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The equation of motion and the conditions on surfaces and edges between fluids

and solids in the presence of nonconstant surface energies, as in the case of

surfactants attached to fluid particles at the interfaces, are revisited under the

principle of virtual work. We point out that adequate behaviors of surface con-

centrations may drastically modify the surface tension which naturally appears

in the Laplace and the Young–Dupré equations. Thus, the principle of virtual

work points out a strong difference between the two revisited concepts of surface

energy and surface tension.

1. Introduction

This paper develops the principle of virtual work due to d’Alembert–Lagrange

[Serrin 1959]1 when different phases of fluids are in contact through singular sur-

faces or interfaces. The study is first presented without a constitutive assumption

for the surface energies, but the displacement fields are considered for a simple

material corresponding to the first-gradient theory. The d’Alembert–Lagrange

principle allows us to obtain the equation of motion and boundary conditions of

mechanical nature and is able to be extended to more complex materials with mi-

crostructures [Daher and Maugin 1986] or to multigradient theories [Gouin 2007].

Here, we aim to emphasize the formulation of the principle of virtual work when

the interfaces are endowed with nonconstant surface energies: the surfaces have

their own material properties independent of the bulks and are embedded in the

physical space, which is a three-dimensional metric space. The surface energy

density is taken into account and naturally comes into the boundary conditions as

the Laplace and the Young–Dupré equations by using variations associated with

the virtual displacement fields. To do so, it is necessary to propose a constitutive

equation of the surface energy; defining this is a main purpose of the paper. Such a

PACS2010: 02.30.Xx, 45.20.dg, 68.03.Cd, 68.35.Gy.

Keywords: variational methods, capillarity, surface energy, surface tension.
1The principle of virtual work is also referred to in the literature as the principle of virtual power

while virtual displacements are called virtual velocities [Germain 1973a; 1973b].
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presentation is similar that of deformational and configurational mechanics [Stein-

mann 2008]; the method is analogous with the one employed in [Germain 1973a;

1973b; Daher and Maugin 1986] but with powerful differential geometry tools as

in [Fosdick and Tang 2009]. However, the mathematical tools are adapted to the

linear functional of virtual displacement fields and not to the integral balance laws

over nonmaterial interfaces separating fluid phases as in [Cermelli et al. 2005].

Consequently, the main result of this paper is to propose a general form of the

linear functional with interfaces in first-gradient theory which points out the sig-

nificance of constitutive behaviors for the surface energies and highlights the clear

difference between the notions of surface energy and surface tension. Fischer et al.

[2008] emphasized a thermodynamical definition of surface energy, surface tension,

and surface stress for which surface tension and surface stress are identical for flu-

ids. Our presentation is not the same: without any thermodynamical assumptions,

the difference between surface energy and surface tension is a natural consequence

of the virtual work functional and the d’Alembert–Lagrange principle. The surface

energy allows us to obtain the total energy of the interfaces and the surface tension

is directly generated from the boundary conditions of the continuous medium.

In the simplest cases the two notions of surface energy and surface tension are

mingled, but this is not generally the case when the surface energy is nonconstant

along the interfaces. To prove this property, we first focus on the simplest case of

Laplace’s capillarity and obtain the well-known equations on interfaces and contact

lines.

Surfaces endowed with surface matter, as in the case of surfactants, are a more

complex case. Recent decades have seen the extension of surfactant applications

in many fields including biology and medicine [Rosen 2004]; surfactants can also

be expected to play a major mechanical role in the fluid and solid domains. The

versatility of a surfactant mainly depends on its concentration at interfaces. It ex-

perimentally appears that a surfactant or surface-active agent is a substance present

in liquids at a very low concentration rate and, when surface mass concentration is

below the critical micelle concentration, it is mainly absorbed onto interfaces and

alters only the interfacial free energies [de Gennes et al. 2004]. The interfacial free

energy per unit area (generally called the surface energy) is the minimum amount

of work required to create an interface at a given temperature [Edwards et al. 1991;

Slattery et al. 2007]. The fact that surfactants can affect the mechanical behaviors

of interfaces must be modelized in order to predict and control the properties of

complete systems.

In fact, our aim is not to study the general case of surfactants proposed in the

literature but to focus on the virtual work method to prove that simple behaviors

of the surface energy depending on the mass concentration can drastically change

the capillary effects. So, the concept of surface tension naturally appears in the
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equations on surfaces and on lines. In this paper, we call a surfactant the matter

distributed only on the interfaces: we consider the special case when surfactant

molecules are insoluble in the liquid bulk (the surface mass concentration is below

the critical micelle concentration [Rosen 2004]) and are attached to fluid particles

along the interfaces (without surface diffusion as in [McBride et al. 2011]).

The manuscript is organized as follows: Section 2 briefly reminds us of some

results formally presenting the principle of virtual work in its more general form by

using the kinematics of a continuous medium and the notion of virtual displacement.

