposition 2.5. Assume the hypotheses of Proposition 2.4. Suppose
that (2.3) holds for uw and v. Then there is ¢¢ > 0 such that ® atlains a
mazimum in (0,T) x @ x Q, i.e,. 1# 0 for all0 < e < &, 0 < § < 6 and
0<vy <.

Proof. Suppose that the conclusion were false. Since i < T by Propo-
sition 2.4(i), there would exist sequences {¢;} with ¢; — 0, {6;} € (0,80) and
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{7} € (0,70) such that ® attains a maximum at (0, £;, §;) for the value ¢ = ¢,
6§ =6j, v =vj. By (2.3) and (2.6) we see

(24 - o~ " n N
5 < 2(0,25,3;) < w(0,25,d;) < mo(|&; — 31).

Since €; — 0, applying Proposition 2.4 (iii) yields |&; — §;] — 0 which leads a
contradiction 0 < «f/2<0. 1

Lemma 2.6 ([2]). Let Q; be a locally compact set in RN . Let u; be an
upper semicontinuous function with u; < 0o in (0,T)xO; fori =1,2,--+ , k.Let
O; be an open set containing Q; fori=1,2,--- ,k and a function ¥ on (0,T) x
O1 x +++ O such that (t,21,--+ ,2x) = @(t, 21, ,Zk) is once continuously
differentiable in t and twice continuously differentiable in (z1,-++ ,z1). Suppose
that s € (0,T),2; € Q; fori=1,2,-++ ,k and

@(t,l‘],"' ,.’L‘k) = U](t,l'l)'*""+u1¢(t,(l,‘k)'-\p(t,$1,"' ,l'k) S (I)(S,Zl,"' ,Zk)
Assume that there is an w > 0 such that for every M > 0

0; £ C  whenever (0i,9:,Y;) € 'Pz"*'u(t,x;),

2.9 -
(2.9) lz; = zi| +]s—t| <w and |ui(t,z)|+ || +|Vi| <M

(t = 1,++,k), with some C = C(M). Then for each A\ > 0 there exists
(i, Xi) e R x SNi such that

(1is V2, U(s, 21,0+ ,21), Xi) € 'pg"*'u;(s,z;) for i=1,.--k

and
X, -+ O
_(§+|A|)I§ : | KA+24% and
0 v X

T1+"’+Tk = lI’g(S,Zly"' ’zk)v

where A = V2U(s,21,--,2).

Remark 2.7.  This lemma is Theorem 8 in [2] and is considered as
a local parabolic version of Crandall-Ishii's lemma [2,Theorem 6]. Here the
subscript of P> is suppressed. The bar over P2+ means the closure.

Proof of Theorem 2.1. We may assume that » and v are, respectively,
upper and lower semicontinuous so that

w(t,:z:,y) = ‘U.(t,.’l:) - U(t’ 3/)
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is upper semicontinuous in U. Suppose that (2.2) were false. Then we would
have (2.5), i.e.,

a = %ifgsup{w(t, ,y)ilz—~y| <8, (tz,y)eU,t<T}>O0.
Then we see all conclusions in Propositions 2.3-2.5 would hold for ® defined

in (2.4). By Proposition 2.5 ® attains a maximum over U at ({, %, §) € Up for
small ¢, 6, 4. Therefore we see that

(2.10) (¢, z,y) = w(t,z,¥) - (i, 2,9) < 0%, 2,9) in U,

We will apply Lemma 2.6 with k = 2, u; = u, ug = —=v, s = {, z = (%, 9).
Since u and v are, respectively, sub-and supersolution of (2.1a)-(2.1b) with
F satisfying (F4), we easily see the assumption (2.9) holds. We now apply
Lemma 2.6 with Q; = Q and conclude that for each A > 0 there are (73, X)
and (72,Y) € R x S™ such that

(211) (T’l, li/x,xY) € '732’+u(f, .’i‘), (—Tz, —'i’y, —-Y) € "52’—1}({,1}),

- 1 X 0 o N
i) -(3ela)rs( ) saeaa b=nan,

where ¥, = 8,v(1,2,9), ¥, = V. U(i,%,9), etc. If £ € 3Q then (’y(a“:),\ilm) >
0.Indeed if Z € 912, then

(v(8), ¥z)
=(1(&) 18 = §1P(& = ) + (1(8), 6V 0(2))
>6>0 since 0 is convex.

