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Interfaces and internal layers in a turbulent boundary layer
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New experimental research is presented on the characteristics of interfaces and

internal shear layers that are present in a turbulent boundary layer (TBL). The

turbulent/non-turbulent (T/NT) interface at the outer boundary of the TBL shows the

presence of a finite jump in streamwise velocity and is characterised by a thin shear

layer. It appears that similar layers of high shear occur also within the TBL which

separate regions of almost uniform momentum. It turns out that they exhibit similar

characteristics as the external T/NT interface. Furthermore, the spatial growth rate of

the TBL, that is derived from theoretical analysis, can be correctly predicted from

a momentum balance near the external T/NT interface. Similarly, the entrainment

velocities for the average internal layers have been determined. Results indicate that

internal layers move slower in the vicinity of the wall, whereas they move faster

than the large scale boundary layer growth rate in the outer region of the TBL.

It is believed that shear layers bound large scale flow regions of approximately

uniform momentum. Hence, the entrainment velocities of these internal layers may

be interpreted as growth rates of the large scale motions in a TBL. C 2015 AIP

Publishing LLC. [http://dx.doi.org/10.1063/1.4919909]

I. INTRODUCTION

In many fluid flows, such as jets, wakes, and boundary layers, the turbulent flow is enclosed

by an irrotational non-turbulent flow domain. The pioneering work of Corssin and Kistler1 has

shown that there exists a thin layer that separates the turbulent from the non-turbulent flow, with

strong jumps in vorticity and/or velocity across these layers. Previous research has recognized the

significance of these interfaces on the overall dynamics of the turbulent flow.1–9 Knowledge on

physical mechanisms occurring at these interfaces is especially important as a number of processes

take place at or in close vicinity of the interface, e.g., it governs the overall growth of the turbulent

flow region as entrainment of non-turbulent fluid into the turbulent flow occurs across this interface.

Previous research on the turbulent/non-turbulent (T/NT) interface has focused on the definition of

the interface and on the physical mechanism of entrainment at the interface. The usual way to detect

interfaces is using threshold based methods,10 giving rise to some arbitrariness in the exact defini-

tion of the interface. However, the consensus is that there exists a T/NT interface that is bounded

by a viscous superlayer that separates the different flow regions.10,11 Furthermore, entrainment over

the T/NT interface has been researched for several unbounded flows,3,4,7,8 where it has been shown

that the entrainment process at the T/NT interface is mainly dominated by a small scale process

(“nibbling”). Chauhan et al.12 have shown that entrainment over the T/NT interface in a turbulent

boundary layer (TBL) is characterized by small scale “nibbling,” whereas large scales present at the

interface convolute the interface. As the large scales govern the overall entrainment, the small scale

motions turn non-turbulent fluid by viscous diffusion into a turbulent state. The characteristics of the
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T/NT interface in a TBL have been studied before by Ishihara et al.13 by direct numerical simulation

(DNS). A sharp drop in conditional two-point correlations was observed indicating that the T/NT

interface acts as a barrier to external non-turbulent fluctuations.

Thin layers, as described by Corssin and Kistler,1 however, are not only found in the region that

separates the turbulent flow from the non-turbulent region but also between layers of different turbu-

lent intensities.2,14 Recently, internal layers with similar characteristics as a T/NT interface within

homogeneous isotropic turbulence were reported by Ishihara et al.5,6 According to Robinson15 (and

references therein), internal shear layers have been observed throughout TBLs as well, even in the

outer region of the flow. For instance, Blackwelder and Kovasznay16 showed that significant shear

layers were observed upstream of large scale motions based on space-time correlations of hotwire

data in a TBL. Meinhart and Adrian,17 their Figure 2 and Adrian et al.,18 and their Figure 17

visually observed internal thin shear layers in a TBL that separated large scale regions with nearly

uniform momentum. These large scale regions were also observed by others,19 who found that these

structures persist over long streamwise distances. The dynamical significance of these large scale

structures has been elucidated in recent years with the evolution of new experimental measurement

techniques.20 It was found that these large scale regions are statistically relevant by carrying a

significant amount of kinetic energy and have an important contribution to the Reynolds shear

stresses while only occupying a small portion of the total flow volume.21,22 Not only instantaneous

observations have been made of these internal shear layers, but also linear stochastic estimation

by Christensen and Adrian23 [their Figure 4] and Hambleton et al.21 [their Figure 6] show clearly

structures separating two large-scale flow regions. Moreover, it turns out that layered structures

were found to be characteristic of the mean structure associated with the principal strain in different

turbulent flows by Elsinga and Marusic,24 which therefore can be considered to be typical for

turbulent flow fields. Wei et al.25 have shown that the flow around the shear layers in a TBL exhibits

a scaling related to the macro-scales in a TBL. This indicates that the shear layer is closely related

to large scales present in the flow. Although the relevance of these interfaces and internal layers

on the overall dynamics of the flow has been suggested for unbounded turbulent flows by several

authors,2,7 only minor attention has been paid to the characteristics of these internal layers present in

wall bounded turbulent flows.

In this paper, we examine the characteristics of the T/NT interface and internal layers that are

observed in the instantaneous flow fields in experimental data of a turbulent boundary layer. In our

present work, we define internal layers as regions of high shear. It should be noted that internal layers

are not solely characterized by regions of intense shear; there may also be internal layers without

significant shear.2 Internal layers and the T/NT interface are shown to have similar characteristics

and can be described by the same theoretical framework. By quantifying the entrainment over the

bounding shear layers, growth rates of the associated large scale regions can be estimated, which is

analogous to the overall TBL growth by the entrainment across the T/NT interface. This sheds new

light on the growth mechanisms of large scale structures in a TBL, which are bounded by these layers.

