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Abstract: The hierarchy of interfaces implicit in the 

Smalltalk- collection class library is computed and 
analyzed. The interface hierarchy is independent of 
the inheritance hierarchy because methods are 

frequently deleted by subclasses, and because 

unrelated classes sometimes implement the same 

messages. Specifications of the interfaces are 

developed, revealing subtle relationships among 

messages and their methods. The specifications help 

identify several kinds of problems in the library: 

inherited methods that violate the subclass invariant; 
methods that have the same name but unrelated 

behaviors; methods that have the same (or related) 
behavior but different names. This exercise 

demonstrates the utility of interfaces and specilica- 
tions, and suggests improvements to the collection 

class library structure. 

1 Introduction 

The Smalltalk- class library [GR83] is a sig- 

nificant example of object-oriented design. The 

library is the product of at least ten years of develop- 

ment and evolution. It encompasses classes for data 

structures, graphics and window management, pro- 

gram development and compilation. This breadth 

and depth makes Smalltalk- an essential testing 

ground for new theories about object-oriented pro- 

gramming. 

This paper analyzes the Smalltalk- collection 

class library. These classes, which support a wide 

variety of sophisticated data structures, are organized 
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in the Smalltalk system by inheritance. The inheri- 

tance structure is used to document the classes and is 

presented to users as an aid to understanding the li- 

brary. Yet there is growing consensus that inheri- 

tance is a “producer’s mechanism” [Meyer911 that 

has little to do with client’s use of classes. 

An alternative organization of the collection 

classes is developed by examining the interfaces 

supported by the collection objects [CCH089, JF88]. 

A program for extracting protocols, or sets of mes- 

sage names, directly from the Smalltalk system is 

described. The algorithm is complicated by sub- 

classes that cancel or delete methods that they would 

otherwise inherit, and by complex dependencies 

among partially implemented methods in abstract 

classes. If the subclass does not implement appro- 

priate methods, then entire groups of methods de- 

fined in the abstract class are not supported. Taking 

these complications into account, useful interface 

information is extracted automatically from the 

Smalltalk library. 

An interface hierarchy is a logical organization 

of the interfaces of each class in a library. The inter- 

face hierarchy is a partial order that factors out 

shared interfaces, using the notion of conformance 

(or subtyping) for interfaces [Cardelli84, CM89, 

BHJLC861. An algorithm for computing the inter- 

face hierarchy of a Smalltalk class library is de- 

scribed. When applied to the Smalltalk- Collection 

classes, the program produces a descriptive picture 

of the sharing of messages among classes. Even for 

a language like Smalltalk, which supports only single 

inheritance, the interface hierarchy is a complex 

graph with multiple sharing of partial interfaces. 

OOPSLA’92, pp. l-15 
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This is because of canceled methods, and also unre- 

lated classes that support the same messages. 

A number of errors in the implementation of the 

collection classes are immediately apparent from the 

interface hierarchy. These are easily corrected, but 

the diagram also raises questions that cannot be an- 

swered by examining interfaces along. To address 

these, the behavior of methods must be analyzed . 

Behavioral specification tools based on pre and 

post conditions have also been adapted for use in 

object-oriented programming [Americagl, LW90]. 

Specifications have also been used in the design of 

the Eiffel libraries [Meyer91]. America’s techniques 

are used to develop specifications for the classes in 

the Smalltalk library. Several interesting issues arise 

while discussing the specifications. 

l In some cases, methods are being inherited that 

should be canceled because they violate subclass in- 

variants. 

l In some cases the classes are using a message 

for such different purposes that a generalized specifi- 

cation cannot be found. In this case it is suggested 

that the messages be given different names to recog- 

nize their disparate specifications. 

9 Two different messages occasionally have the 

same specification. In this case the names should be 

unified. 

l It is useful to break the specifications down 

into individual messages, and analyze the relation- 

ships among the family of different implementations 

of the message. Interfaces can then be formed by 

selecting an appropriate message specification from 

each message family. 

The inheritance hierarchy and specifications sug- 

gest some corrections to the collection classes. The 

effect of these changes are illustrated in a new inter- 

face hierarchy, This hierarchy contrasts strongly 

with the more traditional presentation of the collec- 

tion classes through the inheritance hierarchy. 

Section 2 discusses the problem of extracting 

protocols from class implementations and organizing 

it into an interface hierarchy. Section 3 presents 

specifications for the protocols that are identified in 

Section 2. Section 4 presents the conformance rela- 

tionships among the class and method specifications. 

Section 5 contains an interface hierarchy that incor- 

porates the corrections proposed in previous sections. 

Section 6 compares the interface hierarchy with the 

traditional inheritance hierarchy. Section 7 presents 

conclusions. 

