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Abstract

A model nanometer-sized hydrophobic receptor-ligand system in aqueous solution is studied

by the recently developed level-set variational implicit solvent model (VISM). This approach is

compared to all-atom computer simulations. The simulations reveal complex hydration effects

within the (concave) receptor pocket, sensitive to the distance of the (convex) approaching lig-

and. The ligand induces and controls an intermittent switching between dry and wet states of

the hosting pocket which determines the range and magnitude of the pocket-ligand attraction.

In the level-set VISM, a geometric free-energy functional of all possible solute-solvent interfaces

coupled to the local dispersion potential is minimized numerically. This approach captures the

distinct metastable states which correspond to topologically different solute-solvent interfaces,

and thereby reproduces the bimodal hydration behavior observed in the all-atom simulation.

Geometrical singularities formed during the interface relaxation are found to contribute signifi-

cantly to the energy barrier between different metastable states. While the hydration phenomena

can thus be explained by capillary effects, the explicit inclusion of dispersion and curvature cor-

rections seems to be essential for a quantitative description of hydrophobically confined systems

on nanoscales. This study may shed more light onto the tight connection between geometric

and energetic aspects of biomolecular hydration and may represent a valuable step towards the

proper interpretation of experimental receptor-ligand binding rates.
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§e-mail address: jdzubiel@ph.tum.de
¶e-mail address: bli@math.ucsd.edu
∗∗e-mail address: jmccammon@ucsd.edu

2



I. INTRODUCTION

Hydrophobic interactions drive apolar molecules to stick together in an aqueous solu-

tion [1–4]. Such interactions occur in many biological processes, ranging from the forma-

tion of large molecular complexes [4], and protein folding [5], to the conduction through

transmembrane channels [6], and recognition between drug compounds and their molec-

ular targets [7]. In particular, the solvent-mediated interaction between a ligand and a

hydrophobic receptor plays a key role in biomolecular assembly processes, such as protein-

ligand recognition [7–12], the binding of the human immunodeficiency virus (HIV) [13]

or the dengue virus [14] to human cells, the inhibition of influenza virus infectivity [15], or

in synthetic host-guest systems [16]. Experiments and explicit-water molecular dynamics

(MD) simulations suggest that the concave nature of the host geometry imposes a strong

hydrophobic constraint and can lead to very weakly hydrated pockets [2, 7–12, 17], prone

to nanoscale capillary evaporation triggered by an approaching ligand [7, 8, 18]. This

so-called dewetting transition has been also observed in other protein geometries, such as

hydrophobic protein cores and ion channels [2, 17]. It has been speculated that dewet-

ting may lead to a fast host-guest recognition accelerating the hydrophobic collapse and

binding rates of the ligand into its pocket [7, 8, 12]. But a deeper physical understanding

of these sensitive hydration effects in hydrophobic recognition seems to be still elusive.

A theoretical description of molecular hydration, and in particular hydrophobic effects,

can allow for fast and accurate prediction of free-energy changes, and hence the struc-

ture, dynamics and function of an underlying biological system. While MD computer

simulations with the use of explicit solvent provide a good insight into hydration effects,

they are computationally expensive, in particular, when it comes to obtaining thermody-

namic quantities. In contrast, implicit solvent models [19, 20] are generally more efficient,

though less accurate. In such models, water is treated as a continuum and its description

is reduced to that of a solute-solvent interface and related macroscopic quantities, such

as the surface tension and the position-dependent dielectric constant.

Nearly all of the existing implicit solvent models are based on the concept of solvent
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accessible surfaces (SAS), solvent excluded surfaces (SES), or molecular surfaces (MS) [19,

21–25]. In these models, the hydration free energy ∆G is usually calculated as the sum of

two components: nonpolar (∆Gnp) and polar (∆Gp). The nonpolar term is often assumed

to be proportional to a given surface area S, i.e., ∆Gnp ∼ γS, with γ being an effective

surface tension. In some approaches [26, 27], the nonpolar term is further decomposed into

a surface area dependent cavity component, representing a work necessary to create an

empty cavity within a solvent that would accommodate the solute, and a term describing

solute-solvent van der Waals interactions. Accounting for electrostatic interactions, the

polar term is usually approximated with the use of Poisson–Boltzmann (PB) [28–35] or

generalized Born (GB) [36–38] models. Although successful in many cases, these models

often lack generality, since they rely on many system-dependent, adjustable parameters

(e.g., individual atomic surface tensions). Furthermore, with an a priori defined solute

solvent interface, they can not account for drying effects whose eventual occurrence would

change both the surface area and interface position, hence affecting both nonpolar and

polar components of the free energy.

