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TheDNA damage response (DDR) fulfils essential roles to
preserve genome integrity. Targeting the DDR in tumors
has had remarkable success over the last decade, exempli-
fied by the licensing of PARP inhibitors for cancer thera-
py. Recent studies suggest that the application of DDR
inhibitors impacts on cellular innate and adaptive im-
mune responses, wherein key DNA repair factors have
roles in limiting chronic inflammatory signaling. Antitu-
mor immunity plays an emerging part in cancer therapy,
and extensive efforts have led to the development of
immune checkpoint inhibitors overcoming immune sup-
pressive signals in tumors. Here, we review the current
understanding of the molecular mechanisms underlying
DNA damage-triggered immune responses, including cy-
tosolic DNA sensing via the cGAS/STING pathway. We
highlight the implications of DDR components for thera-
peutic outcomes of immune checkpoint inhibitors or
their use as biomarkers. Finally, we discuss the rationale
for novel combinations of DDR inhibitors with antago-
nists of immune checkpoints and current hindrances lim-
iting their broader therapeutic applications.

Targeting DNA damage response factors for cancer
therapy

The genome of every cell is constantly exposed to endog-
enously-arising and exogenous sources of DNA damage.
To ensure genome stability and faithful replication and
transmission of the genetic material, various DNA repair
pathways have evolved to allow cellular and organism sur-
vival. This complex network of DNA damage sensor, me-
diator, and effector proteins is known as the DNA damage
response (DDR) (Ciccia and Elledge 2010). The DDR ex-
hibits tight spatiotemporal control, ensuring the precise
and proper actions and coordination of repair enzymes
in a DNA lesion-specific manner. Unscheduled or uncon-

trolled activity of DNA processing and repair factors can
themselves generateDNAdamage, thereby posing threats
to genome integrity and cell survival. Consequently, dys-
regulation and mutations in such DDR factors and their
regulators have implications for human health and dis-
ease (Jackson and Bartek 2009). Moreover, in recent years,
DDR components have become accepted as attractive
therapeutic targets for cancer therapy, with numerous
small molecule inhibitors targeting DNA repair enzymes
now being explored clinically and with inhibitors of the
DNA-repair enzyme PARP being approved for treating
various tumor types (Piliè et al. 2019). Due to the frequent
loss or deregulation of DDR mechanisms and high levels
of DNA replication stress caused by oncogene activation,
cancer cells often display elevated levels of endogenous
DNA lesions while simultaneously relying on certain
DNA repair pathways for survival (Hanahan and Wein-
berg 2011). This enhanced dependence on certain DDR
components—sometimes via the concept of synthetic le-
thality, where loss of one cellular pathway leads to reli-
ance on an alternative pathway—came into the spotlight
with the development of poly-(ADP-ribose) polymerase
(PARP) inhibitors as precision medicines for certain can-
cers harboring defects in the DDRmechanism of homolo-
gous recombination (Lord and Ashworth 2017). PARP
enzymes (mainly PARP1 and PARP2) fulfill various func-
tions during DNA repair, but in particular, PARP1 is im-
portant for the effective repair of DNA single-strand
breaks (SSBs). Notably, alongside inhibition of SSB repair,
PARP inhibitors compete with the cofactor NAD+, there-
by preventing poly-ADP-ribosylation (PARylation) of
PARP1 itself and various other proteins. Because auto-
PARylation promotes the release of PARP1 from DNA,
PARP inhibitors result in PARP1 becoming “trapped”
on DNA. Importantly, much of the cytotoxicity of
PARP inhibitors has been attributed to when DNA repli-
cation forks encounter these trapped PARP–SSB complex-
es, leading to replication fork collapse and generation of
DNAdouble-strand breaks (DSBs), specifically single-end-
ed DSBs (a DSB end with no associated DNA end to be li-
gated to). The potential to exploit this scenario became[Keywords: DNA damage response; DNA repair; immunotherapy; PARP
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apparent when two independent studies reported dra-
matic cytotoxicity of PARP inhibitors in the context of de-
ficiencies in the tumor suppressor genes BRCA1 and
BRCA2 (breast cancer susceptibility genes 1 and 2) (Bryant
et al. 2005; Farmer et al. 2005). BRCA1 and BRCA2 have
crucial functions during homologous recombination
(HR)-mediated repair of DSBs (Fig. 1). While PARP inhibi-

tion is dispensable for cellular survival in HR-proficient
cells, it becomes extremely toxic in the context of
BRCA1/2 deficiency, highlighting the key role of HR in re-
pairing PARP inhibitor-induced damage (Lord and Ash-
worth 2016). So far, four different PARP inhibitors
(olaparib, niraparib, rucaparib, and talazoparib) have
been approved by the FDA for use as single-agent chemo-
therapeutics (Table 1).

The clinical successes of PARP inhibitors have nur-
tured efforts to target other components of the DNA re-
pair network for therapeutic applications. Thus, the
three apical PI3K-like kinases ATM, ATR, and DNA-PK,
in addition to the S-phase checkpoint kinase CHK1 and
G2 checkpoint kinase WEE1, have emerged as promising
targets for smallmolecule inhibitors, with several of these
compounds currently undergoing clinical development
(Blackford and Jackson 2017; Forment and O’Connor
2018). The justification for targeting ATR in cancer cells
centers around ATR’s functions in protecting stalled
DNA replication forks, regulating replication origin firing,
and controlling the transition of cells from G2 phase into
mitosis by enforcing the G2/M cell cycle checkpoint (Sal-
divar et al. 2017). Due to their proliferative nature and be-
ing subject to oncogenic forces that either lead to
heightened levels of reactive oxygen species or deregulat-
ed S-phase entry and/or progression, cancer cells are par-
ticularly vulnerable to ATR inhibition, experiencing
extensive DNA and chromosomal damage. Furthermore,
it has been found that ATR inhibitors are selectively toxic
to cancer cells harboring mutations in the ATM tumor
suppressor, in part because ATM and ATR share some
overlapping targets (Kantidze et al. 2018). Additionally,
ATM loss impairs DSB repair by HR and also weakens
the G1/S cell cycle checkpoint, thereby generating more
replicative stress (Lecona and Fernandez-Capetillo 2018).
Several ATR inhibitors are currently undergoing clinical
development, with their application mainly aiming to ex-
ploit high levels of replication stress in tumors. Since
CHK1 is the effector kinase of ATR, several cellular func-
tions are shared between these kinases, and the rationales
behind exploring CHK1 inhibitors for cancer therapy are
hence similar to those for ATR inhibitors (Table 1; For-
ment and O’Connor 2018).

WEE1 is involved in responses to DNA damage, where-
by it enforces a cell cycle arrest/checkpoint at the transi-
tion from S phase into M phase in response to DNA
damage or replication stress.WEE1 phosphorylates and in-
hibits cyclin-dependent kinases (CDKs) CDK1 andCDK2,
thus counteracting cell cycle progression andunscheduled
replication-origin firing (Elbæket al. 2020).One of the con-
cepts for the clinical application ofWEE1 inhibitors is that
WEE1 inhibition should potentiate the effects of certain
other DNA damage-inducing chemotherapeutics, since
cells undergoing WEE1 inhibition would enter mitosis
with DNA lesions or underreplicated DNA, thereby caus-
ingmitotic catastrophe and ensuing cell death. Indeed, the
efficacy of WEE1 inhibition in combination with other
DNA-damaging agents such as platinum drugs or irradia-
tion has been observed in preclinicalmodel systems (Hirai
et al. 2009; PosthumaDeBoer et al. 2011).