The work in this paper is arranged as follows. Section II describes the experimental details of

the experiment including the global boundary layer properties. Section III describes the different

detection criteria that are employed for the T/NT interface and the internal layers. Section IV de-

scribes the model that is employed to derive the boundary entrainment velocity for internal shear

layers as well as the external T/NT interface. In Sec. V, the conditional sampled profiles around

these layers are discussed and the boundary entrainment velocity derived from these statistics is

shown. Section VI discusses the implications of the previous sections (mainly Sec. V) in relation to

previous obtained results. Finally, Sec. VII summarizes and draws final conclusions.

II. EXPERIMENTAL SETUP

The experiment is performed in the water tunnel at the Laboratory for Aero- and Hydrody-

namics at the Delft University of Technology. It has a test section with dimensions L ×W × H

= 5 × 0.6 × 0.6 m3. Boundary layer measurements were done at one of the side walls, approxi-

mately 3.5 m downstream of a boundary layer trip, at a free-stream velocity of U∞ = 0.73 m/s.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  131.180.131.242 On: Fri, 14 Aug 2015 13:30:14



055103-3 Eisma et al. Phys. Fluids 27, 055103 (2015)

TABLE I. Summary of the boundary layer properties.

U∞ 0.73 m/s θ 8.7 mm Reτ 2053

δ99 74 mm uτ 26.5 mm/s H = δ∗/θ 1.31

δ∗ 11.3 mm Reθ 6578 c f 2.7 × 10−3

At this location, the boundary layer thickness was δ99 = 74 mm, where δ99 is the wall distance

where the velocity has reached 99% of the free-stream value. The corresponding momentum and

displacement thickness are θ = 8.7 mm and δ∗ = 11.3 mm, resulting in a shape factor H = 1.31,

which is a typical value for a zero-pressure gradient TBL. The Reynolds number based on the

momentum thickness is Reθ = 6578. Finally, the friction velocity uτ was derived from a Clauser plot

technique (uτ = 26.5 mm/s). The main properties of the boundary layer are summarized in Table I.

For the stereoscopic particle image velocimetry (PIV) measurements, the flow is seeded with

10 µm buoyant neutral tracer particles (Sphericell). A streamwise-wall-normal plane is illuminated

with a twin-cavity double pulsed Nd:YAG laser (Spectra-Physics Quanta Ray). The thickness of

this light sheet was 1 mm. The particle images were recorded using two high resolution CCD

cameras with a 4872 × 3248 pixel format (Image LX 16M, LaVision) which were equipped with

a Micro-Nikkor F105 mm objective operating at an aperture number f# = 8. The resulting field of

view was 1.35δ99 in streamwise direction and 1.87δ99 in wall-normal direction. Calibration, data

acquisition, and post-processing were performed with a commercial software package (Davis 8.1,

LaVision). The PIV images are interrogated with a multi-pass interrogation technique, where the

final interrogation windows have a size of 24 × 24 pixels with 75% overlap, corresponding to a

spatial resolution based on the window size of 19.9 viscous wall units (uτ/ν). This is approximately

3-4 times the Kolmogorov length scale in the outer layer;26 hence, the current measurement can

be regarded as fully resolved. Individual spurious vectors are detected using a median test27 and

replaced by linear interpolation. In total, 1824 in-plane instantaneous velocity fields were captured

at a frame rate of 0.77 Hz to obtain sufficiently converged first and second order statistics.

The velocity profile in inner scaling is shown in Figure 1(a). Reliable instantaneous data could

be obtained for distances of 25 or more viscous wall units from the wall. Good agreement with

data from literature is observed in the outer layer of the TBL. The outer regions of the RMS

profiles shown in Figure 1(b) have been corrected for the PIV measurement noise. An estimate

of the noise contribution to the RMS values was obtained from the method described by Poelma

et al.28 It should be noted that Klebanoff29 adopts a different definition for the boundary layer

thickness. Based on the intermittency curves (not shown here), it is estimated that this is approx-

imately given as δKleb ≈ 1.3δ99; this has been corrected for in Figure 1(b). However, Figure 1(b)

FIG. 1. (a) The velocity profile in inner scaling compared with data from DeGraaff and Eaton.32 (b) The RMS profiles of the

streamwise and wall-normal components of the velocity compared with data from Klebanoff.29
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still shows that the RMS profiles are slightly higher in the free stream compared to reference data

from Klebanoff.29 This may be attributed to the higher freestream turbulence intensity in the facility

as well as to the uncertainty in determining the boundary layer thickness δ99. The value for the

free-stream turbulence intensity is found to be below 1% U∞. This is slightly higher compared to the

turbulence intensity as reported by Schröder et al.30 who performed PIV measurements in the same

facility. Finally, the current measurements are subject to a very small favourable pressure gradient.

Independent pitot measurements indicate the acceleration parameter, K = 2 × 10−8. As shown by

Joshi et al.,31 effects on the turbulence structure in a boundary layer become noticeable at K = 10−6.

Hence, the pressure gradient will have a negligible influence on the results discussed here.