The simplest example of the Laplace model of capillarity concludes the section.

Section 3 deals with the case when the interfaces are endowed with nonconstant

surface energy, whereby we essentially focus on liquid in contact with solid and gas.

The special case of surfactants as interface matter attached to the fluid particles is

considered. The surface energy depends on the surface matter concentration. Such

a property drastically changes the boundary conditions on the interface by using

surface tension instead of surface energy.

Section 4 deals with an explicit comparison between surface energy and surface

tension only within deformational mechanics. And Section 5 is the conclusion in

which some general extension can be forecast.

The main mathematics tools are collected in the large Appendix so that the

presentation of the text is not cluttered with tedious calculations. The main math-

ematical tool is (15), which can be extended to more complex media.

2. Virtual work for a continuous medium

In continuum mechanics, motions can be equivalently studied with either the New-

tonian model of a system of forces or the Lagrangian model of the work of forces

[Germain 1973a; 1973b]. The Lagrangian model does not derive from a variational

approach but, at equilibrium, the minimization of the energy coincides with the zero

value of a linear functional. Generally, the linear functional expressing the work of

forces is related to the theory of distributions; a decomposition theorem associated

with displacements (as C∞-test functions whose supports are compact manifolds)

uniquely determines a canonical zero order form (a separated form) with respect

to both the test functions and the transverse derivatives of the contact test functions

[Schwartz 1966]. In the same way that the Newtonian principle is useless when

we do not have any constitutive equation for the system of forces, the d’Alembert–

Lagrange principle is useless when we do not have any constitutive assumption for

the virtual work functional.

The equation of motion and boundary conditions of a continuous medium derive

from the d’Alembert–Lagrange principle of virtual work, which is an extension of

the same principle in the mechanics of systems with a finite number of degrees of



26 HENRI GOUIN

freedom: For any virtual displacement, the motion is such that the virtual work of

forces is equal to the virtual work of mass accelerations [Gouin 2007].

2.1. The background of the principle of virtual work. The motion of a continuous

medium is classically represented by a continuous transformation ϕ of a three-

dimensional space into the physical set. In order to describe the transformation

analytically, the variables X = (X1, X2, X3) which single out individual parti-

cles correspond to material or Lagrange variables; the variables x = (x1, x2, x3)

correspond to Euler variables. The transformation representing the motion of a

continuous medium is of the form

x = ϕ(X, t) or x i = ϕi (X1, X2, X3, t), i ∈ {1, 2, 3}, (1)

where t denotes the time. At a fixed time the transformation possesses an inverse

and continuous derivatives up to the second order except on singular surfaces,

curves, or points. Then, the diffeomorphism ϕ from the set D0 of the particle

references into the physical set D is an element of a functional space ℘ of the posi-

tions of the continuous medium considered as a manifold with an infinite number

of dimensions.

To formulate the d’Alembert–Lagrange principle of virtual work in continuum

mechanics, we recall the notion of virtual displacements. This notion is obtained

by letting the displacements arise from variations in the paths of particles. Let

a one-parameter family of varied paths or virtual motions denoted by {ϕη}, and

possessing continuous partial derivatives up to the second order, be analytically

expressed by the transformation

x =8(X, t; η), (2)

with η ∈ O , where O is an open real set containing 0, and such that 8(X, t; 0) =

ϕ(X, t) (the real motion of the continuous medium is obtained when η = 0). The

derivative with respect to η at η = 0 is denoted by δ. In the literature, the derivative

δ is named the variation and the virtual displacement is the variation of the position

of the medium [Serrin 1959]. The virtual displacement is a tangent vector to ℘,

the functional space of positions, at ϕ (δϕ ∈ Tϕ(℘)). In the physical space, the

virtual displacement δϕ is determined by the variation of each particle: the virtual

displacement ζ of the particle x is such that ζ = δx when at η = 0, {δX = 0, δt = 0,

δη = 1}, and we associate the field of tangent vectors to D:

x ∈ D → ζ = ψ(x)≡
∂8

∂η

∣

∣

∣

η=0
∈ Tx(D),

where Tx(D) is the tangent vector bundle to D at x.

The virtual work concept, the dual of Newton’s method, can be written in the

following form:
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Figure 1. The boundary S of D is represented by a thick curve

and its variation by a thin curve. The variation δϕ of the family

{ϕη} of varied paths belongs to Tϕ(℘), tangent space of ℘ at ϕ.

The virtual work δτ is a linear functional value of the virtual displacement,

δτ = 〈ℑ, δϕ〉, (3)

where 〈 · , · 〉 denotes the inner product of ℑ and δϕ, with ℑ belonging to the cotan-

gent space T ∗
ϕ (℘) of ℘ at ϕ.

In (3), the medium in position ϕ is submitted to covector ℑ denoting all the

“stresses” in mechanics. In the case of motion, we must add the inertial forces,

corresponding to the accelerations of masses, to the volume forces.