Since u and v are, respectively, sub-and supersolution of (2.1a)-(2.1b) it follows
from (2.11) that

o+ R ¥,,X)<0, —-n+F({-9,-Y)>0,
which yields
(2.13) . 0> ¥, + (i ¥,,X)- F*({,-¥,,-Y).

The rest of the proof is almost the same in [8,Theorem 2.1}. The only difference
is that we use the localized version of Crandall-Ishii’s Theorem (3]. &

Remark 2.8. In the proof of Theorem 2.1 we use (F4) only to prove
(2.10) in Lemma 2.6. However we can avoid to invoke (F4) by applying the
Lemma 2.10 [8], which can be proved similarly as Lemma 2.6 (cf.[8]).
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Remark 2.9. Our method applies to more general equations of the
form

(2.1 uy + F(t, 2, ¢, Vau, Vgu) =0 in Q@=(0,T)x%,

under the assumptions on F in [8, §4]. Our approach is basically the same as
in (2.1a). However, since F depends on z, we are forced to let ¢ — 0 in our test
function ¥ of (2.11) at the end of the proof. The crucial step is to establish
that |2 — §|*/4¢ converges to zero as ¢ — 0 after we let § — 0, ¥ — 0. This
can be proved as [8, Proposition 4.4]. Instead of listing all assumptions on F
we give a simple example of F:

F(t,z,p, X) = Fi(t,p, X) + w(t, z)|p|.

Here Fi satisfies (F1)-(F4) and w is continuous with bound |V,w| on (0,7T) x ).
For this F' our comparison principle can be extended. We note that our exten-
sion also applies the case when the second order term involves z-dependence.

§3. Construction of generalized solution
This section constructs a viscosity solution of initial-boundary value prob-

lem

(3.1a) u + F(t,7,Vu, V) =0 in Q=(0,T)x
du

(3.1b) 7y 0 on (0,T)x8Q:

(3.1¢) u(0,z) = ap(z) in Q.

by Perron’s method [12] when F' is geometric in the sense of [1] provided that
ag € C(Q). Our result applies to a general bounded domain Q with C? bound-
ary 91 not necessarily convex. When  is convex, by the comparison principle
in §2, it turns out that our solution is unique and continuous. The basic strat-
egy for constructing solutions is similar to that in [1]. First we recall basic

properties of viscosity solutions.

Definition 3.1. For a sequence of functions g : L — R (L C
R?) (k=1,2,--+) we associate its [ — limit

klim gL - R=RU {zoc0}
defined by

lim .gi(z) = lim inf inf for zel
b0 () 100 |5k |z—y]<5gl(y) € 5
0 = e
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where L denotes the closure of L in R%. When g; = ¢ for all k,

lim .gr = ga.
k—oo

Definition 3.2([1]). Let E: W — R where W € J = Q x (0,T) x
R™ x S®. We say the equation F = 0 is geometric in W if E satisfies for A > 0
and p € R there is C; = Ci(X, ) >0 (i = 1,2) such that

(3.2) C\E(t,z,p, X) < E(t,2,Ap, AX + up @ p) < C2E(t,z,p, X)
holds whenever each term is well-defined.
Here ® denotes a tensor product of vectors in R®. It is easy to see that

the equation Ex« = 0 and E* = 0 are geometric in W if E = 0 is geometric in
W.

Proposition 3.3(Stability). Let FF, : J=(0,T)x QxR" x S" —
R and up be a subsolution of

(3.3a) . w4+ Fi(t,z, Ve, V) =0 in Q (k=1,2,-")
(3.3b) Z—: =0 on (0,T)x00.

Assume that  limg_oo +Fi 2> F. and ug converges to a function u: Qo — R
uniformly in each compact subset of Qo, where Qo = (0,T) x . Then u is a
subsolution of (3.1a)-(3.1b) .