Recently, Dzubiella, Swanson, and McCammon [39, 40] developed a variational implicit

solvent model (VISM). The basic idea of this approach is to introduce a free-energy

functional of the solute-solvent interface geometry, coupling both the nonpolar and polar

contributions, as well as allowing for curvature correction of the surface tension in order

to approximate the length-scale dependence of molecular hydration [41]. Minimizing the

functional determines a stable equilibrium solute-solvent interface, providing at the same

time the hydration free energy of the system. This way, a solute-solvent interface is an

output of the theory, resulting automatically from balancing the different contributions

to the free energy. Cheng, Dzubiella, McCammon, and Li [42] first developed a level-set

method [43–45] for the robust numerical realization of the variational modeling and thus for

a versatile description of arbitrarily shaped solute-solvent interfaces. See also the related

work [46]. Importantly, level-set interface evolution easily captures topological changes,

e.g., surface fusions and breakups which are directly related to molecular binding and
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unbinding.

In this work we apply the level-set VISM to a generic receptor-ligand model that con-

sists of a hemispherical nanoscopic pocket embedded in a paraffin wall and a methane

molecule allowed to move in and out of the pocket. Previously reported, detailed MD

explicit solvent simulations [18, 47, 48] revealed strong hydrophobic interactions between

the solutes, augmented by the occurrence of drying inside the pockets. A proper descrip-

tion of hydrophobic effects in the considered system is challenging for an implicit solvent

model due to the simultaneous presence of solutes involving three different hydration

regimes, representative for small, large, and concave objects (methane molecule, flat wall,

and concave pockets respectively).

Our extensive numerical results show good agreement with the reported MD calcula-

tions. In particular, level-set VISM has been able to (1) calculate efficiently and quanti-

tatively the free energy of the system; (2) locate the equilibrium solute-solvent interface

accurately compared with MD simulations extracted from water density profiles; and

(3) capture the bimodal hydration behavior of the system that is characterized by the

co-existence of two local minima of the free energy. All of our results indicate that the

variational solvation theory and the related level-set method have the potential to capture

hydrophobic interactions of relatively large systems even quantitatively. We believe this

is a promising start to understand such important interactions in the context of implicit

solvent.

The rest of the paper is organized as follows: In Section II, we introduce the generic

system under consideration and briefly review the variational implicit solvent model and

its numerical evaluation by the level-set method developed previously [39, 40, 42, 46]. In

Section III, we report simulation and numerical results of our level-set VISM calculations

of the model system and discuss and interpret the findings. Finally, in Section IV, we draw

conclusions and present an outlook to further necessary extensions of our approaches.
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II. SYSTEM AND METHODS

A. A Hydrophobic Receptor-Ligand System

We consider a simple model of a hydrophobic receptor-ligand system consisting of a

hemispherical nanoscopic pocket and a methane-like molecule, cf. FIG. 1. The solvent

distribution, and the potential of mean force (PMF) between the two solvated objects,

were previously examined in a series of MD simulations [18, 47, 48] with the use of the

TIP4P explicit solvent model.

FIG. 1: Schematic view of the pocket-ligand system, showing a methane molecule (Me) at

distance d from pocket of radius R (left). Snapshot from MD simulation of the R8 system

(right).

The pocket is embedded in a rectangular wall, composed of neutral particles aligned

in a hexagonal close packed (hcp) grid of 1.25Å lattice constant interacting with the

Lennard-Jones (LJ) potential. The LJ parameters of the wall particles, ǫ = 0.010 kJ/mol

and σ = 4.152 Å, are adjusted in such a way that the resultant material corresponds to

paraffin (for details see [48]). The wall surface is oriented in xy-plane, with a hemispherical

pocket of radius R centered at (0, 0, 0). We consider pockets of two different radii: R = 8 Å

(system R8) and R = 5 Å (system R5). The ligand, a single neutral LJ sphere representing

a methane molecule (with the use of united atom OPLS parameters ǫ = 0.4983 kJ/mol
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and σ = 3.730 Å) [49], is allowed to move perpendicular to the wall surface along the

pocket symmetry axis (the z-axis). Its position with respect to wall surface is denoted as

d (cf. FIG. 1).

B. MD Simulations

MD simulations are carried out with the use of CHARMM program. Temperature

and the pressure of the system corresponds to 298 K and 1 bar. Periodic boundary

conditions were applied in xy-direction with the use of particle mesh Ewald summation

for electrostatic interactions. A cutoff of 12 Å is used for van der Waals interactions. In

order to obtain potentials of mean force, an umbrella sampling with subsequent weighted

histogram analysis method is used. Methane positions along the z-axis, ranging from

d = 12 Å to the the pocket bottom (defined as the distance where methane-wall repulsion

reaches 1kBT , and being d = −3.8 Å and d = −1.8 Å in R8 and R5 systems, respectively)

are sampled in series of consecutive windows, evenly spaced by 0.5 Å. The simulation

time for each window is 2 ns. A more detailed description of the system setup and MD

simulations can be found in previous work [18].

