SIAM J. Sci. COMPUT. (© 2002 Society for Industrial and Applied Mathematics
Vol. 24, No. 1, pp. 208-236

INTERFACE TRACKING FOR AXISYMMETRIC FLOWS*

JAMES GLIMMT, JOHN W. GROVE!, AND YONGMIN ZHANGS?

Abstract. A front tracking method for inviscid gas dynamics is presented. The key construc-
tions and algorithms used in the code are described and the interrelations between shock capturing,
interface dynamics, computational geometry, grid construction, and parallelism are discussed for
the code as a whole. Validation is carried out by comparing the single mode bubble velocity for
Rayleigh—Taylor instability with theoretical models and experimental results. The calculations are
validated by mesh refinement studies and by the comparison of the asymptotic limit of the minimum
radius rmin — 00 to a pure planar computation in two dimensions.

Key words. front tracking, FronTier, interface, Rayleigh—Taylor
AMS subject classifications. 76N15, 76T05, 76M20

PII. S1064827500366690

1. Introduction. Front tracking is an adaptive computational method in which
a lower dimensional moving grid is fit to and follows distinguished waves in a flow.
Tracked waves explicitly include jumps in the flow state across the waves and keep
discontinuities sharp. A key feature is the avoidance of finite differencing across dis-
continuity fronts and thus the elimination of interfacial numerical diffusion including
mass and vorticity diffusion. In addition, nonlinear instability and postshock oscilla-
tions are reduced at the tracked fronts. Front tracking as implemented in the code
FronTier includes the ability to handle multidimensional wave interactions in both
two [21, 29, 33] and three [20, 19] space dimensions and is based on a composite al-
gorithm that combines shock capturing on a spatial grid with a specialized treatment
of the flow near the tracked fronts. Applications have included Rayleigh—Taylor (RT)
[17, 27, 24, 53, 54] and Richtmyer—Meshkov (RM) [32, 52, 37, 55, 36] instability in
two space dimensions and three dimensional planar RT instability [41, 42, 22, 18]. RT
instability occurs when a fluid interface is accelerated in a direction opposite to the
density gradient across the interface, while RM instability is induced by the refrac-
tion of shock waves through a fluid interface. FronTier is implemented for distributed
memory parallel computers, and some of the fundamental algorithms used in this code
are described in [23, 8, 30, 34, 22, 31, 18].

*Received by the editors January 24, 2000; accepted for publication (in revised form) December
4, 2001; published electronically June 18, 2002. This paper first appeared as Los Alamos National
Laboratory Report LA-UR-01-448.

http://www.siam.org/journals/sisc/24-1/36669.html

T Center for Data Intensive Computing, Brookhaven National Laboratory, Upton, NY 11793-6000
(glimm@ams.sunysb.edu). This author’s work was supported by the MICS Program of the U.S.
Department of Energy under grant DE-FG02-90ER25084, by the Department of Energy Office of
Inertial Fusion, by the Army Research Office under grants DAAG559810313 and DAAD190110642,
by the National Science Foundation grants DMS-9732876 and DMS-0102248, and by Los Alamos
National Laboratories under contract C738100182X.

fMethods for Advanced Scientific Simulations, Computer and Computational Science Division,
Los Alamos National Laboratory, Los Alamos, NM 87545 (jgrove@lanl.gov). This author’s research
was supported by the U.S. Department of Energy.

§Department of Applied Mathematics and Statistics, University at Stony Brook, Stony Brook,
NY 11794-3600 (yzhang@ams.sunysb.edu). This author’s work was supported by the MICS Pro-
gram of the U.S. Department of Energy under grant DE-FG02-90ER25084, by the Department of
Energy Office of Inertial Fusion, by the Army Research Office under grants DAAG559810313 and
DAAD190110642, by the National Science Foundation grants DMS-9732876 and DMS-0102248, and
by Los Alamos National Laboratories under contract C738100182X.

208

INTERFACE TRACKING FOR AXISYMMETRIC FLOWS 209

We validate our code by comparing the terminal bubble velocity of axisymmet-
ric RT instability to both experimental and theoretical predictions for the limit of
incompressible flow. The validation is difficult because the bubble terminal velocity
shows considerable oscillation about its limiting value as the density ratio across the
interface becomes large, and because of the small time step needed to simulate nearly
incompressible regimes.

The paper is organized as follows. Section 2 describes the general features of the
front tracking algorithm. Section 3 discusses the geometry package used to represent
the tracked fronts. Section 4 describes the basic algorithms used to propagate the
front and to couple shock capturing on a computational lattice and the propagation
of the tracked fronts. In section 5, we discuss validation calculations for RT instability
in axisymmetric geometry. The effects of curved geometry, grid size, and density ratio
across the interface on bubble velocity are investigated. We compare the computed
value of the terminal bubble velocity with several theoretical predictions and labo-
ratory experiments. Our numerical results lie approximately within the range of the
theoretical and experimental values.

2. The front tracking method. Examples of tracked fronts include shocks,
contact discontinuities, material interfaces, and rarefaction wave edges. The discrete
representation of the flow is based on a composite grid that consists of a spatial grid
representing the flow field in the bulk fluid, together with a codimension one grid
that represents the fronts. Figure 2.1 shows a two dimensional schematic of a time
step snapshot of such a grid. The front is represented by a piecewise linear curve, the
sections of which are called bonds. In contrast to the spatial grid, which is fixed in
time (i.e., Eulerian), the fronts move according to the dynamics of the wave fronts
that they represent. A single time step is divided into two processes: the propagation
of the fronts and the updating of the solution on the spatial grid.

- - - -
*
-
-
® Larwl S
® Tracked Points (lefLright) States

Fia. 2.1. A representation of the grid for a front tracking computation. The solution is rep-
resented on the union of a spatial finite difference grid and a dynamic grid that follows the fronts.

Front tracking has several features in common with the arbitrary Lagrangian
Eulerian (ALE) [35, 13, 2, 3, 4, 44] family of methods in which the solution grid
is adapted to the flow. ALE methods are based on a moving mesh formulation of
the flow equations where the mesh motion is chosen to maintain desirable features
of both the Lagrangian (fluid following) or Eulerian (fixed grid) formulations. Front

210 JAMES GLIMM, JOHN W. GROVE, AND YONGMIN ZHANG

tracking is a special case where adaptivity is used on a lower dimensional manifold
corresponding to wave fronts.

Two key features are exploited by the tracking. When the orientation and position
of a front is known, one can locally rotate into a coordinate system that is aligned
with the wave front so that the normal and tangential directions to the front are grid
lines in the local coordinate system. Such a grid substantially improves the quality of
the solution near the front. Furthermore, explicit representation of the front allows
the inclusion of analytic information regarding the rate of change of the flow variables
and the velocity of the wave front.

FronTier uses a variety of computational tools in its implementation. At the core of
these is a geometry package [26, 34, 22, 20, 19] for the description and manipulation of
the wave fronts. This package provides services for interface geometry representation
and interface manipulation routines for querying, creating, destroying, and modifying
the tracked fronts.

Another important operation is to evaluate the flow state at an arbitrary location.
This is an essential component in coupling the propagation of fronts with the spatial
flow field. This operation, which we call the solution function, is implemented via
an interpolation function using the cell values on the spatial grid and the states on
the fronts. The front states are bivalved since in general fronts correspond to flow
discontinuities. Each front point is associated with two states that correspond to the
limit at that point of the spatial field on either side of the front. The key feature of
the interpolant is that it respects front discontinuities; i.e., no interpolations occur
between states on opposite sides of a tracked front.

Additional packages include libraries for handling interactions between tracked
waves, finite difference solvers, Riemann problem solution packages, equation of state
packages, flow initialization, and printout. Also, a package for the redistribution of
front points is needed to control numerical instabilities produced due to expanding
and converging interface sections. The next two sections will describe some of these
packages in more detail.

3. Geometry package. As mentioned above, one of the core packages in
FronTier is a geometry package, called the interface library, for the description and
manipulation of interfaces. A more detailed description of this package can be found
for two dimensional interfaces in [26, 34] and in [22, 20, 19] for three space dimensions;
for completeness we will summarize some of the basic terminology here.

A tracked interface is a collection of geometric objects describing the location of a
set of fronts at a given time. They consist of discrete representations of points, curves,
and surfaces. A curve is a connected oriented piecewise linear list of bonds, which are
connectors between adjacent points. A surface is a connected oriented piecewise linear
collection of triangles, which are in turn connectors between three adjacent points.
Both bonds and triangles are linking objects in the sense that they contain pointers
to their neighbors. Each bond points to both the previous and following bonds that
share its endpoints. Similarly, triangles share a pair of points along a common side
with their neighbor and contain pointers to that neighbor’s address. The entire list of
triangles that share a common vertex can be found by starting from any member of
that set and looping through the adjacent triangles until either a terminating edge is
found or until the original triangle is reached and the loop closes. Both surfaces and
curves are examples of discrete manifolds with boundaries. The boundaries of surfaces
are curves, while the boundaries of curves are called nodes. It is assumed that a valid
interface is nonintersecting in the interior of the surfaces and curves. Thus curves

INTERFACE TRACKING FOR AXISYMMETRIC FLOWS 211

rc=6 ,©

Ic=6

/,uuu ’r

Fic. 3.1. Components formed by an interface.

may only intersect along nodes or surfaces along curves. Front intersections produced
during propagation correspond to wave interactions and require special treatment to
resolve the interaction and untangle the interface.

