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Interface Instability under Forced Displacements

Anna De Masi, Nicolas Dirr and Errico Presutti

Abstract. By applying linear response theory and the Onsager principle, the power
(per unit area) needed to make a planar interface move with velocity V is found
to be equal to V 2/µ, µ a mobility coefficient. To verify such a law, we study a
one dimensional model where the interface is the stationary solution of a non local
evolution equation, called an instanton. We then assign a penalty functional to
orbits which deviate from solutions of the evolution equation and study the optimal
way to displace the instanton. We find that the minimal penalty has the expression
V 2/µ only when V is small enough. Past a critical speed, there appear nucleations
of the other phase ahead of the front, their number and location are identified in
terms of the imposed speed.

1 Introduction

In a large variety of systems the power dissipated to force a motion with speed V
is given by the ratio V 2/μ, μ a mobility coefficient, just think of Ohm’s law in an
electric circuit, or of a mechanical body moving in a viscous fluid or of the motion
of a planar interface between two solid phases, the issue on which this paper is
focused.

A general explanation of the law goes back to Onsager and linear response
theory. Our purpose was to verify the validity or we should better say now, the
limits of validity of the law in a model for interfaces. We restrict for technical
reasons to one dimension (see Section 3 on this issue) and consider the non local
evolution equation

ut = f(u), u(·, 0) given, (1.1)

with ut the t-derivative of u and the “force field” f(u) given by

f(u) = J ∗ u−Aβ(u), Aβ(u) =
1
β

arctanh(u), J ∗ u(x) =
∫

R

J(x, y)u(y) dy.

We suppose β > 1 and that J(x, y), (x, y) ∈ R × R, is a smooth, symmetric,
translational invariant probability kernel supported in |y−x| ≤ 1. We also assume
that J(0, x) is a non increasing function whenever restricted to x ≥ 0.

The two constant functions m(±)(x) ≡ ±mβ, with mβ > 0 solving the mean
field equation mβ = tanh{βmβ} (recall β > 1) are stationary solutions of (1.1)
and are interpreted as the two pure phases of the system, being the only “stable”
stationary homogeneous solutions of (1.1) (the only other homogeneous, stationary
solution m(x) ≡ 0 becomes unstable when β increases past 1).
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Interfaces, which are the objects of this paper, are defined as those stationary
solutions of (1.1) which converge to ±mβ as x→ ±∞. Such solutions indeed exist
for any β > 1, they are called instantons and denoted by m̄ξ(x), ξ a parameter
called the center of the instanton m̄ξ(x). They are obtained one from the other by
a shift, so that calling m̄ = m̄0,

m̄ξ(x) = m̄(x − ξ). (1.2)

The instanton m̄ satisfies

m̄(x) = tanh {βJ ∗ m̄(x)} , x ∈ R. (1.3)

It is an increasing, antisymmetric function which converges exponentially fast to
±mβ as x→ ±∞, see, e.g., [7], and there are α and a positive so that

lim
x→∞ eαxm̄′(x) = a, (1.4)

see [6], Theorem 3.1. Moreover, any other solution of (1.3) which is definitively
strictly positive [respectively negative] as x → ∞ [respectively x → −∞], is a
translate of m̄(x), see [8].

We next turn to the real issue of the paper. To impose a speed v to the
interface, we take r and t positive, r/t = v (how to choose r and t will be discussed
later) and consider the set

U [r, t] =
{
u ∈ C∞(

R × (0, t); (−1, 1)
)

: lim
s→0+

u(·, s) = m̄, lim
s→t−

u(·, s) = m̄r

}
.

(1.5)

Due to the stationarity of m̄, no element in U [r, t] satisfies (1.1) and therefore there
are other forces which must enter into play. Call b = b(x, s), x ∈ R, 0 ≤ s ≤ t, an
“external force”, and consider the evolution equation

us = f(u) + b. (1.6)

Existence and uniqueness for [the Cauchy problem for] (1.6) are proved in Ap-
pendix A. We are of course only interested in forces b able to produce orbits in
U [r, t]. To select among them we introduce the action functional

It(u) =
1
4

∫ t

0

∫
R

b(x, s)2 dx ds, (1.7)

where b, via (1.6), is a function of u and of its time derivative. When writing (1.7),
we have invoked the same general, linear response theory expression for dissipated
power (with μ = 4 for convenience) that we are putting under scrutiny. This
should not be viewed however as a circular trap, because the principle is invoked
at a “microscopic” (or better mesoscopic) level, while we want to investigate it
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at the macroscopic one. Moreover, in Section 4 we will discuss the question in a
statistical mechanical context, where our model appears as a mesoscopic limit of
Ising systems with Kac potentials and an expression structurally similar to (1.7) is
rigorously proved by large deviation estimates. With such motivation we postulate
that (1.7) is “the penalty functional”. Then the cost of moving the instanton to r
in the time t is defined as

inf
u∈U [r,t]

It(u). (1.8)

Let us turn now to the choice of r and t, as the specification of v only fixes
their ratio. As we want to investigate macroscopic behaviors, we should consider
a spatial scale where the instanton m̄ looks like a sharp interface, namely like the
step function mβ

(
1x≥0 − 1x<0

)
. Recalling that m̄(x) converges exponentially to

±mβ as x → ±∞, we introduce a parameter ε > 0 to scale distances x → ε−1x
with the idea of eventually letting ε → 0. Time should then be taken equal to
ε−1r/v, and if “the law V 2/μ” is satisfied,

energy dissipated =
v2

μ

ε−1r

v
=
ε−1v

μ
. (1.9)

To have a finite dissipation of energy we must then take v of the order of ε, which
also agrees with the idea that the law V 2/μ should be investigated in the regime of
small velocities. Another way to arrive at the same conclusion goes as follows: the
expression (V 2/μ)T for the dissipated energy is invariant under parabolic scaling
of space and time, it is therefore natural to use a parabolic scaling to derive it.
With this in mind, we fix any pair R and T of positive numbers, and define the
macroscopic work to displace the interface by R in a time T (R the macroscopic
space and T the macroscopic time) as

W−(R, T ) = lim inf
ε→0

inf
u∈U [ε−1R,ε−2T ]

Iε−2T (u), (1.10)

W+(R, T ) = lim sup
ε→0

inf
u∈U [ε−1R,ε−2T ]

Iε−2T (u). (1.11)

We will prove that W−(R, T ) = W+(R, T ) and compute their common value, the
results are stated in the next section, together with an outline of their proofs. In
Section 3 we discuss application of the theory to tunnelling, in Section 4 a formu-
lation of the whole problem in a statistical mechanics setting. In the remaining
sections we give the proofs.

2 Main results

Our first theorem is:

Theorem 2.1 There is a critical value (V 2T )c such that if R2/T ≤ (V 2T )c, then

W−(R, T ) = W+(R, T ) =
R2

μT
,

1
μ

=
‖m̄′‖2

2

4
(2.1)

where m̄′ is the derivative of m̄ and ‖ · ‖2 denotes the L2 norm on (R, dx).
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An upper bound for W+(R, T ) can be easily found by putting

uε(x, t) = m̄εV t(x), V =
R

T
(2.2)

so that uε ∈ U [ε−1R, ε−2T ]. Then Iε−2T (uε) is independent of ε and equal to

1
4
‖m̄′‖2

2V
2T (2.3)

thus getting the same answer as in (2.1). We can easily rule out other ways to
move continuously the instanton as more expensive. Indeed if, instead of (2.2), we
choose

mε(x, t) = m̄ξε(t)(x),

such that, for vε(t) := ξ̇ε(t), ∫ ε−2T

0

vε(t) dt = ε−1R (2.4)

then, with μ as in (2.1),

Iε−2T (mε) =
1
μ

∫ ε−2T

0

v2
ε (t) dt. (2.5)

By computing the inf of Iε−2T in the class (2.4) we get that∫ ε−2T

0

v2
ε (t) dt ≥ V 2T, for all vε such that

∫ ε−2T

0

vε(t) dt = ε−1V T

which implies that (2.1) is optimal in the class (2.4). To prove the lower bound we
thus need to examine more general orbits than mere shifts of the instanton.

Here comes another important issue, not touched so far in our discussion,
namely “nucleations”. By this we mean the appearance of droplets of the other
phase inside one phase. We first define the free energy functional

F(m) =
∫

R

φβ(m)dx +
1
4

∫
R×R

J(x, y)[m(x) −m(y)]2dx dy, (2.6)

where φβ(m) is the “mean field excess free energy”

φβ(m) = φ̃β(m) − min
|s|≤1

φ̃β(s), φ̃β(m) = −m
2

2
− 1
β
S(m), β > 1,

and S(m) the entropy:

S(m) = −1 −m

2
log

1 −m

2
− 1 +m

2
log

1 +m

2
.
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By direct inspection f(m) = −δF(m)
δm

, the functional derivative of F , so that (1.1)

is the gradient flow associated to F(m). The gradient structure of the evolution
has a very important role in the sequel, in particular the next theorem uses it in
an essential way.

Theorem 2.2 For any ϑ > 0 there is τ > 0 and a function m̃ε,τ (x, s), x ∈ R,
s ∈ [0, τε−3/2], symmetric in x for each s and such that

m̃ε,τ (x, 0) = mβ , m̃ε,τ (x, τε−3/2) = m̄�ε/2(x), x ≥ 0 (2.7)

where e−α�ε = ε3/2, α > 0 as in (1.4), and

Iτε−3/2(m̃ε,τ ) ≤ 2F(m̄) + ϑ. (2.8)

Theorem 2.2 follows from results proved in [2] and [3], as discussed briefly in
Appendix B. It is now clear that (2.1) cannot keep its validity for all V . The key
point is that the cost is quadratic in the velocity, so that, by creating more fronts,
we can make them move with smaller velocity with the gain in cost covering the
penalty for the nucleations, see Fig. 1.

To make this more precise, consider an orbit m(x, t) with a nucleation at
time 0 at position ε−1(2/3)R. We then divide the space in two parts, x ≤ ε−1(1/3)R
and its complement. In the first one we set m(x, t) = m̄ε(V/3)t (the velocity being
such that the front reaches ε−1(1/3)R at the final time ε−2τ). For x > ε−1(1/3)R,
m(x, t) = m̃ε,τ (x − ε−1(2/3)R, t) for t ≤ τε−2/3 and for t > τε−3/2, m(x, t) =
m̄x(t)(x), x ≥ ε−1(2/3)R and its symmetric image for x < ε−1(2/3)R; where
x(t) = ε−1(2/3)R+
ε+ε(t−ε−3/2τ)V/3. Observe that for t ∈ [ε−3/2τ, ε−2τ ] and to

leading order in ε, f(m) is given by e−α(εV t+�ε/2) which implies that
∫ ε−2τ

ε−3/2τ

f(m)2

vanishes in the limit ε→ 0.

Figure 1. We depict for two possible trajectories the zero level sets in space time: Three fronts
(dashed lines) and a single front (dotted line). Note that the single front has to move much
faster. For the three front case we moreover show schematically the fronts initially, early after
nucleation of a droplet, and shortly before they reach the final state.
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Thus to leading order in ε, m has three fronts, the first from the left is the
original one but moving with speed V/3 (which is one third of the original one),
the second and third fronts are those produced by the nucleation. They move
respectively to the left and to the right with same speed V/3. With such a choice
the first two “collide with each other” at time ε−2T , while the third one reaches
the final location ε−1R. In this way, at the final time we have just one front at
ε−1R. A proof along these lines requires a “suitable slight modification” of the
orbit described above (we need to adjust the velocities and to modify the orbit
when the first two fronts become close to each other, in the sense of Theorem 2.2).
With such a maquillage, it can be proved that the total cost in the limit ε → 0
converges to

2F(m̄) + 3

{
1
μ

(
V

3

)2

T

}
. (2.9)

By comparing (2.9) with the cost V 2T/μ of the motion without nucleations, we
find (2.9) evidently winning for V large. More precisely, we find equality if V 2T =
3μF(m̄) which is indeed the critical value (V 2T )c in Theorem 2.1. The above
argument can be made rigorous (for brevity details are omitted) proving that
besides V 2T/μ also (2.9) is an upper bound for W+(R, T ). The argument can also
be extended (again we omit the details) to prove upper bounds with any finite
number n of nucleations, the cost being

wn(R, T ) := n2F(m̄) + (2n+ 1)

{
1
μ

(
V

2n+ 1

)2

T

}
. (2.10)

We thus get the upper bound W+(R, T ) ≤ inf
n≥0

wn(R, T ). The whole heart of the

problem is to prove that this is also a lower bound, namely that there are no other
strategies which give a smaller cost. The lower bound will be proved in the rest of
the paper, here we just summarize the discussion by stating:

Theorem 2.3 For all R and T , W+(R, T ) = W−(R, T ) =: W (R, T ) and, calling
V = R/T ,

W (R, T ) = wn(R, T ), if F(m̄)[(2n)2 − 1] ≤ V 2T

μ
≤ F(m̄)

([
2(n+ 1)

]2 − 1
)
.