III. LAYER DETECTION AND GEOMETRICAL CHARACTERISTICS

A. T/NT interface

The T/NT interface is detected using a method that relies on the out-of-plane vorticity Ωz,

which is found to be the dominant component at the interface.33 Gaussian smoothing, characterized

by a filter width of σ ≈ 10y+, of the velocity field is performed after which the available velocity

gradients are calculated using a second order least squares difference scheme.34 Care is taken to

ensure that the filter width is smaller than the Taylor micro-scale λT ≈ 180y+, to prevent affecting

the relevant flow scales. Subsequent conditional sampling is performed on the raw unfiltered veloc-

ity fields. This approach is justified because the thickness of the interfaces δw is commonly regarded

to be of the order of λT for flows with a mean shear.7 Detection of the T/NT interface was performed

using the vorticity method as proposed by Holzner et al.,8 which proves to be effective in detecting

the T/NT interface. A noise level for the instantaneous vorticity is estimated by taking the RMS

values of Ωz in the non-turbulent part of the flow (i.e., y/δ99 ≥ 1.5), which is approximately 2.7 s−1.

A threshold of three times this level effectively separates the irrotational non-turbulent region from

the turbulent region. The T/NT interface is then defined as the set of outermost points that exceed

this threshold. The average interface position is found to be at ⟨δint⟩ ≈ 0.9δ99 (see Figure 2) which is

somewhat higher than the result of Corssin and Kistler1 who found ⟨δint⟩ ≈ 0.80δ99.

B. Internal layers

In order to detect the internal layers, the triple decomposition method as proposed by Kolář35

is applied. This decomposition was originally introduced to provide a more robust description of

FIG. 2. Probability density function of the location of the interface yi. The average interface location is found at yi = 0.9δ99.
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vortices in turbulent flows. However, the method can also be used to detect shear layers.36 The

velocity gradient tensor ∇u is decomposed into three parts,

∇u = (∇u)RR + (∇u)SH + (∇u)EL, (1)

where RR, SH, and EL denote the rigid-body rotation, shear, and elongation components of the

velocity gradient tensor, respectively. This decomposition only applies to an appropriate reference

frame, the so-called basic reference frame (BRF). In order to derive the shear component (∇u)SH

in Eq. (1), the following steps are performed: first, the 2D velocity gradient tensor ∇u and the

strain rate tensor (i.e., the symmetric part of ∇u) are computed; second, the eigenvectors of the

strain rate tensor are found resulting in the principal axes; and third, ∇u is expressed in the BRF

with orthogonal axes that are rotated 45◦ with respect to the principal axes of the strain rate tensor

(denoted as ∇ũ). Then, (∇ũ)SH is computed with

(∇ũ)SH =



0
∂ũ

∂ ỹ
− sgn

(

∂ũ

∂ ỹ

)

·min

(�����
∂ũ

∂ ỹ

�����
,
�����
∂ṽ

∂ x̃

�����

)

∂ṽ

∂ x̃
− sgn

(

∂ṽ

∂ x̃

)

·min

(�����
∂ũ

∂ ỹ

�����
,
�����
∂ṽ

∂ x̃

�����

)

0


. (2)

The vorticity associated with the shear component of the velocity gradient tensor is calculated as

ωSH = (∇ũ)SH,21 − (∇ũ)SH,12, i.e., the element on the second row/first column minus the element

on the first row/second column. An example of an instantaneous ωSH distribution is presented in

Figure 3. Shear layers are visible which separate large scale regions with nearly uniform velocity,

similar to observations by Meinhart and Adrian.17 The shear layer like structure that is present

inside the rectangle (indicated in Figure 3(a)) can directly be related to an instantaneous jump in the

streamwise velocity component (Figure 3(b)). To distinguish between surrounding flow and intense

shear layers, a composite threshold criterion is used. First of all, the ωSH noise level is estimated as

before in the non-turbulent part of the flow. Three times this level effectively separates noise from

actual shear layers. However, close to the wall, the average shear is significantly higher compared to

the outer region. Hence, in the near wall region, a threshold is set based on the mean shear vorticity

⟨ωSH⟩ to detect internal layers closer to the wall. The highest value of either is found to be the

suitable criteria to detect internal layers throughout the boundary layer.

Next, the geometrical characteristics of the internal layers are quantified. It should be noted that

all of the areas above a certain threshold, shown in Figure 3(a), are regarded as internal layers. This

eliminates the possibility of deliberately favouring certain layers, thereby distorting the statistics.

Of course, this comes at the cost of slightly biased statistics. A probability density function (PDF)

FIG. 3. (a) An instantaneous realization of the shear component of the vorticity ωSH, indicated with gray contours. The

dashed dotted lines indicate the edges of uniform momentum zones determined from visual inspection of the velocity field.

Streamwise velocity profiles are plotted to show the instantaneous jump across a shear layer. Regions of high velocity

gradients are indicated with green dots. (b) Surface plot of the streamwise velocity field around the shear layer inside the

rectangle in (a). For visualization purposes, this image has been Gaussian filtered to suppress noise, characterized by a

standard deviation σ/δ99= 0.003.
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FIG. 4. (a) PDF of the centroidal location of the internal layers over the height of the TBL. The red curve depicts the

intermittency curve determined from the T/NT interface. (b) PDF of the orientation of the internal layers with respect to the

wall, present throughout the TBL. (c) PDF of the ratio between the major axis length and the minor axis length of internal

layers, present throughout the TBL.