2 Smalltalk Interface Hierarchy 

2.1 Extracting Class Interfaces 
This section develops a procedure for automatic 

extraction of interfaces from a Smalltalk system. An 

interface is a description of the legal operations on an 

object. The level of description may vary from 

names of supported messages to behavioral specifi- 

cation. For Smalltalk [GR83], a commonly used 

form of interface is the protocoI, a simple set of op- 

eration names. The operation names are called selec- 

tors, which list the colon-terminated argument key- 

word names of the message. The instances of a 

given class share the same protocol [JF88]. 

A rough cut at extracting the protocol of objects 

in a class may be computed by forming the union of 

all the selectors for methods defined by the class and 

its superclasses. However, a subclass method may 

cancel a method from its superclass by redefining it 

to return an special error indicating that the method 

should not be used. Thus a simple union of method 

selectors is not an accurate representation of the legal 

operations on the object. For example, the class In- 

terval inherits from SequenceableCollection, but 

intervals are constants and cannot be changed, unlike 

most collections. Thus it is necessary to eliminate all 

inherited methods that attempt to modify the collec- 

tion. The add: and remove: messages of class In- 

terval are a good illustration: 

add: newobject 

“Provide an error notifka tion that 

adding to an Interval is not allowed. ” 

self shouldNotlmplement 

remove: newobject 

“Provide an error notification that re- 

moving an element from an lntet-val is 

not allowed. ” 

self error: ‘elements cannot be removed from 

an Interval’ 

A Smalltalk- program can compute the proto- 

col of a class by examining the compiled representa- 

tion of methods to determine if they are similar to the 
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ones listed above. These methods, and any private 

methods, are deleted from the protocol. The follow- 

ing program computes the protocol of a class. The 

method i scancelling M e t h o d determines if a 

method returns an ermr immediately. 

!Behavior methodsfor: ‘accessing’ ! 

protocol 

p := Set new. 

self isvariable ifTrue: [ 

p addAll: #(at: at:put: size) 1. 

self collectProtocol: p. 

collectProtocol: p 

parent := self superclass. 

parent notNil ifTrue: [ 

parent collectProtocol: p ] 

self.selectors do: [ :s 1 

((self compiledMethodAt: s) 

isCancellingMethod 

1 #/private = (self organization 

category0fElemet-H: s)) 

ifTrue: [ 

aSet remove: s ifAbsent: 0 ] 

ifFalse: [ 

aSet add: s I]]. 

Some additional checks, like the one for variable 

classes, may be necessary in different versions of 

Smalltalk to handle special cases, like primitives, and 

operations on the class Object. 

A final complication arises from the conven- 

tional use of abstract classes [JF88]. These classes 

include methods that return an error indicating they 

should be implemented by subclasses. These key 

methods are identified in the same way as the cancel- 

ing methods discussed above. But other methods 

typically depend upon the key subclass responsibility 

methods. If the subclass does not implement a key 

method, then all of the methods depending upon it 

must be removed from the protocol. The following 

methods taken from class Collection illustrate this 

situation. 

add: newobject 

“Include newobject as one of the receiver’s 

elements. Answer newobject. This mes- 

sage should not be sent to instances of 

subclasses of ArrayedCollection. ” 

self subclassResponsibility 

addAll: aCollectIon 

“Include all the elements of aCollection as 

the receiver’s elements. ” 

aCollection do: [ :each I self add: each 1. 

*aCollection 

In the results presented here, this kind of mes- 

sage dependencies were resolved by manual exami- 

nation. But because they are messages sent to self, 

references to subclass responsibility methods could 

be identified statically. The protocol method de- 

fined above could then be extended to eliminate from 

the protocol any method that sends messages to self 

that are not in the protocol. Dependencies on unim- 

plemented methods occur surprisingly often in the 

Smalltalk collection library and are a significant 

source of confusion in trying to understand collection 

behavior. 

2.2 The Protocol Hierarchy 

The protocol hierarchy arises from the partial or- 

der of protocols by the conformance, or subtype, re- 

lationship [Cardelli84, CM89, BHJLC861. Inter- 

face B conforms to interface A if every object that 

satisfies B also satisfies A. This means that the set of 

objects satisfying B is a subset of the set satisfying 

A. However, the interface B, viewed as a set of op- 

erations, is typically larger (more specific) than the 

interface A. 