Proof. As usual [3] we set

T+ Fi(t,z,p,X) forz € )
G—k(tvxvpa TvX) =
7+ Fr(t,z,p, X) A B(z,p) for z € 0Q,

T+ F(t,z,p, X) forz e Q
G.(t,z,p, 7, X) =
‘ T+ F(t,z,p, X) A B(z,p) for z € 09,

where B(z,p) = {(v(z), p).

I limg oo « £ > Fi, then limg oo Gt > G_.. Applying G_,G_; in
place of E, E; in the stability lemma [1, Proposition 2.4.], we conclude that u
is a subsolution. 1

In what follows we shall always assume that F satisfies (F1) and (F2) in
§2.
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Proposition 3.4 ([1]). Let S be a nonempty family of subsolutions of
(5.1a)(3.18) and let w be a function defined on Qqy by

u(y) = sup{v(y):v € S} for y € Qo.

Suppose that v*(y) < 0o fory € Qo. Then u is a subsolution of (8.1a)-(3.18).

Proposition 3.5 Let f and.g : Qo — R be respectively a sub-(super)
solution ‘of (8.1a)-(3.15). Suppose f < g in Qo. Set u(y) = sup{v(y) : v is
a subsolution of (3.1a)- (3 18) and v < g}. Then u is a viscosity solution of

(3.1a)-(3.1}). -

Proposition 3.6. Assume that F' is geometric. Let u be a viscosily
sub-(super)solution of (8.1a)-(8.15). Then 6(u) is a viscosity sub-(super)
solution of (3.1a)-(3.16) whenever § : R — R is continuous nondecreasing.

Proof. We just present a proof when u is a subsolution since the proof
is the same for supersolutlons There is a sequence {6} in C%(Q) of increasing
function with 9k > 0 such that 6; — ¢ uniformly in  as k¥ — oo [1, Lemma
5.4]. If F'is geometric, then G_ is geometric. By [1, Lemma 5.3] we see 6;(u)
is also a subsolution of (3.1a)-(3.1b). Since 6;(u) converges to 6(x) uniformly
in Qo, we now apply the stability Proposition 3.3 and conclude that (u) is a
subsolution of (3.12)-(3.1b) with limg—eo «Fx > F, . A

Proposition 3.7. If u € C*(Qo) satisfies ( (z),Vu(z)) <0 forz €
90 and u, + F(,Vu, V2u) < 0 for z € Q, then u is a subsolution of (3.1a)-

(3.1b)

Proof. Since

(3.4) Ao (1(2),p = Av(z))
is nondecreasing in A > 0 for all z € 89, p € R™ applying [3, Proposition 7.2]
yields the desired result. X

We next construct sub-(super)solution. We see the sub-(super)solution
which is constructed in [1] is a sub-(super)solution of (3.1a)-(3.1b) if Q is con-
vex. Therefore the {ollowing Propositions 3.8-3.10 hold.

Proposition 3.8. Suppose that F is geometric and that

(3.53.) F,..(i,l‘,P, _I) < C—(IPI)
(3.5b) Fr(tap I) 2 eu(lpl)
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for some cx(o) € C![0,00) and cx(0) > co > 0 with some constant co.
Set

P
(3.6) ui(t, .’L‘) = :E(t + W:E(P)): p= Ix[, with w:l:(P) — / __(Z__da-
o cx(0)
Then u~(u*resp.) is a Cz_sub-(super-resp.) solution of (3.1a)-(8.1%) provided
that Q ts convexr with 0 € §).

Proof.  Asin [1, Proposition 6.1] 4* is a sub-(super)solution of (3.1a)
when z € Q(see [1, Proposition 6.1]). Therefore we only have to show that u®
is a sub-(super)solution of (3.1b) when z € 9Q. Since Q2 is convex, we see on
the boundary 99

{1(2), VouT) = {2(2), —z/c-(l2])) < 0,
(1(2), Vou™) = (v(2), 2[4 (|2])) 2 0.

Clearly u¥* is C?, so Proposition 3.7 implies ™~ and u™ are, respectively, sub-
(super)solution of (3.1a)-(3.1b). N

Proposition 3.9. Assume that b : R — R s a continuous increasing
function. Then Ug‘,’l(t,z) = h(u®(t,z — €)) for £ €  is a sub-(super)solution
of (3.1a)-(8.18 )provided that 2 is convez.