Figure 1. DDR inhibitors and their impacts on DSB repair and
cell cycle progression. In mammalian cells, four main DSB path-
ways exist,which operate dependent on the stage of the cell cycle:
nonhomologous end-joining (NHEJ), alternative end-joining (alt-
EJ), homologous recombination (HR), and single-strand annealing
(SSA) (Scully et al. 2019). TOP2i inducedDSBs are predominantly
repaired via NHEJ, which while being described as “error-prone,”
ensures effective repair of broken DNA ends particularly during
G0 and in the G1 phase of the cell cycle. DNA-PK is crucial for
effective NHEJ, and DNA-PK inhibitors impair DSB repair via
NHEJ. TOP1 inhibitors generate single-ended DSBs (seDSBs) in
S phase, which require HR for accurate repair. HR is a form of
DNA recombinationwhereDNAhomology and synthesis can ac-
curately regenerate the sequence surrounding theDSB, facilitated
by a sister chromatid as template and therefore restricted to S or
G2 (Karanam et al. 2012). DNA damage arising from PARP inhi-
bition also requires HR, since spontaneously occurring SSBs are
converted into seDSBs duringDNA replication uponPARP inhib-
itors (PARPis). In addition, PARPi cause mitotic catastrophe and
induce DNA replication stress through altering DNA replication
fork speed. A fundamental step during HR-mediated repair is
DNA end resection, generating ssDNAoverhangs that are rapidly
covered byRPAand consequently byRAD51.ATR is activated by
ssDNA as a result of DNA end resection or DNA polymerase un-
coupling from helicase activity during DNA replication. Conse-
quently, ATR inhibitors primarily have impacts during S and
G2 phases of the cell cycle. Additionally, ATRi overrides the
G2/M cell cycle checkpoint, therefore causing premature entry
into mitosis. Importantly, ATM inhibition affects efficient HR,
alongside its impact on G1/S and G2/M cell cycle checkpoints
in response to DNA damage. Analogous to ATRi and ATMi,
WEE1 inhibitors affect the G2/M cell cycle checkpoint. More-
over, WEE1i cause replication stress through dysregulated origin
firing and cleavage of DNA replication forks, resulting in DSBs.
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DNA-PK and ATM are key protein kinases that func-
tion in the DDR to promote DNA nonhomologous end-
joining (NHEJ) and HR, respectively, with ATM also play-
ing major roles in regulating signaling cascades in re-
sponse to irradiation and other DNA-damaging agents
(Blackford and Jackson 2017). Because their absence or in-
hibition sensitizes cells to irradiation, PARP inhibitors,
and various DNA-damaging chemotherapeutic agents,
there is the potential for using ATM or DNA-PK inhibi-
tion to enhance antitumor efficacies of radiotherapy and
certain chemotherapies, although their potential to also
accentuate toxic side effects in patients will have to be
carefully managed in such contexts (Table 1).
In contrast to DDR enzyme inhibitors, other classes of

drugs possess the potential to generate DNA damage
and therefore are classed as genotoxic agents. Among
them, topoisomerase inhibitors are well-established che-
motherapeutics for a variety of cancers. The topoisomer-
ase enzymes TOP1 and TOP2 generate transient DNA
breaks in order to resolve topological stresses during
DNA replication and transcription, using transesterifica-
tion reactions to break theDNAphosphodiester backbone
while at the same time forming a transient covalent bond
between the enzyme’s catalytic tyrosine (Tyr) and the
DNA, known as the topoisomerase cleavage complex
(TOPcc). Exploiting the potential of topoisomerases to in-
duce DNA damage, especially in highly replicating and
transcribing cells, underpinned the development of sever-
al classes of TOP1 and TOP2 inhibitors. Among others,
molecules that reversibly stabilize TOPccs to block the
religation reaction have had dramatic impacts as chemo-
therapeutic agents. Since these molecules act as interfa-
cial inhibitors (functioning via stabilizing a reaction
intermediate), DNA damage arises from TOP1 or TOP2
that has become trapped in the statewhere theDNAback-
bone is already cut and the enzyme cross-linked to DNA,
but the reverse reaction is abrogated (Hsiang et al. 1985;

Covey et al. 1989; Pommier 2009). In the context of
TOP1, trapped TOP1cc becomes particularly toxic in rep-
licating cells when DNA replication forks encounter
these lesions, leading to replication fork arrest, fork col-
lapse, and eventually DNA DSB formation (Hsiang et al.
1989; Strumberg et al. 2000; Furuta et al. 2003). Although
camptothecin was among the first TOP1 inhibitors to be
identified, its clinical applicationwas not pursued further,
and the camptothecin derivatives topotecan and irinote-
can instead gained regulatory approval (Table 1). Clinical-
ly approved TOP2 inhibitors, such as etoposide and
doxorubicin (Table 1), function as interfacial inhibitors
by trapping the TOP2ccs on DNA and preventing religa-
tion of the DNA backbone, analogous to the actions of
camptothecin derivatives on TOP1 (Wu et al. 2011,
2013a). However, due to TOP2’s dimeric mode of action,
key aspects of TOP2 inhibitors’mechanism are their abil-
ity to directly induce DSBs and consequently yield such
toxic lesions in all stages of the cell cycle (Holm et al.
1989).
Platinum-based chemotherapeutics represent another

class of genotoxic agents, which have found broad applica-
tion in cancer therapy. Initially, cisplatin was FDA ap-
proved for the treatment of testicular and ovarian
cancers in 1978, whereas nowadays cisplatin and its deri-
vates carboplatin and oxaliplatin are established chemo-
therapeutic agents for various tumor types (Kelland
2007). Platinum-based agents create DNA monoadducts
and DNA cross-links, which impair cellular processes
such as DNA replication and transcription and require
specific DNA repair pathways for their resolution. As a
consequence, platinum agents are strong inducers of cell
cycle arrest and apoptosis (Rottenberg et al. 2021). Mech-
anistically, cisplatin is activated intracellularly through
the aquation of the chloride group(s) and subsequently
chemically cross-link DNA molecules, preferably at N7
or O6 in purines. Notably, platinum agents can cross-

Table 1. Inhibitors targeting the DNA damage response and their clinical development

Cellular
target Compound

Stage of clinical
development Disease setting

PARP Niraparib FDA approved Ovarian cancer (HRD)
Olaparib FDA approved Breast cancer (gmBRCA), ovarian cancer, pancreatic cancer, and prostate

cancer (sm/gmBRCA)
Rucaparib FDA approved Ovarian cancer (gmBRCA) and prostate cancer (sm/gmBRCA)
Talazoparib FDA approved Breast cancer (gmBRCA)

ATR VX970 Phase II Solid tumors
AZD6738 Phase II Solid tumors
BAY-1895344 Phase I Solid tumors, lymphomas

CHK1 LY2606368 Phase II Solid tumors (HRD or CCNE1 amplification), SCLC
SRA737 Phase I/II Solid tumors, non-Hodgkin’s lymphoma
MK-8776 Phase I Solid tumors, lymphomas
GDC-0575 Phase I Solid tumors, lymphomas

WEE1 AZD1775 Phase II Uterine carcinoma, acute myeloid leukaemia, solid tumors (SETD2-
deficient)

ATM AZD1390 Phase I Brain cancers in combination with RT
AZD0156 Phase I Solid tumors in combination with conventional chemotherapy

DNA-PK M3814 Phase I/II Pancreatic cancer and prostate cancers (in combination with RT)
AZD7648 Phase I Solid tumors
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link proteins to DNA, although the occurrence of this
type of lesion is much rarer compared with DNA intra-
strand and inter-strand cross-links (Siddik 2003). Along-
side topoisomerase inhibitors and platinum drugs, radia-
tion therapy can be classified as a genotoxic treatment
and represents themost frequently applied cancer therapy
aside from surgery. The idea of radiation therapy is based
on the locally targeted induction of DNA damage in order
to deprive cancer cells of their proliferative potential by
forcing them into senescence, apoptosis, or other forms
of cell death (Bernier et al. 2004). Since radiation therapy
induces a variety of DNA lesions, including DSBs, SSBs,
base damage, and cross-links, the application of various
DDR enzyme inhibitors can further potentiate the cyto-
toxic effects of radiation therapy (Moding et al. 2013).