C. Variational Implicit Solvent Models

We denote by Ω the region of the entire solvation system. It is divided into the solute

region Ωm (m means molecule), the solvent region Ωw (w means water), and the solute-

solvent interface Γ that separates the solute region Ωm from the solvent region Ωw, cf.

FIG. 2. The solute-solvent interface can possibly have many separated components. We

assume that there are N solute atoms in the system that are located at r1, . . . , rN inside

Ωm. In this continuum-solvent model, the solvent density distribution is simply ρ(r) = ρ0

in the solvent region Ωw, where ρ0 is the bulk density of the solvent, and ρ(r) = 0 in the

solute region Ωm. For our underlying receptor-ligand system, the region Ωm consists of

both the wall and methane molecular regions.
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FIG. 2: Geometry of a solute-solvent system. Solute atoms are at positions r1, . . . , rN in the

volume Ωm separated by the interface Γ from the solvent region Ωw. Here n denotes the unit

normal at the interface Γ.

In variational implicit solvent models (VISM), the solvation free energy G is defined

as a functional of a possible solute-solvent interface Γ (or the volume-exclusion function

of Ωm defined to be 0 in Ωm and 1 elsewhere) in the form [39]

G[Γ] = P Vol (Ωm) +

∫
Γ

dS γlv[1 − 2τH(r)] + ρ0

∫
Ωw

d3r U(r)

= GP + (GS + Gτ ) + GLJ. (1)

Here, P is the difference in bulk pressure between the liquid and vapor phase, Vol (Ωm)

the volume of Ωm, γlv the liquid-vapor interface tension, τ a coefficient for the curvature

correction of γlv in mean curvature H(r), and

U(r) =
N∑

i=1

U
(i)
LJ (r − ri) (2)

sums over the LJ interactions of all N solute atoms (ligand and wall atoms) with the

water, where U
(i)
LJ is the LJ potential corresponding to the i-th solute atom at ri. The

curvature correction term in (1),

Gτ = −2γlvτ

∫
Γ

dS H(r),

has been used in the scaled-particle theory [50–53] for spherical solutes only, in a gener-

alized theory of capillarity [54], and in the same mathematical form in the morphometric

approach which has been applied to fluids and the solvation of model proteins [55, 56].
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A necessary condition for an interface Γ to be an energy-minimizing solute-solvent

interface is that the first variation of the free-energy functional (1) with respect to the

location change of the interface vanishes at Γ, i.e., δΓG[Γ] = 0 at every point of the

boundary Γ. This leads to the partial differential equation (PDE) [39]

δΓG[Γ] = P + 2γlv [H(r) − τK(r)] − ρ0U(r) = 0, (3)

where K(r) in (2) is the local Gaussian curvature. This equation is a generalization of

the classical Laplace equation of capillarity [54, 57], extrapolated to microscales by the

local curvature and explicit consideration of local dispersion interactions.

The geometrical PDE (3) is in general extremely difficult to solve analytically and

numerically. To find the free-energy minimizing solute-solvent interface Γmin, we then

turn to numerical optimization using the level-set method that is described below.

For our level-set VISM calculations, we use a set of parameters matching or approx-

imating the MD conditions: P = 0 bar (the pressure difference can be safely neglected

on the considered scales), γlv = 59 mJ/m2 for TIP4P water [58], and ρ0 = 0.033 Å−3.

The value of the τ parameter, governing the magnitude of curvature correction term,

is usually estimated to be between 0.8 and 1.0 Å [59–61]. In our previous calculations

utilizing the VISM approach, we found that τ = 1.0 Å provided the best agreement with

hydration free energies of simple solutes [42]. For the current MD simulation settings,

however, hydration free energy of methane molecule was best reproduced for τ = 0.8 Å.

As, in principle, τ is the only freely adjustable parameter in our model, we decided to

consider both the mentioned values in subsequent calculations, thus obtaining the ability

to evaluate the influence of curvature correction term on the model performance.

D. The Level-Set Method for Free-Energy Minimization

We have developed a level-set method to numerically find the free-energy minimizing

solute-solvent interface for the functional (1) [42, 46]. In this method, we begin with an
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initial guess of the surface surrounding all the solute atoms, and then move the surface in

the direction of the steepest descent of the free-energy to relax the system to a minimum.

The starting point of the level-set method is to identify a surface Γ in three-dimensional

space as the zero level-set (i.e., the zero level surface) of a function φ = φ(r) [43–45]:

Γ = {r : φ(r) = 0}. The function φ = φ(r) is called a level-set function of the surface Γ.