Proof. By Proposition 3.8 u®(t,z—¢) for £ € Q) is a sub-(super)solution
of (3.1a)-(3.1b). By Proposition 3.6 h(u®(¢,z — ¢)) is a sub-(super)solution. B

Proposition 3.10. Suppose that Q is conver. Suppose that F' satisfies
(3.5a),(3.5b) and that F is geometric. Then for every ag € C(Q) there is a
lower semicontinuous subsolution v~ and upper semicontinuous supersolution
vt of (3.1a)-(3.1b) with (3.1c) in Qo satisfying v=(¢,z) < ao(z) < v (¢, z)
for allt € (0,T) and (3.1¢c) i.e. v = ag att = 0.

Proof. For each ¢ € Q the continuity of ag guarantees that there is a
continuous nondecreasing function h = he : R — R with A(0) = ao(£) such
that Ug (0, &) < uo(x), U (0,2) > ao(x). We set

v™(t,z) = sup{Ug,(t, 2); b = he,§ € R™}
vt(t,z) = inf{U;;(t,x); h=heé€R"}

By Propositions 3.4 and 3.9 v~ and vt are sub-(super)solution. Other proper-
ties of v* can be proved similarly as in [1, Proposition 6.4] B
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Even for nonconvex 2, we can construct sub-(super)solution by using local
coordinates xg = (xé,--- ,xg‘) near boundary point £ € 9 with X?(x) =
dist(z, 89) for z € Q.

Proposition 3.11. For a nonconvezr domain Q, the statement of Propo-
sition 8.10 still holds provided that 89 is C2.

Proof. For each ¢ € 9 there is a C? diffeomorphism Xe = (Xé»' .- ,xg‘) :

B, (&) = x(B:(¢)) such that x¢ = dist(z, Q) for € Q and x¢(¢) = 0, where
B, (€) denotes the open ball in R™ of radius r centered at ¢. Under the mapping
y = xe(x), let U(y) = u(z) and F(t,z, Vu, Vu) = ﬁ’(t, v, Vi, VZH) in x¢(B,).
Then (3.1a), (3.1b) become

(3.1'a) T+ F(t,y, V@, V20) =0 in  xg(B,n Q)
(3.1'b) (F(¥), Vyi) =0 on xe(B.NndN).
Here 5 = (0,---,0,-1) is the unit exterior normal vector to the halfspace

{yn > 0}. We easily observe that Fis still degenerate elliptic and geometric.
By Propositions 3.7 and 3.8 the function u;(t, xe¢(2)) is a subsolution of

w+ F(t,2,Vu,Vu) =0 in B, (§)nQ
dufdy =0 on B, (£)Nndq.

Let M be a constant such that infyag > M. We next take a continuous
increasing function h¢ : R — R satisfying

(i he(0) = ao(£)
(i) he(—w-(Ixe(2)])) < ao(=), = € B,(§)n Q
(i) he(—w-(Ix¢(a)])) < M, = € 9B, (§)n Q,

where w_(p) is defined by (3.6). Of course, this is possible since ag is continuous
on §) and w_ is increasing. We then set

(3.7) Vi (tz) = he(u™(t, xe(2)) v M.

Since the equation is geometric, the property (iii) implies that V{(t,x) is a
global subsolution of (3.1a)-(3.1b). By (i) and (ii)

(3.8) Vi (thz) Sao(z) for all t20
(3.9) Ve (0,€) = ao(é).