Sensing damaged DNA by components of the innate
immune system

Alongside the immediate cytotoxic effects and persistent
DNA damage caused by certain DDR inhibitors (DDRis),
induction of innate immune responses has frequently
been observed in such settings. Unrepaired DNA lesions
and/or impaired chromosome segregation during mitosis
contribute to the formation of endogenous cytosolic
DNA, often in the form ofmicronuclei. Although their or-
igin is distinct, DNA damage-induced cytosolic DNA
shares commondownstreameffects and cellular responses
with those observed upon viral or bacterial infections. In
mammalian cells, multiple factors and enzymes have the
capability to sense cytosolic DNA to activate appropriate
immune responses. The induction of innate immune re-
sponses by the presence of cytosolic DNA not only is cru-
cial for the host organism’s first-lines of defense against
invading pathogens but also fulfils key oncosuppressive
functions through elimination of damaged cells (Van-
pouille-Box et al. 2018). Intensive research in recent years
has led to the discovery and characterization of the cGAS/
STINGsystemas amajor component of cells’ intrinsic im-
mune response to the occurrence of cytosolic oligonucleo-
tides. cGAS is a cytosolic nucleotidyltransferase that,
upon binding DNA, catalyzes the synthesis of cyclic
GMP-AMP (cGAMP) from ATP and GTP, which subse-
quently acts as a messenger molecule for the adaptor pro-
tein STING (Ablasser et al. 2013; Sun et al. 2013;Wu et al.
2013b). cGAS binds double-stranded DNA (dsDNA) in a
sequence-nonspecific manner through interaction with
the sugar-phosphate backbone, although a preference for
specific DNA length (>45 bp) has been observed (Civril
et al. 2013; Li et al. 2013; Herzner et al. 2015; Zhou et al.
2018). Upon cGAMP binding, STING, originally located
in the endoplasmic reticulum (ER) membrane, translo-
cates to theGolgi apparatus via theER–Golgi intermediate
compartment, while activating at least three distinct ki-
nases—TBK1, IKK, and NIK (TANK-binding kinase 1,
IκB kinase, andNFκB-inducing kinase, respectively)—dur-
ing this process. The activation of these kinases and con-
comitant phosphorylation of interferon regulatory factor
3 (IRF3) and IκBα transduces the initial stimulusof cytosol-

ic DNA into IRF3 and NFκB transcriptional programs,
which control the balance between cellular survival and
controlled cell death (Fitzgerald et al. 2003; Ishikawa and
Barber 2008; Ishikawa et al. 2009; Tanaka andChen 2012).

In order to prevent the accumulation of cytosolic DNA
and potentially persistent proinflammatory signaling,
several enzymes and factors constantly survey and elimi-
nate nucleic acids appearing in the cytosol. One of these,
TREX1, is a 3′

–5′ exonuclease that acts on either single-
stranded DNA (ssDNA) or dsDNA and comprises the pre-
dominant enzyme that degrades cytosolic DNA in mam-
malian cells (Yang et al. 2007; Stetson et al. 2008; Lindahl
et al. 2009).Mutations inTREX1 result in dysregulation of
type I IFN production and are associated with the autoim-
mune disordersAicardi-Goutières syndrome (AGS) and fa-
milial chilblain lupus (Crow et al. 2006a; Rice et al. 2007).
Type I IFN responses observed in TREX1-deficient cells
are dependent on the cGAS/STING system, which pre-
sumably recognizes elevated cytosolic DNA arising in
the absence of its TREX1-mediated clearance. In line
with these observations, inactivation of cGAS/STING ab-
rogates type I IFN signaling in TREX1-deficient cells and
rescues the embryonic lethality of Trex1−/−mice (Stetson
et al. 2008; Ablasser et al. 2014; Gray et al. 2015). Notably,
individuals with mutations in the RNase H2 complex,
consisting of RNASEH2A, RNASEH2B, and RNASEH2C,
show clinical pathologies that resemble those observed in
TREX1 mutated patients, including aberrant type I IFN
signaling alongwithAGS and systemic lupus erythemato-
sus. Although this maladaptive immune response upon
impaired RNase H2 function relies on cGAS/STING, as
is the case for TREX1 dysfunction, it is unlikely that RN-
ase H2 directly eliminates cytosolic DNA (Crow et al.
2006b; Mackenzie et al. 2016). Rather, RNase H2 func-
tions inside the nucleus by resolving DNA–RNA hybrids
and removing ribonucleotides during DNA replication,
thereby preserving genome integrity by restricting cyto-
solic accumulation of broken DNA molecules (Reijns
et al. 2011, 2012). Notably, DNA–RNA hybrids harbor
the potential to directly stimulate cGAS and, consequent-
ly, cGAMP production in vitro (Mankan et al. 2014). Al-
though the induction of cGAMP synthesis in the
presence of DNA–RNA hybrids is orders of magnitude
lower compared with cGAMP synthesis upon dsDNA
stimulation, it may be that DNA–RNA hybrids represent
direct stimuli for IFN responses upon RNase H2 dysfunc-
tion in certain settings. Recently, it became apparent that
the simple model of cGAS being exclusively localized in
the cytoplasmmight not represent the full picture. Sever-
al reports indicated nuclear functions for cGAS, suggest-
ing that a subfraction of the cellular cGAS pool resides
within the nucleus (Liu et al. 2018a; Jiang et al. 2019).
The concomitant conflict of autoreactivity against self-
DNA is reported to be overcome by the tethering of
cGAS to the acid patch of nucleosomes via its DNA bind-
ing domains, thus blocking DNA binding and activity to-
ward chromatinized DNA (Boyer et al. 2020; Kujirai et al.
2020;Michalski et al. 2020; Pathare et al. 2020; Zhao et al.
2020). This mechanismmay also give a plausible explana-
tion to the long-standing question of how cGAS activity is

Pilger et al.

4 GENES & DEVELOPMENT

 Cold Spring Harbor Laboratory Press on August 26, 2022 - Published by genesdev.cshlp.orgDownloaded from 

http://genesdev.cshlp.org/
http://www.cshlpress.com


suppressed in mitosis, when the nuclear envelope breaks
down and chromosomes are exposed to cytosolic cGAS
(Zierhut et al. 2019).

Impacting cellular immune responses through DDR
inhibitors

The importance of cytosolicDNA-stimulated immune re-
sponses in the context of cancer therapy is highlighted by
the contribution of cGAS/STING to antitumor immunity
in response to radiotherapy. Longstanding reports have in-
dicated that, besides generating cytotoxic DNA damage,
radiotherapy also induces a tumor-specific immune re-
sponse that contributes to the efficacy of this therapeutic
modality (McBride et al. 2004). Secretion of inflammatory
cytokines such as TNF-α, IL-1α, and IL-6 has been ob-
served in response to ionizing radiation, which ultimately
leads to adaptive immune responses viaCD8+T cells (Hal-
lahan et al. 1989; McBride et al. 2004; Lee et al. 2009; Di
Maggio et al. 2015). Recent reports have established that
cGAS/STING plays a key role in linking innate and adap-
tive immune responses after irradiation. Specifically,
cGAS/STING mediates increased IFN-β production in
the tumor environment to promote antitumor responses
upon irradiation. Impaired type I IFN signaling resulting
from cGAS/STING inactivation can be bypassed by exog-
enous supplementation of cGAMP to induce the antitu-
mor efficacy of radiotherapy, further supporting the idea
that in response to radiotherapy, cGAS/STING is an ini-
tial sensor and signal transducer of antitumor immune re-
sponses (Burnette et al. 2011; Woo et al. 2014; Wu et al.
2014; Deng et al. 2014b). From the above, one can assume
that the stimulus that activates cGAS/STING after irradi-
ation must originate from cytosolic DNA. Indeed, micro-
nuclei, resulting from irradiation and ensuing incomplete
DNA repair, are recognized by cGAS/STING to activate
type I IFN signaling (Fig. 2). Importantly, micronuclei for-
mation requires progression through mitosis following
DNA-damage induction, wherein the dissolution and en-
suing reformation of the nuclear membrane end up en-
closing DNA fragments in a micronuclear envelope
(Harding et al. 2017; Mackenzie et al. 2017). Although
this envelope shares similarities with the normal nuclear
envelope, its assembly remains rudimentary, reflecting its
fragility that frequently results in the breakdown of enve-
lope integrity and cytosolic exposure of genomic DNA
(Liu et al. 2018b). This phenomenon is particularly impor-
tant in explaining cGAS/STING activation in response to
micronucleation, since cGAS recognizes cytosolic DNA
rather than the outer structure of a micronucleus (Mac-
kenzie et al. 2017). Interestingly, TREX1 antagonizes im-
munogenicity of cancer cells following radiation via its
own up-regulation and the consequent enhanced degrada-
tion of cytosolic DNA. However, continuous low-dose ir-
radiation circumvents TREX1 engagement and promotes
cGAS/STING-dependent IFN-β secretion for antitumor
immunity (Vanpouille-Box et al. 2017). In addition,
TREX1 inhibits the transfer of dsDNA from irradiated tu-
mor cells to dendritic cells (DCs) via tumor-derived exo-