(2.11)

3 Tunnelling

The motivation for this research comes from tunnelling, in particular from ques-
tions raised by Stephan Luckhaus about multiple nucleations in stochastic evolu-
tions where the order parameter is conserved. Shifting to one dimensions and to
non conserved dynamics was (we hope) only a preliminary step. The next step will
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be to connect the present analysis to the tunnelling studied in [2] for the same
one dimensional model we are considering here, but restricted to a finite inter-
val [−L,L] with Neumann boundary conditions. Tunnelling concerns orbits u(x, t)
which start from, say, the minus phase and end up at a final time τ in the plus
phase, u(x, 0) = m(−)(x) = −mβ, and u(x, τ) = m(+)(x) = mβ. The penalty in [2]
is given by the same functional we are using here (but, of course, restricted to
orbits in [−L,L]) and the cost of the tunnelling is defined as the inf over all τ of
the inf over all orbits which tunnel in a time τ .

The result found in [2] fits with many other results in the field, as the cost
is equal to the finite volume free energy FL(m̂L) of an “instanton-like saddle
point” m̂L. Indeed m̂L converges as L → ∞ exponentially fast to m̄. Moreover,
the optimal strategy for minimizing the cost is to follow backwards in time the
orbit which connects m̂L to m(−) and, once past m̂L, to go along the orbit which
connects m̂L to m(+). Here comes the relation with the present paper, because for
large L these orbits are close to moving instantons, with the speed of their motion
proportional, to leading orders, to e−2αL, α a positive parameter.

The familiar statement that the cost of tunnelling is equal to the energy of the
saddle point depends critically on leaving unrestricted the time for tunnelling, but
the result remains valid in the limit of large L if we allow for exponentially growing
times τ . In experiments or simulations, infinite or exponentially growing times are
clearly unrealistic and one forces in one way or the other the tunnelling to occur
on faster times so that the event can be actually observed. But then the statistics
over the systems where tunnelling has occurred will reflect the conditioning that
they have occurred in the time span of the observation. The problem then involves
the computation of the additional cost necessary for the interface to move fast
enough. If our results can be extended, as we expect, to the model in [2], we would
then have again a critical dependence on the time and only if it scales slowly on
the scale L2, the tunnelling will be described by a moving front, otherwise it will
be characterized by many nucleations.

The applications of our results to realistic systems may only be valid of course
when the front has really a planar structure. But on the other hand, tunnelling in a
rectangular domain (say in d = 2 dimensions with Neumann boundary conditions)
we believe occurs just as in one dimension. We expect in fact that the stationary
solution which is spatially non homogeneous and has minimal energy is f(x, y) =
m̂L(x), supposing x the direction of the longest side, L, of the rectangle. If this
was actually true, then the arguments used in [2] would prove that the tunnelling
event is just a planar front moving as in the d = 1 case.

The same questions can of course be framed in different contexts, maybe the
most usual one is the Allen-Cahn equation and the Ginzburg-Landau functional.
The cost of tunnelling under a time constraint has been recently investigated by
Reznikoff, [10], for the functional∫

(ut − {Δu− V ′(u)})2
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where V (u) is a double well potential and ut = Δu− V ′(u) the Allen-Cahn equa-
tion. The analysis in [10] gives clear evidence that multiple nucleations are the most
favorable strategy for tunnelling if times are sufficiently short, in total agreement
with the picture we derive here.

4 A d + 1 statistical mechanics setting

The model we are studying here has a clear statistical mechanics origin. Consider
in fact the Ising model in d = 1 dimensions with a Kac potential, where the energy
per spin is

−s(x)
2

∑
y �=x

Jγ(x, y)s(y) =: −s(x)
2
Vx(s) (4.1)

s(z), z ∈ Z
d, being ±1 valued spins and Jγ(x, y) = γdJ(γx, γy), J as in Section 1;

Vx(s)/2 has then the interpretation of the “molecular magnetic field” at x produced
by the spins sy, y 
= x. A first relation with our model comes from the fact that
the free energy functional F(m) is the rate function for Gibbsian large deviations
in the limit γ → 0, see for instance [4].

Glauber dynamics is defined as the Markov process whose generator is deter-
mined by assigning flip rates cx(s) to the spins in such a way that the Gibbs mea-
sure is invariant (and a detailed balance condition, equivalent to self-adjointness of
the generator, is satisfied). There is not a single choice for the rates, in the sequel
it is convenient to assume

cx(s) :=
e−s(x)Vx(s)

e−Vx(s) + e+Vx(s)
. (4.2)

The d+1 setting in the title of this section refers to an interpretation of the Markov
process in terms of a two dimensional Gibbs measure, one dimension referring to Z,
the space of sites of the spins, the other one, R, to times. To implement it, consider
for instance a “reference measure” which is the process where spins flip with rate
1/2 independently of each other, which corresponds to (4.2) with J = 0. We
can then use Girsanov formula (after restricting to “finite boxes”) for the Radon-
Nykodim derivative of the interacting process with respect to the free one, thus
obtaining a d = 2 Hamiltonian.

Just like in equilibrium statistical mechanics, to have a Hamiltonian just
defines the problem, the solution being still all the way ahead. A technique con-
ceptually very powerful, but unfortunately only seldom really implementable, is
renormalization group. The idea behind it, in the present context, is that, af-
ter coarse graining, the original system becomes a new system with low effective
temperature. Its behavior is then ruled by the ground states of its effective Hamil-
tonian. The assumption that the interaction is a Kac potential is just what needed
for implementing such a step of the renormalization group. Here it is convenient to
coarse grain in space only, with blocks which scale to ∞, but having size smaller
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than γ−1. At γ > 0 small enough, the effective Hamiltonian is then approximated
by its limit value at γ = 0, which is the rate function for large deviations. This has
been computed long ago by Comets, [5], the result is a quite complicated expres-
sion, that we have simplified here by assuming it given by the quadratic expression
(1.7)–(1.6). We believe however that an analysis using the Comets functional could
work as well and that it can be used to derive, by a perturbative analysis, also the
behavior of the spins when γ is small, but fixed. We hope to show all that in a
forthcoming paper.

The d+ 1 Gibbsian interpretation of the problem stated in Section 1 has the
following nice expression. We have a box Z× [0, ε−2T ] and we are giving boundary
conditions on bottom and top. On the bottom we put in fact an interface at 0,
on the top the interface is shifted by ε−1R. In elasticity this would be viewed as
a shear problem. If R and thus the shear is small, then the deformation is a well-
defined straight line joining bottom and top, but if we increase R then there are
“fractures” which strongly resemble those appearing in totally different physical
contexts.

5 Scheme of proofs

We have sketched in Section 2 the proof of the upper bound; as it is relatively
easy to fill in the gaps, for brevity we omit the details, giving the upper bound for
proved and thus, the proof of Theorem 2.3 will be completed once we prove:

Proposition 5.1 (Lower bound) Let P > inf
n≥0

wn(R, T ), and γ > 0. Then for any

sequence uε ∈ U [ε−1R, ε−2T ] such that

Iε−2T (uε) ≤ P (5.1)

it holds that
lim inf

ε→0
Iε−2T (uε) ≥ inf

n≥0
wn(R, T ) − γ. (5.2)

Of course γ is redundant in (5.2) and (5.1) is not actually a restriction because
we have already proved that there are sequences u ∈ U [ε−1R, ε−2T ] whose limsup
is bounded by inf

n≥0
wn(R, T ). Since

lim inf
ε→0

inf
u∈U [ε−1R,ε−2T ]

Iε−2T (u) ≥ lim inf
ε→0

inf
u∈U<[ε−1R,ε−2T ]

Iε−2T (u)

where

U<[ε−1R, ε−2T ] =
{
u ∈ C∞(R; (−1, 1)) : u(·, 0) = m̄, u(·, ε−2T ) ≤ m̄ε−1R

}
(5.3)

it will suffice to prove that for any γ > 0,

lim inf
ε→0

inf
u∈U<[ε−1R,ε−2T ]

Iε−2T (u) ≥ inf
n≥0

wn(R, T ) − cγ (5.4)
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where c is an absolute constant (determined only by the parameters entering in
(1.1)).

Our strategy distinguishes two regimes: one is when the function u(x, t) is ev-
erywhere “locally close” to an instanton (or to a reflected instanton); the other one,
when instead u(x, t) deviates from such a local equilibrium. In the first regime we
study (1.6) regarding b as a “small perturbation” and use spectral gap properties
of the evolution linearized around an instanton. In such a linear approximation,
we then obtain estimates for the penalty in agreement with the law “V 2T/μ”. The
corrections to the linear approximation will also be proved to be under control.
It thus remain to study the times when u(·, t) deviates from local equilibrium.
Evidently these cannot be neglected because in such times there may occur the
nucleations responsible for reaching the minimal cost. But, in any case, we need
estimates which tell us that the intervals of time when the system is not in local
equilibrium are bounded. We will start in the next sections from such an issue:
we will first recall from the literature the Peierls estimates, which are a priori
bounds on the spatial location of deviations from equilibrium in terms of the en-
ergy F . By reversibility, we will bound F(u(·, t)) ≤ P , P as in (5.1) and using
the Peierls estimates, we will then bound the volume where the deviations from
local equilibrium occur (contours) in terms of F(u(·, t)) and hence of P . We will
then turn to another key point, namely upper bounds on the times of permanence
outside local equilibrium. This is done in two steps. We first derive lower bounds
on the energy gradients away from local equilibrium and in F(u(·, t)) ≤ P . These
are lower bounds on the force which tries to restore local equilibrium, so that
permanence of u away from local equilibrium can only be achieved by applying a
counter-force b. But since the total integral of b2 is bounded by P , we then obtain
an upper bound on the permanence outside local equilibrium.

We begin by defining local equilibrium, introducing the notion of contours
and the Peierls estimates. We then define the “multi-instantons manifold”, made
by patching together several instantons. After that, we derive lower bounds on the
energy gradients away from the multi-instantons manifold and finally estimates
on permanence away from local equilibrium. At that point we will have all the
ingredients necessary for proving Proposition 5.1.

6 Contours

In this section we recall from the literature notion and results which are extensively
used in the sequel. Given 
 > 0, we denote by D(�) the partition of R into the
intervals [n
, (n+1)
), n ∈ Z, and by Q(�)

x , x ∈ R the interval containing x. (Note
that x need not be the center of Q(�)

x .) We say that Q(�)
x , Q

(�)
x′ are connected, if

the closures have nonempty intersection, i.e., Q(�)
x ∩ Q

(�)
x′ 
= ∅. Now we define

m(�)(x) :=
∫
−
Q(�)

x

m(y) dy,
∫
−
Λ

m(y) dy :=
1
|Λ|
∫

Λ

m(y) dy. (6.1)
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Given an “accuracy parameter” ζ > 0, we then introduce

η(ζ,�)(m;x) =

{
±1 if |m(�)(x) ∓mβ| ≤ ζ,
0 otherwise.

(6.2)

For any Λ ⊆ R which is D(�)-measurable we call

B(ζ,�,Λ)
0 (m) :=

{
x ∈ Λ : η(ζ,�)(m;x) = 0

}
,

B(ζ,�,Λ)
± (m) :=

{
x ∈ Λ : |η(ζ,�)(m;x′)| = ±1, there exists x′ ∈ Λ :

Q
(�)
x ∩ Q

(�)
x′ 
= ∅ η(ζ,�)(m;x′) = −η(ζ,�)(m;x)

}
,

B(ζ,�,Λ)(m) := B(ζ,�,Λ)
+ (m) ∪ B(ζ,�,Λ)

− (m) ∪ B(ζ,�,Λ)
0 (m).

Calling 
− and 
+ two values of the parameter 
, with 
+ an integer multiple
of 
−, we define a “phase indicator”

Θ(ζ,�−,�+)(m;x) =

{
±1 if η(ζ,�−)(m; ·) = ±1 in

(
Q

(�+)
x−�+

∪Q(�+)
x ∪Q(�+)

x+�+

)
,

0 otherwise,

and call contours of m the connected components of the set {x : Θ(ζ,�−,�+)(m;x)
= 0}. Γ = [x−, x+) is a plus contour if η(ζ,�−)(m;x±) = 1, a minus contour if
η(ζ,�−)(m;x±) = −1, otherwise it is called mixed.