of the centroidal location is shown in Figure 4(a), together with the intermittency function obtained

from the position of the T/NT interface. The occurrence of internal layers closely follows the inter-

mittency profile, suggesting internal layers are distributed uniformly throughout the turbulent region

of the flow. This behavior also indicates why the conditional profiles shown later in Sec. V in the

outer region of the TBL do not appear to be converged. The number of detected internal layers is

insufficient to obtain converged statistics in that part. The orientation with respect to the wall and

the major axis length versus the minor axis of the internal layers are determined by fitting an ellipse

with the same area moment of inertia as the detected layer, see Figures 4(b) and 4(c). It turns out

that the average orientation of 12◦ closely resembles the angle that Adrian et al.18 report for the

angle of hairpin packets. This underlines once more that the effect of the pressure gradient in the

current measurements is negligible as one of the first observable consequences of a favourable pres-

sure gradient is to decrease the inclination of structures observed based on two-point correlations

for u′.31 Moreover, the angle of the shear layers remains relatively constant over the height of the

boundary layer (not shown here). Finally, the PDF of the major/minor axis of the internal layers

shows that the detected regions of high shear are elongated, i.e., layer-like structures, as their aspect

ratio is on an average of 3.6.

IV. BOUNDARY ENTRAINMENT VELOCITY AND MODEL DESCRIPTION

A short description of the model used to determine the boundary entrainment velocity is given

in this section. The boundary entrainment velocity is defined here as the velocity with which the

interface convects away from the wall, when following the interface in space (in a Lagrangian

sense). Our approach corresponds with the definition of the boundary entrainment velocity Eb as

given by Westerweel et al.3 and Turner.37 The last reference clearly points out the different usages of

the term entrainment velocity. A clear distinction should be made between the velocity with which

the interface spreads outward (Eb), the rate at which external fluid flows into the turbulent flow

across a boundary (E), and the outward velocity of the interface relative to the local mean flow (E f ).

For instance, in case of a turbulent jet, Turner37 predicted that the outward velocity at the edge of

the jet measured in a fixed coordinate system will be Eb = −2E. This was experimentally confirmed

by Westerweel et al.3 by employing the super-layer jump condition. In order to derive the boundary

entrainment velocity for the T/NT interface and the internal shear layers, a first order jump model is

presently applied. This model is based on the work by VanZanten et al.38 and Pino et al.39 who used

it to determine the growth rate of convective boundary layers. In a similar fashion, the spatial growth

rate can be calculated for a neutral convective boundary layer as will be shown here. The reason not

to choose a zeroth order jump model as proposed by Lilly40 is because his model assumes ⟨U⟩ to be

discontinuous over an inversion, which is certainly not applicable when inspecting the conditional

profiles (i.e., ∆ ⟨U⟩ occurs over a small but finite region δw). In the current work, the situation as

sketched in Figure 5 is considered. Consider the idealized profiles for the conditional streamwise
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FIG. 5. Schematic description of the model. The average interface location is located between y1− y2. The jump in

streamwise velocity occurs over a finite region δw. The three integration regions are given by the letters A-C.

velocity ⟨U⟩, the conditional wall-normal velocity ⟨V ⟩, and the conditional Reynolds shear stresses

⟨ũṽ⟩ as given in Figure 5. The lowercases ũ and ṽ denote the fluctuating velocity components with

respect to the conditional mean velocities ⟨U⟩ and ⟨V ⟩. In this model, the jump in streamwise

velocity ∆ ⟨U⟩ occurs over a finite region δw (i.e., between y1 − y2). Furthermore, on both sides of

the interface, the conditional streamwise and Reynolds stress profiles show approximately constant

gradients denoted by, respectively, γ1,2, γ4,5. Finally, the conditional wall-normal velocity has a

constant gradient in the jump region γ3.

The profiles shown in Figure 5 are entered into the conditional mean x-momentum equation,

which in absence of viscous effects and pressure gradient effects reads

∂ ⟨U⟩

∂t
= − ⟨V ⟩

∂ ⟨U⟩

∂ y
−
∂ ⟨ũṽ⟩

∂ y
. (3)

The pressure gradient is neglected as independent pitot measurements indicate a negligible small

acceleration parameter. In order to derive the growth rate of both internal layers and the T/NT

interface, Eq. (3) is integrated over three regions as follows:

A. in a small region below the interface, between (y1 − ϵ) and y1, where ϵ has a small but finite

value;

B. over the jump region, between y1 and y2; and

C. in a small region above the interface, between y2 and (y2 + ϵ).

By substitution of the results obtained from regions A and C into the equation obtained from region

B, the boundary entrainment velocity is derived as

Eb =
1

∆ ⟨U⟩ − δw
2
(γ1 + γ2)


−
δw

2

(

γ1⟨V ⟩y1
+ γ2⟨V ⟩y2

+ γ4 + γ5 − γ3∆ ⟨U⟩
)

−

⟨ũṽ⟩y1
+ ⟨ũṽ⟩y2

+ ∆ ⟨U⟩ ⟨V ⟩y1


. (4)

The complete derivation of Eq. (4) can be found in the Appendix.