somes, resulting in dampened cGAS/STING activation
and IFN-β production in DCs (Diamond et al. 2018).
Besides radiation-induced antitumor responses, conven-

tional chemotherapy has the potential to stimulate the in-
nate and adaptive immune systems. As described above,
HR deficiency (HRD) is a predictor of PARP inhibitor effi-
cacy and PARP inhibitors are particularly cytotoxic in tu-
mors displayingmutations inBRCA1/2. In this regard, it is
worthwhile mentioning that beside the generation of
DNAdamage, inductionof aSTING-dependent antitumor
immunity is a considerable feature of PARP inhibitor can-
cer therapy. Specifically, PARPi-mediated trapping of
PARP on DNA lesions appears to be influential for the in-
nate immune response, as the extent of PARP trapping cor-
relates with the magnitude of innate immune signaling
(Kimet al. 2020). PARP inhibitor-mediated immunogenic-
ity depends on the activation of cGAS/STING to elicit a
cytotoxic T-cell response. Intriguingly, this immune re-
sponse is augmented upon BRCA deficiency, since
Brca1-proficient mouse tumors showmitigated immuno-
genicity in response to PARP inhibitors as compared with
Brca1 mutated ones (Ding et al. 2018; Pantelidou et al.
2019). In line with these observations, PARP inhibition

Figure 2. DNA repair defects and their impacts on cellular im-
mune responses. Defects in DNA repair pathways or DDR com-
ponents affect innate and adaptive immune responses in
various ways. (1) The induction of DSBs via chemotherapeutics
or irradiation can lead to micronuclei formation and consequent
recognition of cytosolic DNA by cGAS/STING. Deficiencies in
genes encoding proteins such as BRCA2, RNase H2, or ATM fur-
ther augment these effects. (2) Cytosolic DNA can also be a result
of aberrant processing of DNA replication intermediates, with
several DDR factors limiting either the generation (SAMHD1)
or the translocation (RAD51 and RPA) of cytosolic DNA from
the nucleus, or degrading DNA once it is present in the cytosol
(TREX1). (3) Activation of the cGAS-cGAMP-STING cascade
leads to IRF3 and NFκB transcriptional programs, resulting in ex-
pression of IFN and ISGs, therefore inducing strong innate im-
mune responses. (4) In contrast, MMR defects can lead to
adaptive immune responses through increased somatic muta-
tions and consequent synthesis of neoantigens. When presented
byMHCmolecules at the cell surface, neoantigens elicit a strong
T-cell response, dependent on the immunogenicity of the
neoantigen.
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led to a strong induction of interferon-stimulated genes
(ISGs) in BRCA2-deficient cells compared with their
BRCA2-proficient counterpart (Reislander et al. 2019).
However, it has been reported that PARP inhibitors have
the potential to initiate cGAS/STING-dependent type I
IFNproduction inhumancancercells independent of their
BRCA gene status (Shen et al. 2019), presumably due to the
mitotic defects or increased replication stress caused by
PARPi affecting replication fork speed (Maya-Mendoza
et al. 2018; Slade 2019). Future studies are required to illu-
minate the underlying determinants for the differential re-
sponses inBRCA-proficient andBRCA-deficient contexts.

Other chemotherapeutic agents that generate DNA
damage also affect cellular immune responses in various
ways, often depending on the DNA damage-induced re-
lease of cytosolic DNA. For example, the topoisomerase
II inhibitor teniposide induces STING-dependent type I
IFN signaling and NF-κB activation in a mouse tumor
model, with the consequent DC and T-cell activation pro-
moting antitumor responses, including increased im-
mune cell infiltration (Wang et al. 2019). Furthermore,
the TOP2 inhibitors doxorubicin and daunorubicin in-
duce IFN-β production in human cancer cell lines via a
mechanism shown to be dependent on STING function
(Luthra et al. 2017). Notably, doxorubicin treatment en-
hances CD8+ T-cell amplification and infiltration, as
well as IFN-γ production, in tumor environments in
mice (Mattarollo et al. 2011). Similar to TOP2 inhibitors,
topoisomerase I inhibitors trigger potential immunoge-
nicity, exemplified by DC and CD8+ T-cell activation in
mice treated with topotecan (Kitai et al. 2017).

Despite lacking clear evidence for affecting the cellular
immune system, ATR inhibitors have been shown to po-
tentiate immune stimulations in response to radiothera-
py. Thus, combinatorial treatment of radiotherapy and
ATR inhibition was found to induce type I/II IFN-based
gene expression changes and CD8+ T-cell infiltration in
a manner dependent on cGAS/STING (Vendetti et al.
2018; Dillon et al. 2019; Sheng et al. 2020). While ATR in-
hibitors do not damage DNA directly, it can be assumed
that the increased immunogenicity in irradiated tumors
in the context of ATRi results from overriding the G2/M
cell cycle checkpoint, with an increased proportion of
cells with unrepaired DNA lesions entering mitosis, lead-
ing to DNA fragmentation and micronuclei formation ca-
pable of triggering innate immune responses (Ruiz et al.
2016; Harding et al. 2017). In line with this model, it has
been observed that inhibition of the ATR effector kinase
CHK1 abrogates the G2/M checkpoint post irradiation,
leading to micronuclei formation and type I IFN signaling
in cancer cells (Chao et al. 2020). Moreover, increased
CD8+ T-cell infiltration and tumor volume reduction
was observed inmice treated with a combination of radio-
therapy and theCHK1 inhibitor AZD7762 comparedwith
treatments with these agents individually (Chao et al.
2020). Similar to ATR inhibitors, pharmacologic inhibi-
tion of ATM in combination with radiotherapy was found
to induce type I IFN signaling, which notably occurred in-
dependent of cGAS/STING but was reliant on TBK1
(Zhang et al. 2019).

Consequences of DDR defects for immune responses

The involvement of DDR factors and their inhibition in
the induction of innate immune responses has been high-
lighted by the consequences of RNase H2 dysfunction in
the autoimmune disorder AGS. While certain DDR fac-
tors such as TREX1 participate in the sensing of extranu-
clear DNA, others influence cellular immunity via more
indirect mechanisms. The tumor suppressor BRCA2 has
a pivotal role in HR-mediated repair and in the protection
of stalled replication forks, while its absence is accompa-
nied by genome instability and chromosome breakage
(Prakash et al. 2015). Because BRCA2 loss is highly detri-
mental to cell viability, BRCA2-deficient cancer cells
have invariably undergone adaptation processes in order
to survive, exemplified by the inactivation of p53 func-
tions. Importantly, alongside rewiring of DNA repair
processes, the absence of BRCA2 causes enhanced phos-
phorylation and therefore activation of STAT1-IRF3,
followed by concomitant up-regulation of ISGs. Mecha-
nistically, this adaptive immune response is dependent
on cGAS/STING, with BRCA2-deficient cells exhibiting
an increase in cGAS-positive micronuclei compared
with BRCA2-proficient cells, presumably as result of the
DNA repair defects and chromosome instability observed
in the absence of BRCA2 function (Reislander et al. 2019).
In line with these observations, elevated secretion of
proinflammatory cytokines, such as TNF-α, arises as a
consequence of BRCA2 loss, resulting from cytosolic
DNA sensing by cGAS/STING and ensuing interferon re-
sponses (Heijink et al. 2019). Additionally, it has been
shown that in the absence of BRCA2, RNase H2 recruit-
ment to DSBs is impaired, resulting in increased DNA–

RNA hybrid formation and thus providing and additional
explanation for cGAS/STING activation in BRCA2-defi-
cient cells (D’Alessandro et al. 2018). Importantly, the ab-
rogation of TNF-α signaling improves viability of BRCA2-
deficient cells, indicative of TNF-α signaling promoting
cell death when BRCA2 function is impaired (Heijink
et al. 2019). Besides BRCA2 deficiency causing induction
of interferon responses and an increase in TNF-α signaling
per se, it also further sensitizes cells to autocrine TNF-α
signaling.