The unit normal vector n at the interface Γ, the mean curvature H, and the Gaussian

curvature K can all be expressed in terms of the level-set function φ:

n =
∇φ

|∇φ|
, H =

1

2
∇ · n, K = n · adj (He(φ))n, (4)

where He(φ) is the 3×3 Hessian matrix of the function φ whose entries are all the second

order partial derivatives ∂2
ijφ of the level-set function φ, and adj (He(φ)) is the adjoint

matrix of the Hessian He(φ). The level-set function is determined by the so-called level-set

equation,

∂tφ + vn|∇φ| = 0, (5)

where vn is the normal velocity at the point r on the surface Γ(t). This normal velocity

vn = vn(r(t)) of each point r = r(t) on the surface Γ = Γ(t) at time t is defined by

vn = vn(r(t)) =
dr(t)

dt
· n.

The velocity is usually extended away from the surface so that the level-set equation (5)

can be solved in a finite computational box.

To apply the level-set method to VISM, we begin with an initial surface that contains

all the solute particles. We then evolve this initial surface to an equilibrium solute-solvent

interface by relaxing the total free energy of the system. As in common practice, we define

the normal velocity vn of level-set evolution to be the negative of the first variation of the

system free energy with respect to the location change of surface:

vn = −δΓG[Γ]

= −P − 2γlv [H(r) − τK(r)] + ρ0U(r). (6)
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This can be identified as a distribution over the interface Γ. Here, we choose the unit

normal n at Γ to point from the solute to the solvent region, cf. FIG. 2.

Our level-set algorithm consists mainly of the following steps: surface initialization;

calculation of the normal vector, mean and Gaussian curvatures using (4); computing the

normal velocity using (6); and solving the level-set equation (5). We choose our level-set

computational box to be of size 50 Å×50 Å×50 Å. We also choose our finite-difference grid

size to be 1 Å or 0.5 Å. We use central differencing to discretize the level-set equation using

a Courant–Friedrich–Lewy (CFL) condition [62] ∆t/(∆x)m ≤ Constant with m = 2 or 3.

The level-set equation with the normal velocity (6) is not always a parabolic equation.

We numerically change the value of τ to enforce the parabolicity when it is lost.

In addition to these details that can be found in our previous work [42, 46], we have

developed several new numerical techniques in this work. First, we precompute the values

of potential U(r) defined in (2) at all the grid points, and store such values for use in

each of the level-set iterations. Such precomputing allows us to efficiently treat large

biomolecules of any number of fixed solute atoms for equilibrium calculations. Second,

we have implemented a local level-set method for solving the level-set equation (5) within a

band of the interface. Finally, we have developed a semi-analytical technique of numerical

integration for calculating the free energy. To calculate numerically the free energy, we

need to evaluate integrals outside the computational box. Our method is to convert such a

three-dimensional integral into a repeated integral of one-dimensional integrals for which

some of them can be evaluated analytically. All these new techniques enable us to speed

up much of our calculations. For instance, for the underlying receptor-ligand system with

more than 4, 000 solute atoms, one level-set calculation only takes about 5–10 minutes on

a serial computing processor unit, depending on the resolution of the numerical grid and

initial guess of the interface.
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III. RESULTS AND DISCUSSION

A. MD Simulations Results

MD simulations reveal a nontrivial solvent behavior in the considered systems. It

can be attributed to changes in topography of hydrophobic confinement resulting from

ligand translocations. In order to quantify the observed effects, we consider a probability

distribution pN of finding exactly N water molecules inside the given pocket (a water

molecule is regarded as being “inside” when the center of its oxygen atom is located at

z < 0). This allows us to express the free energy of the system as a function of the pocket

occupancy:

G(N) = −kT ln pN + G′.

The resulting free-energy profiles, obtained for selected ligand positions in the R8 sys-

tem, are presented in FIG 3, along with representative examples of the water density

distribution around the solvated objects.

In the absence of the ligand (effectively for d & 9 Å), the R8 pocket triggers intermittent

expansions and retractions of the fluid-like phase in its area, characteristic for wetting-

drying transitions. Interestingly, those fluctuations cover a broad range of metastable

states with no apparent free-energy minimum between N = 0 (empty pocket) and bulk-

like density, which corresponds to N ≈ 11.

The pocket occupancy is significantly affected by the approaching ligand. For distances

4 < d < 9 Å, a slight stabilization of the wet state is observed, probably due to proximity

of methane hydration shell that provides relatively stable interactions for water molecules

inside the pocket, see the water density distribution in Fig. 3. Around d = 5.5 Å, there

forms a second shallow minimum in free-energy distribution, corresponding to a dry state.