The d’Alembert–Lagrange principle of virtual work is expressed as follows:

For all virtual displacements, the virtual work is null.

This principle leads to the analytic representation

∀ δϕ ∈ Tϕ(℘), δτ = 0.

Theorem. If (3) is a distribution expressed in separated form (see [Schwartz 1966]),

the d’Alembert–Lagrange principle yields the equation of motion and boundary

conditions in the form ℑ = 0.

The virtual displacement is submitted to constraints coming from the consti-

tutive equations and geometrical assumptions such as mass conservation. Conse-

quently, the constraints are not expressed by Lagrange multipliers but are directly

taken into account by the variations of the constitutive equations. The equation of

motion and boundary conditions result from the explicit expression of δτ associated

with the considered physical problem. As a first example, the simplest case of the

theory of capillarity at equilibrium is considered.
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2.2. The classical Laplace theory of capillarity. Liquid-vapor and two-phase in-

terfaces are represented by material surfaces endowed with an energy related to

the Laplace free energy of capillarity. When working far from critical conditions,

the capillary layer has a thickness equivalent to a few molecular beams [Ono and

Kondo 1960; Domb 1996] and the interface appears as a geometrical surface sep-

arating the two media, with its own characteristic behavior and energy properties

[Levitch 1962]. The domain D of a compressible fluid (liquid) is immersed in a

three Euclidean space. The boundary of the domain D is a surface S shared in N

parts Sp of class C2, p = 1, . . . , N (Figure 2). We denote by (Rm)−1 the mean

curvature of S; the union of the limit edges Ŵpq between surfaces Sp and Sq is

assumed to be of class C2 and tp is the tangent vector to Ŵp =
⋃

Ŵpq , q = 1, . . . , N

with q 6= p, oriented by the unit external vector to D denoted np; n′
p = tp × np is

the unit external normal vector to Ŵp in the tangent plane to Sp; the edge Ŵ of S is

the union of the edges Ŵp of Sp.

To first verify the well-foundedness of the model, we consider the explicit ex-

pression of the functional δτ for compressible fluids with capillarity in the nondis-

sipative case. The variation of the total energy E of such a fluid results from the

variation of the sum of the local density of energy integrated on the domain D and

the variation of the local density of surface energy integrated on its boundary S; to

these variations, we must add the work of volume force ρ f in D, surface force T

on S, and line force L on Ŵ. Such an amount represents, for the domain D, the

virtual work of forces of the compressible fluid with capillarity.

The Laplace theory of capillarity introduces the notion of surface energy (or

superficial energy) on surfaces such that, for a compressible liquid with capillary

effects on the wall boundaries, the total energy of the fluid writes in the form

E =

∫∫∫

D

ρα(ρ) dv +

∫∫

S

σ ds, with

∫∫

S

σ ds ≡

N
∑

p=1

∫∫

Sp

σp ds,

S

D

p
pq

Sp
Sq

Am

np

np

tp

Г

pqГ

Figure 2. The set D has a surface boundary S divided into several

parts. The edge of S is denoted by Ŵ which is also divided into

several parts with endpoints Am .
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where ρ is the matter density, α(ρ) is the fluid-specific energy (ρα(ρ) is the volume

energy), and the coefficients σp are the surface energy densities on each surface

Sp represented — for the sake of simplicity — by σ on S.2 Surface integrations

are associated with the metric space. As proved in the Appendix, the variation of

the deformation gradient tensor F = ∂x/∂ X (with components {∂xi/∂ X j }) of the

mapping ϕ combined with the mass conservation and the variation of σ allow us

to obtain the variation −δE (see (A.3)); then the independent variables come from

the position x of the continuous medium.

The virtual work of the volume forces defined on D is generally in the form
∫∫∫

D

ρ f T ζ dv, with f = − grad U,

where U (x) is a potential per unit mass and superscript T denotes transposition.

The virtual work of surface and line forces defined on S and Ŵ are, respectively,
∫∫

S

T T ζ ds and

∫

Ŵ

LT ζ dl.

Consequently, the total virtual work of forces δτ is

δτ = −δE +

∫∫∫

D

ρ f T ζ dv +

∫∫

S

T T ζ ds +

∫

Ŵ

LT ζ dl.

