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Abstract—It is evident that user training significantly affects
performance of pattern-recognition based myoelectric prosthetic
device control. Despite plausible classification accuracy on off-
line datasets, online accuracy usually suffers from the changes
in physiological conditions and electrode displacement. The user
ability in generating consistent EMG patterns can be enhanced
via proper user training strategies in order to improve online
performance. This study proposes a clustering-feedback strategy
that provides real-time feedback to users by means of a visu-
alised online EMG signal input as well as the centroids of the
training samples, whose dimensionality is reduced to minimal
number by dimension reduction. Clustering-feedback provides a
criterion that guides users to adjust motion gestures and muscle
contraction forces intentionally. The experiment results have
demonstrated that hand motion recognition accuracy increases
steadily along the progress of the clustering-feedback based
user training, while conventional classifier-feedback methods,
i.e. label-feedback, hardly achieve any improvement. The result
concludes that the use of proper classifier-feedback can accelerate
the process of user training, and implies prosperous future for
the amputees with limited or no experience in pattern-recognition
based prosthetic device manipulation.

Index Terms—User Training, Classifier-Feedback, Human-
machine System, Prostheses, Electromyography, Pattern Recog-
nition, Hand Motion

I. INTRODUCTION

Electromyographic (EMG) signal is the electrical mani-

festation of the activity of muscle fibres [1]. EMG signals

can be decoded into control commands for smart prosthetic

devices, using either proportional or pattern recognition (PR)

methods. With the increase of degrees of freedom (DoFs)

of prosthetic devices, conventional proportional control faces

extreme difficulty in coping with simultaneous and collabora-

tive control. With the increase of degrees of freedom (DoFs),

conventional proportional control faces extreme difficulty in

simultaneous and collaborative control. Over the past decade,

PR approaches are preferred in both industry and academia for

its convenience in solving the typical problem with multiple

inputs of EMG signals and multiple outputs of DoFs based

prosthetic devices. However, the changes of physiological

and physical conditions, like muscle fatigue, limb posture

and electrode displacement, severely impede the advancement

of pattern recognition in user intention prediction [2]–[6].
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Furthermore, pattern consistency in training and testing phases

remains a heavy burden for prosthesis users to follow.

User adaptation is defined as the cognitive and behavioural

efforts performed by users to cope with significant information

technology events that occur in their work environment [7].

User adaptation plays a critical role in EMG based motion

recognition. The significance of user training has been spot-

lighted in enhancing the performance of prosthetic control [8]–

[11].

More studies, however, still concentrates on the design of

adaptive classification system by means of either unsupervised

or supervised approaches. Unsupervised adaptive classifiers

can reduce the impact of slow pattern deviation, while facing

the risk of catastrophic failure because incorrect labels are

used for adaptation. In contrast, supervised adaptation is more

robust, though somewhat cumbersome due to explicit user-

interaction [12]. Khezri, et al. [13] proposed a supervised

adaptive neuro-fuzzy inference system integrated with a real-

time trainer unit that received teacher reference signals from

the operator and updated the state of pattern recognition

unit. Pilarski, et al. [14] proposed a general value functions

(GVFs)-based reinforcement learning method to implement

real-time prediction learning during myoelectric interaction

with a multi-joint robot arm, in which sensory information,

including EMG signals and the states of the robotic arm,

were used to update a set of GVFs online. Liu [15] pro-

posed an unsupervised domain adaptation framework that used

the testing data to update the trained models in an off-line

setup. Amsüss, et al. [16] conceived a self-correcting PR

system via taking advantages of an artificial neural network

to evaluate the confidence of the classification output and

removed misclassifications. Chen et al. [17] proposed a self-

enhancing classification method based on linear discriminate

analysis (LDA) and quadratic discriminant analysis. Moreover,

Sensinger et al. [18] and Zhang et al. [19] compared a variety

of adaptive algorithms in EMG based motion classification and

achieved better performance than non-adaptive ones. However,

it remains to be seen whether the algorithms can also be

efficiently used in online situation with great uncertainties.

Moreover, these studies tended to consider users’ effort as

a negative factor and ignored user adaptation towards a PR-

based prosthetic system.

A recent study disclosed a significant phenomenon about

user adaptation in long-term, open-loop myoelectric training

[9]. With an offline recorded EMG dataset over 11 con-

secutive days from both able-bodied subjects and amputees,

they trained a classifier from one day and tested on data
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from the following day. The classification error decreased

exponentially until four to nine days. The result indicates that

the relative changes in EMG signal features over time become

progressively smaller, and implies the importance of user

adaptation characteristics in myoelectric control applications.