Moreover we define for any measurable Λ ⊆ R and m ∈ L∞(R; [−1, 1]) a local
notion of energy by

F(mΛ|mΛc) :=
∫

Λ

φβ(x)dx +
1
4

∫
Λ×Λ

J(x, y)[m(x) −m(y)]2 dy dx

+
1
2

∫
Λ×Λc

J(x, y)[m(x) −m(y)]2 dy dx.

The parameters (ζ, 
−, 
+) are called compatible with (ζ0, c1, κ) ∈ R
3
+ if ζ ∈

(0, ζ0), 
− ≤ κζ, 
+ ≥ 1/
−, and if for any D(�−)-measurable set Λ and any
m ∈ L∞(R; [−1, 1])

F(mΛ|mΛc) ≥ c1ζ
2|B(ζ,�−,Λ)(m)|.

Theorem 6.1 ([2]) There are positive constants ζ0, c1, κ, c2, and α so that if
(ζ, 
−, 
+) is compatible with (ζ0, c1, κ), then for all m ∈ L∞([−L,L]; [−1, 1]),

F(m) ≥
∑

Γ contour of m

wζ,�−,�+(Γ) (6.3)
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where

wζ,�−,�+(Γ) = c1ζ
2 
−

+

|Γ| if Γ is a plus or a minus contour;

wζ,�−,�+(Γ) = max
{
c1ζ

2 �−
�+

|Γ| ; F(m̄) − c2e
−α�+

}
if Γ is a mixed contour.

Let us conclude the section with some applications of Theorem 6.1. For any
u ∈ U [ε−1R, ε−2T ],

sup
t≤ε−2T

(F(u(·, t))−F(u(·, 0)
)) ≤ Iε−2T (u). (6.4)

The proof follows directly from reversibility, see before Theorem 2.2, and it can be
found in [1]. Combined with (5.1), (6.4) yields

sup
t≤ε−2T

(F(u(·, t))−F(u(·, 0)
)) ≤ P. (6.5)

Then, by Theorem 6.1, for ζ small enough,∑
Γi contours of u(·, t)

|Γi| ≤ 
+
c1
−

ζ−2(P + F (m̄)) , (6.6)

number of contours of u(·, t) ≤ 1
c1
−

ζ−2(P + F (m̄)) =: Nmax , (6.7)

number of mixed of contours of u(·, t) ≤ P + F (m̄)
F(m̄) − c2e−α�+

=: Nmix
max . (6.8)

7 Multi-instanton manifold

The instanton manifold is the set M(1) = {m̄ξ, ξ ∈ R}. We extend the notion to
the case of several coexisting instantons by defining the multi-instanton manifold
M(k), k > 1, as the set of all m̄ξ̄, ξ̄ = (ξ1, . . . , ξk) ∈ R

k, ξ1 < · · · < ξk, sufficiently
apart from each other such that, setting ξ0 := −∞, ξk+1 := ∞, the function

m̄ξ̄(x) :=

⎧⎨⎩m̄(x− ξj) if x ∈
[

ξj−1+ξj

2 ,
ξj+1+ξj

2

]
and j odd,

m̄(ξj − x) if x ∈
[

ξj−1+ξj

2 ,
ξj+1+ξj

2

]
and j even

has exactly k mixed contours.
We denote

M =
⋃
k≥1

M(k). (7.1)

To study “neighborhoods” of M we introduce the notion of “center of m”
that we use here in a slightly different sense than usual:
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Definition. ξ ∈ R is a center of m if ξ ∈ Γ, Γ a mixed contour of m, and if(
m− m̄ξ, m̄

′
ξ

)
= 0, or, equivalently,

(
m, m̄′

ξ

)
= 0 (7.2)

where (·, ·) denotes the scalar product in L2(R, dx) and ‖ · ‖2 the corresponding L2

norm. ξ is an odd, even, center if Γ is a (−,+), respectively (+,−) mixed contour.

Remarks. An odd center of m specifies an element m̄ξ ∈ M(1) such that the two
directions, one pointing from m̄ξ to m and the other one along M(1) are mutually
L2-orthogonal. If ξ is even, same picture holds after a change of sign. Supposing
Θ(ζ,�−,�+)(m;x) = −1 definitively as x → −∞, there is a first mixed contour
coming from the left which is (−,+), the next one is a (+,−) and so on, this is
the reason for naming the centers as odd and even.

The following theorem holds, see [7],

Theorem 7.1 If ζ (in the definition of contours) is small enough the following
holds.

• Each mixed contour Γ of m contains a center of m.
• There is δ > 0 so that if for some ξ in a (−,+) mixed contour Γ of m

(analogous statement holding in the (+,−) case), ‖1Γ(m− m̄ξ)‖2 ≤ δ, then
there is a unique center ξm in Γ and∫

R

(
{m− m̄ξ′}2 − {m− m̄ξm}2

)
> 0, for all ξ′ ∈ Γ, ξ′ 
= ξm (7.3)

and calling v = m− m̄ξ, Nv,ξ =
(v, m̄′

ξ)
(m̄′, m̄′)

,

∣∣ξm − (ξ −Nv,ξ)
∣∣ ≤ c‖v‖2

2, |Nv,ξ| ≤ c‖v‖2. (7.4)

• If also inf
ξ
‖1Γ(n− m̄ξn)‖2 ≤ δ, then

|ξm − ξn| ≤ c‖m− n‖2. (7.5)

By the first statement in Theorem 7.1 a function m with k mixed contours
Γ1, . . . ,Γk has (at least) one center in each one of the mixed contours; we denote
by Ξ the collection of all ξ̄ = (ξ1, . . . , ξk), ξi < ξi+1, ξi a center of m in Γi and
define

dM(m) = inf
ξ̄∈Ξ

‖m− m̄ξ̄‖2. (7.6)

Ifm is close enough to M(k), then the choice of ξ̄ is unique. Note that this definition
differs slightly from the usual definition of a distance of a point from a manifold,
but the following lemma bounds this difference:
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Lemma 7.1 For any k there are δ > 0 and c so that if m has k mixed contours
Γ1, . . . ,Γk and dM(m) ≤ δ, then

d2
M(m) ≥ inf

ξ̄∈Γ1×···×Γk

‖m− m̄ξ̄‖2
2 ≥ d2

M(m) − c

k−1∑
i=1

e−α dist(Γi+1,Γi)/2 (7.7)

where α > 0 is defined in (1.4).

Proof. Call ξ̄∗ = (ξ∗1 , . . . , ξ
∗
k) the centers of m, which by Theorem 7.1 are uniquely

defined (supposing δ > 0 small enough). Let Ai, i = 1, . . . , k, be the decomposition
of R defined by the midpoints of ξ̄∗, then if ξ̄ ∈ Γ1 × · · · × Γk, and σi = ±1 if i is
odd, respectively even,

‖m− m̄ξ̄‖2
2 − dM(m)2 =

k∑
i=1

∫
Ai

(
{m− σim̄ξi}2 − {m− σim̄ξ∗

i
}2
)
.

By (7.3)∫
Ai

(
{m− σim̄ξi}2 − {m− σim̄ξ∗

i
}2
)
≥ −

∫
Ac

i

(
{m− σim̄ξi}2 − {m− σim̄ξ∗

i
}2
)

hence (7.7) because of the exponential convergence of m̄(x) to ±mβ as x→ ±∞.

8 Lower bounds on energy gradients

In this section we will investigate the structure of the energy levels of F(·). In
particular we will prove a lower bound on the energy gradient in terms of the
distance from the manifolds M(k):

Theorem 8.1 For any ϑ > 0 there is ρ > 0 so that the following holds. Let m ∈
L∞(R; (−1, 1)) have an odd number p of mixed contours, let F(m) ≤ P (P as in
Proposition 5.1) and let dM(m)2 ≥ ϑ. Then∫

R

f(m)2 ≥ ρ. (8.1)

The proof is given at the end of the section, after several preliminary esti-
mates, but before we state a corollary of Theorem 8.1 on the “permanence away
from equilibrium” which will be essential in the sequel.

Theorem 8.2 Let u satisfy (5.1), then for any ϑ > 0 there is ρ > 0 so that,
if dM(u(·, t)) ≥ ϑ when t ∈ [t0, t1], 0 ≤ t0 < t1 ≤ ε−2T , then necessarily

t1 − t0 ≤ 8
3
P

ρ
.
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Proof. Let ρ be the parameter associated to ϑ by Theorem 8.1. Then∫ t1

t0

∫
R

|f(u)|2 ≥ [t1 − t0]ρ.

We estimate

F(u(t1)) −F(u(t0)) =
∫ t1

t0

d
dt

F(u(s)) ds

=
∫ t1

t0

∫
R

(f(u(s)) + b(s))
δF
δu

(u(s))

≤ −
∫ t1

t0

‖f(u)‖2
2 +
∫ t1

t0

‖f(u)‖2‖b(s)‖2

≤
∫ t1

t0

(
−3

4
‖f(u)‖2

2 + ‖b(s)‖2
2

)
ds ≤ −3

4
[t1 − t0]ρ+ P.

With the help of (6.5) we can estimate

F(u(t1)) −F(u(t0)) ≥ −
(

sup
s∈[0,ε−2T ]

[F(u(s))] −F(m̄)

)
≥ −P,

and we conclude the proof of Theorem 8.2.

We start the proof of Theorem 8.1 by a general outline of its strategy. By
analogy with the Allen-Cahn equation, it can be conjectured that the stationary,
spatially non homogeneous solutions of (1.1) are either the instanton m̄ (and its
translates) or periodic functions, which then have infinite energy. The assumption
in the theorem excludes both possibilities, thus leading to the conclusion that the
functions m to consider are such that f(m) is not identically 0. As we will see it is
possible to reach the same conclusion avoiding the above characterization of the
stationary solutions of (1.1). It still remains, however, to quantify the condition
f(m) 
≡ 0 in the sense of the inequality (8.1). This will be done using continuity

and compactness, the argument being that once we know that
∫
f(m)2 > 0 for

each m in the set defined in Theorem 8.1, then also the inf (in the same set) is non
zero. Continuity and compactness require to work in weak L2 spaces, which, on the
other hand, do not fit well in our context, as for instance the function m→ f(m)2

is not weakly continuous.
Besides such “technical problems”, anyway the proof of (8.1) cannot go too

smoothly. Suppose m has 2k + 1, k ≥ 1, mixed contours. Then it is known that
the orbit starting from m converges to an instanton, as a consequence f(m) 
≡ 0

and
∫
f(m)2 > 0. However the integral may be arbitrarily small if the mixed

contours in m are very far apart from each other and in each of them m looks
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like an instanton or its reverse. Such a possibility however will be excluded by
the condition dM(m)2 ≥ ϑ, showing that such an assumption must complement
the information that f(m) 
≡ 0. The analysis of the condition dM(m)2 ≥ ϑ will
distinguish whether the deviations of m from m̄ξ̄ are localized in a neighborhood
of the contours of m or in the complement, and we will start by examining the
former case.

We will denote space intervals and contours by the letter Q, in order to
distinguish them from time intervals, which will be denoted by the letter I.

Let Q, Qj and B±
k,j be intervals of the form Q = [a, b), Qj = [a − j, b + j),

B−
k,j = [a− j − k, a− j), B+

k,j = [b + j, b + j + k) with a, b, j, k all in 
+N. Then,
given ϑ > 0, we set

UQ,j,ϑ =
{
m ∈ L∞(R, (−1, 1)) : Q is a mixed −,+ contour for m and

inf
ξ∈Q

∫
Qj

|m− m̄ξ|2 ≥ ϑ
}
, (8.2)

Vk,j =
{
m ∈ L∞(R, (−1, 1)) : η(ζ,�−)(m;x) = ±1 for all x ∈ B±

k,j

}
. (8.3)

Lemma 8.1 For any ϑ > 0, Q and Qj as above, there is k so that∫
Qk+j

|f(m)| > 0 for any m ∈ UQ,j,ϑ ∩ Vk,j . (8.4)

Proof. Define

Kh = UQ,j,ϑ ∩ Vh,j ∩ {m :
∫

Qh+j

|f(m)| = 0}. (8.5)

The proof of (8.4) is then equivalent to showing that for some h, Kh = ∅.
We rewrite

∫
Qh+j

|f(m)| = 0 as
∫

Qh+j

|m− tanh{βJ ∗m}| = 0 and, since m =

tanh{βJ ∗m} in Qh+j ,

Kh = U∗
Q,j,ϑ ∩ Vh,j ∩ {m :

∫
Qh+j

|f(m)| = 0}

where

U∗
Q,j,ϑ =

{
m ∈ L∞(R, (−1, 1)) : Q is a mixed −,+ contour for m and

inf
ξ∈Q

∫
Qj+h

| tanh{βJ ∗m} − m̄ξ|2 ≥ ϑ
}
.