As the ligand approaches further, the dry state minimum becomes gradually more stable,

turning to a global minimum for d < 4 Å. The now metastable wet state minimum vanishes

completely for d < 0 Å. At this point, the pocket region becomes dry, see the water density

distribution in Fig. 3, even though it could easily accommodate the methane hydration
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FIG. 3: Left side: free energy of the R8 system as a function of pocket occupancy G(N) for

different ligand distances d from the wall, where N is the number of water molecules inside the

pocket. The error bars are obtained by block averaging of pN distribution. Right side: scaled

water density (ρ) distribution for selected ligand positions (intersections of the system along the

z-axis). ρ = 1.0 equals bulk water density of 0.033 Å−3 .

shell: under normal conditions, the first maximum in the water radial distribution function

around the methane molecule is at 3.5 Å from its center, which would correspond to its

position at z ≃ −0.5 Å (for methane center at d = 0 Å), leaving more than 3 Å of water

accessible space above the pocket bottom. We can describe all this behavior also from

a more global view by looking at the average occupancy 〈Nw〉 vs. d. This quantity is

plotted in Fig. 4: it exhibits a maximum at d = 6.5 Å while it jumps down from wet

(〈Nw〉 ≃ 6) to dry (〈Nw〉 ≃ 0) at d ≃ dc with a stable dry state for d . dc.

The hydration behavior is much simpler in the small R5 system. The R5 pocket,
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FIG. 4: Average water occupancy 〈Nw〉 in the R8 pocket from MD simulations (squares) and

the level-set VISM approach (circles) estimated by the ensemble average (8).

which can accommodate a few water molecules, stays preferably dry through most of

the simulation time, with G(N) having a single minimum at N = 0, irrespective of

ligand position. This is consistent with experiments on the similarly sized ligand-binding

pocket of the bovine β-lactoglobuline protein, which has been found to be always empty

of water [11].

We note here that an intermittent switching behavior between dry and wet states

has been observed directly in other geometries such as plate-like [63] or channel-like

confinements [64–67]. The height of the energy (activation) barrier for nucleation of a

bubble governs the kinetics of the transition [68–70].
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B. Results of Level-Set Variational Implicit Solvent Calculations

1. Initial Solute-Solvent Interfaces

The solvent fluctuations observed in the R8 system pose a significant challenge to our

model, since minimization of a free-energy functional with a given initial guess can only

provide one solution describing a static solvent distribution. In order to address this issue

we consider various different initial solvent boundaries. Provided the ability of VISM to

efficiently describe interface fusions and break-ups during its propagation, relaxation of

the solute-solvent interface should either converge to a single solution, independent on the

initial state and thus indicating a single global free-energy minimum, or to few distinct,

metastable states, each reached from a different pool of initial conditions, indicating

possible fluctuations of the solvent.

We found that all relevant solutions can be reached from three classes of initial solute-

solvent interfaces (FIG. 5): (a) a single surface that loosely wraps the wall and the ligand

together; (b) two separate surfaces that tightly follow the van der Waals surface of the

solutes; (c) two separate surfaces, one enveloping the wall but not penetrating into the

pocket and the other being equivalent to the methane van der Waals surface. Those

three initial conditions are further referred to as SL (single loose surface), TT (two tight

surfaces), and TL (two loose surfaces), respectively.

2. Final Solute-Solvent Interfaces

Starting our analysis with the R8 case, we note that that the number of existing

solutions depends on the ligand position (distance d). It gives rise to three distinct

free-energy branches for G(d), which are plotted in FIG. 6, along with its individual

contributions GS, Gτ , and GLJ (cf. (1)). Illustrative examples of the corresponding final

solute-solvent interfaces are presented in FIG. 5. At first, let us focus on the results

obtained with a curvature correction parameter τ = 1.0 Å, leaving the discussion of
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FIG. 5: Examples of initial (left) and finally converged (right) solute-solvent interfaces in the R8

system. The shown three-dimensional (3D) interfaces on the right are level-set solutions of the

VISM eq. (3). We also show a two-dimensional (2D) view by intersecting through the system’s

symmetry axis (shaded area: pocketed wall; blue lines: interfaces). Arrows indicate directions

of the observed topological changes. The occurrence of a given topological change depends on

methane-pocket distance d, see the text for details.

effects related to its changes for the next section.

For d > 7 Å, two solutions are observed, each describing two separate solute-solvent

surfaces. In both cases the interface around the methane molecule closely follows its

van der Waals surface (when starting from the SL type of initial solute-solvent interface

it requires surface to break-up during its subsequent relaxation). The pocketed wall
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FIG. 6: Solvation free-energy branches for the R8 system and the contributions from the individ-

ual free-energy functional components vs. d, obtained for two values of the curvature correction

parameter τ = 1.0 Å (empty symbols) and τ = 0.8 Å (filled symbols). All curves are shifted

with respect to the reference 2s-dry state. Notation: G(d) = total solvation free energy; GS(d)

= surface area term; Gτ (d) = curvature correction term; GLJ(d) = LJ term.

is surrounded either by (a) solute-solvent interface that remains outside the pocket and

corresponds to its dry state (2s-dry; FIG. 5) or (b) the solute-solvent interface that closely

follows the pocket contours and corresponds to its wet state (2s-wet; FIG. 5). The former

solution is reached from both SL and TL initial states while the latter from TT.
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The existence of two different solutions indicates possible wetting-dewetting transitions

within the pocket. However, contrary to the MD derived free-energy dependence G(N),

the dry state is favored over the wet by about 2 kBT . Also, unlike in G(N), there seems

to be a free-energy barrier between the two, as otherwise the wet state would relax to the

dry state.