Interface topology is described in terms of the notion of a component. The wave
fronts divide the computational domain into a set of connected components. Each
such region is identified by an integer tag that we call the component number or
simply the component of that region. Figure 3.1 illustrates the components formed
in a neighborhood of a shock refraction we call anomalous reflection [33]. In order to
unify the treatment of components across one, two, and three dimensional flows, we
introduce a hypersurface data class. Topologically, a hypersurface locally separates
space. Hypersurfaces are associated with either points, curves, or surfaces depending
on whether the flow is one, two, or three dimensional. As a data structure a hyper-
surface can be viewed as an adjunct that provides additional topological information
for a geometric object. For a two dimensional flow, there is a one-to-one correspon-
dence between curves and hypersurfaces, with each curve containing a pointer to the
unique hypersurface to which it is associated. Similarly, in a three dimensional flow
the surfaces and hypersurfaces are in one-to-one correspondence. Each hypersurface
has a pointer to its associated geometric object. Although implemented as distinct as
data structures, we use the standard terminology that identifies a hypersurface with
its corresponding geometric object. Thus a hypersurface may refer to either a point,
curve, or surface depending on the spatial dimension of the flow, and by points on a
hypersurface we mean the points on its associated geometric object.

At each point on a hypersurface there is a specified normal direction, and we
speak of the positive or negative side of the hypersurface as that into which or out of
which the normal vector points, respectively. Components are identified by associating
with each hypersurface a pair of integers that give the component number of its two
bounding sectors. These labels are called the positive or negative components of
the hypersurface depending on whether they correspond to its positive or negative
side. It is required that this indexing be well defined so that separate hypersurfaces
bounding a common region must have equal component indices corresponding to their
common region. Violations of this condition imply that the interface is tangled, and
the wave interactions that produced the tangles must be resolved before the time step
is complete.

212 JAMES GLIMM, JOHN W. GROVE, AND YONGMIN ZHANG

The interface library provides a number of services including creators and de-
structors of interface objects, and query functions for the nearest interface point to
a given location or the component number at that location. Another important op-
eration determines the normal vector to an interface point. Several possible normal
algorithms are implemented. In two space dimensions the simplest normal algorithm
computes a secant vector joining the two points adjacent to the given point and then
rotates this vector by 90 degrees. In three space dimensions, one algorithm computes
the least squares plane fit to the set of adjacent points to the given point and uses the
resulting plane normal vector as its output. The interface library is a low level utility,
but each data structure can be extended by inheritance so that high level libraries
may add additional functionality and override the default behavior of the interface
class members.

4. Time stepping. FronTier is written as a set of hierarchical libraries ranging
from basic geometry and topology to physics solvers. The current implementations
include inviscid gas dynamics, rate dependent elastoplasticity, and flow in porous
media. For simplicity we will restrict the remaining discussion to the case of inviscid
gas dynamics. However, many of the generic topics apply to all of the separate physics
implementations. Care has been taking in designing the separate libraries in FronTier
so that physics models are hidden from the lower level modules. These modules can
then be used in common across all physical implementations. These generic modules
provide inheritance structures that can be tailored to specific models in a physics or
even problem dependent fashion.

As mentioned above, we consider inviscid compressible flows. The equations of
motion are given by the Euler equations

u
pt+V~(pV)+a%=0,

uv
(4.1) (pv)e + V- (pv® V) + VP + 0/’7 - g,
w(E + P
(0E): + V- pv(B + Plp) + P EXLIO g

where the state variables are the mass density p, the fluid velocity v, the specific
total energy ' = e + %v - v, the specific internal energy e, and the thermodynamic
pressure P. The vector g is the net body force per unit mass. The parameter « is
equal to 1 if the flow exhibits cylindrical symmetry with respect to the z axis, 2 for
spherical symmetry with respect to the origin, and zero otherwise. The variable u is
the component of v in the x direction. System (4.1) describes the laws of conservation
of mass, momentum, and energy, respectively, and is closed via a thermodynamic
equation of state that relates the density, pressure, and specific internal energy. For
simplicity we regard the pressure as a material dependent function, P = P(p,e).
For multiple material flows we assume no molecular mixing so that distinct fluids
are separated by a tracked contact discontinuity across which the equation of state
may change. It is traditional to replace x by r in the case of cylindrical or spherical
symmetry since in those cases this variable represents the distance from either the z
axis or the origin, respectively. Also in the case of cylindrical or axisymmetry, the
second independent variable is usually denoted by z and its velocity component by w.

A flow chart outlining the main components in the time step algorithm is shown in
Figure 4.1. As we see from the chart, the computation can be broken up into roughly
three main steps: the propagation of the front, the construction of the interpolation

INTERFACE TRACKING FOR AXISYMMETRIC FLOWS 213

Cempri dird Cromings

Prdmi Mropagaic

Lemed sisles newr fronte

P bl v @i tivan ol

Advasee Front
B Trdavd Ciaes
| Finite Dhileresd:
| E—

Fia. 4.1. Schematic of control flow for time stepping.

grid, and the finite difference or shock capturing solver. At the end of each cycle
we obtain the time updated flow state, which includes the location and states at the
tracked points and the values of the state variables on the spatial grid. The following
subsections will give a brief description of the main features in each of the propagation
steps.

4.1. Advance front. The advance of the front, i.e., the time step updating of
the tracked front positions and states, is broken up into three basic subsets. First, we
propagate the points on the fronts ignoring possible wave interactions. Subsequently,
the interface is checked for self-consistency to detect wave interactions. If interactions
are found, they must be resolved using specialized routines designed to model the
appropriate wave interactions. In addition, the interface points may be reinterpo-
lated to improve the distribution of points on the interface elements. Finally, there
is a parallel communication step required to include propagation information from
neighboring subdomains.

4.1.1. Propagation of front points. Point propagate is a fundamental oper-
ation in a front tracking computation. This operation is performed at each point on
the interface and computes the time updated states and position of the front. Several
point propagate algorithms are implemented in FronTier, using either directionally
split or unsplit methods. Here we describe a directionally split version as specialized
to the case of a contact discontinuity.

Figure 4.2 shows a schematic representation of the states used in updating a
front point. In the directionally split version, point propagate consists of two parts:
normal point propagate and tangential point propagate. The former uses a one di-
mensional projection of the flow equations into the direction normal to the point p
being propagated. The latter projects the flow equations onto the tangent space of
the hypersurface at p and solves two sets of equations for the flow on either side of the
hypersurface. In contrast to normal point propagate there is no assumed discontinuity
in the data for the tangential propagation step, and standard shock capturing schemes
are used to update the tangential contribution to the flow state. In the directionally
split version normal propagate is performed first, and the data for the tangential sweep
is the output from the normal sweep. The interface motion is computed as part of the
normal sweep, and no additional front motion is included in the tangential sweep. Un-
split implementations of point propagate have the ability to couple interface motion

214 JAMES GLIMM, JOHN W. GROVE, AND YONGMIN ZHANG

[macked Curve [racked Curve

Fic. 4.2. A schematic showing the stencil of states used in propagating a front point. For
simplicity the diagram is shown for two space dimensions. The normal propagate stencil is shown
wn (a), while (b) shows the stencil used in the tangential update.

with both normal and tangential data. The simplest of these uses Strang splitting
[48, 49] (i.e., alternating the order of normal and tangential propagation). The effect
of curvature on the interface velocity and states can also be explicitly included in an
unsplit algorithm.

Normal point propagate. Normal point propagate seeks to solve a generalized
Riemann problem for the projection of the flow equations onto the direction normal
to the front at a point p. A generalized Riemann problem is an initial value problem
with a single embedded discontinuity in a nonconstant flow. We seek to determine
the normal velocity of the front at p and the time updated states at the front. The
first step in the normal point propagate algorithm is to evaluate the flow state in the
normal direction near p. If N is the computed normal to the hypersurface containing
p, we evaluate states s; at positions p; = p + iAnN for ¢ = 0+, +1,...,+m, where
m is the stencil radius of the specific normal sweep solver being used. Two state
values at the front so4 are evaluated corresponding to the states on either side of
the discontinuity at the front. Current implementations use either m = 1,2, or 3
depending on the specific solver being used.

The value of An is determined from the mesh spacing in the coordinate directions,
Ax;, by the formula

= (5(5))

1=

where d is the spatial dimension of the flow. Since N is a unit vector, An reduces to
the common mesh size for a square grid.

The states so4 are given as data on the tracked fronts. The off front states are
obtained using the solution function mentioned above.

The projection of system (4.1) into the direction N yields the one dimensional

INTERFACE TRACKING FOR AXISYMMETRIC FLOWS 215

system
Op Opvy alNy B
o T ow Ty v =0
Opv d(pv3 +P) aN
v Heon £ P) | oNopn o,
ot ON x
(4.2)
opvr Opunvrp L aNg v — 0
ot ON z PNV
OpE O(pEvn + Puy) alNp
FE P = .
o+ 5N +——(pEvy + Pun) = pgnon

Here Ny is the component of the normal vector N, 3% = N - V is the directional
derivative in the direction N, vy = v-N and gy = g - N are the normal compo-
nents of v and g, and vp = v — vyN is the tangential velocity component. The
noncharacteristic version of system (4.2) is

dp ap dvy alNg B
E—FUNaiN—FpaiN—F - pvn =0,
Oy, Ovw 1OP
ot NN T poN IV
(43) aVT aVT
EALATINEAC)
ot ON ’
%4_ @+P al_’_ al =0
ot T "NoN ot T NoN) T

where V' = 1/p is the specific volume. The characteristic form of system (4.2) is

duy 1 dP alNy

Dy pedn, g v Ton
doy 1 dP alNy
- - CUN = gN,
(4.4) dA pc di_
dVT o O
dxo
de v o
dXo dXo
where ¢ = %—I; B is the sound speed and S is the specific entropy. More explicitly, in
terms of the equation of state P = P(p, €), we have ¢ = %—I;—i-p% %—5. The characteristic
derivatives are defined by
d 0
- _Z 4o)—
Dy o T EI G

From the first law of thermodynamics, TdS = de + PdV, we see that the fourth
equation in system (4.4) is equivalent to the statement that specific entropy is constant
along the)\ characteristic lines.