Recent years, co-adaptive learning systems have been

proved to be effective in the context of brain-computer systems

[20], [21]. Inspired from this, Hahne et al [12] firstly demon-

strated a significant work to implement EMG-based 2-D pro-

portional control based on a co-adaptive closed-loop real-time

learning scheme. The study highlighted that the performance

gain from the interaction between two concurrent learners:

human and machine. With an adaptive learning algorithm,

however, the learning speed of the human is still unclear, and it

is hard to distinguish the contribution of user adaptation from

system adaptation. The current study aims to evaluate humans’

learning ability in generating consistent EMG patterns towards

a PR-based myoelectric control via the strategy of classifier-

feedback based user training.

The remainder of this paper is organised as follows. Section

II introduces the classifier-feedback in the context of human-

machine system. Section III-A describes a classifier-feedback

solution of a real-time hand motion recognition system. Sec-

tion III-B describes the experimental methodology. Section IV

and V analyse and discuss the experimental results. Section VI

concludes the study and presents future works in the end.

II. CLASSIFIER-FEEDBACK

The learning procedure of a human-machine interface

(HMI) involves two learners: human and machine. Neither as-

pect should be ignored for improving the performance of HMIs

[12]. On the one hand, the human who generates unlabelled

bio-signal samples, is able to change the signal according

to his/her intention. However, the classification output might

mismatch users’ intention because of two primary reasons: 1)

the original bio-signals are corrupted with noise before being

fed to a classifier; 2) ambiguity remains in the transformation

from user intention to bio-signals. For example, when gener-

ating the motion of “fine pinch”, users can either extend or

flex the resting fingers, which may result in two patterns of

EMG signal but with the same intention. User training is to

unify potentially changeable motions under the similar user

intention. The user training in this study is different from

algorithm training, it is referred to a cognitive learning process

of users to enhance ones’ skill in generating stable bio-signals,

herein EMG signals, and avoid inconsistence between bio-

signals and its correspondingly represented intention. On the

other hand, the classifier, as a part of the machine in PR-

related human-machine systems, learns knowledge through

algorithm/system training to predict user intention through

decoding measured bio-signals. The discussion of user training

and system training can be also found in [22].

As demonstrated in Fig. 1, classification output l̂ is con-

sidered as the feedback for both the classifier and the human

perception system to implement adaptive classifier and user

adaptation exploitation. The current study diverts the focus

from adaptive classifier design to user adaptation exploitation
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Fig. 1: The diagram for a generalised PR-based myoelectric

prosthetic control system. The central nervous system and

peripheral nervous system determine users’ effort in muscular

control. The classifier input is the measured EMG signal

vptq contaminated by the noise nptq. xptq is the desired

EMG signal. Classification output l̂ is the estimated intention.

Meanwhile, l̂ is adopted as the feedback signal to the central

nervous system and the classifier.

by utilising the feedback information. An additional feedback

path is developed to deliver classifier-related information to

users in real-time. The path accordingly is termed as classifier-

feedback in this study. Classifier-feedback allows users to learn

from their mistakes and accelerates users’ adaptation. In this

study, two types of classifier-feedback are investigated: label-

feedback and clustering-feedback. Label-feedback is a typical

classifier-feedback method, which provides users with discrete

class labels from the classifier. Depending on the class label,

users can identify the occurrence of misclassification. How-

ever, with limited information in label-feedback, even when

a misclassified output is identified, users are not sure how

to adjust themselves. Therefore, this study proposes a novel

classifier-feedback approach: clustering-feedback. In addition

to the class label, it provides users with a visualised online

EMG signal input as well as the centroids of the training sam-

ples. Fig. 2 demonstrates an instance of clustering-feedback

map for hand motion recognition, where a clear trajectory is

displayed, reflecting the hand motion transformation from rest

to wrist flexion. Given the clustering-feedback map, users can

accordingly shorten the distance between the intended centroid

and the input point with their own strategies, to achieve the

intended classification output.