The advantage of having U∗
Q,j,ϑ is that this set is closed (in the weak L2 topology)

and, more importantly, the sameKh is weakly closed in L2
loc. Since Kh is contained

in the unit ball of L∞, Kh is also weakly L2
loc compact. By compactness of such a
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space,
{
⋂
h

Kh = ∅} ⇔ {Kh = ∅ for some h}.

We have thus reduced the proof of the lemma to showing that
⋂
h

Kh = ∅.

Suppose that m ∈
⋂
h

Kh. Then m = tanh{βJ ∗m} almost everywhere, while,

simultaneously, η(ζ,�−)(m;x) = ±1, eventually as x→ ±∞. Thenm = mξ for some
ξ ∈ R and since Q is a mixed contour for m, ξ ∈ Q, which contradicts m ∈ U∗

Q,j,ϑ,

hence
⋂
h

Kh = ∅.

Proposition 8.1 For any ϑ > 0, Q and Qj let k be as in Lemma 8.1. Then there
is ρ > 0 so that

inf
m∈UQ,j,ϑ∩Vk,j

∫
Qk+j

f(m)2 ≥ ρ. (8.6)

Proof. Suppose by contradiction that the inf is 0. Then there is a sequence mn ∈
UQ,j,ϑ ∩ Vk,j such that

lim
n→∞

∫
Qk+j

f(mn)2 = 0 (8.7)

and which converges weakly in L2
loc, say mn ⇀ m̂. As J(0, ·) is smooth and has

support in the unit ball, this implies that J ∗mn → J ∗ m̂ strongly in L2
loc and

pointwise. From (8.7) we derive

Aβ(mn) → J ∗ m̂ in L2(Qk+j).

Since the function tanh is uniformly Lipschitz continuous, we get mn → tanh(βJ ∗
m̂) in L2(Qk+j). Therefore

lim
n→∞ m̂ = tanh(βJ ∗ m̂) in Qk+j , (8.8)

and f(m̂)(x) = 0 for all x ∈ Qk+j . By (8.8), m̂ ∈ UQ,j,ϑ; moreover m̂ ∈ Vk,j

because the latter is weak L2 closed, hence m̂ ∈ UQ,j,ϑ ∩ Vk,j . We have already
seen that f(m̂)(x) = 0 for all x ∈ Qk+j and this, by Lemma 8.1, leads to a
contradiction. Thus ρ > 0.

The analogues of UQ,j,ϑ and Vk,j when the external conditions are in the plus
or in the minus phase are

U±
Q,j,ϑ =

{
m ∈ L∞(R, (−1, 1)) : Q is a ± contour for m and

∫
Qj

|m∓mβ |2 ≥ ϑ
}

(8.9)

V ±
k,j =

{
m ∈ L∞(R, (−1, 1)) : η(ζ,�−)(m;x) = ±1 for all x ∈ B−

k,j ∪B+
k,j

}
.

(8.10)
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The previous arguments can be adapted to prove (details are omitted):

Proposition 8.2 For any ϑ > 0, Q and Qj there are k and ρ > 0 so that

inf
m∈U±

Q,j,ϑ∩V ±
k,j

∫
Qk+j

f(m)2 ≥ ρ. (8.11)

Given an interval Q and a function m̂ ∈ L∞(R, (−1, 1)), we denote by L̂ the
operator on L2(Q; dx) defined by

L̂ψ(x) =
∫

Q

J(x, y)ψ(y) +
1

β(1 − m̂(x)2)
ψ(x), x ∈ Q. (8.12)

L̂ is obtained by linearizing around m̂ the “partial dynamics” ut = f(u) in Q,
u = m̂ outside Q. In [2] it is proved that:

Proposition 8.3 There are c, α and ω all positive so that the following holds.
Let Q = [a, b), a, b ∈ 
+N, b possibly equal to +∞, and m ∈ L∞(R, (−1, 1),
Θ(ζ,�−,�+)(m;x) = 1 for all x ∈ Q. Then:

• There is a unique solution m̂ of

m̂(x) = tanh{βJ ∗ m̂(x)}, Θ(ζ,�−,�+)(m̂;x) = 1, for all x ∈ Q

m̂(x) = m(x), for all x /∈ Q (8.13)

• m̂ is a smooth function on Q and

|m̂(x) −mβ | ≤ ce−α dist(x,Qc) (8.14)

• L̂ is self-adjoint in L2(Q) and its spectrum lies in (−∞,−ω], ω > 0.

Lemma 8.2 There is c∗ > 0 so that for any Q, m and m̂ as in Proposition 8.3,∫
Q

f(m)2 ≥ c∗
∫

Q

|m− m̂|2 (8.15)

Proof. Let a ∈ (mβ , 1), Aβ(a) ≥ 4,

ca := inf
x �=y∈[0,a]

|Aβ(x) −Aβ(y)|
|x− y| , ca < 1

the last inequality because A′
β(0) < 1 for β > 1. Suppose also ζ so small that

m̂(x) < a for all x ∈ Q and

16ζ < ca;
ω2

2
>

16ζ
ca

;
16ζ
ca

< κ
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where κ ∈ (0, [1 + a]/2) is such that

c2κ2 ≤ ω2

2
, c := A′

β([1 + a]/2). (8.16)

We then call
Qκ := {x ∈ Q : |m(x) − m̂(x)| > κ}. (8.17)

Since Θ(ζ,�−,�+)(m;x) = 1 for all x ∈ Q, if ζ is small enough, |J ∗ (m − m̂)| ≤ 4ζ
on Q, i.e., including Qκ as well.

We are going to prove that

f(m)2 ≥ |J ∗ (m− m̂)|2 +
c2a
4
|m− m̂|2 on Qκ. (8.18)

We distinguish two cases. Case 1: x ∈ Qκ and |m(x)| ≤ a. Then, since f(m̂) = 0
on Qκ,

|f(m)| = |{Aβ(m)−Aβ(m̂)}− J ∗ (m− m̂)| ≥ |Aβ(m)−Aβ(m̂)| − |J ∗ (m− m̂)|
≥ ca|m− m̂| + |J ∗ (m− m̂)| − 8ζ ≥ ca

2
|m− m̂| + |J ∗ (m− m̂)|.

Case 2: x ∈ Qκ and |m(x)| > a. Then, recalling that Aβ(a) ≥ 4, Aβ(a) ≥
|m− m̂| + 8ζ and

|f(m)| ≥ Aβ(a) + |J ∗ (m− m̂)| − 8ζ ≥ |J ∗ (m− m̂)| + |m− m̂|
which concludes the proof of (8.18) because ca ≤ 1.

We write∫
Q

f(m)2 ≥
∫

Qκ

f(m)2 + ε

∫
Q\Qκ

f(m)2

≥
∫

Qκ

c2a
4

(m− m̂)2 + [J ∗ (m− m̂)]2 + ε

∫
Q\Qκ

f(m)2 (8.19)

with ε > 0 to be specified later. In Q \ Qκ we linearize around m̂ and recalling
that m̂ ≤ a, maxA′

β(m̂) ≤ A′
β(a) ≤ c, c as in (8.16), we obtain∫

Q\Qκ

f(m)2 =
∫

Q\Qκ

|f(m) − f(m̂)|2

≥
∫

Q\Qκ

(
L̂(m− m̂)

)2

− c2|m− m̂|4

≥
∫

Q

(
L̂(m− m̂)

)2

−
∫

Qκ

(
L̂(m− m̂)

)2

− c2κ2

∫
Q\Qκ

|m− m̂|2.

Using again that m̂ ≤ a, maxA′
β(m̂) ≤ A′

β(a) ≤ c,∫
Qκ

(
L̂(m− m̂)

)2

≤ 2
∫

Qκ

|J ∗ (m− m̂)|2 + c2 (m− m̂)2 .
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We now choose ε > 0 so that 2ε < 1 and 2c2ε ≤ c2a/4, then getting from (8.19)
and (8.16) ∫

Q

f(m)2 ≥ ε

∫
Q

(
L̂(m− m̂)

)2

− ε
ω2

2

∫
Q\Qκ

|m− m̂|2. (8.20)

By Proposition 8.3∫
Q

[L̂ψ(x)]2 ≥ ω2

∫
Q

ψ2, for any ψ ∈ L2(Q) (8.21)

hence (8.15) because m− m̂ = 0 on R \Q.

Proof of Theorem 8.1. Without loss of generality, we may suppose ϑ > 0 as small as
required by the arguments below. By Theorem 6.1, m has at most Nmax contours,
with at most Nmix

max among them which are mixed contours.
We start from the case when there is a (+,+) contour Q. Calling Q− :=

{x ∈ Q : η(ζ,�−)(m;x) < 1}, since Q− 
= ∅ because η(ζ,�−)(m;x) < 1 somewhere
in Q, by definition of contours,

|
∫
−

Q−
[m(x) −mβ ]| ≥ ζ

and, by Cauchy-Schwartz,∫
Q

|m(x) − m̄β|2 ≥ 
−(
ζ

2
)2 ≥ ϑ (8.22)

for ϑ small enough.
We take j = 0, Qj = Q and call k1 the smallest value of k for which Propo-

sition 8.2 applies with Q, ϑ and j = 0. If in Qk1 there are no contours Proposition
8.2 yields (8.1). If on the contrary, there are contours, according to cases, we will
apply either Proposition 8.2 or Proposition 8.1, as it will be explained after (8.23)
below. To this end, we call m̄ξ̄ the element of M with ξ̄ centers of m. Observe
that |m̄ξ̄(x) −mβ | ≤ ce−α�+ for x ∈ Q, by definition of contours and because of
the decay properties of m̄. Then

|
∫
−

Q−
[m(x) − m̄ξ̄]| ≥ |

∫
−

Q−
[m(x) −mβ ]| − |

∫
−

Q−
[m̄ξ̄ −mβ ]| ≥ ζ − ce−α�+ ≥ ζ

2

and, analogously to (8.22),∫
Q

|m(x) − m̄ξ̄|2 ≥ 
−(
ζ

2
)2 ≥ ϑ. (8.23)

We now continue the previous argument. If in Qk1 there are contours besides Q,
we take j = k1 and call k2 the smallest k for which either Proposition 8.2 or
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Proposition 8.1 can be applied with Q, ϑ and j = k1. Again, if in B±
k2

there are
contours, we call j = k2 and repeat the procedure. As there are at most Nmax

contours, the iteration is finite and the final j and k are bounded in terms of P
and ϑ only. Let ρ be the value corresponding to such parameters, hence (8.1) holds
for such m with the above value of ρ.

Same argument applies when there is a −− contour, and we are left with the
case with only mixed contours, say there are p ≤ Nmin

max mixed contours. Fix j∗ so
that

ce−α�+j∗ ≤ ϑ2. (8.24)

We distinguish two cases. Case 1 is when there is a mixed contour Q such that∫
Qj∗

|m− m̄ξ̄|2 ≥ ϑ

2p
. (8.25)

In this case using Proposition 8.1 we can proceed as before, getting again (8.1)
with the new value of ρ.

We are then reduced to case 2, where calling Λ the complement of the union
of Q(i)

j∗ , Q(i) the i-th contour, ∫
Λ

|m− m̄ξ̄|2 ≥ ϑ

2
. (8.26)

Λ is a union of intervals, let Q0 be one such that∫
Q0

|m− m̄ξ̄|2 ≥ ϑ

2(p+ 1)
. (8.27)

Call Q the interval containing Q0 between two consecutive contours. By applying
Lemma 8.2, we get, using (8.24),∫

Q

|f(m)|2 ≥ c

∫
Q0

|m− m̂|2 ≥ c

∫
Q0

|m− m̄ξ̄|2 − c′ϑ2 ≥ c′′ϑ. (8.28)

Theorem 8.1 is proved. �

9 Good and bad time intervals

In this section we introduce an analogue for times of the notion of contours. To
this end we partition the time axis R+ into intervals {S[j, j+1), j ∈ N} of length
S > 0. The analogue of the function η(ζ,�−)(m;x), here denoted by φ(δ,S)(u; t),
δ > 0, is defined as

φ(δ,S)(u; t) =

⎧⎪⎨⎪⎩1 if
∫ (j+1)S

jS

‖b(s)‖2
2 < δ

0 otherwise
for t ∈ S[j, j + 1). (9.1)
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The role of Θ(ζ,�−,�+)(m;x) is played by Φ(δ,S)(u; t), defined equal to 1 if φ(δ,S)(u; s)
= 1 for all s ∈ S[j − 1, j + 1) and = 0 otherwise. We define Gtot = {t ≤ ε−2T :
Φ(δ,S)(u; t) = 1} and call t a “good time” and S[j, j + 1) a good interval if they
are contained in Gtot. Bad times and bad intervals are defined complementary.