It is interesting to note that the 2 kBT difference is relatively small compared to

differences in the individual free-energy components. The surface energy GS of the 2s-wet

state is about 15 kBT greater than of 2s-dry, but is ideally compensated by a lower solute-

solvent dispersion energy, GLJ . The 2 kBT offset turns out to be identical to the difference

in the surface correction term, Gτ . While the perfect compensation of GS and Gτ may be

coincidental, such result may also indicate that the energy penalty for a concave surface

is overestimated by the form of Gτ used here, thus disfavoring the wet pocket state.

For d < 7 Å, there appears a third solution, reached from the SL type of initial solute-

solvent interface, which describes a single solvent surface enveloping both the pocket and

the ligand together (1s; FIG. 5). Initially, this kind of solution has the highest free energy

due to the large penalty for its concave curvature and relatively unfavorable dispersion

energy arising from solvent expulsion from the region between the solutes. However, as the

pocket-methane separation decreases, it gradually becomes the most favorable solution,

predominantly owing to its smallest surface area.

The 2s-dry solution exists only until d ≈ 4 Å, where the final solute-solvent interface

corresponding to the TL type initial solute-solvent interface merges together into a 1s

solution. Also at this point the 1s solution becomes more stable than the 2s-wet, which

indicates that the region between the two solvated objects becomes preferably dry. It

perfectly reproduces the trend observed in the MD-derived G(N) distributions (FIG. 3),

where the preference towards dry over wet state is observed, starting at the critical dis-

tance of 4 Å.

As d decreases further, the 2s-wet solution becomes even more unfavorable. It is caused

by increase in dispersion energy, arising from partial loss of pocket-solvent interactions
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FIG. 7: Same as Fig. 6 but now for the R5 system.

due to the proximity of the region void of solvent occupied by the methane molecule. At

d ≈ 0 Å, the 2s-wet state collapses to the 1s-dry state, which remains the only solution

for d < 0 Å. Again, those changes in topology of the solvent distribution are in close

agreement with MD results that indicate a complete extinction of the wet state as the

methane molecule passes through d = 0 Å.

In the R5 system, irrespective of the considered initial solvent boundaries, all observed

final solutions describe a dry pocket, cf. Fig. 7, consistent with experiments [11]. For

large ligand distances there is only a single solution that represents two separate surfaces

(2s-dry state). For d < 7 Å, the initial SL interface relaxes to the 1s state, while the

initial TT interface still results in the 2s-dry solution. Similarly as in the R8 system, the

1s state has initially a higher free energy than the 2s-dry state, due to the penalty for its
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concave curvature and relatively unfavorable dispersion energy. As the ligand separation

decreases, a large decrease in surface area allows the 1s state to become more stable than

2s-dry. The crossover, which may be interpreted as expulsion of a water layer from the

region between methane and the pocket, occurs at d ≈ 4 Å. The now metastable 2s-state

exists until d ≈ 2 Å, and for smaller separations the only observed solution is 1s.

3. Influence of Curvature Correction

The most notable influence of changing the curvature correction parameter τ is on the

stabilization of the 1s state with respect to the 2s-dry state (FIG. 6, FIG. 7 and FIG. 8).

For τ = 0.8 Å, in both R8 and R5 systems, the 1s state exists at a relative larger solute

separation and has relatively lower free energy than for τ = 1.0 Å. At a relatively large

intersolute distance, this stabilization is mostly due to the difference in the surface area

term, as with smaller τ the relaxing interface tends to optimize (decrease) its surface area

rather than curvature. The surface area effect is counterbalanced to some extent by a

more favorable dispersion energy for the case of τ = 1.0 Å. It is due to the fact that for a

larger τ the interface exhibits the tendency to remain close to methane molecule owing to

a greater benefit from maintaining a convex surface shape. This simultaneously leads to

a greater solvent-occupied volume and more favorable solute-solvent interactions. FIG. 8

displays two-dimensional projections of the final, equilibrium solute-solvent interface for

the R8 system at various distances and with τ = 0.8 Å and τ = 1.0 Å, respectively.

Notice that for d = 5.0 Å the solute-solvent interface is 1s for τ = 0.8 Å but is 2s-dry for

τ = 1.0 Å.