Notably, depletion of BRCA1 or the inter-strand DNA
cross-link (ICL) repair factor FANCD2 sensitizes cells to
recombinant TNF-α, suggesting that the general impair-
ment of HR repair or replication stress arising from com-
promised ICL repair harbors the potential to make cells
more susceptible to interferon responses (Heijink et al.
2019). The idea of unprotected replication forks compris-
ing an entry point for aberrant DNA processing and conse-
quent leakage into the cytosol is further supported by the
report thatmutations inSAMHD1 are causative for the au-
toimmune disorder AGS (Crow and Manel 2015). Besides
its role as a dNTPase (deoxynucleotide triphosphohydro-
lase), SAMHD1 promotes the controlled degradation of
newly synthesized DNA at stalled replication forks via
the exonuclease MRE11. In the absence of SAMHD1, na-
scent DNA at stalled replication forks is displaced by the
RECQ1 helicase and translocates to the cytosol, where it
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activates the cGAS/STING pathway and ensuing type I
IFN responses (Coquel et al. 2018).
In order to avoid chronic proinflammatory signaling as

occurs in AGS patients, several cellular mechanisms
have evolved to counteract or minimize leakage of DNA
fragments into the cytosol. The DNA repair proteins
RPA and RAD51 both have the capability to directly
bind ssDNA, which is crucial for their functions during
DNA replication and DNA repair (Bhat and Cortez 2018).
In addition, they prevent the accumulation of cytosolic
DNA by binding and therefore retaining ssDNA within
the nucleus, thereby working in cooperation with nuclear
membrane-bound TREX1, which normally swiftly de-
grades any DNA leaking into the cytosol (Fig. 2). Exhaus-
tion of the available RPA/RAD51 pool in the absence of
TREX1, or upon depletion of RPA or RAD51, results in
cGAS/STING-dependent type I IFN signaling (Wolf et al.
2016). Additionally, RAD51 protects newly synthesized
DNA from aberrant processing byMRE11 and consequent
cytosolic DNA translocation and ensuing cGAS/STING
activation (Bhattacharya et al. 2017). Notably, the func-
tions of MRE11 as a nuclease that processes DNA replica-
tion fork intermediates can be seen as a double-edged
sword. On one hand, MRE11 prevents cGAS/STING acti-
vation through trimming of replication intermediates,
stimulatedbySAMHD1.On theotherhand, excessivepro-
cessing of unprotected, stalled replication forks in the ab-
sence of RAD51 by MRE11 generates cytosolic DNA and
consequently stimulates cGAS/STING. Whether or in
which form RAD51 cooperates with SAMDH1 for fine-
tuning of this process is an interesting area for future re-
search. Besides MRE11-dependent degradation of nascent
DNA at stalled or collapsed replication forks, other DNA
nucleases can process DNA structures in such contexts,
subsequently leading to activation of innate immune re-
sponses via cytosolic DNA sensing. In particular, the ac-
tions of the structure-specific endonuclease MUS81 can
bring about the accumulation of cytosolic DNA via
MUS81-dependent cleavage of stalled replication forks,
leading to cGAS/STING activation and induction of type
I IFNs, as observed in various prostate cancer cell lines
(Ho et al. 2016). Moreover, the MUS81–STING axis is re-
sponsible for a prostate cancer cell-specific T-cell response
in mice, thus highlighting a likely role for MUS81 in pro-
moting antitumor immunity. In addition, endogenously
arisingDSBs are capable of stimulating innate immune re-
sponses in situations where accurate DNA repair is com-
promised. Accordingly, deficiency in ATM induces type I
IFNs in unchallenged conditions, indicative of spontane-
ously arising DNA DSBs being the stimulus of this im-
mune response. Furthermore, in the absence of ATM,
ssDNA resulting from unrepaired DNA lesions accumu-
lates in the cytoplasm and activates cGAS/STING-depen-
dent type I IFN signaling (Härtlova et al. 2015). Notably,
this DDR defect primes type I IFNs to enhance the innate
immune response toward invading pathogens, highlight-
ing the fact that damaged DNA serves as a danger signal
for cellular homeostasis and prepares the innate immune
system for a rapid response in the faceof bacterial challeng-
es (Härtlova et al. 2015).

Mismatch repair deficiency and adaptive immunity

Deficiencies in DNA repair pathways can also affect adap-
tive immune responses, which are key for immunogenic-
ity of tumors and have clinical implications in the context
of cancer immunotherapy. Additionally, DNA damage re-
sponses are crucial during the development of the im-
mune system and maturation of immune cells, as
exemplified by the controlled induction and concomitant
repair of DSBs during V(D)J recombination and class
switch recombination in lymphocytes (for an extensive
review, see Bednarski and Sleckman 2019). Furthermore,
over recent years, a connection between defects in the
DNAmismatch repair (MMR) pathway and tumor immu-
nogenicity has been observed both in preclinical model
systems and in cancer patients. The MMRmachinery de-
tects and replaces basemismatches resulting from errone-
ous DNA replication or repair and, in particular, plays key
roles in correcting small insertion or deletions (indels)
arising at repetitive sequences in the genome, so-called
microsatellite instability (Kunkel and Erie 2015). Tumors
harboringmutations in genes encoding the coreMMR fac-
tors MLH1, MSH2, MSH6, or PMS2 are characterized by
microsatellite instability (MSI), a hypermutator pheno-
type specified by large numbers of single-nucleotide vari-
ants (SNVs) and indels, thus leading to a high mutational
burden. Additionally, specific DNA proofreading muta-
tions in the replicative DNA polymerases POLE and
POLD1 drive hypermutation phenotypes in some cancers
without causing MSI (Campbell et al. 2017). MSI predom-
inantly occurs in endometrial, gastric, and colorectal can-
cers, suggesting that such tissue types or the tumor
environment and extracellular influences affect MSI de-
velopment (Hause et al. 2016; Cortes-Ciriano et al.
2017). The correlation between MSI colorectal tumors
and high numbers of tumor-infiltrating lymphocytes has
long been acknowledged. Colorectal MSI tumors fre-
quently display high infiltration of CD8+ cytotoxic T
cells, type 1 helper (Th1) cells, andmemory T cells, along-
side the up-regulated expression of interferon γ (IFN-γ) and
immune checkpoint molecules PD-1, PD-L1, and CTLA4
(Fig. 3; Llosa et al. 2015; Mlecnik et al. 2016).
MSI endometrial tumors also exhibit increasednumbers

of tumor-infiltrating lymphocytes and elevated expression
of PD-1/PD-L1 compared withmicrosatellite stable (MSS)
tumors (Howitt et al. 2015). Recently, this connection has
been attributed to the increase in neoantigens due to the
high mutational burden in these settings (Tougeron et al.
2009; Maby et al. 2015). To a certain degree, it seems rea-
sonable to assume that themoremutations in the genome,
themore likely it is that neoantigens are formed and in due
course recognized by the immune system (Fig. 2; Turajlic
et al. 2017). In line with this idea, increased mutational
burden correlates with improved survival in colorectal
cancer patients (Giannakis et al. 2016). Interestingly, addi-
tional tumor types such as melanomas and lung cancers,
despite being microsatellite stable (MSS), exhibit an in-
creased number of overall mutations compared with oth-
ers, most likely due to exposure to exogenous mutagens,
including ultraviolet light and tobacco smoke