Choice of parameters. Given R and T , i.e., the macroscopic displacement of the
interface and the time interval when it occurs, we call

n∗ = 1 +
2P

F(m̄)
. (9.2)

n∗ is an upper bound for the total number of fronts, considering that each nucle-
ation produces two fronts, it costs more than > F(m̄), as we will see and P is an
upper bound for the cost of the orbit, see Proposition 5.1. By the same Proposition
5.1, the proof of Theorem 2.3 follows from showing that (5.4) holds, we thus fix
arbitrarily γ > 0 and then determine 
∗ > 0 so that∣∣F(m̄(−�∗,�∗)

)− 2F(m̄)
∣∣ ≤ γ

103(n∗)3
, m̄(−�∗,�∗) = 1x≥0m̄�∗ − 1x<0m̄−�∗ . (9.3)

By the L2-continuity of F(·), there is ϑ so that for all m such that dM(m) ≤ ϑ
and with centers (ξ1, . . . , ξn), n ≤ n∗, ξi+1 − ξi ≥ 2
∗,∣∣F(m) − kF(m̄)

∣∣ ≤ γ

103(n∗)2
. (9.4)

It remains to fix δ and S in (9.1): δ will be “small” and S “large” but
their exact choice is rather intricate. The problem here comes from “incomplete
nucleations”, we need in fact to “discard” those where the distance 
 between the
centers of the nucleating instantons is smaller than 2
∗.

Proposition 9.1 There is τ > 0 so that for any positive 
 ≤ 
∗, the solution v(x, s)
of (1.1) starting from m̄(−�,�) verifies

sup
x∈R

|v(x, τ) −mβ | ≤ ϑ.

The proof is “essentially contained” in [3], for brevity we omit the details.
By a barrier lemma and the comparison theorem, see Appendix A in [1], we also
have (again details are omitted):

Proposition 9.2 There is L > 0 for which the following holds. Let 
 and τ as in
Proposition 9.1 and ξ̄ = (ξ1, . . . , ξn), n ≤ n∗. Call I the set of all even i such that
ξi+1 − ξi ≤ 
. Suppose I non void and that for j /∈ I, ξj+1 − ξj ≥ L. Then the
solution w(x, t) of (1.1) which starts from m̄ξ̄ is such that

sup
x∈R

|w(x, τ) − m̄ξ̄∗(x)| ≤ ϑ (9.5)

where ξ̄∗ is obtained from ξ̄ by dropping all pairs ξi, ξi+1, i ∈ I.
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By a continuity argument, see Theorem C.1, (again details are omitted):

Proposition 9.3 Let 
, τ , L, ξ̄ and ξ̄∗ as in Proposition 9.2. Then there is α > 0
such that if

‖m− m̄ξ̄‖2 ≤ ϑ,

∫ τ

0

‖b‖2
2 ≤ α (9.6)

then the solution w(b,m)(x, t) of (1.6) with force b and which starts from m is such
that

‖w(b,m)(x, τ) − m̄ξ̄∗(x)‖2 ≤ 4ϑ. (9.7)

Choice of S and δ. Let ρ be the parameter associated to ϑ by Theorem 8.2, then

S > 103 max
{
τ,

8
3
Pρ−1, s′, s′′,

4
ω

}
(9.8)

with s′ and s′′ as in Appendix C, ω as in Appendix D. We finally choose δ so that

δ = 10−3 min
{
α,

ϑ

c11.1S

}
, α and c11.1 as in Proposition 9.3

and Proposition 11.1.
(9.9)

Theorem 9.1 Let u satisfy (5.1) and let δ and S as above. Then:

number of bad time intervals ≤ P

2δ
. (9.10)

If S[j, j + 1) is a good time interval, there is t1 ∈ S[j − 1
2
, j − 1

4
) such that

dM(u(·, t1)) ≤ ϑ.

Proof. Suppose I is a bad interval, call I− the previous time interval. By definition,
the inequality (9.1) cannot hold for both I and I−, otherwise I would be good,
hence (9.10), recalling that P ≥ Iε−2T (u). The second statement follows from
Theorem 8.2 and (9.8).

10 Subsolutions

Having fixed an orbit u as in Proposition 5.1, we define once for all b := ut − f(u)
and consider an orbit m(x, t), such that m(·, 0) = m̄(·), obtained by patching
together solutions of (1.6) with forcing term b as above. We decompose the time
axis into intervals Ii and define m(x, t), t ∈ Ii, as the solution of (1.6) starting
from m(·, s+), s the left end point in Ii. m(·, s+) may be either equal to m(·, s−)
or m(·, s) < m(·, s−), according to cases. As proved in Appendix A there is an
existence and uniqueness theorem for these Cauchy problems so that the definition
is well posed and, by the validity of a comparison theorem,

m(x, t) ≤ u(x, t), x ∈ R, t ∈ [0, ε−2T ]. (10.1)
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The new orbit m is not necessarily in U [ε−2T, ε−1R], but it is in U<[ε−2T,
ε−1R], see (5.4)–(5.3).

Inequalities play an important role and we will often use the following notion.
We define a partial order by setting

(ξ1, . . . , ξk) ≥ (ξ′1, . . . , ξ
′
k′) ⇔ m̄(ξ1,...,ξk) ≥ m̄(ξ′

1,...,ξ′
k′ ) (10.2)

In particular, if k = k′,

(ξ1, . . . , ξk) ≥ (ξ′1, . . . , ξ
′
k) ⇔ ξi ≤ ξ′i, i odd, ξi ≥ ξ′i, i even. (10.3)

We will use different strategies in the bad and the good time intervals. We
start from the latter, calling jS the left end point of a maximal connected compo-
nent G of Gtot. We will choose a time tin ∈ [(j − 1/2)S, jS] which depends on the
orbit m and it is such that m(·, tin) is “very nice” and we will then study m(·, t),
t ≥ tin, via the evolution equation (1.6) which it satisfies, taking advantage of
the fact that when times are good, the “external force” b is small. The choice of
m(x, tin) is aimed at a perturbative analysis, based on the linearization of (1.6)
around the manifold M and the choice of tin is critical. Let t1 be the smallest time
≥ (j − 1/2)S when dM(m(·, t)) ≤ ϑ. Then t1 ≤ (j − 1/4)S by Theorem 9.1. For ϑ
small enough, m has only mixed contours, their number, denoted by k, being odd.
Call ξ̄ = (ξ1, . . . , ξk) its centers, ordered increasingly. We distinguish three cases,
with Case 1) when ξj+1 − ξj > 2| log ε−1|2 for all j: we do not need in Case 1)
to modify m, so that tin = t1 and m(·, t+in) = m(·, t−in), in the remaining cases,
instead, (10.1) will hold as a strict inequality.

In Cases 2) and 3) we erase from ξ̄ all pairs ξi, ξi+1 with i odd, such that
ξi+1 − ξi ≤ 2| log ε|2, calling ξ̄1 the new configuration. Since we are erasing pairs
ξi, ξi+1 with i odd, then m̄ξ̄1

≤ m̄ξ̄. With 
∗ as in the paragraph “Choice of
parameters” in Section 9, we then look at all even j in ξ̄1 such that 2
∗ ≤ ξj+1−ξj ≤
2| log ε|2 and move each ξj , ξj+1 to ξ′j , ξ

′
j+1 where

ξ′j + ξ′j+1 = ξj + ξj+1, ξ′j+1 − ξ′j = 2| log ε|2.
We call ξ̄2 the configuration obtained in this way and ξ̄3 the one obtained from ξ̄2
by the same procedure used to define ξ̄1 starting from ξ̄. In ξ̄3 the pairs ξi, ξi+1

with i even either verify ξi+1 − ξi ≥ 2| log ε|2 or ξi+1 − ξi ≤ 2
∗. Case 2) is when
ξi+1 − ξi ≥ 2| log ε|2 for all i, while Case 3) covers the remaining possibilities. We
define

m̃(x, t1) = min
{
m(x, t1), m̄ξ̄3

(x)
}
.

In Case 2) tin = t1 and m(·, t+in) = m̃(·, t1), while in Case 3) tin = t1 + τ , τ as
in Proposition 9.1, and m(·, t+in) is the solution at time t1 +τ of (1.6) starting from
m̃(·, t1) at time t1.

Proposition 10.1 For all ε > 0 small enough, the centers of m(·, t+in) have mutual
distance ≥ | log ε|2 and

dM
(
m(·, t+in)

) ≤ 6ϑ.
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Proof. By definition of t1, dM(m(·, t1)) ≤ ϑ. In Case 1) the centers ofm(·, tin) have
mutual distance ≥ 2| log ε−1|2, hence the statements in the proposition. In Case 2),
by construction the elements of ξ̄3 have distance ≥ 2| log ε−1|2 and m̄ξ̄3

≤ m̄ξ̄. We
have

‖m̃− m̄ξ̄3
‖2 ≤ ‖m− m̄ξ̄‖2. (10.4)

In fact, m̃(x) = m̄ξ̄3
(x) unless m̃(x) = m(x) < m̄ξ̄3

(x), and (10.4) follows recalling
that m̄ξ̄3

≤ m̄ξ̄. Recalling that ‖m(·, t1) − m̄ξ̄‖2 ≤ ϑ, by definition of t1, ‖m̃ −
m̄ξ̄3

‖2 ≤ θ and, denoting by h the number of elements in ξ̄3 and by Γi the mixed
contours of m, by (7.7),

dM
(
m(·, tin)

) ≤ ‖m̃− m̄ξ̄3
‖2 + c

h−1∑
i=1

e−α dist(Γi+1,Γi)/2

≤ ϑ+ cn∗e−α| log ε−1|2/2 ≤ 2ϑ

for ε small enough. In Case 3), by (10.4) and Proposition 9.3,

dM
(
m(·, t+in)

) ≤ 4ϑ+ cn∗e−α| log ε−1|2/2 ≤ 6ϑ.

Moreover the centers of m(·, t+in) differ from the corresponding ones in m(·, t1) at
most by 2ϑ, as it follows from Proposition 9.2 and Theorem 7.1. Proposition 10.1
is proved.

11 Estimates by linearizion

In this section we will study the solutions of (1.6) in a maximal connected com-
ponent G of the good times set, Gtot,

G = [j, j∗]S ⊂ Gtot, (11.1)

see Section 9 and Section 10 for the relevant definitions. We will start from the
first good time interval [j, j + 1]S contained in G and then iterate the argument
to the successive ones.

Setup. As explained at the beginning of Section 10, we actually study an orbit
m(x, t) solution of (1.6) for t ≥ t+in, t

+
in ∈ [j − 1/2, j − 1/4]S, which starts from

m(·, t+in). After a careful choice of tin and after using inequalities, we have seen
that we may suppose m(·, tin) as having an odd number k of mixed contours at
mutual distance ≥ | log ε−1|2; moreover dM(m(·, t+in)) ≤ 6ϑ. Finally, by definition
of good intervals, the force b(x, t) is such that∫ (h+1)S

hS

‖b(·, s)‖2
2 ≤ δ, h ∈ {j − 1, j}. (11.2)

Choice of parameters. In the sequel ω > 0 is the “spectral gap parameter”
defined in Appendix D; s′, α′ and M are as in Theorem C.2 of Appendix C;
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C(M) = sup
m∈[0,M ]

A′′
β(m); α′′ and s′′ of Theorem C.3 of Appendix D are such that

ε = ε1 with ε1 <
ω

8C(M)c1
; α∗ := min{α′, α′′}. Recall also that S ≥ max{s′, s′′},

see (9.8).