Classifier-feedback is different from motion feedback in

prosthetic manipulation. The sensory information of motion

feedback is prostheses’ states, such as the torque and the

angle of joints. In contrast, the source of classifier-feedback

is from the classifier itself before being the movements of

prostheses. In this study, classifier-feedback is a type of

visual feedback, while motion feedback can be vibrotactile,

electrotactile feedback via stimulation on the skin as well [23]–

[25]. In addition, the classifier-feedback in this study is for

the purpose of assisting user training for PR-based prosthetic

device control and it is not a necessary module in practical

prosthetic control.
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Fig. 2: An instance of clustering-feedback map. Nine solid

dots with different colours are the centroid representations of

nine classes of hand motions (1 hand at rest, 2 hand open, 3

hand close, 4 index finger point, 5 fine pinch, 6 wrist flexion,

7 wrist extension, 8 supination, 9 pronation). The black solid

dot is the current input sample point, and the following trial of

small dots are the previous input samples. The number under

each solid dot is the class label. All the mentioned elements

compose the visual clustering-feedback map.
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Fig. 3: The difference of classifier feedback and motion

feedback in the context of PR-based prosthetic device ma-

nipulation. C1 represents the motion feedback that obtains

feedback information directly from the prosthetic devices,

while C2 indicates classifier-feedback that acquires feedback

information from the classifier algorithm.

III. METHODS

A. Online EMG based Hand Motion Recognition

To verify the effectiveness of clustering-feedback in user

training, this study proposes an online EMG pattern recog-

nition solution for hand motion recognition. Surface EMG

(sEMG) signal is captured by the customised device, published

in [26]. It consists of 16 bi-polar sEMG channels with 3000

gain, 1 kHz sampling frequency and 12 bits ADC resolution.

sEMG signals are restricted between 10 Hz and 500 Hz by a

hardware based band pass filter, and the power line noise is

filtered via a hardware based notch filter and a software based

comb filter.

Four stable time domain features [3], including Mean Abso-

lute Value, Zero Crossings, Slope Sign Changes and Waveform

Length and 4th-order autoregressive coefficients feature were

employed in this study. Feature normalisation was applied on

these features in real time according to the historical minimum

and maximum values. These features have been proved to

achieve decent performance in hand motion recognition [27],

although more sophisticated features have been investigated in

our previous study [28], [29]. Sliding windows with 300 ms
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Fig. 4: The software flowchart for hand motion recognition.

For a run of the software, it firstly loads the training data set

to train the LDA classifier and calculate the PCA covariance

matrix. The software also conducts online sEMG capturing,

pre-processing, feature extraction, LDA based classification,

PCA-based dimension reduction and classifier-feedback map

display. Three feedback options (non-feedback, label-feedback

and clustering-feedback) can be selected to meet different

experimental scenarios.

length and 50 ms increments were applied to calculate feature

extraction and predict user intention [30].

Classifier-feedback information was displayed on the screen

with free access for users during operation. In label-feedback,

estimated labels were displayed on the screen, while in

clustering-feedback, the clustering-feedback map (as seen in

Fig. 2) was displayed. To generate the clustering-feedback map

in 2D space, the centroids of each class and the input points

were dimensionally reduced by principal component analysis

(PCA) without compromising the amount of information [31].

The commonly used Fisher’s LDA was applied in this study to

estimate users’ intention from the real-time EMG inputs. Fig.

4 illustrates the software diagram of the proposed solution.

B. Experimental Protocol

Twelve able-bodied subjects [age: 32.4˘6.7, weight:

64.7˘8.8 kg, height: 170.7˘7.2 cm, forearm Size: 24.2˘1.7

cm, gender: 8 males and 4 females] were employed in

the experiment. None of them had experience of PR-based

myoelectric control. The subjects were randomly separated

into two groups to implement two user training tests: label-

feedback user training (LF-UT) test and clustering-feedback

user training (CF-UT) test. Before the experiment, subjects

were informed that the aim of the experiment was to acquire

higher hand motion recognition accuracy during user training

test, which would encourage subjects’ enthusiasm and let them

know the importance of their effort in the experiment.

After wearing the electrode sleeve in the approach as

described in [26] and getting familiar with the hand motion

recognition system, subjects started to conduct a training data

set recording session. Nine images indicating nine hand mo-

tions (Rest, Open, Closed, Index Finger Pointing, Fine Pinch,
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Wrist Flexion, Wrist Extension, Supination and Pronation)

were displayed on the screen as cue signals to guide subjects

to conduct corresponding motions. Each recording session

lasted 100 seconds. During the first 10 seconds, subjects were

required to ensure that every channel provided stable EMG

signal via screening. The first cue signal popped up at the

time point of 10 seconds. Subjects were allowed to respond to

the cue signal and performed the corresponding hand motion

within 5 seconds, during which the collected sEMG signals

were excluded from the training dataset. In the following 5

seconds, subjects were asked to maintain the hand motion until

the next cue signal was given. All cue signals would be given

in a random order.