For the simple Smalltalk protocols described in 

Section 2.1, the conformance relationship is defined 

by inclusion on sets of message selectors. That is, 

protocol B conforms to protocol A if the set of selec- 

tors in B includes the selectors in A. For example, 

given 

A = { isEmtpy, at: } 

B = { isEmpty, at:, add:, remove: } 

B conforms to A because the selectors of B include 

the selectors of A . This means that any object sup- 

porting selectors listed in B can be used in places 

where selectors in A are required. 
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A protocol hierarchy is a graphical presentation 

of the conformance relation for a set of classes. The 

hierarchy also explicitly represents the sharing 

among protocols. For example, the three protocols 

A,Band 

C = { isEmtpy, add:, remove:, first } 

produce the following interface hierarchy: 

c 
first 

For any two protocols that share some common- 

ality, an abstract protocol is defined to represent the 

common behavior and the two protocols are identi- 

fied as conforming to the new protocol. These new 

protocols are called abstract because they are not 

implemented explicitly by any class, but they are 

useful for describing the similarities between objects. 

In the diagram above, X and Y arc abstract protocols. 

The protocol hierarchy is computed from a set of 

classes. The algorithm starts with the protocol ex- 

traction method defined in the previous section: 

profocoZ : class + set(selector) 

An inverse function is then computed to map a 

selector to the set of classes that implement it.. 

inverse : selector 3 set(class) 

for each class c 

for each selector in protocol(c) 

add c to inverse(s) 

For example, the inverse mapping for the exam- 

ple given above is 

isEmtpy = { A, B, C ) 

at: ={A,B} 

add: = { B, C } 

remove: ={A31 

first: =w 

The hierarchy is then computed by collecting all 

the selectors that are defined by the same set of 

classes. 

hierarchy : set(class) + set(selector) 

for each selector s 

add s to hierarchy (inverse(s)) 

For example, the inverse mapping for the simple 

example given above is: 

{ A, B, C } = { isEmpty } 

{ A, B } = { at: } 

{ B, C } = { add:, remove: } 

{ C } = { first } 

A topological sort by set inclusion of the sets of 

classes in the domain of hierarchy gives the protocol 

hierarchy. A class name labels the node which is the 

minimum of all nodes in which the class appears (a 

minimum node may need to be added for it). In the 

example, the class B is a label for a new minimal 

node. Nodes that remain unnamed at this point are 

abstract and names must be invented for them. 

Figure 1 illustrates this analysis for the standard 

Smalltalk- collection classes. The protocol in- 

formation was extracted from ParcPlace Systems 

Objectworks for Smalltalk-80TM, version 2.5. The 

nodes in the graph represent sets of classes that share 

a protocol extracted from the library. The selectors 

in the protocols are listed next to the nodes. Selector 

keywords in brackets are optional. The edges indi- 

cate protocol inclusion: all of the selectors listed for a 

node are included by all the nodes below it in the 

graph. The node names listed in slanted font are 

new abstract protocols that were created by the inter- 

section of the other protocols. 

Given a large library of classes cancellation and 

independent implementation tend to create a large 

number of abstract protocols and subtle relationships 

among them. Even when these classes are defined 

using only single inheritance, the protocol hierarchy 

that they embody can be a complex partial order, as 

seen in Figure 1. The hierarchy reveals a remarkably 

elegant structure of protocol sharing. 

2.3 Design Review 
A protocol hierarchy is a useful tool for review- 

ing the design of a class library. 

The basic collection operations move upward in 

the graph where they are more widely shared, as 

abstract protocols. Several protocols have only one 

or two selectors. For example, the class Extensible- 

Collection has only add: (and addAll: which de- 

pends upon it). The protocols below Extensible- 

Collection represent those collections that can grow 

in size. These protocols correspond to the bounded, 
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Figure 1: 
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or resizable, storage forms in the Eiffel data structure 

library [Meyet%]. 

Abstract protocols also arise from deletion of 

methods during inheritance. When messages are 

canceled from the subclass protocol as discussed in 

section 2.1, the subclass protocol does not conform to 

its superclass’s. In this case both the subclass and 

superclass protocol conform to the protocol of the 

superclass minus those selectors canceled by the sub- 

class. 

The protocol hierarchy explicitly represents simi- 

larities between classes that are not related by inheri- 

tance. There are many examples in the Smalltalk li- 

braries, one being the add: message on LinkedList 

and Set. This topic is examined in more detail in 

Section 6. 

The hierarchy highlights messages that are not 

implemented uniformly. This is illustrated by the 

SubtractableCollection protocol, which contains 

only the binary minus (-) message. This message 

was extended for use on collections only recently in 

ParcPlace Smalltalk, and hence it appears to not been 

implemented in all the classes where it is expected. 

The uniformity of the class library is improved by 

implementing minus in Bag and LinkedList, and 

canceled it from Dictionary; SubtractableCollec- 

tion would merge with the closely related remove 

messages in the RemovableCollection protocol. 