A comment regarding systems (4.2)—(4.4) is in order. The projection is based
on a directionally split solver for system (4.1) in a neighborhood of the front. This

216 JAMES GLIMM, JOHN W. GROVE, AND YONGMIN ZHANG

formulation does not explicitly include the effect of curvature of the front on the wave
speed and states, nor does it account for changes in the front normal direction over
the time step. Both effects are included indirectly in the solution over time since the
normal direction is recomputed at every front point and every time step. The main
consequence is that the solver will be at best first order accurate near the front for
a given time step. Furthermore, the operator splitting into normal and tangential
sweeps also introduces a first order error. These errors are consistent with the usual
statement that numerical methods are at best first order accurate in regions of large
flow gradients. Indeed, tracking means that the flow gradients are infinite at the front.
The overall accuracy of the solver, as say measured by the L; integral of the solution
error, will approach the order of accuracy of the interior solver, by which we mean the
solver on the spatial grid, as the grid spacing is refined, since the measure of the set
near the front approaches zero as the mesh size decreases to zero. This does not imply
that the front tracking calculation is less accurate than a shock capturing algorithm
since the order of accuracy estimates for such algorithms break down in regions of
large gradients. In particular, for a capturing algorithm, the front location is never
known to be better than first order.

The point propagate algorithm has three basic parts: slope reconstruction to
compute approximations to the flow gradients along the normal line, prediction using
Riemann problem solutions, and correction to account for flow gradients on either side
of the front and to include body or geometry source terms. At material interfaces
surface tension may also be included by modifying the Riemann problem solution
to allow a pressure jump proportional to the mean curvature at the point being
propagated.

The reconstruction step is similar to that used in many shock capturing methods
[51, 10, 28, 40, 50], with one important exception. The reconstruction is used to define
a one dimensional interpolant for state values along the normal line, with the added
condition that the existence and location of a discontinuity is explicitly known and
represented in the reconstructed slopes so that no differencing is performed between
states on opposite sides of the front. The profiles are chosen to be linear in some
set of appropriate variables (density, pressure, and velocity usually) on the segments
Pi—1/2 — Pit1y2 for i = £1,...,+m as well as on the segments p — p+,/5. Here
Pi+1/2 = (Pi + Pit1)/2. We wish to compute slopes ds; for each of these intervals
for the reconstructed profile so that the reconstructed state variables are given by the
linear profile

(X—Pz‘)'N.

(4.5) s(x) = s; + ds; An

For x on the line segment from p;_1/3 t0 p;;1/2, a similar expression applies for the
half width intervals from p to p+;. The following discussion applies to three point
slope limiters like the van Leer limiter [51]:

(4.6) ds = emin (28i+1 —8i|,|8i+1_28i1|72|si—si1|))

where € is the common sign of the forward, central, and backward differences or zero if
their signs differ. The extension to higher order slope limiters requires some additional
modifications at the off front locations whose limiter stencil overlaps the front. The
slopes dsg4+ are first chosen so that the one-sided linear profiles centered at p connect
so+ and s41. That is, these innermost slope values are found by differencing the

INTERFACE TRACKING FOR AXISYMMETRIC FLOWS 217

on front states and the adjacent off front state. At the remaining off front locations
standard limiters, such as (4.6), are used to compute the reconstructed slopes. If the
sign of the slope dsp+ is not equal to the sign of dsyq, we set dsp+ = 0; otherwise
dso+ is further reduced to sign(dsti) min(|dsp+|, |ds+1]). The result is a piecewise
linear profile for the state variables that is monotone on either side of the front.

The prediction step is illustrated in the upper right frame shown in Figure 4.3.
We use the front states sg+ as data for a one dimensional Riemann problem for
system (4.2). Each tracked wave carries a wave type that identifies it with one of
the waves from the Riemann problem solution and the velocity wg of that wave is
used to predict the front motion in the normal direction. The velocity wg can be
interpreted as the velocity of the front at the beginning of the time step. In addition
the Riemann problem solution yields states s,,— and s,,4+ on either side of the new
wave. For simplicity, in the following we will consider only the case of the propagation
of a contact discontinuity. In this case s,,— and s,,+ agree with the usual midstates
from the Riemann problem solution, and wq is equal to the common normal velocity
component of the two midstates. A description of algorithms that include the case of
shocks can be found in [8].

[
'|" [TEXTET T '..:_-

£+

Fic. 4.3. In normal point propagate the flow state is projected onto a line normal to the
interface point. A one dimensional Cauchy problem is solved to compute the updated front position
and state.

The correction step is based on the method of characteristics. As seen in the lower
left frame of Figure 4.3, we trace back the incoming characteristics from the predicted
new front position using the velocity and sound speeds of the midstates computed
from the Riemann problem solution to approximate the characteristic slopes. We
use (4.5) to compute states at the feet of the traced back characteristics. For a
contact discontinuity we obtain two states, sy and s, on the left and right of the
original interface at the feet of the tracked back characteristics. Together with the
states on the front, we then solve a discrete version of the characteristic system (4.4)
to obtain the time updated states on the front and a time updated velocity of the
front, wy, at time ¢t + At. The net interface velocity is then found by time averaging
w = (wg + w1)/2, and the new position of p is given by

(4.7) p(t + At) = p + wNAL.

Integrating system (4.4) along the incoming characteristics at the contact discon-
tinuity, and using the Rankine-Hugoniot conditions, P~ = P, and vy_— = vy+ = vn,
across the contact we obtain an integral equation system for the state values at time

218 JAMES GLIMM, JOHN W. GROVE, AND YONGMIN ZHANG

t+ At:
(4.8)
t+At dP t+At OéN() t+At
UN — VN + e + chth = gndt ,
K P e =un+c K 4 =vn+c k e =un+c
t+At dP t+At OéN() t+At
UN — UpN — — — CUth = gth s
t pC dx ¢ T dx t dx
dt —UN—C dt —UN—C dt —VN—C

vVr— = Vo1,

V174 = Vo+T,

t+AL
e_ —ep_ + / PdV
t

de
dt =UN

t+At
€+ — €0+ =+ / PdV
t

dx
dt —UN

The last two integrals in system (4.8) are taken along the left or right side of the
contact, respectively.

We will now describe three different techniques for approximating the solution
to system (4.8). The first method, which we call MOC+RH (for method of charac-
teristic plus Rankine-Hugoniot), uses central differences in time to approximate the
above integrals. This is equivalent to approximating the integrals using a two point
trapezoidal rule quadrature. For simplicity we assume constant gravity. The resulting
system then becomes

(4.9)

1/(pses) +1/(p—c-) CUfN /Ty FcvN /T

N —VfN + 5 (P — Py) + aNy 5 At = gy At,
1 1
oy — v — /(pvcy) +2 /(pycy) (P — Py) — aNo CbUbN/fEb;r CHUN/T ny N AL
vVr— = Vo-T1,
Vr4 = Vo+T,
Py+ P
e —eo o (Vo — Vo) =0,
Py+ P
e — ey + — (V4 =Voy) =0.

After the trivial elimination of the tangential velocity components the result is a
system of four nonlinear equations in the eight unknowns p_, e_, c_, py, e4, ¢4, P,
and vy at the updated contact position. The remaining four equations are given by
the equations of state on each side of contact:

P=P_(p_,e_),
P=P))
(4.10) (P45 et
e =c(p-re),

cp = cy(pyre4).

The combined systems (4.9) and (4.10) can be solved iteratively to yield the approx-
imate solution to system (4.8). The value of z used in above system is that obtained

INTERFACE TRACKING FOR AXISYMMETRIC FLOWS 219

in the prediction step; more generally we could recompute x for each iteration using
(4.7) to get the value of z from the last iteration.

In view of the various first order approximations already in place at the interface,
there would seem to be little advantage in using the formally second order approxima-
tion to system (4.8) given by the systems (4.9) and (4.10). Thus a second integration
method using only first order approximations to the integrals in system (4.8) is pro-
vided by a backward difference quadrature. We call this option CHEAP MOC+RH.
The resulting system becomes linear ine_, V_, ey, Vi, P and vy:

CfUFN

1
vy —vgNy + —— (P — Py) + alNy At = gy At,
prey Ty
1 CpUp
(4.11) vy —vpn — —— (P — Py) — aNg——2 At = gnAt,
PbCh Ty

0
et — et + Fo(Vi = Voy) = 0.

As in the MOC+RH case the system is closed by the equations of state relations
between pressure, energy, and density on either side of the interface.