The procedure of hand motion recognition session was the

same as the training dataset recording session, except that the

classifier started to predict user intention after loading the

training data set, instead of simply recording the data. The

accuracy (acc) of a recognition session was calculated by the

following equation,

acc “

ř

9

i“1
Cori

9N
, (1)

where N was the number of testing samples for each motion,

and Cori was the number of correctly predicted samples for

motion i, and i “ 1, 2, ..., 9. In the experiment, the value of

N was 95 that can be obtained from the testing duration for

each motion (5 s), the length (300 ms) and increment (50 ms)

of the sliding window.

The experiment involved three types of hand motion recog-

nition sessions: non-feedback session (NF-session), label-

feedback session (LF-session) and clustering-feedback session

(CF-session), in which different feedback strategies were pro-

vided. In NF-session, the subjects were blind to the predicted

results during operation, while in LF or CF sessions, subjects

could access the predicted classification label or the clustering-

feedback map, respectively. Moreover, the experiment involved

two types of tests: LF-UT test and CF-UT test. Both tests

consist of 10 NF-sessions and 10 classifier-feedback (either

LF or CF session) sessions. Subjects conducted NF-session

and LF/CF-session alternatively, starting with NF-session. The

experimental setup was to evaluate whether classifier-feedback

user training could positively influence NF-based hand mo-

tion recognition accuracy. Half of subjects implemented LF-

UT test, and the other half carried out CF-UT test. Fig. 5

demonstrated an experimental scenario during a CF-session in

CF-UT test.

After the experiment, each subject was required to fill the

Paas Cognitive Load Scale that was a typical single-item

measure of total cognitive load [32]. It rates the perceived

intensity of their mental effort along a 9-point scale (1 =

very, very low mental effort; 9 = very, very high mental

effort). The questionnaire was initially designed to investigate

whether classifier-feedback would bring in more cognitive load

to users.

C. Evaluation Indicators

acci,j indicated the hand motion recognition accuracy of

the jth session of the ith subject. accj “ 1

6

ř

6

i“1
acci,j

Electrode  

Sleeve 

Cue Signal 

Clustering-feedback map 

Fig. 5: An experimental scenario of a clustering-feedback

based hand motion recognition session, in which the subject

was performing wrist flexion.

was the average accuracy of 6 subjects who conducted the

same user training test. acc “ 1

60

ř

10

j“1

ř

6

i“1
acci,j was the

overall accuracy of all sessions of 6 subjects who conducted

the same user training test. To further analyse the change

of accuracy during different user training phases, we defined

another three average accuracies on homogeneous sessions.

accinitial,i “ 1

3

ř

3

j“1
acci,j was the average accuracy of the

first 3 homogeneous sessions of the ith subject. accmiddle,i “
1

4

ř

7

j“4
acci,j was the average accuracy of the middle 4 homo-

geneous sessions of the ith subject. acclast,i “ 1

3

ř

10

j“8
acci,j

was the initial accuracy of the last 3 homogeneous sessions

of the ith subject. For better comparison among different

subjects, relative accuracy is defined. raccinitial,i “ 0 was

the relative accuracy of the first 3 sessions of the ith subject.

raccmiddle,i “ accmiddle,i ´accinitial,i was the relative accu-

racy of the middle 4 sessions of the ith subject. racclast,i “
acclast,i ´ accinitial,i was the relative accuracy of the last

3 sessions of the ith subject. Student’s t-test was applied to

check whether two testing groups differ significantly. Paired

t-test was employed in the accuracy comparison between NF-

session and classifier-feedback session, while unpaired t-test

was used for the comparison between LF-session and CF-

session because accuracies for the comparison were from two

different groups of subjects. The sample size of the above test

was 60 (6 subjects with 10 sessions) for each group. Paired t-

test with 6 samples in each group was applied in the accuracy

comparison between the first and the last homogeneous session

to check the significance of user training in improving hand

motion recognition accuracy. Unpaired t-test was applied to

compare the cognitive load between CF-UT and LF-UT.