At small d, the relative stabilization of 1s state for τ = 0.8 Å is almost entirely due

to the curvature correction term Gτ . It can be explained by noting that transferring the

methane molecule deep into the pocket corresponds to its removal from the solvent during

which changes in surface area and dispersion energy relative to the 2s-dry state are the

same for both τ values. On the contrary, the effective surface tension associated with the
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FIG. 8: Bisected view of the final solute-solvent interfaces corresponding to the minimum in

the free energy (1) for the R8 system at various ligand distances and τ = 0.8 Å and 1.0 Å,

respectively.

convex methane surface is larger for τ = 0.8 Å, hence leading to a larger free energy gain

upon the change in solvent interface area.

Surprisingly, the free energy difference between the 2s-wet and 2s-dry states in the R8

system, governing the physically interesting balance between pocket wetting and dewet-

ting, appears to be not particularly sensitive to the considered change in the τ value. A

detailed analysis of the free-energy components plotted in FIG. 6 reveals that the almost

perfect compensation of differences in GS and GLJ between the 2s-wet and 2s-dry states,

described above for τ = 1.0 Å, holds also for τ = 0.8 Å.

Indicated by the higher surface area energy GS, the 2s-wet interface penetrates deeper

into the pocket for τ = 0.8 Å (such behavior is expected due to the smaller energy

penalty associated with the concave interface for smaller τ). At the same time, however,

it gains more favorable dispersion energy GLJ than in the corresponding 2s-wet state for

τ = 1.0 Å, which accounts for a similar GS-GLJ compensation. In both cases also Gτ has

almost the same value when compared to the 2s-dry state. Based on those observations,

it seems, that the metastable solvent behavior observed in MD for large solute separations
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could have been at least partially reproduced with a τ value close to zero.

It is worth stressing that the derivation of the curvature correction term is typically

based on the assumption of convex and weakly-curved solute geometries [51, 54, 55], and

its symmetry with respect to the sign of the mean curvature should not be expected.

The obtained results indicate the need for asymmetric higher order terms in the general

curvature expansion of the surface tension for larger curvatures, if possible [71]. A heuristic

but perhaps more feasible approach, may just rely on two different τ coefficients used for

positive and negative curvatures, respectively.

4. Potentials of Mean Force

The changes in the hydration free energy of the system, resulting from different place-

ments of methane molecule along the z-axis, correspond to the solvent-mediated contri-

butions to the methane-pocket interaction. It can be directly compared to the simulation

results after subtracting the intersolute (vacuum) interaction from the total MD-derived

PMF.

As described above, for most pocket-methane separations, the level-set VISM results

provide multiple local free-energy minima that for a given d correspond to an ensemble

{Γ}m of the most probable solvent configurations. Accounting for this fact, we express

the actual free energy of the system as

G = −kBT ln
∑
{Γ}m

e−G[Γ]/kBT + G′′, (7)

where G′′ is an arbitrary constant chosen to satisfy the condition that G(d → ∞) = 0.

The obtained PMFs are presented in FIG. 9 together with MD simulation results and

predictions of a simple model based on solvent accessible surface area (SASA). For the

SASA model we used the effective surface tension parameter of 0.73 kJ/mol/Å2 that

provides agreement with methane hydration free energy obtained in our MD simulations.

The level-set VISM results are in overall good, semiquantitative agreement with MD.

In both R8 and R5 systems, the onset of strong pocket-methane attraction around d ≈ 4
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FIG. 9: Solvent-mediated PMF between the pocket and the ligand at a distance d for the systems

R8 (top) and R5 (bottom). Level-set VISM results are calculated from the ensemble-average (7)

over all existing free energy branches (see Figs. 5 and 6) and are shown for τ = 1.0 Å (circles)

and τ = 0.8 Å (squares). Notation: MD = MD simulation results; SASA = solvation free energy

from SASA model.

Å, accompanied by expulsion of solvent from between the two objects, corresponds well to

the distance where the 1s state becomes the most favorable one. Such a good agreement

was not achieved by the SASA model in the R8 case, because the larger pocket can

easily accommodate a methane molecule together with its associated solvent accessible

surface. Again, it underlines the ability of VISM to predict drying even though the

solvent is sterically able to remain in the considered area. An EA performed to estimate

the average water occupancy in the R8 system from our level-set VISM approach

〈Nw〉 =

∑
{Γ}m

Nw[Γ]e−G[Γ]/kBT

∑
{Γ}m

e−G[Γ]/kBT
, (8)

yields qualitative agreement with the MD as shown in Fig. 4, i.e., a maximum at d ≃ 6.0

and zero values for d < dc.
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In contrast to the SASA based model, VISM successfully reproduces a ∼ 1kBT free-

energy barrier for pocket-methane association in the R5 system. A close inspection of

individual free-energy branches and their components (FIG. 7) indicates that this barrier

can be attributed to increase in dispersion energy resulting from displacement of water

from vicinity of R5 pocket, as well as to development of concave solvent boundary bridging

the two solutes. These correspond to the formation of surface singularities in the level-set

relaxation of interface. The free energy barrier occurs at the transition from the most

favorable 2s-dry state to 1s state. By looking at the corresponding topological changes in

the solvent distribution, it can be interpreted as the onset of methane dehydration which

agrees well with previous analysis of the MD results [18]. The free-energy barrier in the

R5 system can thus be attributed to the disruption of the methane hydration shell.