From (A.3) and (A.6), we obtain

δτ ≡

∫∫∫

D

(− gradT p + ρ f T )ζ dv +

∫

Ŵ

(LT − σ n′T )ζ dl

+

∫∫

S

[

−δσ +
{(

p +
2σ

Rm

)

nT + gradT σ(1 − nnT ) + T T
}

ζ
]

ds, (4)

where p ≡ ρ2α′(ρ) is the pressure of the liquid [Rocard 1952], δσ denotes the

variation of the surface energy σ , and 1 denotes the identity tensor. When σ is

constant we get δσ = 0; then,

δτ ≡

∫∫∫

D

(− gradT p + ρ f T )ζ dv

+

∫∫

S

{(

p +
2σ

Rm

)

nT + T T
}

ζ ds +

∫

Ŵ

(LT − σ n′T )ζ dl,

and the d’Alembert–Lagrange principle yields the equation of equilibrium on D,

−p,i + ρ fi = 0 or − grad p + ρ f = 0. (5)

2Our aim is not to consider the thermodynamics of interfaces. Consequently, α and σ are not

considered as functions of thermodynamical variables such as temperature or entropy.
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The condition on boundary surface S is

(

p +
2σ

Rm

)

ni + Ti = 0 or
(

p +
2σ

Rm

)

n + T = 0, (6)

where, for an external fluid bordering D, T = −Pn, with P the value of the

pressure in the external fluid. On the lines, it is necessary to consider the partition

of S such that the edge Ŵpq is common to Sp and Sq ,

σpn′
pi + σqn′

qi − L i = 0 or σpn′
p + σq n′

q − L = 0. (7)

Surface condition (6) is the Laplace equation and line condition (7) is the Young–

Dupré equation with a line tension L.

It is interesting to note that Steigmann and Li [1995] used the principle of virtual

work by utilizing a system of line coordinates on boundary surfaces and lines. By

introducing the free energy per unit area of interfaces and the free energy per unit of

contact curve, they obtained Laplace’s equation and a generalization of the Young–

Dupré equation of equilibrium; moreover, by employing the necessary conditions

for energy-minimizing states of fluid systems they got a demonstration that the line

tension associated with a three-phase contact curve must be nonnegative.

When σ is not constant but δσ = 0, we obtain the same equations for (5) and

(7) but (6) on S is replaced by

(

p +
2σ

Rm

)

n + (1 − nnT ) grad σ + T = 0.

The additive term (1 − nnT ) grad σ = gradtg σ is the tangential part of grad σ to

the surface S. This term corresponds to a shear stress necessarily balanced by the

tangential component of T . Such is the case when σ is defined on the S0 image

of S in the reference space D0 (then, σ = σ0(X)). We understand the importance

of the surface energy constitutive behavior; this questioning is emphasized in the

following section.

3. Capillarity of liquid in contact with solid and gas

in the presence of nonconstant surface energy

We have seen in the previous section that the problem associated with the behavior

of the surface energy is the key point to obtaining the boundary conditions on

interfaces and contact lines bordering the fluid bulk. In this section we consider

a very special case of surfactant: the interfaces are endowed with a concentration

of matter which affects the surface energy. The surface matter is attached to the

particles of the fluid such that they obey together to the same equations of motion

(1) and of virtual motion (2). We consider a more general case than in Section 2.2:
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Figure 3. A liquid in drop form lies on a solid surface. The liquid

is bordered by a gas and a solid; S1 is the boundary between liquid

and solid; S′
1 is the boundary between gas and solid; S2 is the

interface between liquid and gas; n1 and n2 are the unit normal

vectors to S1 and S2, external to the domain of the liquid; the edge

Ŵ (or contact line) is common to S1 and S2 and t is the unit tangent

vector to Ŵ relative to n1; n′
1 = n1 × t and n′

2 = n2 × (−t) are the

binormals to Ŵ relative to S1 and S2, respectively.

we study the motion of the continuous medium with viscous forces. This viscosity

affects not only the equation of motion but also the boundary conditions.

3.1. Geometrical description of the continuous medium. A drop of liquid fills the

set D and lies on the surface of a solid. The liquid drop is also bordered by a gas.

All the interfaces between liquid, solid and gas are assumed to be regular surfaces.

We call σ
S1

and σ
S2

the values of the surface energies of S1 and S2, respectively

(see Figure 3). These energies may depend on each point of the boundary of D.

Afterwards, on the domain S′
1, the surface energy between gas and solid is neglected

[Adamson 1967]. The liquid drop is submitted to a volume force ρ f . The external

surface force on D is modelized with two constraint vector fields, T1 on the solid

surface, S1, and T2 on the free surface, S2. The line tension L is assumed to be

null.

By using the principle of virtual work, we aim to write the equation of motion

of the liquid drop and the conditions on the surfaces and line bordering the liquid

drop.

3.2. Surfactant attached to interfacial fluid particles. To express the behavior of

the surface energy, we need to represent first the equation of the surface matter

density.

Under the mapping ϕ, the set D0 with boundary S0 has image D with boundary S.

We assume there exists an insoluble surfactant with a surface mass concentration

c0 defined on D0 of image c in D [Levitch 1962; Adamson 1967; Defay 1971].
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Let us consider the case when the surfactant is attached to the fluid particles on

the surface S, that is,

c0 = c0(X), (8)

where X ∈ S0.