Interfaces between DDR and cancer immunotherapy

GENES & DEVELOPMENT 7

 Cold Spring Harbor Laboratory Press on August 26, 2022 - Published by genesdev.cshlp.orgDownloaded from 

http://genesdev.cshlp.org/
http://www.cshlpress.com


components, respectively, suggesting that these may also
promote antitumor immune responses (Alexandrov et al.
2013). In accord with this idea, a recent study by Bardelli
and colleagues (Germano et al. 2017) demonstrated that
colorectal, breast, and pancreatic mouse cancer cell lines,
where MMR was genetically inactivated, grew signifi-
cantly slower when transplanted into immunocompetent
mice compared with the isogenic MMR-proficient cancer
cell lines, indicating rejectionby thehost immune system.
Enhanced immunosurveillancewas accompaniedbyaccu-
mulation of neoantigens over time in MMR-deficient
cells, wherein the amount of neoantigens remained stable
inMMR-proficient cells, implicatingneoantigens generat-
ed by MMR deficiency as a direct cause for immune sys-
tem-mediated elimination of cancer cells (Germano et al.
2017). Importantly, fully established MMR-deficient tu-
mors are often sensitive to immune checkpoint inhibitors
in people, which points towardMMR deficiency as an im-
portant determinant of immune checkpoint blockade (Fig.
4) efficacy, at least in certain cancer types (Le et al. 2015).

Combined targeting of DDR and immune checkpoints
in cancer therapy

Immune checkpoint inhibition (or immune checkpoint
blockade [ICB]) has experienced considerable success in
recent years as a promising therapeutic strategy for a sub-
set of cancers, presenting an alternative to irradiation

therapy or classical chemotherapies (Fig. 4; Ribas and
Wolchok 2018). In particular, their potential to counteract
immune suppressive signals in the tumor microenviron-
ment to overcome T-cell exhaustion has been proven to
be beneficial in clinical settings (Fig. 3). ICBs target im-
mune checkpoints, which in normal settings are impor-
tant to accurately regulate T-cell activation and T-cell
receptor signaling, thus preventing chronic (or inappropri-
ate) immune responses. In cancers, these checkpoints, of-
ten engaged via cell surface ligands or receptors, are
repurposed to dampen antitumor immune responses and
create an immune-suppressive tumor microenvironment.
ICB agents, in the form of antibodies, binding to these li-
gands/receptors (anti-CTLA-4 and anti-PD-1/anti-PD-L1)
can overcome inhibitory signaling and reactivate T-cell
engagement toward the tumor (Fig. 4). In order to broaden
the spectrum of applications for ICB, extensive efforts
have centered around the identification of suitable bio-
markers for predicting ICB efficacy, as well as exploring
the potential of combination therapies with conventional
irradiation or chemotherapy. Increased mutational load is
a promising indicator of ICB responsiveness, and indeed,
patients harboring mutations in MMR genes and display-
ing MSI showed strong responsiveness to PD-1 antago-
nists (Rizvi et al. 2015; Le et al. 2017; Overman et al.
2017). Importantly, the clinical benefits of blocking the
PD-1/PD-L1 immune checkpoint occurred across various
tumor types, including melanomas, colorectal, and non-
small cell lung cancers (NSCLCs), highlighting the

Figure 3. Innate and adaptive immune responses in
cancer. In recent years, the concept of cancer immu-
noediting evolved from traditional views of the im-
mune system constantly surveying and eliminating
transformed cells in order to counteract cancer devel-
opment (immunosurveillance) (Keast 1970). Cancer
immunoediting unifies observations of the immune
system promoting tumor outgrowth with reports of
immunosurveillance, highlighting the dual functions
of the immune system during tumor development
(Schreiber et al. 2011). The cancer immunoediting
concept consists of three phases: elimination, equi-
librium, and escape. In the elimination phase, com-
ponents of both the innate and adaptive immune
response recognize and destroy cells undergoing on-
cogenesis. Elimination is promoted by a number of
signaling molecules such as type I and type II IFNs

and is executed via the interplay of a subset of immune cells such as CD8+ T cells, dendritic cells (DCs), natural killer cells (NKs), natural
killer T cells (NKTs), proinflammatory (“M1”) macrophages, and others (Mittal et al. 2014). Notably, theDDRparticipates in this process,
since DNA damage induction in tumors cells results in up-regulation of ligands for the receptors NKG2D and DNAM-1, therefore stim-
ulating cytotoxicity of NK and CD8+ T cells in addition to IFN-γ secretion (Gasser et al. 2005; Croxford et al. 2013). Moreover, radiother-
apy-inducedDNAdamage, and consequent cell death due to uncompleteDNA repair, stimulates cross-presentation by dendritic cells and
increased lymphocyte influx, thus further contributing to cancer cell elimination (Deng et al. 2014b; Samstein andRiaz 2018; Cornel et al.
2020; Cheng et al. 2021). Paradoxically, TNF-α has both antitumor and tumor-promoting activity. When secreted by macrophages and
innate immune cells, TNF-α induces cancer cell elimination, whereas chronic inflammation promoted by TNF-α signaling can drive car-
cinogenesis (Balkwill 2009; Charles et al. 2009). In the equilibriumphase, the adaptive immune systemholds the tumor in a dormant state
with cancer cells resisting constant immune recognition through genetic and epigenetic changes in antigen presentation and immuno-
suppressive pathways. Cancer cells achieve immune evasion by variousmechanisms, including loss of tumor antigens or factors involved
in antigen presentation, such as type I HLA (MHC) function, expression of inhibitory ligands (e.g., PD-L1 and CTLA-4), secretion of im-
munosuppressive cytokines (IL-10, TGF-β), and recruitment of tumor-associated macrophages (TAMs) and regulatory T cells (Tregs).
These scenarios result in the inability of innate and adaptive immune cells to recognize and appropriately respond to oncogenic cells,
therefore facilitating tumor progression (escape phase) (Vinay et al. 2015).
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likelihood that increasedmutational burdenwas the com-
mon denominator of ICB efficacy between these tumors.
In line with this premise, progression free survival and
overall survival upon PD-1 blockadewas further augment-
edwhen combinedwith aCTLA-4 antagonist in small cell

lung cancers, which exhibit a high load of somatic muta-
tions (Hellmann et al. 2018).

Synergy of PARP inhibitors with immune checkpoint
inhibition

In addition to being used to treat tumors with a high mu-
tational burden, ICBs have also been shown to be effective
when applied in combination with DDR inhibition (Table
2). An important feature of PARP inhibition is that it is as-
sociated with increases in CD8+ T-cell infiltration and
IFN-γ production in the tumor, which occurs in mouse
cancer models independent of their Brca1/2 status. More-
over, tumor regression was further increased upon combi-
nation therapy of PARPi with anti-PD-1 antibodies
compared with the respective monotherapies (Ding et al.
2018; Shen et al. 2019). Initial results of ensuing clinical
trials indicate beneficial effects in a subset of patients
treated with ICB and PARPi, with results from the MEDI-
OLA trial suggesting increased antitumor activity in
germline BRCA mutated ovarian cancers treated with
the combination therapy of olaparib and durvalumab
(PD-L1 inhibitor) (Domchek et al. 2020).
Another clinical trial, TOPACIO, investigated the effi-