Finally, the protocol hierarchy raises questions 

that cannot be answered by without a more detailed 

analysis of method behavior. For example, Dictio- 

nary cancels the removal methods it would otherwise 

inherit from Set. But it does not cancel the appar- 

ently symmetric methods for adding. Identifying this 

relationship raises the question of why Dictionary 

cancels the remove methods but not the add methods. 

Another example is the class SortedCollection, 

which supports messages for adding elements at par- 

ticular places in the sequence. This is suspicious 

since SortedCollections provide an internally de- 

fined order. The next section applies specification 

tools to these problems. 

3 Collection Class Specification 

3.1 Specification Techniques 
Specifications are developed for the collection 

class protocols to investigate further the design of the 

collection classes. Specification techniques available 

for analyzing objects include America’s pre/post 

condition specifications with representation transfer 

functions [Americagl], Leaven’s simulation model 

with traits [LW90], and Meyer’s use of pre/post 

conditions and class invariants in Eiffel [Meyer%]. 

We use an version of America’s formulation, since it 

is the simple and direct. The specifications for or- 

dered collection and bag are based on America’s. 

Each class in the library has an abstract represen- 

tation, and a set of methods defined by pre and post 

conditions on the representation and the method ar- 

guments. The set V represents the set of all possible 

Smalltalk values. In post conditions, a primed (‘) 

variable indicates the value of the representation be- 

fore the operation. The symbol p in a postcondition 

represents the result, or return value, of a method. 

Specification conformance is determined by the 

existence of a transfer function that converts between 

abstract representations and preserves pre and post 

conditions. For specification B to conform to A, 

there must be a transfer function from the represen- 

tation of B to the representation of A. In addition, 

for each operation in A, the precondition in A must 

imply the corresponding precondition in B, and the 

postcondition in B must imply the postcondition in 

A. For more explanation see America [91]. 

The ifAbsent: modifier on events is not dis- 

cussed explicitly. It is understood as evaluating its 

exception block argument if the precondition on the 

basic method is violated. In addition, the ‘I.. .All” 

variants of methods are not discussed, being repeated 

forms of the basic method. 

The specifications are listed in an order conve- 

nient for discussion, roughly in order of increasing 

complexity. To deal with the problem of a selector 

with several incompatible specifications, new selec- 

tors, written in slanted font, are introduced in some 

cases. An attempt is made to retain the most com- 

mon meaning of existing selectors. 



3.2 Bags 
Bags are collections that allow repeated elements 

but don’t have any notion of ordering. Bags are rep- 

resented as functions from values to natural numbers, 

indicating how many times the value occurs in the 

bag. The notation F yx G means that the functions 

F and G are equal at all points but x. 

Bag 
Representation F : V + Nat 

isEmpty p = (Vx F(x)=O) 

size P = C, F(x) 

includes: x p = (F(x) > 0) 

occurencesOf: x p = F(X) 

add: x F(x) = F(x) + 1 
and F =/x F 

F(x) > 0 remove: x F(x) = F(x) - 1 
and F =lx F 

3.3 Sets 
Sets are represented as subsets S of the set of all 

values V. This specification also defines the behav- 

ior of the abstract protocols ExtensibleCol!ection 

and RemovableCollection. 

Set 
Representation S c V 

isEmpty 

size 

includes: x 

include: x 
[add: x] 

p=(S=O) 

p = #S 

p=(xG S) 

S=S’u[ x) 

XE s removeEvery: x S=S’-{ x) 
[remove: x] 

This specification raises a basic problem with 

using message names alone as the basis for confor- 

mance and classification. The problem is that the 

add: and remove: on sets have different behavior 

than on other collections, which support multiple oc- 

currences of elements. Since sets do not allow mul- 

tiple occurrences, add: is weaker - ensuring only 

that the element is present, and remove: is stronger - 

eliminating the element completely. 

If method names are to be carriers of behavioral 

meaning, new names are needed for these operations. 

Thus the two new messages names, include: and 

removeEvery:, are listed in the specification. These 

messages have behaviors that are useful in any col- 

lection of elements; and they are meaningfully re- 

lated to add: and remove:. By defining include: 

and removeEvery: on bags, they will conform to 

sets (although the size method must be omitted 

conformance to hold). 

3.4 Indexed Collections 
Indexed collections represent first-class func- 

tional mappings. These mappings need not be finite; 

however, they are constant because no update opera- 

tions are defined. The representation is a function F 

with fixed domain K. 

IndexedCollection 
Representation K s V and F: K + V 

kE K at: k P = F(k) 

includeslndex: k p = (k E K) 

3k]v=F(k) indexof: v F(P) = v 

The methods indexof: from SequenceableCol- 

lection and includesKey: from Dictionary (renamed 

includeslndex: for uniformity) are introduced here 

because they apply equally well to all indexed col- 

lections. The choice of index to refer to the domain 

of the mapping is perhaps not perfect, but since in- 

dexed collections cover a wide variety of mappings 

(functions, arrays, hash tables, etc) no one word is 

likely to be natural in all cases. 