The mass conservation of the surfactant on the surface S requires that for any

subset S∗
0 of S0, of image S∗ subset of S,

∫∫

S∗

c ds =

∫∫

S∗
0

c0 ds0. (9)

Relation (9) implies

c det F nT
0 F−1n = c0 with nT

0 =
nT F

√

(nT F FT n)
, (10)

where n0 denotes the unit normal vector to S0. The proof of (10) is given in the

Appendix.

From (10), we obtain the following: Firstly, the conservation of the surface

concentration of the surfactant,

dc

dt
+ c(div u − nT Dn) = 0, (11)

where u is the fluid velocity vector and

D = 1
2
(∂u/∂x + (∂u/∂x)T )

denotes the rate of the deformation tensor of the fluid. The term div u − nT Dn

expresses the tangential divergence relative to the surface S.

Secondly, the variation of the mass concentration of the surfactant,

δc + c
[

div ζ − nT ∂ζ

∂x
n
]

= 0. (12)

The proofs of (11) and (12) are also given in the Appendix. In the case when the

surface energy σ is a function of the surfactant concentration,

σ = σ(c),

we deduce δσ = σ ′(c) δc. If we denote

γ = σ − cσ ′(c), (13)

which is the Legendre transformation of σ with respect to c, then by taking (A.3)

into account we obtain, in the Appendix,

δE = −

∫∫

S

[

2γ

Rm
nT + gradT γ (1 − nnT )

]

ζ ds +

∫

Ŵ

γ n′T ζ dl. (14)
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As we shall see in Section 4, γ is the surface tension of the interface S. The

variation δc of the concentration has an important consequence on the surfactant

behavior and the surfactant behavior is essential to determining the virtual work of

the liquid drop.

Relation (13) can easily be extended to several surfactants: if

σ = σ(c1, . . . , cn),

where the ci , for i ∈ {1, . . . , n}, are the concentrations of the n surfactants, then

γ = σ −

n
∑

i=1

ci
∂σ

∂ci
,

corresponding to the Legendre transformation of σ with respect to ci , i ∈ {1, . . . , n}

and (14) is always valid.

3.3. Governing equation of motion and boundary conditions. As previously in-

dicated, we do not consider the thermodynamical problem of interfaces, but, for

example, when the medium is isothermal, α can be considered as the specific free

energy of the bulk and σ the free surface energy of the interface.

The use of virtual displacements yields a linear functional of virtual works, the

sum of several partial works. To enumerate the works of forces, we have to consider

how they are obtained in the literature [Germain 1973a; 1973b; Gouin 2007]. The

virtual work expressions of volume force ρ f , surface force T , and liquid pressure

p are the same as in Section 2.2.

(a) For fluid motion, the virtual work of mass impulsions is

−

∫∫∫

D

ρaT ζ dv,

where a is the acceleration vector.

(b) For dissipative motion, we must add the virtual work of viscous stresses

−

∫∫∫

D

tr
(

τv
∂ζ

∂x

)

dv,

where τv denotes the viscous stress tensor usually written in Navier–Stokes form

[Adamson 1967]. Taking account of the relation

tr
(

τv
∂ζ

∂x

)

= div(τvζ ) − (div τv)ζ ,

an integration by parts using Stokes’ formula in (14) for the virtual work of inter-

facial forces, together with the relations n′
1 = n1 × t and n′

2 = −n2 × t , allows us
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to obtain the virtual work of forces applied to the domain D:

δτ =

∫∫∫

D

(− gradT p + div τv + ρ f T − ρaT )ζ dv

+

∫∫

S1

[

gradT γ1(1 − n1nT
1 ) +

(

p +
2γ1

Rm1

)

nT
1 − nT

1 τv + T T
1

]

ζ ds

+

∫∫

S2

[

gradT γ2(1 − n2nT
2 ) +

(

p +
2γ2

Rm2

)

nT
2 − nT

2 τv + T T
2

]

ζ ds

+

∫

Ŵ

(γ1n′T
1 − γ2n′T

2 )ζ dl,

(15)

where Rmi
denotes the mean radius of curvature of Si , γi denotes the surface tension

of Si , and Ti the surface force on Si , i ∈ {1, 2}; T2 = −Pn2, where P is the pressure

in the external gas to the domain D.

The field of virtual displacement x ∈ D −→ ζ (x) ∈ Tx(D) must be tangent to

the solid (rigid) surface S1. The fundamental lemma of variational calculus yields

the equation of motion associated with domain D, the conditions on surfaces S1

and S2, and the condition on contact line Ŵ.

Due to the fact that (15) is expressed in separate form in the sense of distributions

[Schwartz 1966], the d’Alembert–Lagrange principle implies that ∀ ζ (x) ∈ Tx(D)

tangent to S1, each of the four integrals of (15) is null. Then, we obtain equations

on D, S1, S2, and Ŵ, respectively.