The third algorithm, which we call RIEMANN, exploits the close relation between
the solution of a Riemann problem and the method of characteristics. If we ignore
source terms, the one dimensional Riemann problem solution with data p_, P_, and
v_ on the left and p;, P4, and vy on the right is given by the solution to system

P—-P_
U — UuU_ + T = 07
(4.12) PoP,
U—uy — —— =0,
my
where
IS ar o, HP<Py
=o+
(413) m4 = pP+Ct if P= P:t,
ot if P> Py

is the mass flux across the wave in the Riemann problem solution. When P < Py the
wave is a centered rarefaction, and the integral in (4.13) is taken at constant specific
entropy. If P > P, the wave is a shock and V. is computed as the solution to the
Hugoniot equation

P(pae>+Pi
2

It is well known that the change in entropy across a weak wave is third order in the
pressure jump across the wave, so the two expressions for the mass flux in (4.13)
agree to third order in AP for weak waves. Comparing the form of the rarefaction
wave solution for a Riemann problem and the characteristic equation (4.8) we see that
the equations are identical, provided we ignore entropy changes across the incoming
characteristic. Indeed, for a Riemann problem solution with a rarefaction wave the
corresponding midstate is found by integrating along the characteristic of the opposite
family that crosses the wave. This suggests the following algorithm for approximating
the solution to system (4.8), provided the flow gradients on either side of the contact
are sufficiently small.

(4.14) e—es+ (V—-Vy)=0.

220 JAMES GLIMM, JOHN W. GROVE, AND YONGMIN ZHANG

1. Solve the Riemann problem with left state sy and right state so_— to obtain
an approximation s;; to the left state on the contact at time ¢ + At. That
is, sy is the right midstate from the Riemann problem solution using data s
and sg_.

2. Solve the Riemann problem with left state sg4 and right state s, to obtain
an approximation s, to the right state on the contact at time ¢ 4+ At. In this
case S; is the left midstate from this Riemann problem solution.

3. Solve the Riemann problem with left state s; and right state s, to obtain
an approximation to the states s; and s, on the contact at the new time.

The third step above is designed to enforce the proper jump conditions at the wave.
This scheme can also be described dynamically. The solution to the Riemann problems
between the off front and on front states describe a pair of incoming waves incident
on the contact. The third Riemann problem then describes the interaction between
these two incoming waves.

If source terms exist, either due to body forces or gravity, the computation is
completed using operator splitting to incorporate the source. From system (4.3) we
see that this can be done by adding gy At to the velocity of the two midstates and
subtracting “TN“va from the density on either side of the contact. Here we simply
use the original position of the contact as the value of x.

Tangential point propagate. The previous discussion described the operations
used to compute the normal motion of front points. The tangential component is
computed by solving a pair of finite difference equations corresponding to the projec-
tion of the Euler equations onto the tangent space at the front. More specifically, the
tangential projection of system (4.1) is given by

pt+ V- (pvr) +aVT'em£ =0,

\'%
(415) (PV)t + VT . (pV ® V) + VTP —|— avry - eIPTT — PgT7
E+ P
(pE)e + V7 -v(pE+ P)+avry - esz = pvr - gr,

where Vr is that spatial gradient in the tangent plane and e, is the unit vector in the
x direction. The data for system (4.15) is found by projecting the states obtained from
the normal sweep onto the updated tangent plane at p. The case for two dimensions
is illustrated in Figure 4.2(b). Using the value

(4.16) As = (f: (ATx>2> ,

i=1

where T is the tangent to the curve at the given point p, we choose pairs of states s;,.;
for ¢ = —m, ..., m by interpolating the states on either side of the front at distances
As when measured along the arc length of the curve. As before, m is the stencil radius
of the finite difference method being used (2 for the case illustrated). The situation
for three space dimensions is slightly more complicated. We wish to sample states
Sirij 1,J = —m,...,m on the surface that map onto a lattice on the tangent space.
Given a choice of two orthogonal tangent vectors Ty and T; we interpolate along
the surface in the two directions as in the two dimensional case. The choice of the
tangent vectors is not unique for three dimensional flows. For contact discontinuities
we choose T to be the direction of the velocity shear across the interface (which

INTERFACE TRACKING FOR AXISYMMETRIC FLOWS 221

must always be tangent to the contact surface); otherwise Ty is obtained by selecting
M+ and mi such that [Ny = max(|V;|) and |Ny,;| = min(]V;|), setting the third
coordinate of N to zero and rotating the resulting vector in the M+i — mi plane by
90 degrees. In either case, T1 = N x Ty. Using the data from the normal sweep we
solve system (4.15) twice on either side of the front to compute the contribution of
tangential flow gradients to the states on the front. Since the tangential sweep reduces
to a regular finite difference stencil any of a variety of standard solvers may be used
to compute the solution. In contrast to the normal sweep, no additional motion is
accounted for in the tangential sweep.

4.1.2. Untangle and redistribution. Front tracking contains a feature in com-
mon with all Lagrangian type methods; due to the discretization it is possible for the
interface grid to become tangled as it moves. This situation must be detected and
resolved before the computation continues. At the end of the point propagation steps
described above, the entire interface is tested for intersections.

Curvel Crossing Curve

Cross

Cross

Surface 1

Curve?2
Fic. 4.4. Tangled fronts.

Figure 4.4 illustrates the tangling of two curves and two surfaces. The intersection
algorithm tests each pair of interface elements (bonds or triangles, respectively) for a
possible intersection. The results of this calculation are assembled into a set of data
structures describing the intersection. The crossing data includes the addresses of
the hypersurfaces that intersect and the location of the crosses. In three dimensions
the line segments forming the cross between two surfaces are assembled into a curve
describing the intersection.

Intersections between fronts correspond to wave interactions. A detailed discus-
sion of the techniques for resolving such interactions is beyond the scope of this article.
See [30, 33, 34] for a description of untangle algorithms for the interaction of shock
waves and material interfaces. For contact discontinuities we proceed using a simple
mechanical description of the interaction; basically such tangles correspond to either
the pinch-off or merger of separate sections of fluids. If the two interacting materials
are the same, the interaction is modeled by simply deleting the overlapping segments.
Several possibilities for two dimensional interactions are shown in Figure 4.5. The
basic algorithm for resolving two dimensional tangles between contacts can be found
in [21].

The resolution of three dimensional tangles is more complicated. The algorithm

222 JAMES GLIMM, JOHN W. GROVE, AND YONGMIN ZHANG

Tamzles Tangle
Pinch OFT Splic Twist OFF
Blob Merge Breakithrough

Fic. 4.5. Types of two dimensional tangles.

described in [21] has been extended to three dimensions, but the geometric issues are
more complex. An alternative method proposed by X. L. Li and described in [20]
and [19] uses a form of interface reconstruction similar to that used in level set type
methods [46] to simultaneously resolve interface interactions for two fluid flows as well
as redistribute the interface points. This method, which we call grid based interface
reconstruction, uses a mapping of the components numbers for the two fluids onto a
rectangular lattice, followed by a cell by cell rebuilding of the interface sections. The
rebuilding uses the component numbers of the cell corners and the interface crossing
along the cell edges to reconstruct the surface sections contained in each cell. The
method has proven to be quite robust in practice and can be combined with both
the direct untangle referred to above as well as the redistribution methods described
below to produce a hybrid method that combines the desirable features from both
procedures. An illustration of the type of complex fronts that can be handled is
shown in Figure 4.6.

Bubble view Spike view

Fi1c. 4.6. A three dimensional RT unstable interface. The calculation began as a plane perturbed
connected interface. By the time shown in the figure, bifurcations have detached numerous blobs of
material from the original interface.

Another operation that is performed at the end of the propagation of the front is
the redistribution of the points describing the interface. As front sections expand or
contract, the finite resolution of the interface leads to a poor distribution of interfacial
element sizes, which can in turn lead to the overdevelopment of interfacial instabilities.
Therefore we periodically reinterpolate the front points, creating a new set of elements
with a more equitable size distribution. The algorithm in two space dimensions is

INTERFACE TRACKING FOR AXISYMMETRIC FLOWS 223

relatively simple. Starting from a node of a curve, we add new points at approximately
equal distances when measured along the arclength of the curve and then delete the
original curve points between the newly inserted points. The metric used is the same
as given by (4.16), where the tangent direction evolves along the curve. The specific
value of the spacing is a user defined quantity. Typically, a value of As of about 75%
of the computational mesh size is used to govern the redistribution. Figure 4.7 shows
a schematic of the redistribution of a single curve.

Curve Hefore Redistnbute Curve Aller Redisinbale
Eaad Miode End Fisde
L]
- a *
. ®
: ’ ™\
.. - * T ']
- L
> . * - E y
- - - - L - -
Saart Noda Brart Mode

Iesired Averags Longih
Fic. 4.7. The two dimensional redistribution of a curve.

As in the untangle algorithm, the redistribution of surfaces for three dimensional
flows is considerably more complex. Here we adopt a different strategy from the two
dimensional case that uses local operations on the interface elements. The triangles
that make up a given surface are sorted according to their size and aspect ratios.
Small triangles are merged with neighbors, while large triangles are subdivided. Bad
aspect ratio triangles are handled by a couple of techniques. Long thin triangles can be
merged with neighbors, or we may flip the diagonals of a pair of triangles to improve
the aspect ratios. Figure 4.8 shows a schematic of some of the elementary operations
on triangles, while Figure 4.9 shows an interface before and after redistribution.

i | L Ak

Fhp | gaonals fkeree Fikee [elcic Samall Imanel= Sphi Imarekc

Fi1G. 4.8. Elementary triangle redistributions.

4.1.3. Parallel communication of the front. Fronlieris implemented to use
spatial domain decomposition parallelism. The implementation assumes a distributed
memory computer and the low level communications use the message passing interface
(MPI) standard. The domain decomposition is based on a user defined rectangular
partition of the computational domain into geometric subdomains. Each subdomain
is extended by a ghost region of some specified width. The width of the ghost regions
depends on the particular finite difference or shock capturing method being used and
must at a minimum be such that an entire time step update of the interior (i.e.,
excluding ghost regions) of the subdomain can be performed without any further
data from the adjacent regions. An additional constraint from the front requires that
all geometric information (e.g., normal vectors) for front points in the interior of a

224 JAMES GLIMM, JOHN W. GROVE, AND YONGMIN ZHANG

ATrer redisteibution

Fic. 4.9. An RT unstable interface before and after redistribution.

subdomain can be performed using only data within the union of the subdomain
and its ghost region. For the solvers currently implemented in FronTier typical ghost
regions widths are 4-5 mesh blocks. At the beginning of a time step it is assumed
that all ghost regions are synchronized with their adjacent neighbors; i.e., the data in
the ghost region is a copy of the corresponding data from the adjacent subdomain.