The free-energy barrier predicted by VISM in the R8 system, although smaller than in

R5 case, is overestimated relative to MD. As observed in MD simulations, the lack of a

barrier in the R8 system may be related to a more efficient arrangement of solvent around

the methane molecule; when it approaches the larger pocket, there is less constraining

geometry of hydrophobic medium in this case. Thus, possibly depending on subtle solvent-

solvent interactions, this effect is not accounted for in the VISM calculations.

The comparison of the results obtained for both values of the τ -parameter highlights

the important role of curvature corrections in predicting the onset of drying and attrac-

tion. Surprisingly, the smaller τ value seems to promote and stabilize the dry state, even

though it provides a lower energetic cost of maintaining a concave solvent boundary and

hence the wet pocket state. It indicates that the dominant influence on the observed

wetting-drying transition and the associated free energy values stems from changes in

the methane hydration. Indeed, dehydration of its convex surface, necessary for solvent

expulsion from the region between methane and the pocket, is more favorable for smaller

τ , thus likely explaining the observed trend. Those conclusions are also supported by MD

simulations [18, 47] which indicate that the convex solvent boundary is more stable than

a planar or concave one, and that the major contribution to the methane - pocket PMF
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comes from methane dehydration rather than pocket dewetting.

IV. CONCLUSIONS AND OUTLOOK

We have applied our level-set variational implicit solvent model to analyze hydration

effects associated with ligand binding in a generic hydrophobic receptor-ligand system.

Using explicit solvent MD simulations as a reference, we managed to reproduce the key

aspects of the nontrivial solvent behavior: (1) wetting-dewetting transitions in the larger

R8 binding pocket and their dependence on receptor-ligand separation, (2) a complete

dewetting of the smaller R5 binding pocket consistent with experiments [11], (3) solvent

expulsion from the intersolute region governing the critical distance of strong attraction

and binding. Reproduction of these effects remains beyond the reach of simple surface area

based models, while it appears to be crucial for proper description of systems involving

complex geometry of hydrophobic constraints.

The predicted free energy changes remain in a good, almost quantitative agreement

with MD derived solvent contribution to ligand-receptor interactions. In particular, VISM

reproduces well the free energy barrier for pocket-ligand association in the R5 case, how-

ever at the same time, overestimates the barrier in R8 case. While still requiring fur-

ther investigation, such ability may represent the first step towards obtaining a method

that provides a means for proper interpretation of experimental receptor-ligand binding

rates [12].

Analysis of distinct contributions to the free-energy functional reveals an interesting

interplay between the surface area term GS and the dispersion energy term GLJ in the

regions enclosed by the hydrophobic medium. The surface term favors contraction of the

solvent interface while the dispersion term promotes expansion of the wet phase, which

results in a subtle balance necessary to reproduce wetting-dewetting transitions. Strik-

ingly, such balance seems to exist even though neither of the two free-energy components

depend directly on fitted parameters.
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In turn, the adjustable magnitude of the curvature correction term Gτ appears to

determine the onset of topological changes in the solvent distribution occurring upon

ligand translocation. It is still unclear how to choose the relevant τ parameter value,

however, the range between 0.8 and 1.0 Å considered here seems to be reasonable. The

current form of Gτ is justified on the ground of previous theories [51, 54, 55], nonetheless,

its applicability to concave interfaces is questionable. Accordingly, a formal derivation of

curvature expansion of surface tensions that remains valid in a negative curvature range

is an open, interesting problem.

Despite its simplicity, the considered model system is particularly challenging for an

implicit solvent approach as it contains convex, flat and concave hydrophobic surfaces

involving different hydration regimes in explicit solvent. A close agreement with MD

simulation results observed for both considered pocket sizes and for the whole range of

receptor-ligand separations, indicates a sound physical basis of the VISM. The level-set

method proved to be a suitable numerical approach to solve the underlying problem of

free-energy functional minimization, owing to its ability to robustly describe topological

changes in the solvent distribution such as volume fusions or break-ups.

As a minimization based method, VISM is prone to finding local hydration free-energy

minima that apparently exist even in relatively simple model systems like considered

here. Encountering the local minima may be problematic in some applications due to the

need of exhaustive search of the available solution space. A necessary further step which

expands the usability of VISM is the inclusion of thermal interface fluctuations (maybe

as used for membranes [72]) and the true dynamical propagation of the interface [73, 74]

driven by the free energy landscape (1). Ideally, such extension would allow for a true

implicit solvent molecular dynamics approach.
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