
Interfaces and Specifications for the

Smalltalk- Collection Classes

William R. Cook

Apple Computer
20525 Mariani Avenue

Cupertino CA 95014

William@AppleLink.Apple.Com

Abstract: The hierarchy of interfaces implicit in the

Smalltalk- collection class library is computed and
analyzed. The interface hierarchy is independent of
the inheritance hierarchy because methods are

frequently deleted by subclasses, and because

unrelated classes sometimes implement the same

messages. Specifications of the interfaces are

developed, revealing subtle relationships among

messages and their methods. The specifications help

identify several kinds of problems in the library:

inherited methods that violate the subclass invariant;
methods that have the same name but unrelated

behaviors; methods that have the same (or related)
behavior but different names. This exercise

demonstrates the utility of interfaces and specilica-
tions, and suggests improvements to the collection

class library structure.

1 Introduction

The Smalltalk- class library [GR83] is a sig-

nificant example of object-oriented design. The

library is the product of at least ten years of develop-

ment and evolution. It encompasses classes for data

structures, graphics and window management, pro-

gram development and compilation. This breadth

and depth makes Smalltalk- an essential testing

ground for new theories about object-oriented pro-

gramming.

This paper analyzes the Smalltalk- collection

class library. These classes, which support a wide

variety of sophisticated data structures, are organized

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

@ 1992 ACM 0-89791-539-9/92/0010/0001...$1.50

in the Smalltalk system by inheritance. The inheri-

tance structure is used to document the classes and is

presented to users as an aid to understanding the li-

brary. Yet there is growing consensus that inheri-

tance is a “producer’s mechanism” [Meyer911 that

has little to do with client’s use of classes.

An alternative organization of the collection

classes is developed by examining the interfaces

supported by the collection objects [CCH089, JF88].

A program for extracting protocols, or sets of mes-

sage names, directly from the Smalltalk system is

described. The algorithm is complicated by sub-

classes that cancel or delete methods that they would

otherwise inherit, and by complex dependencies

among partially implemented methods in abstract

classes. If the subclass does not implement appro-

priate methods, then entire groups of methods de-

fined in the abstract class are not supported. Taking

these complications into account, useful interface

information is extracted automatically from the

Smalltalk library.

An interface hierarchy is a logical organization

of the interfaces of each class in a library. The inter-

face hierarchy is a partial order that factors out

shared interfaces, using the notion of conformance

(or subtyping) for interfaces [Cardelli84, CM89,

BHJLC861. An algorithm for computing the inter-

face hierarchy of a Smalltalk class library is de-

scribed. When applied to the Smalltalk- Collection

classes, the program produces a descriptive picture

of the sharing of messages among classes. Even for

a language like Smalltalk, which supports only single

inheritance, the interface hierarchy is a complex

graph with multiple sharing of partial interfaces.

OOPSLA’92, pp. l-15

i

This is because of canceled methods, and also unre-

lated classes that support the same messages.

A number of errors in the implementation of the

collection classes are immediately apparent from the

interface hierarchy. These are easily corrected, but

the diagram also raises questions that cannot be an-

swered by examining interfaces along. To address

these, the behavior of methods must be analyzed .

Behavioral specification tools based on pre and

post conditions have also been adapted for use in

object-oriented programming [Americagl, LW90].

Specifications have also been used in the design of

the Eiffel libraries [Meyer91]. America’s techniques

are used to develop specifications for the classes in

the Smalltalk library. Several interesting issues arise

while discussing the specifications.

l In some cases, methods are being inherited that

should be canceled because they violate subclass in-

variants.

l In some cases the classes are using a message

for such different purposes that a generalized specifi-

cation cannot be found. In this case it is suggested

that the messages be given different names to recog-

nize their disparate specifications.

9 Two different messages occasionally have the

same specification. In this case the names should be

unified.

l It is useful to break the specifications down

into individual messages, and analyze the relation-

ships among the family of different implementations

of the message. Interfaces can then be formed by

selecting an appropriate message specification from

each message family.

The inheritance hierarchy and specifications sug-

gest some corrections to the collection classes. The

effect of these changes are illustrated in a new inter-

face hierarchy, This hierarchy contrasts strongly

with the more traditional presentation of the collec-

tion classes through the inheritance hierarchy.

Section 2 discusses the problem of extracting

protocols from class implementations and organizing

it into an interface hierarchy. Section 3 presents

specifications for the protocols that are identified in

Section 2. Section 4 presents the conformance rela-

tionships among the class and method specifications.

Section 5 contains an interface hierarchy that incor-

porates the corrections proposed in previous sections.

Section 6 compares the interface hierarchy with the

traditional inheritance hierarchy. Section 7 presents

conclusions.

2 Smalltalk Interface Hierarchy

2.1 Extracting Class Interfaces
This section develops a procedure for automatic

extraction of interfaces from a Smalltalk system. An

interface is a description of the legal operations on an

object. The level of description may vary from

names of supported messages to behavioral specifi-

cation. For Smalltalk [GR83], a commonly used

form of interface is the protocoI, a simple set of op-

eration names. The operation names are called selec-

tors, which list the colon-terminated argument key-

word names of the message. The instances of a

given class share the same protocol [JF88].