The final step in the propagation of the front is communication of the propagated
front information in the interior of a subdomain to its neighbors. Four basic operations
are provided to accomplish the communication.

1. Clip interface. Given a interface on some region, construct a copy of that
interface that is clipped to a specified subregion.

2. Join interfaces. Given two interfaces on adjacent regions, construct a new
interface by joining the two interfaces across the common boundary of the
two regions.

3. Send interface. Broadcast an interface data structure from one subdomain
to another.

4. Receive interface. Receive an interface that has been broadcast from another
subdomain.

An important aspect of the send/receive operation for interfaces involves the recon-
struction of pointer information from the interface data structure. This is accom-
plished by replacing the actual machine addresses in the sending blocks by relative
addresses with respect to the message block. From this information it is then possible
to reconstruct new addresses for the pointers in the reconstructed interface.

The basic front communication proceeds as follows. First each subdomain replaces
its interface by a version clipped to the interior of the subdomain. The subdomain
then clips copies of its interface onto slices at the subdomain boundaries that have
widths equal to the ghost region width in the = direction and extend to the width
of the interior of the subdomain in the other coordinate directions. These slices are
then broadcast to the adjacent subdomains which then attach the received sections
onto their corresponding boundaries. The process is then repeated in the remaining
coordinate directions except that in the subsequent passes the slices are extended to
include the ghost regions that have been filled in by the previous communications. A
significant advantage of this procedure is that corner regions are handled implicitly
and do not require special treatment.

4.2. Grid construction. As mentioned above, FronTier uses a hybrid grid in
which the flow state is represented on the union of a spatial grid together with a co-
dimension one grid that describes the front. Constructing the data structures needed

INTERFACE TRACKING FOR AXISYMMETRIC FLOWS 225

to couple these two grids is the next step in time update process.

4.2.1. Grid crossings. The first data structure that describes the coupling be-
tween the spatial grid and the front contains a list of all crossings of the front with
the dual lattice defined by joining the cell centers of the computational lattice. Given
a computational cell center and a coordinate direction, the grid crossing list contains
an ordered list of all intersections of the front with the line segment between that
cell center and its neighbor in the specified direction. At each intersection a point is
interpolated at the crossing location together with a pair of states corresponding to
the two sides of the front at the crossing point. This crossing list also includes the
component numbers on either side of each crossing.

The crossing list is constructed by looping over all interface elements (bonds in
two dimensions and triangles in three dimensions) and computing the dual lattice
line segments that intersect each element. Each crossing is then recorded in a list
corresponding to the segment where it occurs.

While mathematically straightforward, the grid crossing algorithm is computa-
tionally expensive and occupies a significant portion of the overhead for a time step.

4.2.2. Interpolation grid. As we saw from the point propagate algorithm de-
scribed in section 4.1.1 a critical component in the algorithm is the evaluation of the
flow field at arbitrary locations. This is accomplished by constructing a constrained
interpolant using the data on both the spatial and interfacial grids.

Reflecting Boundary

) . -
b =
il 1 L.
o I

=2 e - E
S 1 |

o TP &
.= ...-'-'"h..h___. =
I N I -
b - JS I - Fosommey L |11 =
nI | B § 1 1 | I § | B §] E
il NEEEENEREEEE! =
-=I [} 1 1 [} | BN B I | h
=N -5

P R,y s, W (W, O W 0 T W 0 I

Reflecting Boundary
F1a. 4.10. A triangulated grid.

In two space dimensions this interpolant is constructed using a triangulated grid
based on the dual lattice, the front, and the crossing list described above. Figure 4.10
shows an example of such a triangulated grid for the early stages of an RT calculation.
The grid consists of two parts: rectangles joining four adjacent computational cell
centers that are disjoint from the front and local triangulations of dual lattice cells
crossed by the front. Each triangulation is constrained so that no triangle is formed
using an edge that crosses the front. It is beyond the scope of this article to describe
the triangulation algorithm in detail, but briefly it consists of identifying polygonal
sections within a dual lattice cell corresponding to a connected region bounded by
either front lines or the cell boundary. These subregions are then triangulated using

226 JAMES GLIMM, JOHN W. GROVE, AND YONGMIN ZHANG

a divide and conquer type method that seeks to split the polygon by a line segment
from the vertex with largest interior angle to another vertex that is visible to the given
vertex from within the polygon. Note that no assumption regarding the convexity of
this polygon can be made.

Once the triangulated grid has been constructed, the interpolant is defined by
linear interpolation on triangles and bilinear interpolation on the rectangles.

The complexity of constructing constrained tetrahedrazations has led to a choice
of a different interpolation algorithm in three space dimensions. Here we do not con-
struct the tetrahedra in advance but instead construct elements on the fly that contain
the interpolation location. As in the two dimensional case we first construct a list
of dual lattice cells that do not overlap the front, upon which trilinear interpolation
will be used exactly as before. However, for the front intersecting cells we instead
simply record the point locations (cell corners, front points, and interface dual lattice
crossings) together with the component numbers associated with those points. Note
that the component numbers are bivalued at front points and interface lattice cross-
ings. The interpolation algorithm then proceeds as follows. When a location with
a specified component is found to lie within a specified dual lattice cell, the list of
points within the closure of that cell that have the specified component is processed
to find an optimal set of four points that contain the desired location in their convex
hull (i.e., the tetrahedron formed using the four points as vertices). The optimiza-
tion is based on the distances of the vertices from the interpolation location so that
tetrahedra formed by points closer to the interpolation location are selected prefer-
entially over those formed by more distant points. Linear interpolation is then used
on the optimal tetrahedron to compute the state value at the desired location. Since
the component numbers of the four points in the interpolation tetrahedron agree, the
interpolation uses only data from the appropriate side of the interface. In the event
that no tetrahedra are found that both contain the interpolation location and satisfy
the component constraint we project the interpolation location onto the nearest front
location with the required component and use linear interpolation along the front
element containing the projected position.

4.3. Finite difference update. The final phase of the time step update consists
of computing the time updated states on the spatial grid. In the current implementa-
tion this spatial grid is simply a rectangular lattice, and the finite difference scheme
uses directional splitting into one dimensional sweeps in the coordinate directions.
Strang splitting [48, 49] is used to provide higher order accuracy. By this we simply
mean that the order of the one dimensional sweeps is alternated on each time step to
cover all possible permutations of the sweep directions.

Several different shock capturing methods are currently implemented in FronTier
that can be used for the one directional sweeps. These include the Lax—Wendroff
method [38, 45], the Colella piecewise linear method [10], and a second order monotone
upwind scheme for conservation laws (MUSCL) scheme developed by I-L. Chern. The
details for this MUSCL scheme are unpublished, but it is basically similar to those
described for the piecewise parabolic method [11] except that it is simplified to use
a linear reconstruction. A variety of Riemann solvers are provided for use with the
upwind schemes. These include exact Riemann solvers using either a fixed point type
iteration as described in [9] or a secant type iteration to compute the intersection of
the wave curves. Several approximate Riemann solvers are also provided such as the
BCT solver [1], the Dukowicz solver [14], and a simple linearized solver. All Riemann
solvers are implemented to use a general equation of state. The code structure in

INTERFACE TRACKING FOR AXISYMMETRIC FLOWS 227

FronTier makes it relatively easy to incorporate additional finite difference operators
or Riemann solvers.

For reasons of efficiency the finite difference update on the spatial lattice is di-
vided into two parts. In the first pass, which we call the regular sweep, all interface
information is ignored, and the cells are updated using shock capturing on the rect-
angular lattice. A second pass is then used to recompute the state values for those
cells whose domain of dependence overlaps the interface. Figure 4.11(a) shows an
illustrative example of the division of a two dimension computation into cells whose
domains of dependence are disjoint from the front (regular cells) and those whose
domains of dependence intersects the front (irregular cells). The determination of
the irregular cells uses the interface crossing list described in the previous section. A
cell is irregular if at least one of the line segments connecting two adjacent points
in its domain of dependence stencil contains an interface crossing. For example, in
the illustration of Figure 4.11(a) we assume a three point directionally split explicit
solver. This means that the domain of dependence of a cell is the nine point lattice
formed by that cell and its neighbors. Using the crossing list we check whether there
are interface crossings on any of the line segments joining a pair of cell centers in
this sublattice. If no crossings are found, then the updated value for the state at the
cell center as determined by the first pass sweep is correct. Otherwise we proceed to
construct an alternative finite difference stencil that uses only state information from
the same side of the interface as the position of the cell center being updated with
respect to the propagated interface.