Notation. We denote by χ the characteristic function of Aα∗ , where α∗ is defined
above and

Aα∗ :=
{
x ∈ R :

∫ (j+1)S

(j−1)S

b2(x, s)ds ≤ α∗
}

(11.3)

noting that

|Ac
α∗ | ≤ 1

α∗

∫ (j+1)S

(j−1)S

‖b(s)‖2
2 . (11.4)

Calling ξ̄(t) = (ξ1(t), . . . , ξk(t)) the centers of m(·, t), t ≥ tin, we define the ap-
proximate centers ξ̃(t) = (ξ̃1(t), . . . , ξ̃k(t)) and the deviation u(·, t), in the usual
way except for inserting the characteristic function χ:(

χm̄′
ξ̃i(t)

, [m(·, t) − σim̄ξ̃i(t)
]
)

= 0, u(·, t) = m(·, t) − m̄ξ̃(t) (11.5)

with σi = 1 [σi = −1] if i is odd, [even], and ξ̃i(t) in the i-th mixed contour of
m(·, t) (as we will see m(·, t) has only mixed contours).

Finally we call Λi(t), i = 1, . . . , k, the open intervals
1
2
(
ξ̃i−1(t)+ξ̃i(t), ξ̃i+1(t)+

ξ̃i(t)
)
, ξ̃0(t) = −∞ and ξ̃k+1(t) = +∞.

Remarks. We have

|ξ̃i(t) − ξi(t)| + ‖u(·, t) − {m(·, t) − m̄ξ̄(t)}‖2 ≤ c

α∗

∫ (j+1)S

(j−1)S

‖b(s)‖2
2. (11.6)

We sketch the proof for the case of one contour only. The extension to the general
case is straightforward, as the centers have distance ≥ | log ε|2.

Denote by ξ(χm) and ξ(m) the centers of χm and respectivelym. We estimate
by (7.5) |ξ(χm)−ξ(m)| ≤ c|Ac

α∗ |. According to its definition, ξ̃(t) may be different
from ξ(χm), but for d2

M(χm) small enough the function

ξ → (m̄′
ξ, χm− m̄ξ)

has nonzero derivative at its unique zero ξ(χm). As (m̄′
ξ̃
, χm− m̄ξ̃) ≤ c′|Ac

α∗ |, we
get with a possibly different constant (11.6).

The variational inequality (5.4) requires lower bounds on ξ̃(t) in the sense of
(10.2). We will thus prove in the sequel upper bounds for displacements of centers
with i odd and lower bounds for those with i even.
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Proposition 11.1 There is a constant c11.1 > 0, so that for ϑ and δ small enough
and for all t ∈ [tin, (j + 1)S],

‖u(·, t)‖2
2 ≤ e−(t−tin)ω/2‖u(·, tin)‖2

2 + c11.1SU
2
j (11.7)

σi[ξi(t) − ξi(tin)] ≤ − 1
‖m̄′‖2

2

∫ t

tin

(b, m̄′
ξi(t)

) + c11.1

[‖u(·, tin)‖2
2 + SU2

j

]
(11.8)

where i = 1, . . . , k and

U2
j =

∫ (j+1)S

(j−1)S

‖b(·, s)‖2
2 +Rmax, Rmax = c11.1e

−α| log ε|2/2. (11.9)

Note that Rmax → 0 as ε→ 0.

Proof. Let

L : L2(R) → L2(R), (Lu)(x) := (J ∗ u)(x) −A′
β

(
m̄ξ̃(t)(x)

)
u(x).

Note that the coefficient of the local part depends on t. For x ∈ Λi, (see the
paragraph “Notation” above)

du(x, t)
dt

= σi
˙̃
ξi(t)m̄′

ξ̃i(t)
+ Lu(x, t) + u2(x, t)

∫ 1

0

A′′
β

(
m̄ξ̃(t) + λu(x, t)

)
dλ+ b(x, t)

(11.10)

Multiply (11.10) by u(·, t)χ and integrate over space. Note that χ depends on the
time interval we are considering, but since such interval is here fixed, χ does no
longer depend on time. Since χ2 = χ, we obtain

d
dt

(
1
2
‖uχ‖2

2

)
= (uχ,Lu) +

(
χu , u2

∫ 1

0

A′′
β

(
m̄ξ̃(t) + λu(·, t))dλ) + (χu, b) +R

R = R(t) =
k∑

i=1

σi
˙̃ξi(t)
(
1Λi(t)m̄

′
ξ̃i(t)

, χu
)

(11.11)

By (11.4),

|(uχ,Lu) − (uχ,L(uχ))| ≤
∫

Ac
α∗×R

J(x − y)|u(x)||u(y)| ≤ 4|Ac
α∗ |

≤ 4
α∗

∫ (j+1)S

(j−1)S

‖b(s)‖2
2.

On the other hand (uχ,L(uχ)) ≤ −ω‖uχ‖2
2 by the spectral gap property of the

operator L proved in Appendix D. We use Theorem C.3 to bound the cubic term in
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(11.11) and recalling the “Choice of parameters” in the beginning of this section,
we get

d
dt

(
1
2
‖uχ‖2

2

)
≤ −ω‖uχ‖2

2 + C(M)(ε1 + c1‖u‖2/3
2 )‖χu‖2

2 + (χu, b) + c

∫ (j+1)S

(j−1)S

‖b(s)‖2
2 +R.

Let

τ := inf
{
t : ‖u(·, t)‖2/3

2 >
ω

8C(M)c1

}
. (11.12)

Bounding |(χu, b)| ≤ 2‖b‖2
2

ω
+
ω‖χu‖2

2

4
, for all times t ∈ [tin, (j + 1)S] such that

t < τ

d
dt

(
1
2
‖uχ‖2

2

)
≤ −ω

2
‖uχ‖2

2 +
2
ω
‖b‖2 + c

∫ (j+1)S

(j−1)S

‖b(s)‖2
2 +R,

i.e., for t∗ = min{τ, (j + 1)S} we obtain

‖χu(·, t∗)‖2
2 ≤ e−(t∗−tin)ω/2‖u(·, tin)‖2

2 + c′S
(∫ (j+1)S

(j−1)S

‖b(s)‖2
2 +Rmax

)
with Rmax defined in (11.9). The bound comes from (11.5) after estimating
ξ̃i+1(t)− ξ̃i(t) > | log ε|2/2. The latter holds for ε > 0 small enough using Theorem
C.1 and because the time interval we are considering and the force are uniformly
bounded in ε, (a posteriori, see (11.8), we will see that displacements are of the
order of ϑ).

Since |u2| ≤ 4,

‖u‖2
2 ≤ ‖χu‖2

2 + 4|Ac
α∗ | ≤ ‖χu‖2

2 +
4
α∗

∫ (j+1)S

(j−1)S

‖b(s)‖2
2

‖u(·, t∗)‖2
2 ≤ e−(t∗−tin)ω/2‖u(·, tin)‖2

2 + c′′SU2
j .

The last term is bounded by c′′S(2δ+Rmax), Sδ ≤ 10−3ϑ by (9.9), so that for δ, ϑ

and ε small enough, the r.h.s. in the last equation is < (
ω

8C(M)c1
)3, thus τ ≥ t∗,

τ as in (11.12) and t∗ = (j + 1)S. The proof of (11.7) is complete.
To prove (11.8), we multiply (11.10) by χm̄′

ξ̃i(t)
and estimate (ut, χm̄

′
ξ̃i(t)

) by
first writing (11.5) as(

χm̄′
ξ̃i(t)

, u
)

=
(
χm̄′

ξ̃i(t)
, [σim̄ξ̃i(t)

− m̄ξ̃(t)]
)

(11.13)
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and then differentiating it on time. We then get(
χm̄′

ξ̃i(t)
, ut

)
= ˙̃
ξi(t)

{(
χm̄′′

ξ̃i(t)
, u
)

+
(
χm̄′′

ξ̃i(t)
, [m̄ξ̃(t) − σim̄ξ̃i(t)

]
)}

−
∑
j �=i

(
χ1Λj(t)m̄

′
ξ̃i(t)

, [σi
˙̃
ξi(t)m̄′

ξ̃i(t)
− σj

˙̃
ξj(t)m̄′

ξ̃j(t)
]
)

(11.14)

The second term on the r.h.s. of (11.10) gives

(Lu, χm̄′
ξ̃i(t)

) = (u, Lm̄′
ξ̃i(t)

) − (Lu, (1 − χ)m̄′
ξ̃i(t)

). (11.15)

Note that the kernel of the operator obtained by linearizing around m̄ is spanned
by m̄′. As the centers have distance ≥ | log ε|2, the exponential convergence of both
m̄ and m̄′ implies that c11.1 > 0 can be chosen in such a way that |Lm̄′

ξ̃i(t)
| ≤ Rmax.

As the second term in (11.15) is bounded by c|Ac
α∗ |, c a positive constant, we then

obtain from (11.10),

σi
˙̃
ξi

{
‖m̄′

ξ̃i(t)
χ‖2

2 − σi(u, χm̄′′
ξ̃
) − σi

(
χm̄′′

ξ̃i(t)
, [m̄ξ̃(t) − σim̄ξ̃i(t)

]
)}

+
∑
j �=i

(
χ1Λj(t)m̄

′
ξ̃i(t)

, [σi
˙̃ξi(t)m̄′

ξ̃i(t)
− σj

˙̃ξj(t)m̄′
ξ̃j(t)

]
)

≤ −(b, χm̄′
ξ̃i(t)

) + c|Ac
α| + c′ · C(M)‖uχ‖2

2 +Rmax (11.16)

which has the form

σi‖m̄′‖2
2

˙̃ξi ≤ βi +
k∑

j=1

ai,j | ˙̃ξj | (11.17)

with βi and ai,j > 0 identified by (11.16). We will prove that

a :=
1

‖m̄′‖2
2

max
1≤i≤k

k∑
h=1

ai,h < 1 (11.18)

so that
σi‖m̄′‖2

2
˙̃ξi ≤ βi +

a

(1 − a)
max

i=1,...,k
|βi|. (11.19)

Using (11.7) we have

|βi +
(
b, m̄′

ξ̃i(t)

)| ≤ c
{
SU2

j + ‖1 − χ‖2‖b‖2 + e−(t−tin)ω/2‖u(·, tin)‖2
2

}
. (11.20)

To bound a, we bound |(u, χm̄′′
ξ̃
)| ≤ c‖u‖2 and, after some computations which

are omitted, a ≤
(
e−(t−tin)ω/2‖u(·, tin)‖2

2 + SU2
j

)1/2

and

σi‖m̄′‖2
2

˙̃
ξi ≤ βi + c‖b‖2

(
e−(t−tin)ω/2‖u(·, tin)‖2

2 + SU2
j

)1/2

. (11.21)

We bound the last term as 1/2 the sum of the squares, then integrating over time
we finally get (11.8), after using (11.6) to relate ξ̃ to ξ̄.
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By (9.9), c11.1SU
2
j ≤ ϑ; by (9.8), e−ωS/2 ≤ 1/2, then by (11.7) we get,

supposing ε small enough,

‖u(·, (j + 1)S)‖2
2 ≤ e−ωS/2 ‖u(tin)‖2

2 + c11.1SU
2
j ≤ 4ϑ. (11.22)

Since ξ̃i+1((j+1)S)− ξ̃i((j+1)S) ≥ | log ε|2/2, as we have seen in the course
of the proof of Proposition 11.1, it then follows from (7.7) that for ε small enough,

dM(m(·, (j + 1)S)) ≤ 5ϑ. (11.23)

We set

v0
i (t) = σi

1
‖m̄′‖2

2

∣∣∣ ∫ t

tin

(b, m̄′
ξi(t)

)
∣∣∣ (11.24)

vi(t) = v0
i (t) + σic11.1

(
U2

j + ‖u(·, tin)‖2
2

)
(11.25)

ri(t) = ξi(tin) +
∫ t

tin

vi(s), r̄(t) =
(
r1(t), . . . , rk(t)

)
(11.26)

observing that ξ̄(t) ≥ r̄(t), for t ∈ [tin, (j + 1)S]. We then define r̄
(
[(j + 1)S]+

)
by

erasing in r̄
(
(j + 1)S

)
all pairs ri+1

(
(j + 1)S

) − ri
(
(j + 1)S

) ≤ | log ε|2. We will
recall this by saying that particles i and i+1 have collided and, due to the collision,
they have disappeared, (in the next section we will then write ri(t) = ri+1(t) = ∅
for t > (j + 1)S, but here we will not use such notation).