V. CONDITIONAL SAMPLING

A. T/NT interface

Conditional sampling is performed at fixed wall-normal distances with respect to the location

of the interface. This conditional sampling technique is described in detail in Bisset et al.33 The

conditional profiles of the streamwise velocity, wall-normal velocity, Reynolds shear stress, and

the out-of-plane vorticity Ωz are shown in Figure 6, each normalized with appropriate large scale

parameters. First of all, the conditional streamwise velocity profile indicates a distinct jump over

the T/NT interface of approximately 0.04U∞. In the turbulent region below the interface, this profile
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FIG. 6. (a) Conditionally sampled velocity profile ⟨U⟩ over the T/NT interface. (b) Conditional ⟨V ⟩. (c) Conditional

out-of-plane vorticity ⟨Ωz⟩. (d) Conditional sampled Reynolds shear stress profiles ⟨ũ ṽ⟩. The green patch indicates the jump

region. The relevant gradients are indicated by γ1−γ5. The values for Vy1
,Vy2

, ⟨ũ ṽ⟩y2
, and ⟨ũ ṽ⟩y1

are indicated by black

dots. Positive y-axis points in the same direction as the wall-normal axis.

exhibits a constant gradient which is consistent with the approximately constant value for Ωz in

this region. Second, on the non-turbulent side of the interface, there is still a finite gradient in

the conditional streamwise velocity. This behavior is probably due to the presence of irrotational

fluctuations in the non-turbulent part of the flow.1,41 Furthermore, the conditional out-of-plane

vorticity in the non-turbulent part quickly drops to zero, as shown in Figure 6(c). This confirms

once more that the correct T/NT has been detected. The vorticity strongly peaks inside the T/NT

interface and it reaches approximately a constant value on the turbulent side of the interface. This

behavior is consistent with the observations from jets3 and TBL.12 From Figure 6(b), it is observed

that the gradient in the conditional wall-normal velocity profile is negative over the interface. This

wall-normal compression behavior implies that out-of-plane vorticity stretching occurs over this

interface in order to maintain a sharp interface. Overall, it should be noted that the profiles shown in

Figure 6 appear to be consistent with the model proposed in Figure 5.

In order to derive the entrainment velocity of the T/NT interface, the first order jump model

as described in Sec. IV is employed. First of all, the edges of the T/NT interface are determined

from the linear fits made to the velocity profile in Figure 6(a) on both the turbulent side (lower

part) and the non-turbulent side (upper part). For the current research, the intersections between

these fits are regarded as the edges of the T/NT interface; this yields a jump in streamwise velocity

∆ ⟨U⟩ = 0.04U∞ and a thickness over which this jump occurs of δw = 0.035δ99. δw is an important

geometric attribute; it describes the characteristic “thickness” of mixing layer eddies that exchange
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momentum between zones of uniform momentum. The different gradients, depicted in Figure 5,

that are required to calculate Eb are indicated in Figure 6. The values for the wall-normal and the

Reynolds shear stress at top and bottom side of the interface are indicated by black dots. Com-

bining these results and substituting this into Eq. (4) produces a boundary entrainment velocity

Eb = 0.0109U∞.

A second validation strategy adopting a different approach is employed to calculate the bound-

ary layer growth rate, using a method as described by White.42 Basically, von Kármán’s momentum

law
�
cf = 2 dθ

dx

�
and a power-law approximation to the friction number

(

cf ≈ 0.02Re
−1/6
δ

)

are com-

bined together with a 1/5th power law approximation of the TBL velocity profile. A fit to the mean

velocity profile of the TBL (not shown here) justifies a 1/nth power law approximation to the mean

velocity profile, where n = 0.1931 ± 0.002. Therefore, the 1/5th power law approximation (with a

difference of less than 2%) was applied to predict the global boundary layer growth. This yields a

first order differential equation that can be solved by separation of variables. The spatial growth rate

is thus estimated as

dδ

dx
≈ 0.14

6

7

(

ν

U∞x

)
1
5

≈ 0.0142, (5)

where x is taken as the distance behind the trip wire (i.e., x = 3.5 m). The average T/NT inter-

face position is observed at ⟨δint⟩ ≈ 0.90δ99. Hence, the spatial growth rate of the T/NT interface

is approximated by
dδint

dx
≈

δint

δ99

dδ
dx
≈ 0.0128. From the conditional streamwise velocity profile in

Figure 6(a), it is observed that the local convection velocity at the mean interface location is

Uc ≈ 0.97U∞. Hence, the boundary entrainment velocity can be approximated by

Eb ≈ Uc

dδint

dx
≈ 0.0124U∞. (6)

Given the above assumptions and the finite measurement precision, the difference between Eq. (6)

and the results obtained from the first order jump model falls within acceptable limits. Comparing

the result given in Eq. (6) and the results obtained from the first order jump model, it turns out that

both are in close agreement (i.e., ≈ 12% difference). Hence, the analysis near the T/NT interface

could be directly related to the large scale features of the boundary layer growth rate.

B. Internal layers

Conditional sampling is also performed on the internal layers. The resulting profiles of the

streamwise velocity, wall-normal velocity, and the Reynolds shear stress are given in Figure 7.

Comparing the conditional streamwise velocity profiles for the T/NT interface (Figure 6) and the

internal shear layers (Figure 7), it is clear that both display qualitatively similar behavior. This

supports the notion that the shear layers inside the TBL are in essence similar to the external T/NT

interface in the current framework of the integral momentum balance approach. It should be noted

however that this observation does not imply that both the T/NT interface and the internal shear

layers are identical in the small scale details which have been lost in the conditional averaging pro-

cess. The jump in conditional streamwise velocity shown in Figure 7(a) indicates a strong increase

towards the wall, whereas an approximately constant velocity jump is obtained far away from the

wall (y/δ99 > 0.5). Furthermore, ∂ ⟨U⟩ /∂ y on the bottom side of the internal layers increases

much more rapidly compared to the top side. As such, the flux of momentum through the interface

increases closer to the wall. From Figure 7(b), it is clear that
∂⟨V ⟩

∂y
is negative over the internal

layers similar to the external T/NT interface, indicative of vorticity stretching happens within these

internal layers. It should be noted that the Reynolds shear stress profiles in the outer region of the

TBL do not appear to be converged (Figure 7(c)). As is evident from Figure 4(a), it is due to the

small number of layers found at that location.