cacy of the PARPi niraparib and the PD-L1 inhibitor pem-
brolizumab in platinum-resistant advanced breast cancers
and recurrent ovarian cancers, independent of their HR
proficiency. Notably, patient response toward the combi-
nation therapy in ovarian cancers exceeded expectations
based on monotherapy efficacy, while HRD-associated
mutational signature 3 or a positive immune score were
reliable indicators of responsiveness (Konstantinopoulos
et al. 2019; Färkkilä et al. 2020). Although mutational sig-
nature 3 and thereforeHR proficiency predicted efficacy of
this combination therapy, therefore implying an applica-
tion for niraparib and pembrolizumab in BRCA-deficient
tumors, it was also encouraging that PD-L1 presence
and interferon priming of immune cells present in the tu-
mor microenvironment can be used to estimate respon-
siveness to the combination therapy independent of
HRD. Indeed, patient responses to PARPi and PD-L1 inhi-
bition have been observed in tumors displaying a func-
tional HR pathway (Färkkilä et al. 2020). Additionally, a
proof-of-concept clinical study further confirmed im-
mune activation in ovarian cancers treated with olaparib
and the anti-PD-L1 antibody durvalumab regardless of
theirBRCA status, highlighted by increased IFN-γ produc-
tion and tumor-infiltrating lymphocytes (Lampert et al.
2020). Notably, in this study no significant increase in tu-
mor mutational burden was observed (not even in BRCA-
deficient tumors), which is in line with previous observa-
tions in ovarian cancers and suggests that immune stimu-
lation with concomitant PARPi treatment is unlikely to
result from the exposure of neoantigens (Chan et al.
2019). However, increased proinflammatory cytokine ex-
pression andT-cell activationwas associatedwith clinical
benefits following olaparib plus durvalumab treatment,
implying a potential application of this therapy for awider
spectrum of cancers. Currently, numerous clinical trials

Figure 4. Principles of immune checkpoint inhibitors for cancer
therapy. As described in Figure 3, during the escape phase of the
immunoediting concept, tumor cells evade immune recognition
and destruction by active immunosuppression in the tumor. A
milestone for the field of immune checkpoint inhibitors was
the report in which melanoma patients treated with an antibody
targeting the T-cell checkpoint protein CTLA-4 showed signifi-
cantly improved survival compared with the control group
(Hodi et al. 2010). This suggested that targeting suppressive im-
mune checkpoints can improve overall survival in melanomas,
indicating that a patient’s immune systemhas capabilities to con-
trol tumor growth once immunosuppressive signals are over-
come. Since this pharmacological approach targets the patient’s
immune system rather than the tumor itself, a new field for clin-
ical research arose. CTLA-4 is a surface receptor on T cells. To ac-
quire effector function, a T-cell recognizes its compatible
antigen, presented by MHC molecules of an antigen-presenting
cell (APC), via its T-cell receptor (TCR). However, this initial rec-
ognition is insufficient, with binding of the CD28 T cell receptor
to B7 molecules (CD80 or CD86 ligand) on APCs serving as cru-
cial costimulatory signals to adequately prime T cells. CTLA-4
translocates to the cell surface once T cells are activated, where
it binds CD80 and CD86 with higher affinity than CD28, there-
fore dampening T-cell activation (Walunas et al. 1994; Krummel
and Allison 1995). Moreover CTLA-4 expression by Tregs is cru-
cial for their immune suppressive functions, potently binding
CD80/CD86 ligands on APCs and therefore preventing T-cell ac-
tivation (Takahashi et al. 2000; Wing et al. 2008). Following its
initial success in clinical trials, the CTLA-4 antibody ipilimumab
was FDA approved in 2011 for treating melanomas. PD-1 repre-
sents another inhibitory receptor present on T cells, while its li-
gands PD-L1 and PD-L2 can be expressed by various cell types,
including APCs and malignant cells, predominantly after expo-
sure to inflammatory cytokines such as IFN-γ. Engagement of
PD-L1 with its receptor PD-1 interferes with TCR signaling,
therefore limiting T-cell responses toward tumor cells (Freeman
et al. 2000; Dong et al. 2002). Following this rational, antibodies
targeting PD-1/PD-L1 have provoked clinical benefits in various
types of cancers, warranting FDA approval of pembroluzimab
and nivolumab (both PD-1 antagonists) in 2014. Unlike CTLA-
4, PD-1/PD-L1 does not interfere with costimulation during the
T-cell activation, suggesting that combination therapy of
CTLA-4 and PD-1/PD-L1 antibodies could have synergistic ther-
apeutic effects. Regaining T-cell activation, by blocking inhibito-
ry signals during costimulation via CTLA-4 antibodies, could
drive increased PD-L1 expression in tumor cells, making them
particularly susceptible to PD-1/PD-L1 checkpoint blockade
(Sharma and Allison 2015).
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are evaluating the efficacy of PARP inhibitors in combina-
tion with ICB (Table 2). Although a significant proportion
of these studies are preselecting patients based on poten-
tial DDR defects, it will be valuable to compare outcomes
with trials where patients received the combination ther-
apy independent of DDR deficiencies. Clarifying whether
and towhat extent DDR deficiency promotes responses to
PARPi + ICB, and whether mutations in DDR genes (or
mutational signatures characteristic for DDR deficien-
cies) can serve as reliant biomarkers for predicting
PARPi + ICB efficacy will be crucial for the clinical pros-
pects of this combination therapy approach.

Potentiating immune checkpoint inhibitor efficacy
via DDR inhibitors

Beyond PARP inhibitors, combinations of DNA-damage
inducing agents with ICB have shown encouraging pre-
clinical/clinical results, as exemplified by the recent
FDA approval of atezolizumab (anti-PD-L1) in combina-
tion with carboplatin and etoposide for extensive-stage
small cell lung cancers (SCLCs). Prior to this approval,
the Impower133 clinical trial had shown significantly lon-
ger overall and progression-free survival in small cell lung
cancer (SCLC) patients subjected to this combination

Table 2. Registered clinical trials using DDR and immune checkpoint inhibitors

Treatment combination Clinical trial Phase Disease setting Biomarkers

Dostarlimab (PD-1) and niraparib (PARP) NCT03602859 III Epithelial or ovarian cancer
NCT03651206 II/III Ovarian cancer

Nivolumab (PD-1) and rucaparib (PARP) NCT03522246 III Ovarian cancer HR status
NCT03824704 II Ovarian cancer BRCA mutation
NCT03639935 II Biliary tract cancer

Pembrolizumab (PD-1) and olaparib
(PARP)

NCT04380636 III NSCLC
NCT03834519 III Prostate cancer
NCT03976362 III NSCLC
NCT03976323 III NSCLC
NCT04380636 III NSCLC
NCT04191135 II/III Breast cancer
NCT04483544 II Cervical cancer

Pembrolizumab (PD-1) and niraparib
(PARP)

NCT02657889 I/II Breast or ovarian cancer

Pembrolizumab/Dostarlimab (PD-1) and
niraparib (PARP)

NCT03308942 II NSCLC

Pembrolizumab (PD-1) and BAY1895344
(ATR)

NCT04095273 I Solid tumors

Atezolizumab (PD-L1) and niraparib
(PARP)

NCT03598270 III Ovarian, tubal, or peritoneal
cancer

Atezolizumab (PD-L1) and olaparib
(PARP)

NCT02849496 II Breast cancer HRD

Atezolizumab (PD-L1) and rucaparib
(PARP)

NCT04276376 II Solid tumors (NSCLC, bladder,
prostate)

DNA repair-deficient

Avelumab (PD-L1) and talazoparib (PARP) NCT03565991 II Solid tumors ATM- or BRCA-deficient
NCT03330405 II Solid tumors
NCT03964532 I/II Breast cancer

Avelumab (PD-L1) and berzoserrtib (ATR) NCT04266912 I/II Solid tumors DDR-deficient
Bevacizumab (PD-L1) and niraparib
(PARP)

NCT03574779 II Ovarian cancer

Durvalumab (PD-L1) and olaparib (PARP) NCT03851614 II Colorectal or pancreatic cancer Mismatch repair-deficient
(colorectal)