@ Do o deperidenice depoan G ront il (i}
@ Lommeim of depemikricd indorsecs T |-~ All® wmE§ & & [+ Ajflea @ - .
= 5 B B B B B B B @ St o
1 1 1 |] | 1 1 1 | Cigne
| LN ... " L * % | ® B
- S n ¥ M ! .
1 I ""\.] 1 { 1w x| & o 1
. @ * * | ® y, Pemp
. - . - o . 4I
. » e |0 | nnage dair [iv]
- e _.-,.--" |~All® & gEs &1 Al|e & LR
-y L I TR T e 2 b i
g | A | Atake o Saae o)
LA R curie cure
* B ® ® ® ® ® #
L L] L] ® & & & & & &
L} L] L] L] E B B & & &

Fi1G. 4.11. Update of cells with irregular stencils. (a) shows the division of cells into regular and
irregqular cells depending on whether their domain of dependence intersects the front. (b) illustrates
the setting of the pseudostencil states by copying nearby front states. The dotted line in (b) shows
the space time propagation of the front point near the cell being updated.

The algorithm we use to construct the modified stencil is based on a simple ex-
trapolate by constant state algorithm [25]. At each irregular cell we construct a pseu-
dostencil state structure that contains the information needed to update that single
location. Initially, this structure contains copies of the state data from the cell centers
making up the particular cell’s domain of dependence. We then proceed to replace any
state information in this pseudostencil that would correspond to differencing across a
front. This is illustrated for one space dimension in Figure 4.11(b). If the front enters

228 JAMES GLIMM, JOHN W. GROVE, AND YONGMIN ZHANG

the stencil during the time step but does not cross the cell center being updated, as
shown in Figure 4.11(b) (i), then that point is treated as regular. Figure 4.11(b)(ii)
shows another case where a front separates the location being updated from the its
adjacent cell’s center. We copy the state from the grid crossing along this segment
that is nearest the point being updated onto the pseudostencil cells that lie on the
other side of the front along this line. Figure 4.11(b)(iii) illustrates another case in
which the cell center being updated is itself crossed by the front. In this case we search
for the nearest crossing whose component agrees with the time updated component
of that cell (note that at this point we have available both crossing lists from time ¢
and ¢+ At) and copy the corresponding crossing state onto the appropriate locations.
In multiple dimensions we construct cells on the axes through the stencil center first
and then proceed outward from the axes already computed. In three dimensions we
can alternate the order of the spreading onto the remain coordinates to average out
any directional bias this algorithm might induce.

Once a properly constructed pseudostencil is generated, it is passed off to the same
finite difference or shock capturing solvers as used in regular sweep to recompute the
cell state.

Although conceptually simple, this two pass process and the extrapolation by
constant state method has proven to be quite effective as we will see from the quality
of the solutions discussed in the next section. This algorithm shares some features in
common with, but is older than, the ghost cell extrapolation method of Fedkiw et al.
[15]; in our case we extrapolate the entire state rather than selected fields.

The final operation in the time step algorithm is the communication of the time
updated spatial grid states to the adjacent subdomains. This is done in a similar way
to the communication of the interfaces. We extract strips of states from the boundaries
of each subdomain and transmit that information to the adjacent subdomain which
then uses this data to fill in its ghost cells.

5. Validation. The evolution of RT instability has been the focus of investiga-
tions for many years due to its wide range of applications and the scientific interest in
the complex fluid flows it produces. RT instability occurs at a fluid interface whenever
the density gradient is opposed to the acceleration gradient across the interface. The
instability is manifested as a fingering behavior at the interface. Relatively broad
fingers of the lighter fluid, called bubbles, penetrate into the heavier fluid, while nar-
rower spikes of the heavier fluid are injected into the lighter. This instability appears
in many interesting physical situations. Incompressible examples include salt domes
that rise on geologic time scales. Thunder cloud systems often display the charac-
teristics of incompressible RT instability when colder and hence heavier air becomes
suspended above warmer lighter air. Compressible flow examples of RT instability
include the laser implosion of deuterium-tritium fusion targets, electromagnetic im-
plosion of metal liners, and the overturn of the outer portion of the collapsed core
of massive stars. For a review article giving examples and phenomenology of the
RT instability, see Sharp [47]. In the discussion below we study axisymmetric RT
instability in a cylindrical tube.

When a heavier fluid is suspended above a light fluid in the presence of a grav-
itational field the fluid is in a state of unstable equilibrium. If the fluid is slightly
disturbed the two fluids interpenetrate to form bubbles of rising light fluid and spikes
of falling heavy fluid. The bubbles and spikes each move toward the opposite fluid
with accelerating speed. For the single mode disturbance considered here, this accel-
eration decreases with time towards zero due to a balance that is established between

INTERFACE TRACKING FOR AXISYMMETRIC FLOWS 229

buoyancy and form drag forces. This balance leads to a constant terminal velocity.
Our goal is the conduct numerical simulations of RT instability that approach this
terminal velocity regime.

We assume the fluid is rotationally symmetric about the z axis. For the simu-
lations discussed here we used a domain rg < r < ry and zg < z < 27 with ro = 0,
r1 = 0.5, zg = 0, and z; = 3. The interface perturbation was given by

_ r—To
zZ=2Z2Z—apcos |T .
™ —To

Where z = 1.5 and a¢ = 0.015, this perturbation has a wave length A = 1. Gravity
is given by g = ge,, where ¢ = —0.14 and e, is the unit vector in the positive z
direction. We assume both fluids are perfect gases with v = 1.4. The sound speed
c is then given by ¢? = vP/p. The strength of the body source is measured by the
compressibility

_ lglA
i’

M2

where 0,21 is the sound speed of the heavier fluid. Note that for an incompressible fluid
¢y = oo and M? = (. The initial density gradient across the interface is measured by
the Atwood number

A:u,
Pht P

where p; and p;, are the densities of the light and heavy fluids, respectively. All of
the simulations used an ambient pressure of 5 at the interface with an isothermal
stratification

1P| _
p dz T—g

in density and pressure away from the interface.

The boundary conditions on the sides of the computational domain are reflect-
ing; thus we are simulating RT instability in a closed right circular cylinder. The
calculations used the Lax—Wendroff method for the interior solver. Each simulation
was performed three times using each of the methods described above for integrat-
ing the normal point propagate characteristic equations. For the low compressbility
runs shown here there was no appreciable difference in the values of the interfacial
growth rate or amplitude due to the characteristic integration method. The simula-
tions shown in the figures below all used the RIEMANN option. Figure 5.1 shows the
evolution of the contact fluid interface at times ¢ = 0,3,6,9. The grid and physical
parameters are Ar = 1/480, A = 1/3, M? = 0.04. The time step At was chosen so
that the CFL condition was satisfied with CFL factor 0.75. The simulations were run
on a 128-node parallel computer. The CPU time was about 160 hours for the runs
on the finest grid Ar = 1/480. At ¢ = 6, we begin to observe vortex formation and
roll up of the interface due to Kelvin—Helmholtz instability created by velocity shear
across the interface.

5.1. Mesh refinement. Figure 5.2 shows graphs of both the bubble velocity
and interface amplitude for a sequence of mesh sizes dr = 1/60,1/120,1/240,1/480
for the same parameter regime described above. We see that the difference between

230 JAMES GLIMM, JOHN W. GROVE, AND YONGMIN ZHANG

F1G. 5.1. Front evolution for an RT simulation of an azisymmetric flow with heavy fluid on top
of light fluid and gravity pointing down. The computational domain is 0 < r < 0.5 and 0 < z < 3.
The grid size used in the computation is Ar = Az = 1/480. The Atwood ratio of the initial data is
A =1/3, and the initial compressibility is M? = 0.04.

BubbleVelacity Amplitude
0.10 - - - - 0.6

0.08 05

0.4
0.06
0.3
0.04
0.2

0.02 01

0.00 0 2 4 6 8 10 0.0 0 2 4 6 8 10

(a) Time (b) Time

Fic. 5.2. A convergence test for the simulation of RT instability under mesh refinement:
Ar = Az =1/60,1/120,1/240,1/480. Here A =1/3. Left: bubble velocity. Right: amplitude.

the successive graphs is reduced by half as we move to the next finer grid level in both
bubble velocity and amplitude. This is as expected since the code is second order in
the interior and first order at the front; hence the motion of the interface is first order
accurate. Also we notice that the amplitude is smoother than bubble velocity.

5.2. Convergence to the plane perturbation case. As is immediately ap-
parent from the form of the system (4.1) the asymptotic behavior of an axisymmetric
flow should approach that of a two dimensional slab-symmetric flow as the minimum
radius of the domain approaches infinity. We can validate the axisymmetry imple-
mentation of our code by comparing the asymptotic limit rg — oo with the slab-
symmetric plane perturbation case. For this comparison we used physical parameters
A =1/3 and M? = 0.04 with a perturbation wave length of one and a minimum ra-
dius 9 = 1000. Both the axisymmetric and slab-symmetric calculations used a square

INTERFACE TRACKING FOR AXISYMMETRIC FLOWS 231

Bubble Veocity
0.06

2D reétanghlar é]eométry ‘
- o

5
/
/

0.05F

0.04f / asymptotic cylindrical |
/ geometry

0.03 / .
002t / :

0.01F,~ 1

0.00 L L L L L L L
0 2 4 6 8 10 12 14 16

Time

Fic. 5.3. Comparison of bubble velocities between the asymptotic case ro — oo and the purely
two dimensional planar case. The velocity plots for curved geometry with ro = 1000 and the one for
planar two dimensional geometry are almost identical.

mesh with Az = Ay = Ar = Az = 1/240. The graphs in Figure 5.3 show bubble
velocities computed for both simulations; the results are nearly indistinguishable.