By (11.8) the centers ξ̄ of m(·, (j + 1)S) are ≥ r̄
(
[(j + 1)S]+

)
, in the sense of

(10.2) and we set

m
(
x, [(j + 1)S]+

)
= min

{
m(x, (j + 1)S), m̄[r̄((j+1)S)]+(x)

}
. (11.27)

For ε small enough,
dM
(
m
(·, [(j + 1)S]+

))
6ϑ. (11.28)

Moreover the centers of m
(
x, [(j+1)S]+

)
have mutual distance ≥ | log ε|2. We are

thus in the same setup as in Proposition 11.1, which can then be iterated to all
the intervals of G. Hence for h ∈ N such that (j + 1) < h ≤ j∗, see (11.1),

‖u(·, hS)‖2
2 ≤ e−ωS/2‖u(·, (h− 1)S)‖2

2 + c11.1S
(∫ hS

(h−1)S

‖b‖2 +Rmax

)
≤ c11.1Se

ωS/2
(∫ hS

(j−1)S

e−ω(hS−s)/2‖b(s)‖2 +Rmax

)
(11.29)

+ e−ω(h−(j−1))S/2‖u(·, tin)‖2
2

and for t ∈ [h, h+ 1)S, (11.25) yields

vi(t) = v0
i (t) + σic11.1e

−ω(h−(j−1))S/2‖u(·, tin)‖2
2

+ σic11.1Se
ωS/2

( ∫ t

(j−1)S

e−ω(t−s)/2{‖b‖2 +Rmax}
)
, (11.30)
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hence ∣∣∣ri(t) − {ξi(tin) +
∫ t

0

v0
i (s)}

∣∣∣ ≤ c‖u(·, tin)‖2
2

+ cSeωS/2
( ∫ t

(j−1)S

{‖b‖2 +Rmax}
)
. (11.31)

We summarize what proved so far, by saying that we have introduced auxil-
iary particles orbits r̄(t) =

(
r1(t), . . . , rk(t)

)
which starts from ξ̄(tin). The particles

move with velocity vi(t) and collide disappearing once they are at mutual distance
≤ | log ε|2, after such time we write ri(t) = ∅ for the disappeared particle. We recall
the relation between r̄(t) and the function m(x, t) in the following proposition:

Proposition 11.2 The centers ξ̄ of m(x, [hS]+), h ∈ {j + 1, . . . , j∗}, satisfy ξ̄ ≥
r̄([hS]+) (see (10.2)), and dM(m(·, [hS]+)) ≤ 6ϑ.

12 Displacements in the bad intervals and total cost

We have defined the auxiliary process r̄(t) for t ∈ G, with G as in (11.1), and we
want to extend the definition to all times t ∈ [0, ε−2T ].

We use the following notation: t0 = j∗S is the right end point in G; j′S the
left end point of the next good time period G′; t1 ∈ [j′−1/2, j′−1/4]S is the time
associated to G′ as defined in Section 10; we write r̄(t0) =

(
r1(t0), . . . , rk(t0)

)
and

ξ̄ = (ξ1, . . . , ξh) the centers of m(·, t1). We recall that ri+1(t0) − ri(t0) ≥ | log ε|2,
i = 1, . . . , k and that dM(m(·, t0)) ≤ 6ϑ and dM(m(·, t1) ≤ ϑ.

We then define r̄(t) = r̄(t0) for t ∈ [t0, t1) and will use Theorem 12.1 below
to extend the definition to t ≥ t1.

Both the maximal length of the bad interval and the field b applied there
are bounded by the total cost. Therefore the displacement of the already existing
contours during the bad interval is bounded, and the newly nucleated fronts are
close to each other. This is formalized in the next theorem.

Theorem 12.1 The number h of centers of m(·, t1) is odd and h ≥ k. There is K
and an increasing sequence i1, . . . , ik in {1, . . . , h} so that |ξij − rj(t0)| ≤ K. Let
p = h− k and {
1, . . . , 
p} = {1, . . . , h} \ {i1, . . . , ik}, then ξ�i+1 − ξ�i ≤ K for all i
odd in {1, . . . , p}.
Proof. Call m0(x, t), t ≥ t0, the solution of (1.1) which starts from m0 = m(·, t+0 )
at time t0. By regarding (1.1) as (1.6) with b = 0, we can apply the analysis of
Section 11 so that, for ε small enough, m0(x, t1) has k centers ξ̄0 = (ξ01 , . . . , ξ0k),
|ξ0i − ri(t0)| ≤ 1 and dM(m0(·, t1)) ≤ 6ϑ.

By Theorem C.4 in Appendix C,

‖m(·, t1) −m0(·, t1)‖2
2 ≤ e3|t1−t0|

∫ t0

t1

‖b(t)‖2
2 , (12.1)
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so that
‖m̄ξ̄ − m̄ξ̄0‖2 ≤ P e3|t1−t0| + 12ϑ . (12.2)

There is a > 0 so that m̄ξ̄0(x) < −mβ

2
for x < ξ01 − a; m̄ξ̄0(x) >

mβ

2
for

x ∈ (ξ01 + a, ξ02 − a) and so on. The same property evidently holds for m̄ξ̄ so that
the upper bound (12.2) induces an upper bound on the volume where m̄ξ̄ and m̄ξ̄0

have a mismatch in the above sense, hence the statements in the theorem observing

that by Theorem 9.1, t1 − t0 ≤ P

2δ
S. In particular, the sequence i1, . . . , ik can be

defined as follows. For j odd call ij the odd label such that

min
i odd

|ξi − ξ0j | = |ξij − ξ0j |

ij , j even, being defined analogously. The elements i1, . . . , ik are mutually distinct
for ε small enough because ξ0i+1 − ξ0i ≥ | log ε|2 − 2.

We identify the labels 1, . . . , k of the particles in r̄(t0) with the sequence
i1, . . . , ik defined in Theorem 12.1. We now refer to Cases 1) to 3) listed in Sec-
tion 10. In Case 1), where tin = t1, we define rj(tin) = ξij and add particles at
positions ξ�i , i = 1, . . . , p according to Theorem 12.1. In this way r̄(t) has a dis-
continuity at time t1, as the positions of the old particles may have been displaced
by ≤ K and moreover because new particles may have been added. In Case 2)
tin = t1 and a new configuration ξ′ has been defined in terms of ξ by first shifting
apart till distance | log ε−1|2 all pairs in ξ at distance ∈ [
∗, | log ε−1|2] and then
by erasing all colliding particles. We define r̄(tin) by setting rj(tin) = ξ′ij

if the
particle ij has not collided, and otherwise rj(tin) = ∅. We complete the definition
by adding particles at positions ξ′�i

, i = 1, . . . , p, provided they have not collided.
In Case 3) we let first run (1.6) for a time τ and then repeat the above procedure,
we refer to Section 10 for details.

It is convenient to say that at all times there are n∗ particles present so that
r̄(t) =

(
r1(t), . . . , rn∗(t)

)
but the existing ones are only those such that ri(t) 
= ∅.

We use a labeling of the particles so that whenever existent, ri(t) < rj(t) if i < j.
By iteration the above rules define r̄(t) at all times t ∈ [0, ε−2T ]. ri(t) 
= ∅ has

velocity vi(t) = 0 in the intervals (t0, t1) and otherwise vi(t) is given by (11.25).
ri(t) may have discontinuities at the beginning of the new good periods, the

jumps being bounded by a constant K. When a pair of particles is created the
two have distance | log ε|2. Two particles collide, disappearing, when they are at
mutual distance | log ε|2. These types of discontinuous motion are not counted by
vi(t), which can be interpreted as absolutely continuous part of the velocity.

The constraint (5.3) implies that the total displacement of the centers is
at least ε−1R. In order to derive from this information a constraint for the v0

i (t)
defined in (11.24), we have to take into account the error made when replacing vi by
vi
0 (see (11.30)), the displacement during bad intervals, and finally the displacement
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due to nucleation and collision of droplets. Therefore we obtain

n∗∑
i=1

∫
{t:ri(t) �=∅}

|v0
i (t)| ≥ ε−1R−

⎛⎜⎝cn∗
ε−2T∫
0

{‖b(s)‖2
2 +Rmax} +

P

2δ
K + n∗4| log ε|2

⎞⎟⎠ .

(12.3)

We next compute the total cost. We have

‖b(t)‖2
2 ≥

∑
i:ri(t) �=∅

{ 1
‖m̄′‖2

2

(b, m̄′
ri(t)

)2 − ce−α| log ε|2/2} (12.4)

so that
‖b(t)‖2

2 ≥
∑

i:ri(t) �=∅
‖m̄′‖2

2 v
0
i (t)2 − ce−α| log ε|2/2 (12.5)

and, recalling that the mobility μ = 4‖m̄′‖−2
2 ,

1
4

∫
Gtot

‖b(t)‖2
2 ≥

∫
Gtot

∑
i:ri(t) �=∅

v0
i (t)2

μ
− ce−α| log ε|2/2ε−2T. (12.6)

The cost of the bad times between two successive good periods is completely
neglected if no nucleation occurs otherwise, with the same notation as in Theo-
rem 12.1, we estimate by reversibility

1
4

∫ t1

t0

‖b(t)‖2
2 ≥ F(m(·, t1)) −F(m(·, t0)) (12.7)

and by (9.4),

F(m(·, t1)) −F(m(·, t0)) ≥ (h− k)F(m̄) − 2γ
103(n∗)2

. (12.8)

Thus

1
4

∫ ε−2T

0

‖b(t)‖2
2 ≥

∫
Gtot

∑
i:ri(t) �=∅

v0
i (t)2

μ
+ nF(m̄) − ce−α| log ε|2/2ε−2T − 2γ

103n∗

(12.9)

where n/2 is the total number of nucleations and because h − k ≤ n∗ and there
are at most n∗ of such times. We now observe that the inf over {v0

i (·)} of the
right-hand side of (12.9) under the constraint (12.3), converges in the limit ε→ 0

to inf
h
wh(R, T ) − 2γ

103n∗ which proves (5.4) thus concluding the proof of the lower

bound.
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We now consider the auxiliary variational problem of finding the inf over
{v0

i (·)} of the right-hand side of (12.9) under the constraint (12.3). Keep the
number of particles n fixed, n ≤ n∗, and let ti be the lifetime of the i-th particle,
i.e., ti ≤ T ε−2. If we keep (ti)i=1,...,n fixed, then we see immediately that the
velocity of each particle must be constant throughout its lifetime. Let vi be this
constant velocity. For the auxiliary problem we get that a minimizer must fulfill the

constraint as equality, hence we have to minimize
n∑

i=1

v2
i ti under

n∑
i=1

viti = Rε−1,

which leads to vi = λ, i = 1, . . . , n. As λ satisfies λ = ε−1R(
n∑

i=1

ti)−1, we get

ti = T ε−2 for a minimizer, so that the minimum of the auxiliary problem for n
fixed converges in the limit ε → 0 to wn(R, T ). Optimizing over the number of
particles proves (5.4), thus concluding the proof of the lower bound.

A Existence and uniqueness theorems

We will study here the Cauchy problem

du

dt
= J ∗ u−Aβ(u) + b, u(x, 0) = u0(x). (A.1)

In Theorem A.1 below we will prove existence and uniqueness in C(R; (−1, 1)) for
b ∈ C(R × R+; R). Observe that since J(x, y) ≥ 0, a comparison theorem holds
for (A.1).

Theorem A.1 There exists one and only one solution u ∈ C(R × R+; (−1, 1))
of (A.1).

Proof. Let u±n (x, t), n > 1, be the functions equal respectively to ±1 on [−n, n]c

which solve

du±n
dt

= J ∗ u±n −Aβ(u±n ) + b, u±n (x, 0) = u0(x), x ∈ [−n, n]. (A.2)

Existence and uniqueness of u±n (x, t) follow from standard methods, moreover
using the comparison theorem,

−1 < u−n (x, t) ≤ u+
n (x, t) < 1, x ∈ [−n, n]. (A.3)

Call
ψn(x, t) = u+

n (x, t) − u−n (x, t) (A.4)

then, in [−n, n]

1
2
dψ2

n

dt
= ψnJ ∗ ψn − ψn{Aβ(u+

n ) −Aβ(u−n )} ≤ 1
2
{ψ2

n + J ∗ ψ2
n}.
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Let Lnf(x) = 1|x|≤n[J ∗ f − f ], then

ψ2
n(x, t)

2

≤
∫

[−n,n]c
e(3/2 +Ln)t(x, y)ψ2

n(y, 0) + 4
∫ t

0

∫
[−n,n]c

e(3/2 +Ln)(t−s)(x, y) (A.5)

which shows that for any x and t, ψn(x, t) → 0 as n→ ∞. Since, by the comparison
theorem, any u ∈ C(R × R+; (−1, 1)) solution of (A.1) is such that u−n (x, t) ≤
u(x, t) ≤ u+

n (x, t), the theorem is proved.