IV. RESULTS

A. The Accuracy Trend of Classifier-Feedback Sessions

The accuracy trends of LF-sessions and CF-sessions could

be described by a 2-order polynomial function (y “ aj2 `
bj ` c, j “ 1, 2, ...10), where j indicated the jth classifier-

feedback session in LF-UT or CF-UT test. The least squares
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(b) Label-feedback

Fig. 6: The accuracy trend of CF-sessions and LF-sessions in

CF-UT test and LF-UT test, respectively.

method was applied to fit the curve. For the accuracies of CF-

sessions, the fitting function was y “ ´0.27j2`4.49j`68.82

pR2 “ 0.73q, and the highest accuracy around 85% appeared

at j “ 9 (Fig. 6(a)). It depicted that the average hand motion

classification accuracy accj increased along the user training

procedure and reached to the plateau at the ninth session. For

the accuracies of LF-sessions, the fitting function was y “
0.35j2 ´ 4.20j ` 86.83 pR2 “ 0.72q, and the lowest accuracy

appeared at j “ 6 of about 75% (Fig. 6(b)). LF-UT faced an

accuracy decrease during the first 6 sessions, and then started

to rise. Comparing acc1 with acc10, the accuracy significantly

increased (p ă 0.05) by 15% from 69.5˘13.8% to 84.9˘5.8%

in CF-UT test, whereas reduced by 4.4% from 83.2˘9.7% to

78.8˘ 10.3% in LF-UT test. In sum, clustering-feedback user

training achieved better performance than label-feedback user

training in classifier-feedback based hand motion recognition

via a short-term user training.

B. The Accuracy Trend of Non-feedback Sessions

The experimental results also indicated the effect of

classifier-feedback user training on the accuracies of NF-
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(b) Label-feedback

Fig. 7: The accuracy trend of NF-sessions in CF-UT test and

LF-UT test, respetively.

sessions. The average initial accuracy (acc1) of NF-sessions

was 71.8 ˘ 19.8% and 78.8 ˘ 13.4% for CF-UT test and LF-

UT test, respectively. In the last session, the accuracy (acc10)

reached to 75.3˘22.9% with an increase of 3.5% for CF-UT,

while reduced by 7.8% to 71.0 ˘ 8.8.0% for LF-UT, despite

that the change was not statistically significant. Two linear

functions y “ 0.45x ` 72.6 and y “ ´0.04x ` 74.5 were

used to describe the trend, as seen in Fig. 7(a) and 7(b). The

result showed that CF-UT provides positive impact on the hand

motion recognition accuracy for NF-sessions, while LF-UT did

not.

C. Overall Accuracy among Different Types of Sessions

Classifier-feedback based hand motion recognition could

achieve higher classification accuracy than non-feedback ones,

as seen in Fig. 9. In LF-UT tests, the average accuracy of NF-

sessions was 74.3% ˘ 10.8%, while that of label-feedback

sessions was 76.7% ˘ 11.7%, showing an improvement of

2.4% after using label-feedback, though the increase was not

found to be statistically significant. In CF-UT tests, the average

accuracies were 75.1% ˘ 15.0% and 82.6% ˘ 19.4% for
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(b) NF-sessions in CF-UT tests

acc
initial

acc
middle

acc
final

R
e
la

ti
v
e
 C

la
s
s
if
ic

a
it
o
n
 A

c
c
u
a
ry

-15

-10

-5

0

5

10

15

20

25

30
S1
S2
S3
S4
S5
S6

(c) LF-sessions in LF-UT tests
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(d) CF-sessions in CF-UT tests

Fig. 8: The relative hand motion recognition accuracies during three training phases in LF-UT test and CF-UT test.
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Fig. 9: Comparisons of the average accuracies between NF-

sessions and LF-sessions in LF-UT test, NF-sessions and CF-

sessions in LF-UT test, and LF-sessions and CF-sessions in

LF-UT test and CF-UT test, respectively.

NF-sessions and CF-sessions, respectively, which disclosed a

significant improvement by 7.5% after employing clustering-

feedback in hand motion recognition (p ă 0.005). It was also

found that clustering-feedback was more effective (p ă 0.05)

than label-feedback in classifier-feedback based hand motion

recognition, as seen in third comparison columns in Fig. 9.

The results showed that classifier-feedback improved the per-

formance of online hand motion recognition, and clustering-

feedback outperformed label-feedback.