Closer to the wall the conditional Reynolds shear stress profiles ⟨ũṽ⟩, shown in Fig. 7(c), depict

a distinct jump over the layer, which increases when approaching the wall. On the top side of the

layers (i.e., (y − yi)/δ99 > 0), the shear stress profiles steadily decrease towards zero. It should be

noted that in contrast to the T/NT interface, the shear stresses over the internal layers never reach
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FIG. 7. (a) Conditionally sampled ⟨U⟩ velocity profiles over internal shear layers. (b) Conditional wall-normal velocity

profiles. (c) Conditionally sampled Reynolds shear stress profiles. Positive y-axis points in the same direction as the

wall-normal axis. Shear layers are binned according to their centroidal location in the boundary layer with a binsize of

0.1δ99.

positive values. On the bottom side of the shear layers (i.e., (y − yi)/δ99 < 0), near wall peaks in

Reynolds shear stress are observed (i.e., for layers below y/δ99 = 0.5).

The velocity jump across the internal layers is quantified in Figure 8(a). As mentioned before,

an approximately constant value is observed for y/δ99 > 0.5 (Figure 8(a)). The jump thickness is

observed to scale with the local Taylor microscale (Figure 8(b), δw ≈ 0.4λT), which is in accordance

with the scaling of the T/NT interface thickness.7,10

As a next step, the model approach as shown in Figure 5 is applied to the internal layers to

obtain Eb for each internal layer from Eq. (4). The result is presented in Figure 9. A standard

bootstrapping method is applied to derive the confidence interval. The first point above the wall

indicates a large confidence interval due to the large gradients that are present. It turns out that the

internal shear layers move faster away from the wall as y/δ99 increases. The conceptual picture that

emerges from this graph is that one may have a TBL with multiple shear layers where the outermost

layers move at a velocity faster than the innermost layers. It may well be that shear layers accelerate

when moving up into the boundary layer and then eventually become the new T/NT interface as the

old interface further from the wall dissipates and disappears. It should be noted that this concept

only holds for the average shear layers, as instantaneously there still might be coalescence between

different shear layers. Note that the entrainment velocities of the internal layers present in the

outer layer (i.e., at y/δ99 = 0.8–0.9) are approximately twice as high as the boundary layer growth

rate calculated before. Hence, internal shear layers have the tendency to run into the non-turbulent

region faster than the overall growth of the boundary layer. Comparing the internal shear layer

entrainment velocity Eb with the wall normal velocity profile V obtained from DNS data,43 it is

observed that the shear layers are not moving with the average wall-normal velocity. In fact, the

entrainment velocity of the internal shear layers Eb is larger than V . This indicates that the layers are

dynamically significant2 and there is actual mass transport across the layers.

FIG. 8. (a) The streamwise velocity jump ∆U normalized with U∞ as function of the wall normal distance. (b) Layer

thickness estimated from the streamwise velocity jump of the internal layers normalized with the local λT and with the local

Kolmogorov length scale η.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  131.180.131.242 On: Fri, 14 Aug 2015 13:30:14



055103-11 Eisma et al. Phys. Fluids 27, 055103 (2015)

FIG. 9. The boundary entrainment velocity Eb of the internal shear layers (blue dots) normalized with U∞ as function of

the wall normal distance. The errorbar indicates the 95% confidence interval obtained from a standard bootstrapping method.

The red dot indicates Eb of the T/NT interface obtained from the first-order jump model, whereas the green dot indicates the

Eb for the T/NT interface obtained from Eq. (6).

VI. DISCUSSION

As suggested in Figure 3, shear layers separate large scale regions of approximately uniform

momentum. This has been observed before by Meinhart and Adrian,17 Adrian et al.,18 Christensen

and Adrian,23 Hambleton et al.,21 and Wei et al.25 From the analysis performed in Sec. V, we

derived the entrainment velocities of conditionally averaged shear layers. This process can be re-

garded as analogous to the overall boundary layer entrainment by the T/NT interface, which governs

the growth of the TBL. A first suggestion that presents itself is that the entrainment velocities of

the shear layers may be indicative for the growth rate of the uniform momentum zones that they

bound. This is supported by the observation that the angle of the internal shear layers is found to be

12◦, which corresponds to the typical angle of hairpin packets.18 From Figure 9, it is clear that the

conditionally averaged shear layers in the region y/δ99 > 0.5 move at velocities on the order of the

average boundary layer growth rate, shown as the red/green dot. We therefore conjecture that large

scale regions on average grow slowly, i.e., with the same order of magnitude as the average bound-

ary layer growth rate. Furthermore, it is worth mentioning that the boundary entrainment velocity

of the average shear layer at y/δ99 = 0.2 (Eb ≈ 0.003U∞) shows a correspondence with the work

of Elsinga et al.,44 who found the average wall-normal convection velocity of spanwise vortices to

be 0.006Ue ± 0.002Ue. Assuming these vortices populate the shear layers, this correspondence with

the motion of instantaneous vortex structures supports the present conditional averaging approach.