A rough cut at extracting the protocol of objects

in a class may be computed by forming the union of

all the selectors for methods defined by the class and

its superclasses. However, a subclass method may

cancel a method from its superclass by redefining it

to return an special error indicating that the method

should not be used. Thus a simple union of method

selectors is not an accurate representation of the legal

operations on the object. For example, the class In-

terval inherits from SequenceableCollection, but

intervals are constants and cannot be changed, unlike

most collections. Thus it is necessary to eliminate all

inherited methods that attempt to modify the collec-

tion. The add: and remove: messages of class In-

terval are a good illustration:

add: newobject

“Provide an error notifka tion that

adding to an Interval is not allowed. ”

self shouldNotlmplement

remove: newobject

“Provide an error notification that re-

moving an element from an lntet-val is

not allowed. ”

self error: ‘elements cannot be removed from

an Interval’

A Smalltalk- program can compute the proto-

col of a class by examining the compiled representa-

tion of methods to determine if they are similar to the

2

ones listed above. These methods, and any private

methods, are deleted from the protocol. The follow-

ing program computes the protocol of a class. The

method i scancelling M e t h o d determines if a

method returns an ermr immediately.

!Behavior methodsfor: ‘accessing’ !

protocol

p := Set new.

self isvariable ifTrue: [

p addAll: #(at: at:put: size) 1.

self collectProtocol: p.

collectProtocol: p

parent := self superclass.

parent notNil ifTrue: [

parent collectProtocol: p]

self.selectors do: [:s 1

((self compiledMethodAt: s)

isCancellingMethod

1 #/private = (self organization

category0fElemet-H: s))

ifTrue: [

aSet remove: s ifAbsent: 0]

ifFalse: [

aSet add: s I]].

Some additional checks, like the one for variable

classes, may be necessary in different versions of

Smalltalk to handle special cases, like primitives, and

operations on the class Object.

A final complication arises from the conven-

tional use of abstract classes [JF88]. These classes

include methods that return an error indicating they

should be implemented by subclasses. These key

methods are identified in the same way as the cancel-

ing methods discussed above. But other methods

typically depend upon the key subclass responsibility

methods. If the subclass does not implement a key

method, then all of the methods depending upon it

must be removed from the protocol. The following

methods taken from class Collection illustrate this

situation.

add: newobject

“Include newobject as one of the receiver’s

elements. Answer newobject. This mes-

sage should not be sent to instances of

subclasses of ArrayedCollection. ”

self subclassResponsibility

addAll: aCollectIon

“Include all the elements of aCollection as

the receiver’s elements. ”

aCollection do: [:each I self add: each 1.

*aCollection

In the results presented here, this kind of mes-

sage dependencies were resolved by manual exami-

nation. But because they are messages sent to self,

references to subclass responsibility methods could

be identified statically. The protocol method de-

fined above could then be extended to eliminate from

the protocol any method that sends messages to self

that are not in the protocol. Dependencies on unim-

plemented methods occur surprisingly often in the

Smalltalk collection library and are a significant

source of confusion in trying to understand collection

behavior.

2.2 The Protocol Hierarchy

The protocol hierarchy arises from the partial or-

der of protocols by the conformance, or subtype, re-

lationship [Cardelli84, CM89, BHJLC861. Inter-

face B conforms to interface A if every object that

satisfies B also satisfies A. This means that the set of

objects satisfying B is a subset of the set satisfying

A. However, the interface B, viewed as a set of op-

erations, is typically larger (more specific) than the

interface A.

For the simple Smalltalk protocols described in

Section 2.1, the conformance relationship is defined

by inclusion on sets of message selectors. That is,

protocol B conforms to protocol A if the set of selec-

tors in B includes the selectors in A. For example,

given

A = { isEmtpy, at: }

B = { isEmpty, at:, add:, remove: }

B conforms to A because the selectors of B include

the selectors of A . This means that any object sup-

porting selectors listed in B can be used in places

where selectors in A are required.

3

A protocol hierarchy is a graphical presentation

of the conformance relation for a set of classes. The

hierarchy also explicitly represents the sharing

among protocols. For example, the three protocols

A,Band

C = { isEmtpy, add:, remove:, first }

produce the following interface hierarchy:

c
first

For any two protocols that share some common-

ality, an abstract protocol is defined to represent the

common behavior and the two protocols are identi-

fied as conforming to the new protocol. These new

protocols are called abstract because they are not

implemented explicitly by any class, but they are

useful for describing the similarities between objects.

In the diagram above, X and Y arc abstract protocols.

The protocol hierarchy is computed from a set of

classes. The algorithm starts with the protocol ex-

traction method defined in the previous section:

profocoZ : class + set(selector)

An inverse function is then computed to map a

selector to the set of classes that implement it..

inverse : selector 3 set(class)

for each class c

for each selector in protocol(c)

add c to inverse(s)

For example, the inverse mapping for the exam-

ple given above is

isEmtpy = { A, B, C)

at: ={A,B}

add: = { B, C }

remove: ={A31

first: =w

The hierarchy is then computed by collecting all

the selectors that are defined by the same set of

classes.

hierarchy : set(class) + set(selector)

for each selector s

add s to hierarchy (inverse(s))

For example, the inverse mapping for the simple

example given above is:

{ A, B, C } = { isEmpty }

{ A, B } = { at: }

{ B, C } = { add:, remove: }

{ C } = { first }

A topological sort by set inclusion of the sets of

classes in the domain of hierarchy gives the protocol

hierarchy. A class name labels the node which is the

minimum of all nodes in which the class appears (a

minimum node may need to be added for it). In the

example, the class B is a label for a new minimal

node. Nodes that remain unnamed at this point are

abstract and names must be invented for them.