3.5 Sequenceable Collections 
Sequenceable collections are the base class for 

all collections that have a notion of ordering. They 

have as a representation a sequence R : V*. Opera- 

tions on sequences are concatenation Rl l R2, length 

#R, indexed access R[i], and subsequence R[l.. .u]. 

SequenceableCollection 
Representation R : V* 

Preconditions: 
xl={#R>O) 

7r2=( lIiI#R] 

7c3=(x~R} 

7Cl first P = WI 

xl last p=R[#R] 
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R2 at: i p = R[i] 

includes: x p = (El i . R[i] = x) 

0ccurencesOf: x p = #( i I R[i] = x } 

7c3 findfirst: x Rtpl =x 
and x P R[l...p-1] 

X3 findlast: x WI = x 
and x e R[p+l...#R] 

n3 indexof: x WI= x 
and x CF R[l...p-1] 

With the introduction of a sequence order to in- 

dexed collections, the indexof: message is defined 

to return one of the more specific index search meth- 

ods, in this case findfirst:. This relationship be- 

tween a method, e.g. indexof:, on a less structured 

collection and method, e.g. findfirst:, on collections 

with more structure (like order or duplicate elements) 

is quite common; it is discussed more in Section 4.2 

3.6 Linked Lists 
A linked list is a particular representation for se- 

quences of nodes. Each node can appear only once 

in the list, so linked lists are somewhat similar to 

sets. In the hierarchy it is used as a general name for 

a sequences from which elements can be added and 

removed at the ends. However, it would be better if 

LinkedList were a representational variant of a more 

general collection type. 

LinkedList 
Representation R : V* 

addfirst: x R=xeR 

addlast: x R=R’*x 

add: x R=x*R 

#R>O removeFirst p*R = R’ 

#R>O removeLast R*p = R’ 

1 I i I#R removeAtlndex: i R’ = A*p*B 

andR=A*B 
and i-l=#A 

#R2n removefirst: n R’ = p*R 

andn=#p 

#Rln removeLast: n R’=R*p 

andn=#p 

The message add: is specified to be one of the 

order-dependent methods, in this case addlast:. 

The message removeAtlndex: is included here be- 

cause it is directly related to the other two remove 

methods. 

Two methods from OrderedCollection, re- 

movefirst: and removelast:, which remove a 

number of elements from either end of the list, are 

included here because they generalize the single ele- 

ment removal of removeFirst and removeLast. 

Not that although the names for these messages are 

similar to addfirst: and addFirst:, they have very 

different behavior. All of these new methods can be 

efficiently implemented on linked lists. 

3.7 Intervals 

An interval is a collection of numbers between a 

lower and upper bound. This specification is a sim- 

plification of the Smalltalk Interval class, which also 

has a step, or increment, value. This specification 

assumes a step of 1. The interval is empty if the 

lower bound is greater than the upper bound. 

Interval 
Representation Integers L and U 

includes: x p =(L<xIU) 

0ccurencesOf: x p = 1 if L 5 x 5 U 

p = 0 otherwise 

U1L first p =L 

U1L last p =u 

i I U-L+1 at: i p =L+i-1 

LlxlU indexof: v p =v-L+l 

U2L removeFirst p = L 

andL=L’+l 

U1L removeLast p = U 

andU=U’-1 

n I U-L+1 removefirst: n p = IL’,..., ~-1) 
andL=L’+n 

n I U-L+1 removelast: n p = (U+l,.... 

U’) 
U=U’-n 

The indexof: method that was included in Se- 

quenceableCollection must be specified here, al- 

though it is not defined for intervals in Smalltalk. In 
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addition, the removal methods that work on the ends 

of a sequence are extended to apply to intervals. 
3.10 Arrays 

3.8 Updatable Collections 
An updatable collection is an indexed collection 

that can change over time. These collections tend to 

be finite mappings. The representation is a function 

and explicit domain as for indexed collections. 

UpdatableCollection 
Representation K G V and F : K + V 

An Array is an updatable collection with a finite, 

contiguous and fixed range of keys from 1 to some 

bound B . 

Array 
Representation K= ( l,..., B ), F: K+V 

kE K at: k put: v F(k) = v 
and F=h F 

ke K at: k put: v F(k) = v 
and FE/~ F 

The subtypes of updatable collections are distin- 

guished by whether the domain is changeable 

(Dictionary) or fixed (Array). 

atAIIPut: v Vk.F(k)=v 

1lalB replaceFrom: a Valk<b.F(k)=v 

llb<B to: b with: v Vk<a . F(k) = F(k) 

Vk>b . F(k) = F(k) 

3.9 Dictionaries 
A dictionary is an updatable collection with a 

flexible domain. It is represented by an index set K 

together with a mapping F from indices to values. 