Furthermore, the recent work by Zheng and Longmire45 showed that 77% of the observed low

momentum regions remained coherent over a significant long streamwise distance (>9δ99). Similar

results have been obtained by Dennis and Nickels.46 As such, the layers accompanying these large

scale motions will also be persistent over long streamwise distances. A simple analysis using

Figures 9 and 1(a) is carried out in order to estimate where the average shear layer at a height

y/δ99 = 0.95 may have originated from. First, the movement of the shear layer is evaluated in

the wall-normal direction based on its entrainment velocity (Figure 9), yielding its y-position with

time y∗(t) between y = 0 and y = 0.95δ99. At the same time, the layer also travels a distance x∗

in the streamwise direction, which is obtained by integrating the mean velocity profile over y∗(t).

Based on this calculation, it turns out that this average layer originated from the wall approximately

50δ99 upstream. As we measured 40δ99 downstream of the boundary layer trip, this cannot be the

case. Therefore, we conjecture that shear layers may be generated not only at the wall but also via

distinct (yet unknown) mechanisms away from the wall. This concept challenges the idea of, for
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instance, Head and Bandyopadhyay.47 Based on their visualization study, they proposed that hairpin

structures are generated at the wall and rapidly grow into the outer region of the turbulent boundary

layer.

VII. SUMMARY AND CONCLUSIONS

In this paper, the characteristics of the T/NT interface and the internal layers have been quan-

tified experimentally in a turbulent boundary layer. Layered structures have been observed before

in statistical analysis of different turbulent flows.23,24 However, the current results confirm the

existence of such layered structures in instantaneous flow fields. Conditional sampling is used to

determine the quantitative properties of these layers. Compelling evidence is given that the internal

layers and the external T/NT interface show qualitatively the same behavior in terms of the condi-

tional velocity profiles. A first order jump model is applied in order to estimate the entrainment

velocities of the interface and internal layers. By this approach, a correct prediction of the overall

boundary layer growth could be obtained. Furthermore, conditional averaged internal layers move

slowly in close vicinity of the wall, whereas their entrainment velocity is of the order of the bound-

ary layer growth rate in the outer part of the TBL. The internal layers are believed to bound the

large scale motions in the flow. Therefore, the current results strongly suggest that these large scale

motions only grow slowly, i.e., on the order of the boundary layer growth rate.
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APPENDIX: THEORETICAL DERIVATION OF FIRST ORDER JUMP MODEL

In this appendix, the theoretical derivation of the first order jump model as proposed by Van-

Zanten et al.38 and Pino et al.39 is given with modifications for the internal shear layers. It starts by

integrating mean x-momentum equation (3) over the distinct regions shown in Figure 5.

1. Integrate over region A

First, we integrate conditional momentum equation (3) over the region A which extends from

(y1 − ϵ) to y1 below the layer,

 y1

y1−ϵ

∂ ⟨U⟩

∂t
dy = −

 y1

y1−ϵ

⟨V ⟩
∂ ⟨U⟩

∂ y
dy −

 y1

y1−ϵ

∂ ⟨ũṽ⟩

∂ y
dy. (A1)

Then, we apply the Leibniz integral rule to the left hand side (LHS), y1

y1−ϵ

∂ ⟨U⟩

∂t
dy =

∂

∂t

 y1

y1−ϵ

⟨U⟩ dy − ⟨U⟩y1

∂ y1

∂t
+

⟨U⟩y1

− γ1ϵ
 ∂(y1 − ϵ)

∂t

=
∂

∂t


ϵ⟨U⟩y1

−
1

2
ϵ2γ1


− ϵγ1

∂ y1

∂t
, (A2)

where it is assumed that the gradient of the streamwise conditional velocity γ1 =
∂⟨U⟩

∂y

�
y<y1

is con-

stant in this region and
∂(y1−ϵ)

∂t
=

∂(y1)

∂t
, because ϵ is constant. The first term on the right hand side

(RHS) of Eq. (A1) can be written as

−

 y1

y1−ϵ

⟨V ⟩
∂ ⟨U⟩

∂ y
dy = −γ1

 y1

y1−ϵ

⟨V ⟩ dy

= −ϵγ1⟨V ⟩y1
, (A3)
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where again it is assumed that the gradient of the conditional streamwise velocity profile is constant

(i.e., γ1). The last term on the RHS of Eq. (A1) can be written as

−

 y1

y1−ϵ

∂ ⟨ũṽ⟩

∂ y
dy = −ϵγ4, (A4)

where γ4 =
∂⟨ũ ṽ⟩

∂y

�
y<y1

is the gradient in the Reynolds stress in the turbulent region below the

interface. Combining these results yields

∂

∂t


ϵ⟨U⟩y1

−
1

2
ϵ2γ1


− ϵγ1

∂ y1

∂t
= −ϵγ1⟨V ⟩y1

− ϵγ4. (A5)

Rearranging Eq. (A5), dividing by ϵ , and taking the limit of ϵ → 0 yield

∂⟨U⟩y1

∂t
= γ1

(

∂ y1

∂t
− ⟨V ⟩y1

)

− γ4. (A6)

2. Integrate over region B

Next, we integrate Eq. (3) over the jump region B (i.e., y1 < y < y2),

 y2

y1

∂ ⟨U⟩

∂t
dy = −

 y2

y1

⟨V ⟩
∂ ⟨U⟩

∂ y
dy −

 y2

y1

∂ ⟨ũṽ⟩

∂ y
dy. (A7)

Now, Leibniz rule is applied to move the partial derivative of the LHS out of the integral. For the