Figure 1 illustrates this analysis for the standard

Smalltalk- collection classes. The protocol in-

formation was extracted from ParcPlace Systems

Objectworks for Smalltalk-80TM, version 2.5. The

nodes in the graph represent sets of classes that share

a protocol extracted from the library. The selectors

in the protocols are listed next to the nodes. Selector

keywords in brackets are optional. The edges indi-

cate protocol inclusion: all of the selectors listed for a

node are included by all the nodes below it in the

graph. The node names listed in slanted font are

new abstract protocols that were created by the inter-

section of the other protocols.

Given a large library of classes cancellation and

independent implementation tend to create a large

number of abstract protocols and subtle relationships

among them. Even when these classes are defined

using only single inheritance, the protocol hierarchy

that they embody can be a complex partial order, as

seen in Figure 1. The hierarchy reveals a remarkably

elegant structure of protocol sharing.

2.3 Design Review
A protocol hierarchy is a useful tool for review-

ing the design of a class library.

The basic collection operations move upward in

the graph where they are more widely shared, as

abstract protocols. Several protocols have only one

or two selectors. For example, the class Extensible-

Collection has only add: (and addAll: which de-

pends upon it). The protocols below Extensible-

Collection represent those collections that can grow

in size. These protocols correspond to the bounded,

4

Figure 1:

Smalltalk-

Collection Classes
Protocol Hierarchy

Collection isEmpty size includes: occurrence&f:
do: select: detect:[ifNone:] reject:

Indexed Extensible
Collecfion

Updataz \
Collection Collection

Mapped
Collection

contents

atAIIPut:
atAll:put:

replaceAll with:-
[from:to:]

replaceFrom:tonnrith:-

[startingAt:]

Array Interval

I\
String

increment

LinkedList

/

addfirst:
addlast:

< c= >= > sameAs: asLowercase
match:[ignoreCase:] asuppercase

spellAgainst: asstring
findSttfng:starting- asNumber

At:ifAbsent: copyUpTo: aslntegerArray
contractTo: chopTo: asFilename

display[On:]at: assymbol

Dictionary protocol

at:ifAbsent: values keys keysDo
includesKey: removeKey:[ifAbsent:]
associationAt:[ifAbsent:]
keyAtValue:[ifAbsent:]
includesAssociation: associations
associationsDo:
removeAssociation:[ifAbsent:]

removeAll:

\

WI

add:withOccurrences:
sortedElements
sortedCounts

removeFirst
removeLast

Relative after: before:

Indexed
Collec”-

,

removeLast:

Ordeied Shed sortBlock

Collection Collection ;izl;;k:

SequencableCollection protocol

first last reverse with:do: reverseDo: findlast: findfirst:
prevlndexOf:from:to: nextlndexOf:from:to:
copyReplaceFrom:to:with: copyReplaceAll:with: ,
copyFrom:to: copywith: copywithout: writestream
readstream asArray mappedBy: indexOf:[ifAbsent:]
indexOfSubCollection:startingAt:[ifAbsent:]

or resizable, storage forms in the Eiffel data structure

library [Meyet%].

Abstract protocols also arise from deletion of

methods during inheritance. When messages are

canceled from the subclass protocol as discussed in

section 2.1, the subclass protocol does not conform to

its superclass’s. In this case both the subclass and

superclass protocol conform to the protocol of the

superclass minus those selectors canceled by the sub-

class.

The protocol hierarchy explicitly represents simi-

larities between classes that are not related by inheri-

tance. There are many examples in the Smalltalk li-

braries, one being the add: message on LinkedList

and Set. This topic is examined in more detail in

Section 6.

The hierarchy highlights messages that are not

implemented uniformly. This is illustrated by the

SubtractableCollection protocol, which contains

only the binary minus (-) message. This message

was extended for use on collections only recently in

ParcPlace Smalltalk, and hence it appears to not been

implemented in all the classes where it is expected.

The uniformity of the class library is improved by

implementing minus in Bag and LinkedList, and

canceled it from Dictionary; SubtractableCollec-

tion would merge with the closely related remove

messages in the RemovableCollection protocol.

Finally, the protocol hierarchy raises questions

that cannot be answered by without a more detailed

analysis of method behavior. For example, Dictio-

nary cancels the removal methods it would otherwise

inherit from Set. But it does not cancel the appar-

ently symmetric methods for adding. Identifying this

relationship raises the question of why Dictionary

cancels the remove methods but not the add methods.

Another example is the class SortedCollection,

which supports messages for adding elements at par-

ticular places in the sequence. This is suspicious

since SortedCollections provide an internally de-

fined order. The next section applies specification

tools to these problems.