Dictionaries weaken the precondition on at:put: al- 

lowing new keys to be defined. 

Dictionary 
Representation K c V, F : K + V 

3.11 Ordered Collections 
Ordered collections are generally modifiable se- 

quenceable collections. They are an extension of the 

LinkedList specification, represented by a sequence 

R : V*. 

OrderedCollection 
Representation R : V* 

Preconditions: 

xl={eER} 

7c2=[ lSiI#R} 

at: k put: v F(k) = v xl add: v before: e R = A*v*e*B 
and FE/~ F and R’ = A*e*B 
andK=K’u(k} andvg A 

add: p F(p.key) = p.value 
and F EJp.key F 

and K = K’ u { p.key ) 

xl add: v after: e R = A=e=v=B 

and R’ = A*e*B 

andve A 

values p = ( F(k) I k E K } 

k E K removelndex: k K=K’-( k} 

The add: method on Dictionary has a different 

7~2 add: v R = A*vmB 

before Index: i and R’ = A*B 

and i-l=#A 

specification from add: in other collections. Its ar- 

gument is an association, which is a record with 

fields key and value. Adding an association to a dic- 

tionary removes a previously added association with 

the same key. It is unlikely that the various uses of 

add: can all be made to conform to a general specifi- 

cation. This is evidence that add: should be canceled 

from the Dictionary interface, and addAssociation: 

used in its place. 

removeEvery: x R = Al’... *An where 

R’ = Alax*...*x*An 

andxe Ai 

removeAll- R = Al’... *An where 

SuchThat: c R’= Al*xl*...*xn*An+l 

andV1 liln.c(xi) 

andtree R.-c(e) 

The message keyAtValue: is renamed indexof: 

(defined in IndexedCollection) and removeKey: is 

renamed removelndex: to be compatible with other 

indexed collections. 

3.12 Sorted Collections 
A sorted collection is an ordered collection 

whose order is determined internally by a predicate 

I (which must be a total order). The representation 

is I together with a sequence R of values that are 

sorted with respect to 1. 

9 



SortedCollection 
Representation R : V* , I : V x V + Boolean 

Invariant: 1 I i I j I #s w R[i] I Rlj] 

add: x R = A*x*B 
where R’ = A*B 

andVaE A.alx 

andVbE B.xlb 

The Smalltalk system allows the message add- 

First: and addlast: as part of the SortedCollection 

protocol since it inherits from OrderedCollection. 

However, the specification for these messages vio- 

lates the representation constraint for sorted collec- 

tions: the new value cannot be guaranteed to be first 

in the sequence because it must be placed in sorted 

order. In the standard Smalltalk system the add- 

First: message violates the representation invariant of 

SortedCollections. 

There are two possibilities: either remove the 

messages from the sorted collection interface, or 

place additional constraints on them to make them 

valid. By adding a precondition to the messages, 

they can be brought into line with SortedCollection. 

Vy E R.x I y addFirst: x R = x*R’ 

Vye R.ylx addlast: x R=R’*x 

Either canceling the methods or adding these 

preconditions prevents the sorted collection interface 

from conforming to the OrderedCollection inter- 

face. 

It is arguable that it makes no sense to add a first 

element to a SortedCollection because the order of 

elements in a SortedCollection is determined inter- 

nally: the client has no control over the order of ele- 

ments. By omitting these methods, along with all 

the other order-specific methods, a SortedCollection 

is a SequenceableCollection, but not an Ordered- 

Collection. 

4 Specification Conformance 

4.1 Class Conformance 
The relationships among the classes specified in 

the previous section are defined in Figure 2. The di- 

agram specifies which classes can simulate the be- 

havior of other classes. For example, OrderedCol- 

Collection s 

indexed 

’ \ 

Collection c 

et 

S = ( x I F(x) > 0 ) 

Updatable Sequenceable 
Collection F Collection R 

Collection R 

=# (klR[k]=x] 

1 

R 

Figure 2: Class Specification Conformance 
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lections can simulate Bags, because they have all the 

behavior of bags plus the notion of ordering. Also 

listed are the transfer functions written in terms of the 

abstract representations of the specifications. 

4.2 Message Families 
Messages are naturally organized into families 

consisting of individual messages that are closely re- 

lated but apply to a range of collections. The mes- 

sage families are for adding, testing, removing, and 

locating elements. The collections are organized by 

degree of structure: unique/duplicate elements, or- 

dered/unordered, internally/externally ordered. Some 

message families are summarized in Figure 3. An ar- 

row from B to A indicates that the specification of 

message B conforms to that of message A. The utility 

of this diagram is that for any set of desired opera- 

tions it is possible to determine the conformance rela- 

tions, if any, that exist between them. Only if all 

messages conform will their union conform. 