D. Individual Differences

The changes of hand motion recognition accuracy varied

with subjects, as seen in Fig. 8. For NF-sessions in LF-UT

test (Fig. 8(a)), Subject 2 and Subject 6 obtained accuracy

increase both from initial phase to middle phase then to final

phase, while the accuracy decreased for Subject 4 and Subject

5. Subject 2 started with an obvious accuracy increase, then

faced a severe decrease, which was just opposite to Subject 1.

For NF-sessions in CF-UT test (Fig. 8(b)), only two subjects

(Subject 9 and Subject 11) demonstrated accuracy increase

from the initial phase to the middle phase. However, from

the middle phase to the final phase, most subjects obtained

increased accuracy except Subject 12. For LF-sessions in the

LF-UT test, hand motion recognition accuracy of subject 1

and Subject 3 dropped from the initial phase to middle phase,

then started to increase after the middle phase; Subject 5

achieved continuous but limited accuracy increase less than

3%; Subject 4 obtained a slight increase firstly but suffered

from a dramatic decrease later on. For CF-sessions in CF-UT

test, 3 subjects (Subject 8, 11 and 12) achieved continuous

accuracy increase, with a total improvement by more than 5%;

Subject 9 achieved accuracy increase by about 5% from the

initial phase to the middle phase and then the accuracy kept

stable; a slight accuracy reduction was observed in Subject 11,

and followed by a remarkable increase about 10%; Subject 10

obtained an accuracy increase firstly and then suffered from

an obvious accuracy decrease by about 8%.

V. DISCUSSION

A. Feedback in User training

Feedback based motor learning has been investigated for

decades, and the presentation of the feedback informtion varies

among studies. In [11], multi-channel myoelectric signals

are displayed in conceptual training phase to emphasise the

importance of performing proper muscle contraction. In [8],

confusion matrix was disclosed to the subjects after a training

session to promote users to generate consistent and distin-

guishable EMG patterns. Although it has been demonstrated

that the learning procedure could happen without any external

feedback, it is still believed that the learning ability can be

further enhanced when proper external feedback is provided

during user training [9]. Clustering-feedback map is right the

external feedback in the current study, and has demonstrated

positive impact.

CF-UT accelerates the accuracy increase in hand motion

recognition along the training procedure. As can be seen from

Fig. 6, CF-UT achieves better convergence speed towards a

stable and higher hand motion recognition accuracy. In terms

the trend of accuracy in CF-UT, the current study shows a

similar accuracy trend as in [9], [10], although this study

focuses more on short-term user training, while the others

are based on daily or weekly basis. It implies that a properly

selected feedback approach is very likely to achieve the goal

of short-term user training, rather than the use of transcranial

direct current stimulation intervention [33]. LF-UT, however,

leads to an accuracy decrease until the 5th or 6th sessions,

which is possibly because the lost short-term muscle memory
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(c) Motion 2 towards Motion 9

Fig. 10: The real-time clustering-feedback trajectory in 6th CF-session in CF-UT test of Subject 9.

encoded during training dataset recording phase, and the lack

of relevant reference for motion adjustment in label-feedback.

In the context of PR-based myoelectric control, it is a hard

task to introduce the phenomenon of misclassification to naive

subjects. In [11], a conceptual training stage is included in user

training for pattern recognition introduction. In [8], the concept

is explored by the boundaries among separate movements. The

current study relies on clustering-feedback map to delivery

the same concept, and the boundaries among motions can

be measured by the distance between the centroids. Fig. 10

demonstrates the input trajectory in the clustering-feedback

map, where the transient EMG samples are included to clarify

the procedure of motion transformation. Taking Fig. 10(a) as

an example, the subject transfers from Motion 8 (Supination)

to Motion 3 (Hand Closed) with three phases: short delay after

informed with the cue signal, transient hand movement, and

motion maintenance with gesture adjustment.

During motor learning tasks, directing the performer’s atten-

tion to his or her own movements would disrupt the execution

of automated skills and degrade skill learning [34]. Interpreting

the mechanics of hand movements by visual feedback allows

subjects to pay attention to an external object rather than

his or her own movements [8]. Clustering-feedback map is

considered as the external object in the current study. Also,

clustering-feedback is informative and closely related to the

motions for classification. It avoids the problem that users’

attention and efforts might be more directed to addressing

or responding to the feedback rather than to completing the

intended task [35].