5.3. The case r9 — 0. The geometric singularity at » = 0 for axisymmetric
flows is problematic for numerical codes. Since the three dimensional form of the code
has no such singularity this would suggest that the geometric source terms should have
removable singularities at = 0. However, this statement disregards the fact that the
axisymmetric formulation forces the flow to remain axisymmetric at the origin, while a
three dimensional flow could break axisymmetry. In any case the absolute prohibition
on dividing by zero in a numerical code means that the indeterminate form in the
geometry source terms must be addressed numerically. One of the easiest ways that
people have used to remove the singularity is to simply use a computational domain
bounded away from r = 0. Thus they compute on a domain with ry > 0 that is
sufficiently small so that its value does not appreciably affect the dynamics of the
flow but is still large enough so that no numerical difficulties are cased by dividing
by r9. Typical values for ry are usually on the order of half a mesh block in the
r direction or less. Another option is to explicitly enforce the requirement that the
geometric source terms have removable singularities at » = 0 and that in fact the
radial component of velocity should vanish faster than r as r — 0. Indeed, one
assumes vy /7 — 0 as r — 0. Thus for small r one simply ignores the geometric terms
in the finite difference equations, typically for values of r that are on the order of
the machine precision. This approach is implemented in FronTier, and we can test its
validity by comparing computations with rog = 0 and relatively small but positive rg.

We conducted a numerical experiment for different values of Ar and ro/Ar. The
corresponding bubble terminal velocities are listed in Table 5.1.

The bubble velocities for rg = 0, 0.5Ar, 1.5Ar, 3Ar, 6Ar, 12Ar, 24Ar, oo with
fixed Ar = 1/480 are plotted in Figure 5.4(a). From Figure 5.4(a) and Table 5.1, we
see that the terminal velocity converges as rg — 0 for the fixed mesh size Ar = 1/480.
From Table 5.1 we also see that for fixed Ar the terminal velocity increases as rg
gets smaller. Larger ry means less curvature, so the bubble evolution occurs in a
planar geometry as ro — oo. The bubble is almost fully three dimensional circular

232 JAMES GLIMM, JOHN W. GROVE, AND YONGMIN ZHANG

TABLE 5.1
Bubble terminal velocities for various mesh sizes and values of rg.

H “ ro =20 [ro = 0.5Ar [ro = 3Ar [ro = 6Ar [ro = 12Ar [ro — 00]

Ar=1/60 0.07 0.07 0.07 0.07 0.066 0.05
Ar=1/120 || 0.078 0.078 0.078 0.077 0.073 0.052
Ar=1/240 || 0.081 0.081 0.081 0.08 0.076 0.055
Ar=1/480 || 0.081 0.081 0.081 0.08 0.078 0.055
Bubble Velodiy Bubble Velociy
i T T] T @12
o UG o
h '.__-l\—_ S
i s 13dr il
: Zdilr]
LG .-"'"_'-:_.-':‘E"J"“'—h--.-..
; - it}
[1L &~ A= 1o
& Q0
[1 1 o
.""'u 2] & P] ':m::- :r 4 & [

Fi1c. 5.4. (a) The convergence of the bubble velocity of RT instability for different ro at the grid
size Ar = 1/480. The computational domain is [ro,ro + 0.5] x [0,3], and A = 1/3, M? = 0.04. (b)
Comparison of the bubble velocities of RT instability for different Atwood numbers A =1/3,1/2,3/5
at the grid Ar = 1/480. The computational domain is [0.001,0.501] x [0, 3], and M? = 0.04.

for rg near zero. The three dimensional geometrical effect increases as rg decreases.
From Figure 5.4(a), we also observe that the rate of approach to the terminal velocity
region becomes faster as ry gets smaller. Finally, the bubble terminal velocities vary
modestly with grid size Ar for rg fixed.

We also investigated the effect of the Atwood number on the bubble velocity.
For the value ro = 0 and Ar = 1/480 we conducted simulations with A = 1/3
M? =0.04, A=1/2 M? = 0.04, and A = 3/5 M? = 0.04. The bubble velocity plots
are shown in Figure 5.4(b). We see that the bubble terminal velocity and the rate
of approach to terminal velocity increases with A. We also observe some oscillation
in the terminal velocity region about the limiting value. This effect was previously
observed by Lin [43].

5.4. Comparison to experiment and theory. An experimental and theoret-
ical investigation for a single axisymmetric air bubble rising in water or nitrobenzene
in a constant cross section cylindrical tube was considered by Davies and Taylor [12].
Assuming incompressible irrotational flow and an Atwood number of one, they de-
rived an approximate theory that yielded a steady state velocity for the vertex of the
bubble as

(5.1) Ve =~ C+/gR,

INTERFACE TRACKING FOR AXISYMMETRIC FLOWS 233

TABLE 5.2
Bubble terminal velocities as a function of Atwood number.

LA g [RIM]| Vg [C [CalC)]
1/3 [0.14 | 1/2 | 0.04 | 0.081 | 0.30 | 0.53 | 0.43
1/2 [0.14 | 1/2 | 0.04 | 0.090 | 0.48 | 0.5 | 0.42
3/5 | 0.14 | 1/2 | 0.04 | 0.095 | 0.36 | 0.46 | 0.41

where R is the radius of the tube and g is the acceleration of the gravity. They
calculated C' = 0.464, and their experiments yielded values of C' from 0.466 to 0.490.

Subsequently, Layzer [39] considered this same problem. His theory yielded a
value of C' = 0.511. The difference between the Davies—Taylor theory and Layzer’s is
that the former required that Bernoulli’s equation be satisfied on the bubble surface
at two distinct points (r = 0 and r = R/2), while Layzer required that Bernoulli’s
equation be satisfied in a first order neighborhood of the bubble vertex.

While both Davies—Taylor’s formula and Layzer’s model assume irrotational in-
compressible fluid and Atwood number one, they have nevertheless served as useful
guides for gaining understanding for more general flows. A generalization of formula
(5.1) to Atwood numbers less than one has been proposed by adding an A depen-
dence to C so that C' = C4\/A with C4 approximately independent of A. Birkoff [5]
2.

Table 5.2 shows a comparison of our numerical simulations with the above three
formulas. We see that our numerical coefficients lie approximately within the range
reported by Davies—Taylor experimental values and that the value of C’, is approxi-
mately constant in agreement with Birkoff’s formula.

The case of two dimensional bubbles is also of interest. This corresponds to a
slab-symmetric bubble rising between two parallel walls. Layzer’s potential model
also applies in this case, and he predicted that formula (5.1) holds for the bubble
terminal velocity for two dimensional incompressible flow with Atwood number one
if one replaces R by half the perturbation wave length. He obtained Cop ~ 0.326.
Birkhoff and Carter [7] estimated Cyp in the range 0.31-0.35. Some experimental
evidence is given by the photographic observations of Duff as reported in [6]. His
measured value of Cop = 0.41 was about 25% greater than the value given by Birkhoff
and Carter [7]. Birkhoff and Carter [7] pointed out that this discrepancy might have
been largely a side-wall effect. Using a difference-differential equation derived from
the free-boundary condition, Garabedian [16] established a lower bound

proposed a further refinement C' = C’,

(5.2) Cop > 0.334.

Our computed value of CJ4™ for the case R = 1/2, A =1/3, g = 0.14, M? = 0.04
is 0.36 as can be calculated from Table 5.1 for the case rg — oo. This value is about
8% higher than Garabedian’s lower bound and slightly above the upper limit of the
Birkoff and Carter range. Studies in two dimensions [54] indicate that Cyp increases
with compressibility, so our result for low compressibility flows is generally consistent
with the incompressible theory.

6. Conclusions. Interface tracking is a method for the resolution of wave fronts
in a flow. Here we have provided a general description of the main code modules used
in constructing the front tracking code FronTier. Specifics, such as the handling of
wave interactions or the front motion calculation, may differ between implementations.
Other approaches to interface tracking such as level sets and volume of fluids have

234 JAMES GLIMM, JOHN W. GROVE, AND YONGMIN ZHANG

also been proposed and share some of the features required by our code, namely some
ability to either reconstruct or evaluate local geometry and modified shock capturing
methods to account for fronts. Both approaches are compatible with the current code
structure in FronTier, and hybrid approaches combining features of all three methods
are currently being investigated.

In our implementation we have tried to adopt a modular approach to the code
structure, carefully separating geometric modules from physics dependencies. This
has made it possible to create libraries that can be applied across a range of physical
systems including compressible gas dynamics, flow in porous media, and rate depen-
dent elastoplasticity. Current research is also progressing on the incorporation of new
physical models such as homogenized models for multiphase mixing.

Our axisymmetric algorithms were validated by comparing the computed RT
bubble velocity to experimental and theoretical predictions in both two dimensional
and three dimensional axisymmetric cases, and we found good agreement between
these values and those computed by FronTier.

REFERENCES

[1] J. BELL, P. COLELLA, AND J. TRANGENSTEIN, Higher order Godunov methods for general
systems of hyperbolic conservation laws, J. Comput. Phys., 82 (1989), pp. 362-397.

D. J. BENSON, An efficient, accurate, simple ALE method for nonlinear finite element pro-
grams, Comput. Methods Appl. Mech. Engrg., 72 (1989), pp. 305-350.

D. J. BENsoON, Computational methods in Lagrangian and Eulerian hydrocodes, Comput. Meth-
ods Appl. Mech. Engrg., 99 (1992), pp. 235-394.

D. J. BENSON, Momentum advection on a staggered mesh, J. Comput. Phys., 100 (1992),
pp. 143-162.

[5] G. BIRKHOFF, Helmholtz and taylor instability, in Proceedings of Symposia in Applied Mathe-
matics, AMS, Providence, RI, 1962, pp. 55-76.