Two new messages, next and any, are defined to 

make this diagram more uniform; they are the un- 

ordered versions of the remove and first /last mes- 

sages called respectively. 

Set 
Representation S G V 

#S>O any PCS 

#R>O next PES 
and S = S’ - { p } 

5 Recommendations for Smalltalk 

5.1 Corrected Interface Hierarchy 
Figure 4 illustrates an protocol hierarchy that in- 

corporates the suggestions made by reviewing the 

protocol hierarchy and developing specifications. 

The following changes were made: 

add: renamed include: and remove: renamed 

removeEvery: for Set; these new messages are de- 

fined on all collections below Set. 

Subtraction (-) canceled from Dictionary. 

add: renamed addAssociation: for Dictionary 

includesKey: renamed includeslndex:, moved 

to IndexedCollection and defined for all subclasses. 

indexof: moved to IndexedCollection and de- 

fined for all subclasses, where it subsumes keyAt- 

Value:. 

Set Qrdered Sorted 

add: rc----- add: 
= include: 

: - removeFirst: 

/ 

remove: 
: w removelast: 

remme: w removefvery: e removeEvery: w removeEvery: 
= removeEvery: 

next < 
- removeFirst 

next 1 
- removeLast 

any 7 any 
first Y first 

last - last 

Figure 3: Message Families 
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Figure 4: 

Corrected Smalltalk 

Collection Classes 

Protocol Hierarchy 

Collection isEmpty size includes: occurrencesOf: 

/ 

do: select: detecf:[ifNone:] reject: 
collect: injectinto: copyEmpty: 

asset asBag asSortedCollection 

indexed 
asOrderedCollection 

Collection 

include: 
set includeAll: 

I 

removeEvery: 

/ 
Mapped 

Collection 
contents 

atAll:put: 

\ \ 
Dictionary Sequenceable 

I 

add: 
addAll: 

Extensible remove:[ifAbsent] 
Co//ection removeAll: 

* /lecy YeAIISuchThaf: 

/ 

removeFirst \ 
removeLast Poppable 

removefirst: Collection 

Bag 

Away- 

atAIIPut: 
replaceAll:with: 

replaceFrom:to:with:- 

[startingAt:] 

1 

String 

\ / removeAtIndex: 

sameAs: asString Ordered Sorted 
< C= >= > asNumber Collection Collection 

match: aslnWwAw & LinkedList 
match:ignoreCase: asLowercase 

sortBlock 

spellAgainst: asuppercase addfirst: 
sort Block: 

copyUpTo: asFilename addLast: 
initialize 

\ 

addwithOccurrences: 
sortedElements 
sortedCounts 

cor%radtTo: assymbol add:before: 
chopTo: add:after: 

display[On:]at: add:beforelndex: 
findString:starting- addAIIFirst: 

Af:[ifAbsent:] addAllLast: 

Dictionary protocol SequencableCollection protocol 

values keys keysDo first last after: before: reverse with:do: reverseDo: 
removeKey:[ifAbsent:] findLast: findfirst: prevlndexOf:fromIo: 
associationAt:[ifAbsent:] nextlndexOf:from:fo: copyReplaceFrom:to:with: 
includesAssociation: addAssociation: copyReplaceAll:with: , copyFrom:to: copywith: 

associations associationsDo: copyWithout: writeStream readstream asArray 
removeAssociafion:[ifAbsenf:] mappedBy: indexOf:[ifAbsent:] 

indexOfSubCollecfion:startingAt:[ifAbsent:] 
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removeFirst, removeLast, removefirst:, and 

removeLast: defined for Intervals. 

removefirst, removelast, removeAtIndex: 

and removeAIISuchThat: defined for LinkedList 

after: and before: moved to SequenceableCol- 

lection 

addfirst:, addLast:, add:before:, add:after:, 

addAIIFirst:, addAllLast:, and add:beforelndex: 

canceled from SortedCollection. 

5.2 Extending the Analysis 
The process for analyzing class libraries can be 

applied to other parts of the Smalltalk. One area that 

would benefit from examination is the stream classes. 

These classes are conceptually similar to collections, 

but are implemented in an entirely different part of the 

class system. 

A Stream is a destination or source of values. 