It is intuitively expected that users will need more cog-

nitive load on CF-UT, since more elements are presented

in clustering-feedback map and required to be processed in

real time. The results of the Paas Cognitive Load Scale

questionnaire, however, showed that the mean amount of

perceived mental effort for CF-UT and LF-UT are 3.0 ˘ 1.26

and 2.83˘ 0.75, respectively, and there was no cognitive load

difference (p ą 0.5). It might prove that the presentation

of clustering-feedback is rational and acceptable, and conse-

quently avoids the increase of users’ cognitive load, especially

the extraneous cognitive load.

B. User Adaptation

It is the fact that a large proportion of patients give up the

use of prosthesis during the user training procedure. The use

of virtual reality by means of visual feedback in user training

reduces patients’ mental effort and eases users’ adaptation

[36].

The current study discloses that proper muscle contraction

force is the key fact that user adaptation functions on. It

has been reported that the presence of contractions from

unseen force levels leads to considerable error by greater than

32% [37]. To counteract the severe degradation, training sets

comprising all force levels is recommended [38]. The current

study provides a better understanding of the importance of

user training in muscle-contract-level uniformization, which

is consistent with the finding in [8].

This study also discovers that users subjectively apply a

similar user adaptation strategy to improve motion recognition

accuracy. At the first several sessions, if a misclassified result

is found in clustering-feedback map, subjects prefer to apply

more muscle contraction force without adjusting the motion

itself, because they believe that a correct classification output

can be obtained through their efforts (i.e. more contraction

force). Their efforts, however, do not bring in an expected

result, and even arouse larger error between the target and

actual EMG pattern. It is a very confusing phenomenon for the

subjects who are exposed to PR-based hand motion recogni-

tion systems the first time. This phenomenon can be intuitively

reflected by the distance between the targeted centroid and

the input point in clustering-feedback map. With the presence

of clustering-feedback in user training, most subjects start to

properly control the force accordingly after several sessions.

An additional preliminary experiment was carried out to

investigate the relationship between the exerted force and

the horizontal coordinates in the clustering-feedback map. A

force sensor, LUD-050-015-S*C01 (Loadstar sensors, US),

was used to measure the force of fine pinch applied on it.

Meanwhile, sEMG signals were also synchronously recorded.

Fig. 11(a) demonstrated the fine pinch on the force sensor.

A subject was employed to take the experiment via increasing

the pinch force gradually until the 80% of maximum voluntary

contraction (MVC) and then gradually reducing to nearly

zero. Based on the analysis of the recorded data set, it was
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and the first PCA component of EMG signal.

Fig. 11: A preliminary experiment to disclose the relationship

between the first PCA component of EMG signals and the

force.

found that the horizontal coordinate in the clustering feedback

map is closely relevant to muscle contraction force with a

correlation coefficient r ą 0.90. Fig. 11(b) demonstrates the

force information as well as the first PCA component of EMG

signal. This result implies that subjects could singly rely on the

horizontal axis to adjust contraction force, which releases the

cognitive load for users. Moreover, the vertical axis somewhat

reflects the motions of wrist flexion and extension in two

directions. As can be seen in Figs. 2 and 10 , motion 6

(flexion) and motion 7 (extension) usually apart obviously in

the vertical axis, while with the similar horizontal coordinates.

The information might be utilised during user training to unify

motion gestures.
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VI. CONCLUSION AND FUTURE WORK

The concept of classifier-feedback based user training was

proposed method to achieve better control performance for

PR-based prosthetic hand system with enhanced user abil-

ity. The proposed was evaluated by two types of classifier-

feedback based user training: label-feedback and clustering-

feedback. The experiment confirmed that clustering-feedback

outperforms label-feedback in online hand motion recognition.

Label-feedback user training did not show a rising trend in

terms of recognition accuracy in non-feedback sessions, while

clustering-feedback user training achieved significant improve-

ment. Moreover, it demonstrated that clustering-feedback map

contained feasible information that guided users to apply

proper force and gestures on motion patterns. It indicated that

user adaptation can be fully exploited towards the proposed

online hand motion recognition system.

Future work has been planned as follows: a) The proposed

clustering-feedback user training will be applied to amputee

to evaluate its feasibility in PR-based myoelectric hand pros-

theses. b) The clustering-feedback map will be used to deliver

haptics information through skin stimulation instead of visual

feedback, so that users potentially could achieve the sense of

body ownership. c) Varying muscle contraction force will be

taken in account for clustering-feedback user training.
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