If £ is an interior point of {2, then we take B, (¢) small so that B, (¢) is contained
in 2. We may assume that £ = 0 € Q by a translation. We take h¢ satisfying
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(i)-(iii) where x¢ is replaced by the identity mapping id. We define Vi~ by (3.7)
with x¢ = id. Similarly to the case § € 0Q we observe that V; satisfies (3.8),
(3.9) and is a global subsolution of (3.1a)-(3.1b). By Proposition 3.4, it follows
from (3.8) that

v (t,2) = sup{V; (t,z); € € Q}

is a lower semicontinuous subsolution of (3.1a)-(3.1b). By (3.9) we also observe
vy (0,z) = ao(z). One can construct an upper semicontinuous supersolution
satisfying v*(¢,#) > ao(z) and v**(0,z) = ao(z) as in the same way. 1

By Perron's method we find at least one viscosity solution for (3.1a)-(3.1¢c).
The uniqueness and continuity of the solution follows from the comparison
theorem in §2 when Q) is convex. We consider the equation independent of
space variables for simplicity.

(38.17a) w4+ Ft,Vy, Vi) =0 in Q=(0,T)xQ
7}
(3.1"b) 5% =0 on (0,T)xdQ

Asin [7) if F is geometric, (F1)-(F4) deduces (3.5a) and (3.5b) so we obtain:

Theorem 3.11. Assume that F satisfies (F1)-(F4) and is geometric.
Then for a € C() there is a viscosity solution u, of (3.1"a)-(3.1"b) with
%, (0,2) = a(z) . If Q is convez, u, is unique and u, € C(Qo). Moreover if
b < a withbe C(Q), then up < ug in Q.

Remark 3.12. Recently in [9] we find a comparison principle for a
general C? bounded domain so it turns out that the uniqueness and continuity
of u holds even for a general domain. ~

§4. Interface evolution. In this section we apply our results in §2
§3 to construct a unique generalized evolution to (1.1a)-(1.1b). Once we have -
established Proposition 3.6 and Theorem 3.11, we obtain a unique generalized
evolution as in [7] and [1]. We shall briefly state our results for the reader’s
convenience. Assume that Q is a bounded convex domain and 9 is of C?
class. We consider (1.1a)-(1.1b) i.e.,

(4.1a) V = f(t,n(z),Vn(z)) on I}
(4.1b) (v(z),n(z)) =0 on &I;.

Suppose that u > 0in D}, u =0 on I} and w < 0in D;. If u(t,z) is C? and
Vu # 0 near I for z € , we see

(4.2) n= - Vn s - om(Q(T)
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and Qp(X) = Ry XR; with Ry = I ~pQ®p, p = Vu/|Vu|. It follows from (4.2)
and V = 8;u/|Vu| that (4.1a), (4.1b) is formally equivalent to

(4.3a) Biu+ F(t,Vu,V3u)=0 if zeQnT
(4.3b) (v(z),Vu) =0 if =ze€bl:
with
1
(44) F(t’ D, X) = _lplf(tv _ﬁv —m(Qp’(X))

Similarly to [7] we first define a weak solution {I3, D} }i30 of (4.1a.)-(4.15)
through a viscosity solution of (4.3a)-(4.3b) with (4.4).

Definition 4.1. Let Df and Dy be disjoint open sets and Iy be a closed
set in Q such that Dg' UDg = Q\Iy. Suppose that there is a viscosity solution
u € C([0,T) x Q) of (4.8a)-(4.38) in (0,T) x Q with u(0,z) = a(z) such that
zero level surface of u(t -) at timet > 0 equals Iy and that the set of u(t,z) > 0
equals Df. If {3, D} lv=o= {I0, DF}, we say {I}, D} hi>o s a weak solution
of (4. Ia) (4' 1b) with initial data {I, DF}.

As in [7] we list assumption of f to which our theory applies.
(f1) f:[0,T)x E—-R is continuous,
where E = {(5, @p(X)); 7 € S*~1, X € 5"} (see [7]).
(2) F(t, =5, =Q5(X) 2 f(t, P, —Q5(Y))
for X>Y,5eS8*Yandt>0.

. I-p®p
(13) ~ limpinf(~ (s, =P ——=)) > —oo,

ZIHE®P e
P

(f4) limpsup(_f(sv ”I_)’
pl0 =1

Theorem 4.2, Assume that f satisfies (f1)-(f4). Let Dot and Dy~
be disjoint open sets and Iy be a closed set in Q such that Dot U Dy~ = Q\ 1.
Then there is a unique global weak solution {I3, D;*}i>0 of (4 la)-(4.1b) with
initial data {Ip, Dot}
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