LHS of Eq. (A7), this yields y2

y1

∂ ⟨U⟩

∂t
dy =

∂

∂t

 y2

y1

⟨U⟩ dy − ⟨U⟩y2

∂ y2

∂t
+ ⟨U⟩y1

∂ y1

∂t

=
∂

∂t


⟨U⟩y1

δw +
δw

2
∆ ⟨U⟩


− ∆ ⟨U⟩

∂ y2

∂t
, (A8)

where the assumption
∂y2

∂t
≈

∂y1

∂t
has been made. The first term on the RHS of Eq. (A7) is rewritten

by using integration by parts and assuming that ⟨V ⟩ is linear inside the jump region. In this re-

gion, ⟨V ⟩ is approximated as ⟨V (y)⟩ = ⟨V ⟩y1
+ γ3(y − y1), where γ3 =

∂⟨V ⟩

∂y

�
y1<y<y2

. Substituting

this relation yields

−

 y2

y1

⟨V ⟩
∂ ⟨U⟩

∂ y
dy = −

 y2

y1

(

⟨V ⟩y1
+ γ3(y − y1)

) ∂ ⟨U⟩

∂ y
dy

= −
(
⟨V ⟩y1

+ γ3(y − y1)
)

⟨U⟩
 y2

y1
+

 y2

y1

⟨U⟩
∂ ⟨V ⟩

∂ y
dy

= −∆ ⟨U⟩ ⟨V ⟩y1
−

1

2
γ3δw∆ ⟨U⟩ , (A9)

where ∆ ⟨U⟩ is the jump in streamwise velocity over the layer and δw is the thickness of the jump

region. The second term on the RHS of Eq. (A7) yields

−

 y2

y1

∂ ⟨ũṽ⟩

∂ y
dy = −⟨ũṽ⟩y2

+ ⟨ũṽ⟩y1
. (A10)

Combining the results from Eqs. (A8)–(A10) into Eq. (A7) yields

δw
∂

∂t


⟨U⟩y1

+
1

2
∆ ⟨U⟩


= ⟨ũṽ⟩y1

− ⟨ũṽ⟩y2
− ∆ ⟨U⟩ ⟨V ⟩y1

−
1

2
γ3δw∆ ⟨U⟩

+∆ ⟨U⟩
∂ y2

∂t
. (A11)
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3. Integrate over region C

The last integration step is performed on the non-turbulent side over region C, between y2 and

y2 + ϵ ,

 y2+ϵ

y2

∂ ⟨U⟩

∂t
dy = −

 y2+ϵ

y2

⟨V ⟩
∂ ⟨U⟩

∂ y
dy −

 y2+ϵ

y2

∂ ⟨ũṽ⟩

∂ y
dy. (A12)

Using Leibniz once more for the LHS of Eq. (A12) yields

 y2+ϵ

y2

∂ ⟨U⟩

∂t
dy =

∂

∂t


⟨U⟩δiϵ + ∆ ⟨U⟩ ϵ +

ϵ2

2
γ2


− ϵγ2

∂h

∂t
, (A13)

where the gradient of the conditional streamwise velocity is given as γ2 =
∂⟨U⟩

∂y

�
y>y2

. Assuming

additionally that γ5 =
∂⟨ũ ṽ⟩

∂y

�
y>y2

is constant in the non-turbulent region, the RHS of Eq. (A12) is

evaluated as

−

 y2+ϵ

y2

⟨V ⟩
∂ ⟨U⟩

∂ y
dy −

 y2+ϵ

y2

∂ ⟨ũṽ⟩

∂ y
dy = −ϵγ2⟨V ⟩y2

− ϵγ5. (A14)

Substituting (A13) and (A14) into Eq. (A12), dividing by ϵ , and taking the limit ϵ → 0 finally yield

∂

∂t


⟨U⟩y1

+ ∆ ⟨U⟩

= γ2

(

∂ y2

∂t
− ⟨V ⟩h

)

− γ5. (A15)

4. Calculating the growth rate of the boundary layer

In order to determine the growth rate of the BL, different equations derived in Subsections 1-3

of the Appendix will be combined. First of all, the LHS of Eq. (A11) is rewritten as

δw
∂

∂t


⟨U⟩y1

+
1

2
∆ ⟨U⟩


=

δw

2



∂⟨U⟩y1

∂t
+
∂

(

⟨U⟩y1
+ ∆ ⟨U⟩

)

∂t


. (A16)

Now, Eqs. (A5) and (A15) can be substituted into Eq. (A11) yielding

δw

2


γ1

(

∂ y1

∂t
− ⟨V ⟩y1

)

− γ4 + γ2

(

∂ y2

∂t
− ⟨V ⟩y2

)

− γ5


= · · ·

⟨ũṽ⟩y1
− ⟨ũṽ⟩y2

− ∆ ⟨U⟩ ⟨V ⟩y1
−

1

2
γ3δw∆ ⟨U⟩ + ∆ ⟨U⟩

∂ y2

∂t
, (A17)

rewriting this equation to solve for
∂y2

∂t
yields

Eb =
1

∆ ⟨U⟩ − δw
2
(γ1 + γ2)


−
δw

2

(

γ1⟨V ⟩y1
+ γ2⟨V ⟩y2

+ γ4 + γ5 − γ3∆ ⟨U⟩
)

−

⟨ũṽ⟩y1
+ ⟨ũṽ⟩y2

+ ∆ ⟨U⟩ ⟨V ⟩y1


, (A18)

where it is assumed that Eb =
∂y2

∂t
≈

∂y1

∂t
, i.e., the jump thickness does not change with time. It is

good to realize that once the jump thickness decreases to zero, the standard 0th order jump model is

retrieved that was originally derived by Lilly.40
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