• We get the equation of motion in D:

ρa + grad p = (div τv)
T + ρ f . (16)

Equation (16) is the Navier–Stokes equation for compressible fluids when τv is

written in the classical linear form by using the rate of the fluid deformation tensor,

τv = λ(tr D)1 + 2µD. We may add a classical condition for the velocity on the

boundary as the adherence condition.

• We get the condition on surface S1. The virtual displacement is tangent to S1; the

constraint nT
1 ζ = 0 implies there exists a scalar Lagrange multiplier x ∈ S1 −→

χ(x) ∈ ℜ, such that

(

p +
2γ1

Rm1

)

n1 − τ vn1 + (1 − n1nT
1 ) grad γ1 + T1 = χn1, (17)

The normal and tangential components of (17) relative to S1 are deduced from (17):

p +
2γ1

Rm1

− nT
1 τ vn1 + nT

1 T1 = χ, (18)

(1 − n1nT
1 )(−τvn1 + grad γ1 + T1) = 0. (19)
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Following (18), we obtain the value of χ along the surface S1. The scalar field

χ corresponds to the unknown value of the normal stress vector on the surface

S1; it corresponds to the difference between the mechanical and viscous normal

stresses and a stress due to the curvature of S1 taking into account the surface

tension. Equation (19) represents the balance between the tangential components

of the mechanical and viscous stresses and the tangential component of the surface

tension gradient.

• We get the condition on surface S2:

(

p +
2γ2

Rm2

)

n2 − τ vn2 + (1 − n2nT
2 ) grad γ2 − Pn2 = 0. (20)

The normal and tangential components of (20) relative to S2 are deduced:

2γ2

Rm2

− nT
2 τ vn2 + p = P, (21)

(1 − n2nT
2 )(−τvn2 + grad γ2) = 0. (22)

Equation (21) corresponds to the expression of the Laplace equation in the case

of viscous motion; the normal component of viscous stresses is taken into account.

Equation (22) is similar to (19) for the surface S2 but without the component of

the stress vector.

• We get the condition on line Ŵ. To get the line condition we must consider a

virtual displacement tangent to S1 and consequently in the form

ζ = α t + β t × n1,

where α and β are two scalar fields defined on Ŵ. From the last integral of (15),

we get the following immediately: For any scalar field x ∈ Ŵ −→ β(x) ∈ ℜ,
∫

Ŵ

βγ1n′T
1 (t × n1) dl −

∫

Ŵ

βγ2n′T
2 (t × n1) dl = 0,

with n′
1 = −t × n1 and n′

2 = t × n2, and consequently,

−γ1 − γ2nT
2 n1 = 0.

Denoting by θ the angle 〈n1, n2〉, we obtain the well-known relation of Young–

Dupré but adapted to γ1 and γ2 in place of σ1 and σ2:

γ1 + γ2 cos θ = 0. (23)

3.4. Remarks. For a motionless fluid, τv = 0 and consequently, (19) yields

gradtg γ1 = −T1tg,
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where gradtg γ1 and T1tg denote the tangential parts of grad γ1 and T1, respectively.

The tangential part of the vector stress is opposite to the surface tension gradient.

Therefore, at a given value of T1n = nT
1 T1, (18) yields the value χ corresponding

to the normal stress vector to the surface S1, (21) yields P = p + 2γ2/Rm2
corre-

sponding to the classical equation of Badshforth and Adams [Adamson 1967] but

with the surface tension γ2 instead of σ2, and (22) implies (1 − n2nT
2 ) grad γ2 = 0.

At equilibrium, along S2, the surface tension γ2 must be uniform.

In the case of motion, (22) represents the Marangoni effect as proposed in [Gibbs

1928; Defay 1971] but with the surface tension γ2 instead of σ2.

4. Surface energy and surface tension

A surface tension must appear on the boundary conditions as a force per unit of

line. The Legendre transformation γ of σ with respect to c exactly corresponds

to this property on the contact line Ŵ; then, surface tension γ differs from the

surface energy; this important property was pointed out by Gibbs [1928] and Defay

[1971] by means of thermodynamical considerations. The fundamental difference

between surface tension and surface energy, in the presence of attached surfactants,

is illustrated in the following cases corresponding to formal behaviors.

- If σ is independent of c, then γ = σ : the surface tension is equal to the surface

energy. This is the classical case of capillarity for fluids considered in Section 2.2

and (23) is the classical Young–Dupré condition on the contact lines.

- In fact, σ is a decreasing function of c [Adamson 1967]; when c is small enough

we consider the behavior

σ = σ0 − σ1c, where σ0 > 0 and σ1 > 0;

then, (13) implies γ = σ0 and surface tension and surface energy are different.

- Now, we consider a formal case when the surface energy density model is written

in the form

σ = σ0 − σ1c − σ2c sin
(

1

c

)

,

where σ0 > 0, σ1 > 0, and σ2 > 0. Then, (13) implies

γ = σ0 − σ2 cos
(

1

c

)

. (24)

This case does not correspond to σ as a monotonic decreasing function of c. Nev-

ertheless, when c → 0, γ does not have any limit and we get

γ ∈ [σ0 − σ2, σ0 + σ2].