3 Collection Class Specification

3.1 Specification Techniques
Specifications are developed for the collection

class protocols to investigate further the design of the

collection classes. Specification techniques available

for analyzing objects include America’s pre/post

condition specifications with representation transfer

functions [Americagl], Leaven’s simulation model

with traits [LW90], and Meyer’s use of pre/post

conditions and class invariants in Eiffel [Meyer%].

We use an version of America’s formulation, since it

is the simple and direct. The specifications for or-

dered collection and bag are based on America’s.

Each class in the library has an abstract represen-

tation, and a set of methods defined by pre and post

conditions on the representation and the method ar-

guments. The set V represents the set of all possible

Smalltalk values. In post conditions, a primed (‘)

variable indicates the value of the representation be-

fore the operation. The symbol p in a postcondition

represents the result, or return value, of a method.

Specification conformance is determined by the

existence of a transfer function that converts between

abstract representations and preserves pre and post

conditions. For specification B to conform to A,

there must be a transfer function from the represen-

tation of B to the representation of A. In addition,

for each operation in A, the precondition in A must

imply the corresponding precondition in B, and the

postcondition in B must imply the postcondition in

A. For more explanation see America [91].

The ifAbsent: modifier on events is not dis-

cussed explicitly. It is understood as evaluating its

exception block argument if the precondition on the

basic method is violated. In addition, the ‘I.. .All”

variants of methods are not discussed, being repeated

forms of the basic method.

The specifications are listed in an order conve-

nient for discussion, roughly in order of increasing

complexity. To deal with the problem of a selector

with several incompatible specifications, new selec-

tors, written in slanted font, are introduced in some

cases. An attempt is made to retain the most com-

mon meaning of existing selectors.

3.2 Bags
Bags are collections that allow repeated elements

but don’t have any notion of ordering. Bags are rep-

resented as functions from values to natural numbers,

indicating how many times the value occurs in the

bag. The notation F yx G means that the functions

F and G are equal at all points but x.

Bag
Representation F : V + Nat

isEmpty p = (Vx F(x)=O)

size P = C, F(x)

includes: x p = (F(x) > 0)

occurencesOf: x p = F(X)

add: x F(x) = F(x) + 1
and F =/x F

F(x) > 0 remove: x F(x) = F(x) - 1
and F =lx F

3.3 Sets
Sets are represented as subsets S of the set of all

values V. This specification also defines the behav-

ior of the abstract protocols ExtensibleCol!ection

and RemovableCollection.

Set
Representation S c V

isEmpty

size

includes: x

include: x
[add: x]

p=(S=O)

p = #S

p=(xG S)

S=S’u[x)

XE s removeEvery: x S=S’-{ x)
[remove: x]

This specification raises a basic problem with

using message names alone as the basis for confor-

mance and classification. The problem is that the

add: and remove: on sets have different behavior

than on other collections, which support multiple oc-

currences of elements. Since sets do not allow mul-

tiple occurrences, add: is weaker - ensuring only

that the element is present, and remove: is stronger -

eliminating the element completely.

If method names are to be carriers of behavioral

meaning, new names are needed for these operations.

Thus the two new messages names, include: and

removeEvery:, are listed in the specification. These

messages have behaviors that are useful in any col-

lection of elements; and they are meaningfully re-

lated to add: and remove:. By defining include:

and removeEvery: on bags, they will conform to

sets (although the size method must be omitted

conformance to hold).

3.4 Indexed Collections
Indexed collections represent first-class func-

tional mappings. These mappings need not be finite;

however, they are constant because no update opera-

tions are defined. The representation is a function F

with fixed domain K.

IndexedCollection
Representation K s V and F: K + V

kE K at: k P = F(k)

includeslndex: k p = (k E K)

3k]v=F(k) indexof: v F(P) = v

The methods indexof: from SequenceableCol-

lection and includesKey: from Dictionary (renamed

includeslndex: for uniformity) are introduced here

because they apply equally well to all indexed col-

lections. The choice of index to refer to the domain

of the mapping is perhaps not perfect, but since in-

dexed collections cover a wide variety of mappings

(functions, arrays, hash tables, etc) no one word is

likely to be natural in all cases.

3.5 Sequenceable Collections
Sequenceable collections are the base class for

all collections that have a notion of ordering. They

have as a representation a sequence R : V*. Opera-

tions on sequences are concatenation Rl l R2, length

#R, indexed access R[i], and subsequence R[l.. .u].

SequenceableCollection
Representation R : V*

Preconditions:
xl={#R>O)

7r2=(lIiI#R]

7c3=(x~R}

7Cl first P = WI

xl last p=R[#R]

7

R2 at: i p = R[i]

includes: x p = (El i . R[i] = x)

0ccurencesOf: x p = #(i I R[i] = x }

7c3 findfirst: x Rtpl =x
and x P R[l...p-1]

X3 findlast: x WI = x
and x e R[p+l...#R]

n3 indexof: x WI= x
and x CF R[l...p-1]

With the introduction of a sequence order to in-

dexed collections, the indexof: message is defined

to return one of the more specific index search meth-

ods, in this case findfirst:. This relationship be-

tween a method, e.g. indexof:, on a less structured

collection and method, e.g. findfirst:, on collections

with more structure (like order or duplicate elements)

is quite common; it is discussed more in Section 4.2

3.6 Linked Lists
A linked list is a particular representation for se-

quences of nodes. Each node can appear only once

in the list, so linked lists are somewhat similar to

sets. In the hierarchy it is used as a general name for

a sequences from which elements can be added and

removed at the ends. However, it would be better if

LinkedList were a representational variant of a more

general collection type.