G. BIRKHOFF, Taylor Instability. Appendices to Report LA-1862, Tech. Rep. Appendix D of
LA-1927, Los Alamos National Laboratory, Los Alamos, NM, 1955.
G. BIRKHOFF AND D. CARTER, Rising plane bubbles, J. Math. Mech., 6 (1957), pp. 769-779.

[8] I.-L. CHERN, J. GLiMM, O. MCBRYAN, B. PLOHR, AND S. YANIV, Front tracking for gas dy-

namics, J. Comput. Phys., 62 (1986), pp. 83-110.
[9] A. CHORIN, Random choice solutions of hyperbolic systems, J. Comput. Phys., 22 (1976),
pp. 517-533.
[10] P. CoLELLA, A direct Eulerian MUSCL scheme for gas dynamics, STAM J. Sci. Statist. Com-
put., 6 (1985), pp. 104-117.

[11] P. CoLELLA AND P. WOODWARD, The piecewise parabolic method (PPM) for gas-dynamical
simulation, J. Comput. Phys., 54 (1984), pp. 174-201.

. M. DaviEs AND G. I. TAYLOR, The mechanics of large bubbles rising through extended liquids
and through liquids in tubes, Proc. Roy. Soc. London, Ser. A, 200 (1950), pp. 375-390.

. DONEA, S. GIULIANI, AND J. P. HALLEUX, An arbitrary Lagrangian-Eulerian finite element
method for transient dynamic fluid-structure interactions, Comput. Methods Appl. Mech.
Engrg., 33 (1982), pp. 689-723.

. K. Dukowicz, A general, non-iterative Riemann solver for Godunov’s method, J. Comput.
Phys., 61 (1985), pp. 119-137.

(15] R. P. FEDKIW, T. AsLaM, B. MERRIMAN, AND S. OSHER, A non-oscillatory Eulerian approach
to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152 (1999),
pp. 457-492.

. GARABEDIAN, On steady-state bubbles generated by Taylor instability, Proc. Roy. Soc. Lon-
don Ser. A, 241 (1957), pp. 423-431.

[17] C. L. GARDNER, J. GLIMM, O. McBRyYAN, R. MENIKOFF, D. SHARP, AND Q. ZHANG, The
dynamics of bubble growth for Rayleigh- Taylor unstable interfaces, Phys. Fluids, 31 (1988),
pp. 447-465.

. GLimM, J. GROVE, X. L. L1, W. OH, AND D. H. SHARP, A critical analysis of Rayleigh-Taylor
growth rates, J. Comput. Phys., 169 (2001), pp. 652-677.

. GruimMm, J. W. GrovE, X. L. L1, AND D. C. TAN, Robust computational algorithms for dy-

&
w

—
=)
(-

[14]

o

-

[16]

=
0,
o

=
=}
[

P.

D.

R

X

X

A

INTERFACE TRACKING FOR AXISYMMETRIC FLOWS 235

namic interface tracking in three dimensions, SIAM J. Sci. Comput., 21 (2000), pp. 2240—
2256.

. GuimM, J. GROVE, X.-L. L1, AND N. ZHAO, Simple Front Tracking, Contemp. Math. 238,

G.-Q. Chen and E. DiBebedetto, eds., AMS, Providence, RI, 1999, pp. 133-149.

. GLimM, J. GROVE, B. LinDQuIsT, O. A. MCBRYAN, AND G. TRYGGVASON, The bifurcation

of tracked scalar waves, STAM J. Sci. Statist. Comput., 9 (1988), pp. 61-79.

. GLiMM, J. W. GROVE, X. L. L1, K.-M. SHYUE, Y. ZENG, AND Q. ZHANG, Three-dimensional

front tracking, SIAM J. Sci. Comput., 19 (1988), pp. 703-727.

. GLimM, E. IsaacsoN, D. MARCHESIN, AND O. MCBRYAN, Front tracking for hyperbolic

systems, Adv. Appl. Math., 2 (1981), pp. 91-119.

. GLimM, X.-L. L1, R. MENIKOFF, D. H. SHARP, AND Q. ZHANG, A numerical study of bubble

interactions in Rayleigh- Taylor instability for compressible fluids, Phys. Fluids A, 2 (1990),
pp- 2046-2054.

. GLIMM, D. MARCHESIN, AND O. MCBRYAN, Subgrid resolution of fluid discontinuities 11, J.

Comput. Phys., 37 (1980), pp. 336-354.

. GLIMM AND O. MCBRYAN, A computational model for interfaces, Adv. Appl. Math., 6 (1985),

pp. 422-435.

. GLIMM AND X.-L1, On the validation of the Sharp- Wheeler bubble merger model from exper-

imental and computational data, Phys. Fluids, 31 (1988), pp. 2077-2085.
. GODLEWSKI AND P. A. RAVIART, Numerical Approximation of Hyperbolic Systems of Con-
servation Laws, Springer-Verlag, New York, 1991.

. GROVE, Anomalous waves in shock wave — fluid interface collisions, in Current Progress

in Hyperbolic Systems: Riemann Problems and Computations, Contemp. Math. 100,
B. Lindquist, ed., AMS, Providence, RI, 1989, pp. 77-90.

. GROVE, The interaction of shock waves with fluid interfaces, Adv. Appl. Math., 10 (1989),

pp. 201-227.

. GROVE, FronTier: A Compressible Hydrodynamics Front Tracking Code; A Short Course

in Front Tracking, LANL Report LA-UR 99-3985, Los Alamos National Laboratory, Los
Alamos, NM, 1999.

. GROVE, R. HoLMES, D. H. SHARP, Y. YANG, AND Q. ZHANG, Quantitative theory of

Richtmyer-Meshkov instability, Phys. Rev. Lett., 71 (1993), pp. 3473-3476.

. GROVE AND R. MENIKOFF, The anomalous reflection of a shock wave at a material interface,

J. Fluid Mech., 219 (1990), pp. 313-336.

. W. GROVE, Applications of front tracking to the simulation of shock refractions and unstable

mizing, J. Appl. Numer. Math., 14 (1994), pp. 213-237.
. W. HirT, A. A. AMSDEN, AND J. L. COOK, An arbitrary Lagrangian-FEulerian computing
method for all flow speeds, J. Comput. Phys., 14 (1974), pp. 227-253. Reprinted in 135
(1997), pp. 203-216.
. L. HoLMES, B. FRYXELL, M. GITTINGS, J. W. GROVE, G. DIMONTE, M. SCHNEIDER, D. H.
SHARP, A. VELIKOVICH, R. P. WEAVER, AND Q. ZHANG, Richtmyer-Meshkov instability
growth: Ezxperiment, simulation, and theory, J. Fluid Mech., 389 (1999), pp. 55-79.
. L. HoLMEs, J. W. GROVE, AND D. H. SHARP, Numerical investigation of Richtmyer-Meshkov
instability using front tracking, J. Fluid Mech., 301 (1995), pp. 51-64.

Lax AND B. WENDROFF, Systems of conservation laws, Comm. Pure Appl. Math., 13 (1960),
pp. 217-237.

LAYZER, On the instability of superimposed fluids in a gravitational field, Astrophys. J., 122
(1955), pp. 1-12.

. LEVEQUE, Numerical Methods for Conservation Laws, Birkhduser-Verlag, Basel, Boston,
Berlin, 1992.

~L. L1, A numerical study of 3-D bubble merger in the Rayleigh-Taylor instability, Phys.
Fluids, 8 (1996), pp. 322-335.

-L. L1, B. X. JiN, AND J. GLIMM, Numerical study for the three dimensional Rayleigh-Taylor
instability using the TVD/AC scheme and parallel computation, J. Comput. Phys., 126
(1996), pp. 343-355.

. LN, Nonuniform Approach to Terminal Velocity for Single Mode Rayleigh-Taylor Insta-
bility, Ph.D. thesis, Dept. of Applied Math., SUNY at Stony Brook, Stony Brook, NY,
2000.

. G. MARGOLIN, Introduction to “an arbitrary Lagrangian-Eulerian computing method for all

flow speeds,” J. Comput. Phys., 135 (1997), pp. 198-202.

RICHTMYER AND K. MORTON, Difference Methods for Initial Value Problems, 2nd ed.,

Interscience, New York, 1967.

. A. SETHIAN, Level Set Methods, Cambridge University Press, Cambridge, UK, 1996.

=

O L H < W@

JAMES GLIMM, JOHN W. GROVE, AND YONGMIN ZHANG

. H. SHARP, An overview of Rayleigh-Taylor instability, Phys. D, 12 (1984), pp. 3-18.

. STRANG, Accurate partial difference methods 1I: Nonlinear problems, Numer. Math., 6
(1964), pp. 37-46.

. STRANG, On the construction and comparison of difference schemes, SIAM J. Numer. Anal.,
5 (1968), pp. 506-517.

. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag,

Berlin, Heidelberg, 1997.

. VAN LEER, Towards the ultimate conservative difference scheme: V. A second order sequel

to Godunov’s method, J. Comput. Phys., 32 (1979), pp. 101-136.

. YANG, Q. ZHANG, AND D. H. SHARP, Small amplitude theory of Richtmyer-Meshkov insta-
bility, Phys. Fluids, 6 (1994), pp. 1856-1873.

. ZHANG, Validation of the chaotic mizing renormalization group fixed point, Phys. Lett. A,
151 (1990), pp. 18-22.

. ZHANG, The motion of single bubble or spike in Rayleigh-Taylor unstable interfaces, Impact
Comput. Sci. Engrg., 3 (1991), pp. 277-304.

. ZHANG AND M. J. GRAHAM, A numerical study of Richtmyer-Meshkov instability driven by
cylindrical shocks, Phys. Fluids, 10 (1998), pp. 974-992.