The surface tension may have a large scale of values. When the concentration

c is low, a variation of the concentration c may generate strong fluctuations of
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the surface tension without significant change of the surface energy. Alternatively,

the concentration behavior strongly affects the surface tension but not the surface

energy. Relation (24) fits with the well-known physical case of hysteresis behavior

for a drop lying on a horizontal plane (see, for example, [Gouin 2003] and the

literature therein). So, the surface roughness is not the only reason of the hysteresis

of the contact angle even if the surface energy is nearly constant.

5. Conclusion

The principle of virtual work allows us to deduce the equation of motion and the

conditions on the surfaces and lines by means of a variational analysis. When

capillary forces operate and surfactant molecules are attached to the fluid molecules

at the interfaces, the conditions on the surfaces and lines point out a fundamental

difference between the concepts of surface energy and surface tension. This fact

was thermodynamically predicted in [Gibbs 1928; Defay 1971]. The hysteresis

phenomenon may appear even if surface energy is almost constant on a planar

substrate when the surface tension strongly varies.

In (23), γ1 and γ2 are not assumed to be constant, but are defined at each point of

Ŵ. This expression of the Young–Dupré boundary condition on the contact line Ŵ is

not true in more complex cases. For example, in the case when the surface tension

is a nonlocal functional of surfactant concentration, the surface tension is no longer

the classical Legendre transformation of the surface energy relative to surfactant

concentration and more complex behaviors can be foreseen. These behaviors can

change the variation of the integral of the free energy as in the case of shells or

in second-gradient models for which boundary conditions become more complex

[Cosserat and Cosserat 1909; Toupin 1962; Germain 1973b; Noll and Virga 1990;

Dell’Isola and Seppecher 1997]. In a further article [Gouin ≥ 2014], we will see

this is also the case when the surface energy depends on the surface curvature as

in membranes and vesicles [Helfrich 1973; Seifert 1997; Agrawal and Steigmann

2011].

Appendix: Geometrical preliminaries

[Kobayashi and Nomizu 1963; Aris 1989; Gouin and Kosiński 1998]

A.1 Expression of the virtual work of forces in capillarity. The hypotheses and

notations are presented in Section 2.2.

Lemma 1. We have the following relations:

δ det F = det F div ζ , (A.1)

δ(F−1n) = −F−1 ∂ζ

∂x
n + F−1δn. (A.2)
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The proof of (A.1) comes from the so-called Jacobi identity,

δ(det F) = det F tr(F−1δF),

and from

δF = δ

(

∂x

∂ X

)

=
∂ζ

∂ X
.

Then,

tr(F−1δF) = tr

(

∂ X

∂x

∂ζ

∂ X

)

= tr

(

∂ζ

∂ X

∂ X

∂x

)

= tr

(

∂ζ

∂x

)

= div ζ .

The proof of (A.2) comes as follows:

δ(F−1n) = δ(F−1)n + F−1 δn.

But F−1 F = 1 implies

δ(F−1)F + F−1 δF = 0,

and so also

δ(F−1) = −F−1 ∂ζ

∂ X
F−1 = −F−1 ∂ζ

∂x
,

which yields (A.2).

Lemma 2. Let us consider the surface integral

E =

∫∫

S

σ ds.

Then the variation of E is,

δE =

∫∫

S

[

δσ −
(

2σ

Rm
nT + gradT σ(1 − nnT )

)

ζ
]

ds +

∫

Ŵ

σ n′T ζ dl. (A.3)

Relation (A.3) points out the extreme importance of knowing the variation of

δσ . The variation δE of E drastically changes following the different possible

behaviors of the surface energy.

The proof can be found as follows. The external normal n(x) to S is locally

extended in the vicinity of S by the relation n(x) = grad d(x), where d is the

distance of point x to S; for any vector field w, we obtain [Kobayashi and Nomizu

1963; Aris 1989]

rot(n ×w) = n divw−w div n +
∂n

∂x
w−

∂w

∂x
n.

From nT ∂n

∂x
= 0 and div n = −

2

Rm
, we deduce on S,

nT rot(n ×w) = divw+
2

Rm
nTw− nT ∂w

∂x
n. (A.4)
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Due to

E =

∫∫

S

σ det(n, d1x, d2x),

where d1x and d2x are differential vectors associated with two coordinate lines of

S, we get

E =

∫∫

S0

σ det F det(F−1n, d1 X, d2 X),

where d1x = F d1 X and d2x = F d2 X . Then,

δE =

∫∫

S0

δσ det F det(F−1n, d1 X, d2 X)+

∫∫

S0

σ δ(det F det(F−1n, d1 X, d2 X)).