B Nucleation and collapse of droplets

In this appendix we sketch the proof of Theorem 2.2, which, as mentioned in the
text, uses heavily reversibility. We shorthand by m̄R

ξ the function equal to m̄ξ(x)
for x ≥ 0 and to m̄ξ(−x) for x ≤ 0 and call Tt(m) the solution of (1.1) which at
time 0 is equal to m. Let α be as in (1.4).

Theorem B.1 There is V > 0 and, for any ζ > 0 there is Lζ > 0 so that for all

 ≥ Lζ ,

‖Tt(m̄R
� ) −mβ‖2 ≤ ζ, for all t ≥ t∗ := 10

e2α�

2αV
. (B.1)

We will discuss briefly the proof of Theorem B.1, after showing how it can
be used to prove Theorem 2.2.

The force field f(m) defined by the r.h.s. of (1.1) is continuous in L2 ∩
{‖m‖∞ ≤ mβ} (by the comparison theorem ‖Tt(m̄R

� )‖∞ ≤ mβ for all t ≥ 0), so
that

‖f(Tt∗(m̄R
� )
)‖2 + ‖f(Tt∗(m̄R

� )
)‖∞ ≤ o1(ζ) (B.2)

where o1(ζ) vanishes when ζ → 0. The linear interpolation

u(x, t) = t Tt∗(m̄R
� )(x) + (1 − t)mβ , 0 ≤ t ≤ 1 (B.3)

has then a cost
1
4

∫ 1

0

(
ut − f(u)

)2

≤ o2(ζ) (B.4)

and defining u(·, t + 1) = Tt∗−t(m̄R), for t ∈ [0, t∗], we then get by reversibility
and because F(Tt∗(m̄R

� )) ≥ 0,

1
4

∫ t∗+1

0

(
ut − f(u)

)2

≤ o2(ζ) + F(m̄R
�

)
(B.5)
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and, by (1.4),
F(m̄R

�

) ≤ 2F(m̄)+ ce−α�/2. (B.6)

After a C∞ regularization of the orbit u (which can be such that the additional
cost is bounded by ζ), we then obtain an upper bound for the cost of connecting
mβ to m̄R

� in a time t∗ + 1, which is given by

2F(m̄)+ ce−α�/2 + o2(ζ) + ζ. (B.7)

To prove Theorem 2.2 we fix ζ so that o2(ζ)+ζ ≤ ϑ/2. With 
ε as in the statement
of Theorem 2.2, for ε small enough, ce−α�ε/4 < ϑ/2 and 
ε/2 ≥ Lζ. By taking

 = 
ε/2 we thus complete the proof of Theorem 2.2, pending the validity of
Theorem B.1.

In [2] Theorem B.1 is proved for the semigroup St(m) which solves the ana-
logue of (1.1)

ut = −u+ tanh{J ∗ u} =: g(u) (B.8)

restricted to a finite interval with Neumann boundary conditions.
The two evolutions, (B.8) and (1.1), share many properties, in particular

they have same stationary solutions, time monotonicity of F and the comparison
theorem. Nonetheless the proof of Theorem B.1 does not follow from its analogue
for (B.8) and requires a proof, which however is nothing but a lengthy yet un-
eventful extension of the one in [2]. For brevity we omit it here, also because it
will be contained in a paper in preparation by Bellettini, De Masi and Presutti
where the minimizing sequences of the tunnelling event are characterized. By re-
versibility this problem is related to an accurate description of the orbits where
two instantons collapse converging to the plus state, an analysis which includes a
proof of Theorem B.1.

C A priori estimates

We write

Aα,t1,t2 =
{
x ∈ R :

∫ t2

t1

b2(x, t) ≤ α
}
, α > 0, 0 ≤ t1 < t2 (C.1)

and denote by m(x, t) ∈ L∞(R × R
+; (−1, 1)) a solution of (1.6).

Theorem C.1 For any α > 0 and any t > t1 ≥ 0,

sup
x∈Aα,t1,t

|m(x, t) −m0(x, t)| ≤ ce‖J‖∞(t−t1)
(√

α(t− t1) + (t− t1)|Ac|
)1/2

(C.2)

where c = 8‖J‖∞ + 1 and m0(x, s), s ≥ t1, is the solution of (1.1) such that
m0(x, t1) = m(x, t1).
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Proof. The proof is a simple adaptation of a proof in [3] for finite volumes. Short-
hand A = Aα′′,t1,t and call φ(x, s) = m(x, s) − m0(x, s), w(s) := sup

x∈A
|φ(x, s)|.

Then,
1
2
d

ds
φ(x, s)2 ≤ |φ(x, s)| ‖J‖∞

(
w(s) + 2|Ac|

)
+ 2|b(x, s)| (C.3)

having used that |φ| ≤ 2 and that φ(x, t)[Aβ(m(x, t)) −Aβ(m0(x, t))] ≥ 0.
For any x ∈ A, we integrate (C.3) over time, getting

w(s)2 ≤ 2‖J‖∞
∫ s

t1

w(s′)2 + 8(s− t1)‖J‖∞|Ac| + 4[(s− t1)α]1/2 (C.4)

hence (C.2).

Theorem C.2 There are M ∈ (0, 1), α′ > 0 and s′ > 0 so that for any t1 ≥ 0 and
any t2 > t1 + s′,

|m(x, t)| ≤M, for all x ∈ Aα′,t1,t2 and t ∈ [t1 + s′, t2]. (C.5)

Proof. We will first prove that m(x, t) ≤ M and since the proof that m(x, t) ≥
−M is completely analogous, we will then have proved (C.5). Call b+(x, t) =
max{b(x, t), 0} and v(x, t), t ≥ t1, the solution of

vt = 1 −Aβ(v) + b+, v(x, t1) = 1. (C.6)

Then, m(x, t) ≤ v(x, t). Let now v0(t), t ≥ t1 solve

v0
t = 1 −Aβ(v0), v0(t1) = 1 (C.7)

and let w(x, t) := v0(t) +
∫ t

t1

b+(x, s). Then v(x, t) ≤ w(x, t). Indeed, since w ≥ v0,

dw

dt
= 1 −Aβ(v0) + b+ ≥ 1 −Aβ(w) + b+.

We have thus proved that w is a super-solution of (C.6) and hence m(x, t) ≤
w(x, t).

Since lim
t→∞ v0(t) < 1, there are s′ and M0 < 1 so that v0(t1 + s′) = M0. We

choose α′ so that
√
α′s′ +M0 = M1 < 1, and Theorem C.2 is proved.

Theorem C.3 There are c1 and c2 positive so that the following holds. For any
ε > 0, there are α′′ > 0 and s′′ > 0 so that for any t1 ≥ 0, t2 > t1 + s′′ and ξ(t),

|m(x, t) − m̄ξ(t)(x)| ≤ ε+ c1‖m(·, t) − m̄ξ(t)‖2/3
2 + c2|Ac|1/2 (C.8)

for all x ∈ Aα′′,t1,t2 and t ∈ [t1 + s′′, t2].
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Proof. The function

u(x, t) = [m(x, t) − m̄ξ(t)(x)]1x∈A + [m0(x, t) − m̄ξ(t)(x)]1x∈Ac , t ∈ [t1 + s′′, t2]
(C.9)

verifies the condition

|u(x, t) − u(y, t)| ≤ ρ+ c3|x− y| (C.10)

where, calling C = 2ce‖J‖∞s′′
[
(
α′′s′′

)1/4

+ |Ac|1/2] an upper bound of the r.h.s.
of (C.2),

ρ = 2C + 2e−s′′/β; c3 = ‖m̄′‖∞ + β‖J ′‖∞ (C.11)

since
|m0(x, T ) −m0(y, T )| ≤ 2e−s′′/β + β‖J ′‖∞ |x− y| (C.12)

as proved in [3]. In [3] it is also proved that:

Lemma C.1 Let f ∈ L2(R, [−1, 1]) be such that there are ρ ≥ 0 and c3 > 0 so that

|f(x) − f(y)| ≤ ρ+ c3 |x− y| (C.13)

then

‖f‖∞ ≤ ρ+
3c1/3

3√
8

‖f‖2/3
2 . (C.14)

Given ε > 0 we choose s′′ so that 2e−s′′/β ≤ ε

2
and α′′ so that

4ce‖J‖∞s′′(
α′′s′′

)1/4

≤ ε

2
. (C.15)

(C.14) yields (C.8) with c2 = 4ce‖J‖∞s′′
+

6c1/3
3√
8

and c1 =
3c1/3

3√
8

and c3 as in

(C.11).

Theorem C.4 Let m solve (1.6) with forcing b ∈ L2 and let m0 solve (1.1); suppose
m(·, t0) = m0(·, t0) and that m0(x, t0) converges exponentially fast to ±mβ as
x→ ±∞. Then for any t1 > t0

‖m(·, t1) −m0(·, t1)‖2
2 ≤ e3|t1−t0|

∫ t0

t1

‖b(t)‖2
2. (C.16)

Proof. Let u := m −m0. We multiply the difference of (1.1) and (1.6) by u and
obtain

d

dt
‖u(·, t)‖2

2 = 2‖u2(·, t)‖2
2 −
∫ ∫

J(x− y)(u(x, t) − u(y, t))2dxdy

+ 2(b, u)− 2([Aβ(m) −Aβ(m0)], [m−m0]).
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Noting that Aβ is monotone and that |2(b, u)| ≤ ‖b‖2
2 + ‖u‖2

2, we get

d

dt
t‖m(·, t) −m0(·, t)‖2

2 ≤ 3‖m(·, t) −m0(·, t)‖2
2 + ‖b(t)‖2

2.

which, by the Gronwall’s inequality, yields (C.16).

D Spectral gap estimates

Given ξ̄ = (ξ1, . . . ξn), ξi < ξi+1, i = 1, . . . , n− 1, call Λj = 1
2 [ξj + ξj−1, ξj+1 + ξj ],

with ξ0 = −∞ and ξn+1 = ∞ and denote by 1j the characteristic function of Λj .
We then define

V ⊥̄
ξ :=

{
u ∈ L2(R) : (u1j , m̄

′
ξj

) = 0, j = 1, . . . , n
}
. (D.1)

Let L ≡ Lξ̄ be the linear operator on L2(R) defined as

Lψ(x) = J ∗ ψ(x) −A′
β

(
mξ̄(x)

)
ψ(x). (D.2)

Due to the symmetry of J(x, y), L is self-adjoint. We set

−ωξ̄ := sup
u∈V ⊥̄

ξ
:‖u‖2=1

(u, Lu). (D.3)

When n = 1, ξ̄ = ξ, ωξ = ω1 > 0 is independent of ξ and equal to the spectral gap
of L, hence the title of this appendix (but notice that ωξ̄ is not the spectral gap
when n > 1, the spectral gap vanishing as the mutual distance of the element of ξ
diverges). Call finally

Dξ̄ := min
j=1,...,n−1

{
ξj+1 − ξj

}
. (D.4)

Theorem D.1 There are ω and c positive so that

ωξ̄ ≥ ω − cn√
Dξ̄

. (D.5)

Proof. Let kj , j = 1, . . . , n− 1 be integers such that

|kj − ξj + ξj+1

2
| ≤
√
Dξ̄, ‖u1[kj−1,kj+1]‖2 ≤ 10√

Dξ̄

(D.6)

whose existence follows from the condition ‖u‖2 = 1. Calling k0 = −∞, kn = +∞
and uj = 1[kj−1,kj ]u, we have

(u, Lu) =
n−1∑
j=1

(uj , Luj) +
n−1∑
j=1

(uj , J ∗ uj+1). (D.7)
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Since the L2 norm of the operator J is ≤ 1, by (D.6) the last term is bounded by
100nD−1

ξ̄
.

For j odd,

(uj , Luj) ≤ −ω1‖uj −
(m̄′

ξj
, uj)

(m̄′
ξj
, m̄′

ξj
)
m̄′

ξj
‖2
2 ≤ −ω1‖uj‖2

2 + ω1‖
(m̄′

ξj
, [u− uj])

(m̄′
ξj
, m̄′

ξj
)

m̄′
ξj
‖2
2

≤ −ω1‖uj‖2
2 + ce−α

√
Dξ̄ (D.8)

because (m̄′
ξj
, u) = 0 and m̄′(x) ≤ c′e−α|x|. An analogous argument holds for j

even and the theorem is proved.
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Università di L’Aquila
I-67100 L’Aquila
Italy
email: demasi@univaq.it

Nicolas Dirr
Max Planck Institute for Mathematics in the Sciences
Inselstr. 22
D-04103 Leipzig
Germany
email: ndirr@mis.mpg.de

Errico Presutti
Dipartimento di Matematica
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