LinkedList
Representation R : V*

addfirst: x R=xeR

addlast: x R=R’*x

add: x R=x*R

#R>O removeFirst p*R = R’

#R>O removeLast R*p = R’

1 I i I#R removeAtlndex: i R’ = A*p*B

andR=A*B
and i-l=#A

#R2n removefirst: n R’ = p*R

andn=#p

#Rln removeLast: n R’=R*p

andn=#p

The message add: is specified to be one of the

order-dependent methods, in this case addlast:.

The message removeAtlndex: is included here be-

cause it is directly related to the other two remove

methods.

Two methods from OrderedCollection, re-

movefirst: and removelast:, which remove a

number of elements from either end of the list, are

included here because they generalize the single ele-

ment removal of removeFirst and removeLast.

Not that although the names for these messages are

similar to addfirst: and addFirst:, they have very

different behavior. All of these new methods can be

efficiently implemented on linked lists.

3.7 Intervals

An interval is a collection of numbers between a

lower and upper bound. This specification is a sim-

plification of the Smalltalk Interval class, which also

has a step, or increment, value. This specification

assumes a step of 1. The interval is empty if the

lower bound is greater than the upper bound.

Interval
Representation Integers L and U

includes: x p =(L<xIU)

0ccurencesOf: x p = 1 if L 5 x 5 U

p = 0 otherwise

U1L first p =L

U1L last p =u

i I U-L+1 at: i p =L+i-1

LlxlU indexof: v p =v-L+l

U2L removeFirst p = L

andL=L’+l

U1L removeLast p = U

andU=U’-1

n I U-L+1 removefirst: n p = IL’,..., ~-1)
andL=L’+n

n I U-L+1 removelast: n p = (U+l,....

U’)
U=U’-n

The indexof: method that was included in Se-

quenceableCollection must be specified here, al-

though it is not defined for intervals in Smalltalk. In

8

addition, the removal methods that work on the ends

of a sequence are extended to apply to intervals.
3.10 Arrays

3.8 Updatable Collections
An updatable collection is an indexed collection

that can change over time. These collections tend to

be finite mappings. The representation is a function

and explicit domain as for indexed collections.

UpdatableCollection
Representation K G V and F : K + V

An Array is an updatable collection with a finite,

contiguous and fixed range of keys from 1 to some

bound B .

Array
Representation K= (l,..., B), F: K+V

kE K at: k put: v F(k) = v
and F=h F

ke K at: k put: v F(k) = v
and FE/~ F

The subtypes of updatable collections are distin-

guished by whether the domain is changeable

(Dictionary) or fixed (Array).

atAIIPut: v Vk.F(k)=v

1lalB replaceFrom: a Valk<b.F(k)=v

llb<B to: b with: v Vk<a . F(k) = F(k)

Vk>b . F(k) = F(k)

3.9 Dictionaries
A dictionary is an updatable collection with a

flexible domain. It is represented by an index set K

together with a mapping F from indices to values.

Dictionaries weaken the precondition on at:put: al-

lowing new keys to be defined.

Dictionary
Representation K c V, F : K + V

3.11 Ordered Collections
Ordered collections are generally modifiable se-

quenceable collections. They are an extension of the

LinkedList specification, represented by a sequence

R : V*.

OrderedCollection
Representation R : V*

Preconditions:

xl={eER}

7c2=[lSiI#R}

at: k put: v F(k) = v xl add: v before: e R = A*v*e*B
and FE/~ F and R’ = A*e*B
andK=K’u(k} andvg A

add: p F(p.key) = p.value
and F EJp.key F

and K = K’ u { p.key)

xl add: v after: e R = A=e=v=B

and R’ = A*e*B

andve A

values p = (F(k) I k E K }

k E K removelndex: k K=K’-(k}

The add: method on Dictionary has a different

7~2 add: v R = A*vmB

before Index: i and R’ = A*B

and i-l=#A

specification from add: in other collections. Its ar-

gument is an association, which is a record with

fields key and value. Adding an association to a dic-

tionary removes a previously added association with

the same key. It is unlikely that the various uses of

add: can all be made to conform to a general specifi-

cation. This is evidence that add: should be canceled

from the Dictionary interface, and addAssociation:

used in its place.

removeEvery: x R = Al’... *An where

R’ = Alax*...*x*An

andxe Ai

removeAll- R = Al’... *An where

SuchThat: c R’= Al*xl*...*xn*An+l

andV1 liln.c(xi)

andtree R.-c(e)

The message keyAtValue: is renamed indexof:

(defined in IndexedCollection) and removeKey: is

renamed removelndex: to be compatible with other

indexed collections.