Due to Lemma 1 and the fact that nTn = 1 implies nT δn = 0,
∫∫

S0

σ δ(det F det(F−1n, d1 X, d2 X))

=

∫∫

S

[

σ div ζ det(n, d1x, d2x)+σ det(δn, d1x, d2x)−σ det

(

∂ζ

∂x
n, d1x, d2x

)]

=

∫∫

S

(

div(σζ ) − (gradT σ)ζ − σ nT ∂ζ

∂x
n

)

ds.

Relation (A.4) yields

div(σζ ) +
2σ

Rm
nT ζ − nT ∂σζ

∂x
n = nT rot(σ n × ζ ).

Then,
∫∫

S0

σ δ(det F det(F−1n, d1 X, d2 X))

=

∫∫

S

(

−
2σ

Rm
nT + gradT σ(nnT − 1)

)

ζ ds +

∫∫

S

nT rot(σ n × ζ ) ds,

where gradT σ(nnT − 1) belongs to the cotangent plane to S and we obtain (A.3).

A.1.1 Variation of the internal energy. Let us note that

δ

∫∫∫

D

ρα dv =

∫∫∫

D

ρ δα dv, where δα =
∂α

∂ρ
δρ.

Due to the mass conservation,

ρ det F = ρ0(X), (A.5)

where ρ0 is defined on D0, the differentiation of (A.5) yields

δρ det F + ρ δ(det F) = 0,
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and from Lemma 1 we get

δρ = −ρ div ζ .

Consequently, from p = ρ2 ∂α

∂ρ
and div(pζ ) = p div ζ + (grad p)T ζ , we get

δ

∫∫∫

D

ρα dv =

∫∫∫

D

ρ
∂α

∂ρ
δρ dv =

∫∫∫

D

−p div ζ dv

=

∫∫∫

D

(grad p)T ζ dv −

∫∫

S

pnT ζ ds.

(A.6)

By taking into account (A.3), we immediately get (4).

A.2 Study of a surfactant attached to fluid particles.

A.2.1 Proof of (10). Under the hypotheses and notations of Section 3.2,
∫∫

S∗

c ds =

∫∫

S∗

det(nc, d1x, d2x) =

∫∫

S∗
0

det(F F−1nc, Fd1 X, Fd2 X)

=

∫∫

S∗
0

c(det F) det(F−1n, d1 X, d2 X) =

∫∫

S∗
0

c(det F)nT
0 F−1n ds0,

where nT
0 n0 = 1. Moreover, nT dx = 0 ⇒ nT Fd X = 0, then n′T

0 = nT F is normal

to S∗
0 , and consequently,

nT
0 =

nT F
√

(nT F FT n)
, nT =

nT
0 F−1

√

(nT
0 F−1(F−1)T n0)

,

and from (9),

c det F

√

nT
0 F−1(F−1)T n0 = c0. (A.7)

A.2.2 Proof of (11) and (12). With the notations of Section 3.2, (A.7) yields

dc

dt
= −

c0
d(det F)

dt

(det F)2

√

(nT
0 F−1(F−1)T n0)

−
c0

d

dt
(nT

0 F−1(F−1)T n0)

2 det F(nT
0 F−1(F−1)T n0)3/2

.

But,
d(det F)

dt
= (det F) div u and

d

dt
(F−1(F−1)T ) = −2F−1 D(F−1)T . Then,

dc

dt
+ c(div u − nT Dn) = 0.

The same calculation with δ in place of
d

dt
yields immediately

δc + c

[

div ζ − nT ∂ζ

∂x
n

]

= 0.
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A.2.3 Proof of (14). From (12) and σ = σ(c) we get

δσ = κ

[

div ζ − nT ∂ζ

∂x
n

]

, with κ(c) = −cσ ′(c).

Consequently,

∫∫

S

δσ =

∫∫

S

(

div(κζ ) − gradT κ ζ − κnT ∂ζ

∂x
n

)

ds.

But (A.4) implies

nT rot(κn × ζ ) = div(κζ ) +
2κ

Rm
nT ζ − nT ∂(κζ )

∂x
n,

and

nT ∂(κζ )

∂x
n = (nT ζ ).(gradT κ n) + κnT ∂ζ

∂x
n = gradT κ nnT ζ + κnT ∂ζ

∂x
n.

Then,

div(κζ )−gradT κ ζ−κnT ∂ζ

∂x
n =−

2κ

Rm
nT ζ−gradT κ (1−nnT )ζ+nT rot(κn×ζ ).

Due to
∫∫

S

nT rot(κn × ζ ) ds =

∫

Ŵ

κn′T ζ dl,

we get
∫∫

S

−δσ ds =

∫∫

S

[

2κ

Rm
nT + gradT κ (1 − nnT )

]

ζ ds −

∫

Ŵ

κn′T ζ dl,

and (A.3) yields

δE = −

∫∫

S

[

2γ

Rm
nT + gradT γ (1 − nnT )

]

ζ ds +

∫

Ŵ

γ n′T ζ dl.
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