Streams are part of the collection classes but are not 

well integrated with the other collections. This sec- 

tion discusses how they could be unified with other 

collections 

ReadStream 
Representation R : V* 

isEmpty p=(#R=O) 

#R>O next R’ = p*R 

#R>O peek p = Ml1 

The next method has the same specification as 

the removeFirst method in OrderedCollection. The 

fact that it removes the first element instead of the last 

is merely an artifact of the specification; it is not vis- 

ible to the client. Similarly, peek corresponds to the 

first method. 

WriteStream 
Representation R : V* 

nextPut: x R = R’*x 

contents p=R 

The method nextPut: has the same specification 

as addlast: in OrderedCollection, but is indepen- 

dent of the actual ordering used. Renaming the next- 

Put: to be add: allows for more polymorphism; 

WriteStream then conforms to ExtensibleCollec- 

tion. 

6 Interfaces Versus Inheritance 

Figure 5 shows the Smalltalk inheritance hierar- 

chy (in bold) superimposed on the protocol hierarchy 

of Figure 4 (dotted lines). This is a concrete illustra- 

tion of the difference, even at a syntactic level, be- 

tween inheritance and conformance [CHC90, Syn- 

der86]. There are two cases where the hierarchy and 

protocol hierarchies are in direct conflict: Dictionary 

and SortedCollection. Dictionary inherits from Set 

but its protocol does not conform to Set’s. This is 

because Dictionary cancels several of Set’s methods. 

SortedCollection has a similar pattern of inheritance 

without conformance. 

Collection 
..+’ ‘...* 

..** 

l”de& 

‘*. 
‘... 

t. 

Collection 
‘-.. 

t. 
5 f 2 w+-i$py 

Mappe-cl- I Dirhonarv Seauenceable Extenble 
Coll&tion f - Cbllection Collection I 

‘*.* 
t 

Poppable [ 

Collection i 

fval 

L 

lntehally 

Removable 

-3 . . . . j 

/’ Collection 

. ..**-** 

Iereh’eSbrted 

ction Collection Collet 

& 

LinkedList 

Figure 5: Interfaces versus Inheritance 

Another significant deviation centers around Se- 

quenceableCollection, which has inheritors 

(subclasses) with various combinations of protocols 

unrelated to SequenceableCollection. Some of the 

subclasses (Array and String) are Updatable but not 

Extensible, since they support at:put:. Other sub- 

classes (LinkedList and SortedCollection) are Ex- 

tensible but not Updatable, since they support add:. 

A final one (OrderedCollection) is both Extensible 

and Updatable. The abstract classes in Smalltalk 

act as mixins for methods that depend upon a key 

subclass responsibility method; to express this struc- 
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ture more directly, Smalltalk would need multiple in- 

heritance or mixins [BC90, Moon86, Carnese84J. 

7 Conclusion 

Interfaces are a useful tool for analyzing class li- 

braries. These interfaces may range in level of detail 

from protocols (sets of message names) to behavioral 

specifications. A detailed analysis of the Smalltalk 

collection class library demonstrates the usefulness of 

this approach. 

Protocols have the advantage that they can be 

extracted automatically from classes in the Smalltalk. 

Two aspects of Smalltalk complicate this process. 

The first is the well-known problem of inheritance 

with exceptions, or deletion of methods. The second 

problem identified here is the use of abstract classes 

as “grab-bags” of inheritable functionality - in many 

cases the subclasses don’t support various aspects of 

the abstract behavior. This use of abstract classes is 

an effective way to encode complex sharing of im- 

plementations in a single inheritance hierarchy, but it 

prevents easy determination of the messages a given 

class supports. 

When protocols are placed into a hierarchy orga- 

nized by protocol conformance, or subtyping, an al- 

ternative view of the structure of the library is re- 

vealed. This protocol hierarchy is a clients view of 

the library, in contrast to the implementors view pro- 

vided by the inheritance hierarchy. Even though the 

classes are implemented using only single inheritance, 

protocol hierarchy of the collection class library is a 

complex partial order with multiple sharing of inter- 

faces. 

The protocol hierarchy is also useful for review- 

ing the design of a class library. Several omissions 

and implementation problems are immediately appar- 

ent. However, some questions are raised that cannot 

be answered without a more detailed analysis of 

method behavior. 

A pre/post condition specification formalism, de- 

veloped by Pierre America, is used for expressing 

specifications of the collection protocols. These 

specifications reveal the subtlety of the Smalltalk 

class library: each of the primary messages for 

adding, testing, and removing on the collection 

classes is a family of progressively more refined 

specification. The analysis also uncovers some prob- 

lems in the library. Some inherited methods violate 

the subclass representation invariants. Some mes- 

sages have incompatible specifications in different 

classes. There ate also different messages with the 

same specification. For message names to be effec- 

tive as carriers of behavioral meaning, care must be 

taken to ensure that the names are used consistently 

with the underlying formal specifications. 
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