NCT03951415 II Endometrial cancer
NCT03991832 II Solid tumors
NCT02953457 II Ovarian, fallopian tube, or

peritoneal cancer
BRCA mutation

NCT02734004 I/II Ovarian, breast, SCLC, or gastric
cancers

BRCA mutation

NCT02484404 I/II Solid tumors
Durvalumab (PD-L1) and AZD6738 (ATR) NCT02664935 II NSCLC
Durvalumab (PD-L1) and ceralasertib
(ATR)

NCT02264678 I/II HNSCC or NSCLC

LY3300054 (PD-L1) and prexasertib
(CHK1)

NCT03495323 I Solid tumors

Tremelimumab (CTLA-4) and olaparib
(PARP)

NCT04034927 II Ovarian, fallopian tube, or
peritoneal cancer

NCT02571725 I/II Ovarian cancer BRCA mutation
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therapy compared with chemotherapy alone (Horn et al.
2018). Interestingly, in this study there was no indication
of higher mutational burden being beneficial for patient
response, opposing preclinical studies suggesting positive
correlation between mutational load and ICB monother-
apy (Hellmann et al. 2018). Since the Impower133 trial co-
hort represented patients with advanced disease, it is
possible that tumor progression selects against strong im-
munogenic neoantigens. Consequently, the efficacy of
combination therapy could result from chemotherapy-in-
duced DNA damage and induction of inflammatory re-
sponses in the tumor microenvironment. Other DDR
inhibitors being assessed for synergistic effects with im-
munemodulating agents are still at the stage of preclinical
investigations. In this regard, it is notable that inhibiting
PARP or CHK1 in the presence of anti-PD-L1 antibodies
caused tumor regression in SCLC mouse models, which
was accompanied by CD8+ T-cell infiltration (Sen et al.
2019b). Further analysis revealed that PARP inhibition
caused a drastic increase in PD-L1 and IFN-β expression
in tumors, while the antitumor effect of either CHK1i +
anti-PD-L1 or PARPi + anti-PD-L1was dependent on func-
tional cGAS/STING. Additionally, combining the TOP1
inhibitor irinotecan with PD-1/PD-L1 antibodymildly re-
duced tumor growth in cancer mouse models (Iwai et al.
2018; McKenzie et al. 2018; Sen et al. 2019a).
As we described above, radiation therapy has multiple

impacts on immune responses in cancer cells, resulting
in cGAS/STING activation via cytosolic DNA, leading
to type I IFN responses. Therefore, it appears that ICBs
have the potential to augment anti-immune responses
upon radiotherapy of tumors. Indeed, complementing ra-
diotherapy with anti-PD-L1 antibody treatment extended
the efficacyof radiotherapy inmouse tumormodels via cy-
totoxicT-cell activation, accompanied by reduced infiltra-
tion of immune suppressive myeloid cells (Deng et al.
2014a). Furthermore, a phase I clinical trial revealedmajor
tumor regression in a group of metastatic melanoma pa-
tients treated with radiotherapy and an anti-CTLA-4 anti-
body (Twyman-Saint Victor et al. 2015). Importantly, this
effect was reproduced in mouse models, although resis-
tance was observed after a certain time, likely caused by
up-regulation of PD-L1 expression in melanoma cells,
leading to T-cell exhaustion. In line with these observa-
tions, patients displaying high levels of PD-L1 did not re-
sponse to radiotherapy + anti-CTLA-4 therapy, but
inhibition of the PD-1/PD-L1 axis in these tumors re-en-
gaged exhaustedT cells and improved the efficacy of radio-
therapy + anti-CTLA-4 (Twyman-Saint Victor et al. 2015).
Moreover, a phase III study in non-small cell lung cancer
(NSCLC) patients revealed increased progression-free sur-
vivalwhen radiotherapywas combinedwith the PD-L1 in-
hibitor durvalumab compared with the control group
(Antonia et al. 2017). An important feature of radiotherapy
is its potential to induce tumor regression distant from the
site of radiation,which depends on the host’s immune sys-
tem; termed the “abscopal effect.”Although this effect oc-
curs only sporadically, there is a consensus that immune
checkpoint inhibitors have the potential to systematically
promote abscopal effects in tumors (Ngwa et al. 2018). In

mouse models, sensing of cytosolic DNA via cGAS/
STINGwas shown tobe required for the abscopal effect ob-
served in response to radiotherapy and CTLA-4 inhibitors
(Harding et al. 2017). In linewith these observations, com-
bining radiotherapy with ipilimumab (anti-CTLA-4) in-
duced systemic antitumor immune responses in NSCLC
patients, indicative of abscopal effects. Increased IFN-β
secretion and clonal expansion of tumor-derived T-cell re-
ceptors (TCRs) predicted responsiveness to this combina-
tion therapy (Formenti et al. 2018), thereby highlighting
the potential of radiotherapy to induce type I IFN respons-
es promoting innate antitumor immunogenicity. In con-
clusion, innate immunity is fundamental to creating an
adaptive immune response in immunosuppressive tu-
mors, and the induction of DNA damage via DDRis or ra-
diotherapy represents a potent trigger of this response.

Concluding remarks

It is becoming increasingly clear thatDNAdamage and ac-
tivation of DNA damage responses can result in profound
stimulation of aspects of the immune system. Defects in
DNA repair pathways such as HR as well as DNA replica-
tion stress and concomitant aberrant processing of DNA
replication forks can trigger cytosolic DNA sensing via
cGAS/STING, leading to robust interferon responses. Fur-
thermore, DDR inhibitors harbor the potential to activate
antitumor immune responses and contribute to their ther-
apeutic efficacy. The abrogation of cytosolic DNA sensing
via cGAS/STING and proinflammatory signaling dimin-
ishes PARPi cytotoxicity in mouse tumor models, indica-
tive of uncompletedDNA repair products being the initial
stimulus of this immune response. Since comparable im-
mune stimulation from PARPi can be observed in clinical
scenarios, particularlywhen their application is combined
with immune checkpoint inhibitors, it will be crucial to
define and understand the exact circumstances wherein
DNA lesions can activate antitumor immunity. Our cur-
rent understanding suggests that in some scenarios,
DDR inhibition or radiotherapy induces proinflammatory
signaling events in tumor-suppressive microenviron-
ments, which, when combined with ICB, promote
T-cell-mediated destruction of tumor cells. It is tempting
to speculate that the sheer presence of aberrant DNA re-
pair products, rather thanmutational burden and resulting
neoantigens, is the key stimulus for these immune re-
sponses. Importantly, this could imply efficacy of DDR in-
hibitors and ICB treatment combinations in advanced
disease settings, where a strong immune suppression of
the tumormilieu frequently suppresses antitumor immu-
nity. Ongoing and future clinical trials will shed light on
these issues and may identify biomarkers for predicting a
patient’s responsiveness to various potential therapies,
thereby helping tailor therapies to individual patients
and impacting on the future clinical success of combining
DDR inhibitors with ICBs. Importantly, in the context of
MSI tumors, DDR defects can be a source for mutational
burden and the consequent generation of neoantigens in
tumor cells. The prevailing clinical success of ICB in MSI
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or other high mutational burden tumors opens the thera-
peutic avenue of combining ICB with MMR inhibitors
for targeted application in patients independent of themu-
tational load in the tumor. Finally, the development and
clinical exploration of inhibitors of DDR components
such as ATR, ATM, and DNA-PK will shed more light
onhowthese inhibitors potentially affect cellular immune
responses and how these might be exploited in combina-
tions with immune-targeting therapies. Furthermore, in-
hibitors targeting DNA repair polymerases, such as
POLθ, represent an exciting arena for future studies, not
only in the context of DDR alone but also in regards to
their potential interplay with the cellular immune sys-
tems (Schrempf et al. 2020). In this regard, it is of note
that preclinical studies with POLθ inhibitors have indicat-
ed promising efficacies in tumor models, reminiscent of
the initial studieswhen PARP inhibitorswere being devel-
oped (Zhou et al. 2020). Given the widespread efforts in
both the DDR inhibitors and ICB arenas and the interest
in their synergies, it seems likely that we will soon learn
of other contexts where their combination will enhance
the health and well-being of cancer patients.
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