3.12 Sorted Collections
A sorted collection is an ordered collection

whose order is determined internally by a predicate

I (which must be a total order). The representation

is I together with a sequence R of values that are

sorted with respect to 1.

9

SortedCollection
Representation R : V* , I : V x V + Boolean

Invariant: 1 I i I j I #s w R[i] I Rlj]

add: x R = A*x*B
where R’ = A*B

andVaE A.alx

andVbE B.xlb

The Smalltalk system allows the message add-

First: and addlast: as part of the SortedCollection

protocol since it inherits from OrderedCollection.

However, the specification for these messages vio-

lates the representation constraint for sorted collec-

tions: the new value cannot be guaranteed to be first

in the sequence because it must be placed in sorted

order. In the standard Smalltalk system the add-

First: message violates the representation invariant of

SortedCollections.

There are two possibilities: either remove the

messages from the sorted collection interface, or

place additional constraints on them to make them

valid. By adding a precondition to the messages,

they can be brought into line with SortedCollection.

Vy E R.x I y addFirst: x R = x*R’

Vye R.ylx addlast: x R=R’*x

Either canceling the methods or adding these

preconditions prevents the sorted collection interface

from conforming to the OrderedCollection inter-

face.

It is arguable that it makes no sense to add a first

element to a SortedCollection because the order of

elements in a SortedCollection is determined inter-

nally: the client has no control over the order of ele-

ments. By omitting these methods, along with all

the other order-specific methods, a SortedCollection

is a SequenceableCollection, but not an Ordered-

Collection.

4 Specification Conformance

4.1 Class Conformance
The relationships among the classes specified in

the previous section are defined in Figure 2. The di-

agram specifies which classes can simulate the be-

havior of other classes. For example, OrderedCol-

Collection s

indexed

’ \

Collection c

et

S = (x I F(x) > 0)

Updatable Sequenceable
Collection F Collection R

Collection R

=# (klR[k]=x]

1

R

Figure 2: Class Specification Conformance

10

lections can simulate Bags, because they have all the

behavior of bags plus the notion of ordering. Also

listed are the transfer functions written in terms of the

abstract representations of the specifications.

4.2 Message Families
Messages are naturally organized into families

consisting of individual messages that are closely re-

lated but apply to a range of collections. The mes-

sage families are for adding, testing, removing, and

locating elements. The collections are organized by

degree of structure: unique/duplicate elements, or-

dered/unordered, internally/externally ordered. Some

message families are summarized in Figure 3. An ar-

row from B to A indicates that the specification of

message B conforms to that of message A. The utility

of this diagram is that for any set of desired opera-

tions it is possible to determine the conformance rela-

tions, if any, that exist between them. Only if all

messages conform will their union conform.

Two new messages, next and any, are defined to

make this diagram more uniform; they are the un-

ordered versions of the remove and first /last mes-

sages called respectively.

Set
Representation S G V

#S>O any PCS

#R>O next PES
and S = S’ - { p }

5 Recommendations for Smalltalk

5.1 Corrected Interface Hierarchy
Figure 4 illustrates an protocol hierarchy that in-

corporates the suggestions made by reviewing the

protocol hierarchy and developing specifications.

The following changes were made:

add: renamed include: and remove: renamed

removeEvery: for Set; these new messages are de-

fined on all collections below Set.

Subtraction (-) canceled from Dictionary.

add: renamed addAssociation: for Dictionary

includesKey: renamed includeslndex:, moved

to IndexedCollection and defined for all subclasses.

indexof: moved to IndexedCollection and de-

fined for all subclasses, where it subsumes keyAt-

Value:.

Set Qrdered Sorted

add: rc----- add:
= include:

: - removeFirst:

/

remove:
: w removelast:

remme: w removefvery: e removeEvery: w removeEvery:
= removeEvery:

next <
- removeFirst

next 1
- removeLast

any 7 any
first Y first

last - last

Figure 3: Message Families

11

Figure 4:

Corrected Smalltalk

Collection Classes

Protocol Hierarchy

Collection isEmpty size includes: occurrencesOf:

/

do: select: detecf:[ifNone:] reject:
collect: injectinto: copyEmpty:

asset asBag asSortedCollection

indexed
asOrderedCollection

Collection

include:
set includeAll:

I

removeEvery:

/
Mapped

Collection
contents

atAll:put:

\ \
Dictionary Sequenceable

I

add:
addAll:

Extensible remove:[ifAbsent]
Co//ection removeAll:

* /lecy YeAIISuchThaf:

/

removeFirst \
removeLast Poppable

removefirst: Collection

Bag

Away-

atAIIPut:
replaceAll:with:

replaceFrom:to:with:-

[startingAt:]

1

String

\ / removeAtIndex:

sameAs: asString Ordered Sorted
< C= >= > asNumber Collection Collection

match: aslnWwAw & LinkedList
match:ignoreCase: asLowercase

sortBlock

spellAgainst: asuppercase addfirst:
sort Block:

copyUpTo: asFilename addLast:
initialize

\

addwithOccurrences:
sortedElements
sortedCounts

cor%radtTo: assymbol add:before:
chopTo: add:after:

display[On:]at: add:beforelndex:
findString:starting- addAIIFirst:

Af:[ifAbsent:] addAllLast:

Dictionary protocol SequencableCollection protocol

values keys keysDo first last after: before: reverse with:do: reverseDo:
removeKey:[ifAbsent:] findLast: findfirst: prevlndexOf:fromIo:
associationAt:[ifAbsent:] nextlndexOf:from:fo: copyReplaceFrom:to:with:
includesAssociation: addAssociation: copyReplaceAll:with: , copyFrom:to: copywith:

associations associationsDo: copyWithout: writeStream readstream asArray
removeAssociafion:[ifAbsenf:] mappedBy: indexOf:[ifAbsent:]

indexOfSubCollecfion:startingAt:[ifAbsent:]

12

removeFirst, removeLast, removefirst:, and

removeLast: defined for Intervals.

removefirst, removelast, removeAtIndex:

and removeAIISuchThat: defined for LinkedList

after: and before: moved to SequenceableCol-

lection

addfirst:, addLast:, add:before:, add:after:,

addAIIFirst:, addAllLast:, and add:beforelndex:

canceled from SortedCollection.

5.2 Extending the Analysis
The process for analyzing class libraries can be

applied to other parts of the Smalltalk. One area that

would benefit from examination is the stream classes.

These classes are conceptually similar to collections,

but are implemented in an entirely different part of the

class system.

A Stream is a destination or source of values.

Streams are part of the collection classes but are not

well integrated with the other collections. This sec-

tion discusses how they could be unified with other

collections

ReadStream
Representation R : V*

isEmpty p=(#R=O)

#R>O next R’ = p*R

#R>O peek p = Ml1

The next method has the same specification as

the removeFirst method in OrderedCollection. The

fact that it removes the first element instead of the last

is merely an artifact of the specification; it is not vis-

ible to the client. Similarly, peek corresponds to the

first method.

WriteStream
Representation R : V*

nextPut: x R = R’*x

contents p=R

The method nextPut: has the same specification

as addlast: in OrderedCollection, but is indepen-

dent of the actual ordering used. Renaming the next-

Put: to be add: allows for more polymorphism;

WriteStream then conforms to ExtensibleCollec-

tion.

6 Interfaces Versus Inheritance

Figure 5 shows the Smalltalk inheritance hierar-

chy (in bold) superimposed on the protocol hierarchy

of Figure 4 (dotted lines). This is a concrete illustra-

tion of the difference, even at a syntactic level, be-

tween inheritance and conformance [CHC90, Syn-

der86]. There are two cases where the hierarchy and

protocol hierarchies are in direct conflict: Dictionary

and SortedCollection. Dictionary inherits from Set

but its protocol does not conform to Set’s. This is

because Dictionary cancels several of Set’s methods.

SortedCollection has a similar pattern of inheritance

without conformance.

Collection
..+’ ‘...*

..**

l”de&

‘*.
‘...

t.

Collection
‘-..

t.
5 f 2 w+-i$py

Mappe-cl- I Dirhonarv Seauenceable Extenble
Coll&tion f - Cbllection Collection I

‘*.*
t

Poppable [

Collection i

fval

L

lntehally

Removable

-3 j

/’ Collection

. ..**-**

Iereh’eSbrted

ction Collection Collet

&

LinkedList

Figure 5: Interfaces versus Inheritance

Another significant deviation centers around Se-

quenceableCollection, which has inheritors

(subclasses) with various combinations of protocols

unrelated to SequenceableCollection. Some of the

subclasses (Array and String) are Updatable but not

Extensible, since they support at:put:. Other sub-

classes (LinkedList and SortedCollection) are Ex-

tensible but not Updatable, since they support add:.

A final one (OrderedCollection) is both Extensible

and Updatable. The abstract classes in Smalltalk

act as mixins for methods that depend upon a key

subclass responsibility method; to express this struc-

13

ture more directly, Smalltalk would need multiple in-

heritance or mixins [BC90, Moon86, Carnese84J.

7 Conclusion

Interfaces are a useful tool for analyzing class li-

braries. These interfaces may range in level of detail

from protocols (sets of message names) to behavioral

specifications. A detailed analysis of the Smalltalk

collection class library demonstrates the usefulness of

this approach.

Protocols have the advantage that they can be

extracted automatically from classes in the Smalltalk.

Two aspects of Smalltalk complicate this process.

The first is the well-known problem of inheritance

with exceptions, or deletion of methods. The second

problem identified here is the use of abstract classes

as “grab-bags” of inheritable functionality - in many

cases the subclasses don’t support various aspects of

the abstract behavior. This use of abstract classes is

an effective way to encode complex sharing of im-

plementations in a single inheritance hierarchy, but it

prevents easy determination of the messages a given

class supports.

When protocols are placed into a hierarchy orga-

nized by protocol conformance, or subtyping, an al-

ternative view of the structure of the library is re-

vealed. This protocol hierarchy is a clients view of

the library, in contrast to the implementors view pro-

vided by the inheritance hierarchy. Even though the

classes are implemented using only single inheritance,

protocol hierarchy of the collection class library is a

complex partial order with multiple sharing of inter-

faces.

The protocol hierarchy is also useful for review-

ing the design of a class library. Several omissions

and implementation problems are immediately appar-

ent. However, some questions are raised that cannot

be answered without a more detailed analysis of

method behavior.

A pre/post condition specification formalism, de-

veloped by Pierre America, is used for expressing

specifications of the collection protocols. These

specifications reveal the subtlety of the Smalltalk

class library: each of the primary messages for

adding, testing, and removing on the collection

classes is a family of progressively more refined

specification. The analysis also uncovers some prob-

lems in the library. Some inherited methods violate

the subclass representation invariants. Some mes-

sages have incompatible specifications in different

classes. There ate also different messages with the

same specification. For message names to be effec-

tive as carriers of behavioral meaning, care must be

taken to ensure that the names are used consistently

with the underlying formal specifications.

Acknowledgments

This work has its origins in the Abel project at

HPLabs, where Peter Canning and Walt Hill con-

tributed to its development. I would like to thank

John Mitchell, Warren Harris, and Gary Leavens for

their comments on the paper.

References

[America911 P. America. “A behavioral approach to

subtyping object-oriented programming Lan-

guages.” In Proc. of rhe REX School/Workshop

on the Foundations of Object-Oriented Lan-

guages, LNCS 489, Springer-Verlag, 199 1.

[BHJLC86] A. Black, N. Hutchinson, E. Jul, H.

Levy and L. Carter. “Distribution and abstract

types in Emerald.” IEEE Transactions on Soft-

ware Engineering SE-13: 1.1987.

[BI8] A. H. Boming and D. H. Ingalls. “A type

declaration and inference system for Smalltalk.”

In Proc. of the ACM Symp. on Principles of Pro-

gramming Languages, 1982, pp. 133-141.

[BC90] G. Bracha and W. Cook. “Mixin-based

inheritance.” In Proc. of ACM Conf. on Object-

Oriented Programming Systems, Languages and

Applications, 1990, pp. 303-3 11.

[CCH089] P. Canning, W. Cook, W. Hill and W.

Olthoff. “Interfaces for strongly-typed object-

oriented programming.” In Proc. of ACM Conf.

on Object-Oriented Programming Systems, Lan-

guages and Applications, 1989, pp. 457-467.

[Cardelli84] L. Cardelli. “A semantics of multiple

inheritance.” Semantics of Data Types, LNCS

173, Springer-Verlag, 1984, pp. 51-68.

[Camese84] D. J. Camese. “Multiple inheritance in

contemporary programming languages.” MIT

Lab for Computer Science TR-328, 1984.

14

[CHC90] W. Cook, W. Hill and P. Canning.

“Inheritance is not subtyping.” In Proc. of the

ACM Symp. on Principles of Programming Lan-

guages, 1990, pp. 125-135.

[LW90] G. T. Leavens and W. E. Weihl.

“Reasoning about object-oriented programs that

use subtypes.” In Proc. of ACM Conf on Object-

Oriented Programming Systems, Languages and

Applications, 1990, pp. 212-224.

[CM891 L. Cardelli and J. C. Mitchell. “Operations

on records.” DEC Systems Research Center

Technical Note #48, 1989.

[GR83] A. Goldberg and D. Robson. Smalltalk-80:

the language and its implementation. Addison-

Wesley, 1983.

[Graver891 J. Graver. Type-checking and type-

inference for object-oriented programming

languages. Ph.D. Thesis, University of Illinois,

1989.

[JGZ88] R. Johnson, J. Graver and L. Zurawski.

“TS: an optimizing compiler for Smalltalk.” In

Proc. of ACM Conf. on Object-Oriented Pro-

gramming Systems, Languages and Applications,

1988.

[Johnson861 R. Johnson. “Type-checking Small-

talk.” In Proc. of ACM Conf. on Object-Oriented

Programming Systems, Languages and Applica-

tions, 1986, pp. 315-321.

[JF88] R. Johnson and B. Foote. “Designing

reusable classes.” Journal of Object-Oriented

Programming, June/July 1988, pp. 22-35.

[LTP86] W. R. LaLonde, D. A. Thomas and J. R.

Pugh. “An exemplar based Smalltalk.” In Proc.

of ACM Conf. on Object-Oriented Programming

Systems, Languages and Applications, 1986, pp.

322-330.

[Meyer9 l] B. Meyer. “Lessons from the design of

the Eiffel libraries” CACM 33:9 (September

1991) pp. 68-84.

[Meyer871 B. Meyer. Object-Oriented Sofhvare

Construction. Prentice-Hall, 1987.

[Moon861 D. A. Moon. “Object-oriented pro-

gramming with Flavors.” In Proc. of ACM Conf.

on Object-Oriented Programming Systems, Lan-

guages and Applications, 1986, pp. l-8.

[Synder86] A. Snyder. “Encapsulation and inheri-

tance in object-oriented programming languages.”

In Proc. of ACM Conf. on Object-Oriented Pro-

gramming Systems, Languages and Applications,

1986, pp. 38-45.

[Suzuki8 l] N. Suzuki. “Inferring types in Small-

talk.” In Proc. of the ACM Symp. on Principles

of Programming Languages, 198 1, pp. 187-199.

