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Chapter 1

INTRODUCTION

In various fields like physical chemistry, chemical engineering, and

'. fluid mechanics, surface and interfacial tension have long been

interesting subjects. They have proven to be of fundamental importance

in studies of the properties of solutions, intermolecular forces,

molecular orientation on liquid surfaces, colloid phenomena,

capillarity, phase transitions, and numerous aspects of theoretical and

, V industrial chemistry. Various methods of measurement have been

developed and numerous results of the surface and interfacial tensions

3 of different liquids have been reported in the literature. On the other

hand, for the situations where one liquid is in metastable state, say

superheated, the traditional methods for measuring interfacial tension

are unsuitable and data are unavailable. Also, none of the existing

theories has been proved universally applicable in predicting

v .interfacial tensions in various circumstances. In this work we study an.Sq.

experimental technique for measuring interfacial tension and apply it to

- determine the interfacial tensions between water and each of three

superheated liquids. Another bulk property, the compressibility, of the

three superheated liquids is also studied using a similar technique.

'S
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1.1 Interfacial Tension

When a liquid touches another fluid, a boundary forms and a transitional

region is established. Generally, we call the contact region an

interface if the other fluid is a liquid, or a surface if the other

component is a gas. Interfacial and surface tension are natural

consequences of the differential attraction force across the

transitional region. For example, let us first consider the simpler

one, surface tension. In each bulk phase, the molecules are, on the

average, subject to a spherically symmetric attractive force field. The

force is much stronger in the liquid phase than it is in the vapor or

gas phase. Because of the difference in forces, the molecules in the

interfacial region are subject to an asymmetric intermolecular

attraction. Therefore, work must be done against the attractive forces

within the interior of the liquid to bring molecules to the surface

region. This work is called the free surface energy and can be defined

as the work required to increase a unit surface area at constant
4m

temperature. The commonly used dimension of free surface energy or

surface tension is ergs per square centimeter or, in SI units, newtons

per meter. The potential energy decreases and the stability increases

as the surface area decreases. This implies the tendency for the

surface to attain a minimum area; this is essentially where the term

surface "tension" came from. The transitional region is estimated to be

about two molecules thick [1]. Compared with most interesting
.4

dimensions in fluid mechanics and certainly in this work, this thickness

is so small that the transitional region can be treated as a

d o u
discontinuity.

4..

-4-
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The origin of interfacial tension is the same as that of surface

* itension, except that it is concerned with both cohesional forces between

similar molecular species, and adhesional forces between two different

species. The magnitude of the cohesion and adhesion could be

comparable. It is reasonable to expect that the interfacial tension AB

between liquids A and B will be no more than 0A + aB' where oA and aB

are the surface tensions against their vapors of liquids A and B. a,

will equal aA + yB if adhesion is negligible. Therefore, in general,

the increase of similarity in structure between two liquid species i

-. reflected in a smaller value of interfacial tension and a greater

tendency for mutual molecular dispersion, that is, miscibility. The

interfacial tension must be positive for the stable existence of an

interface.

1.2 Traditional Methods for Interfacial Tension Measurements

p' The methods of measuring surface and interfacial tension may be

" Ngenerally divided into two classes, dynamic and static. In the dynamic

methods, the interface periodically expands and contracts, and the

interfacial tension operates to restore the interface to a minimum area.

By measuring the parameters of the periodic motion, such as the

frequency, the interfacial tension can be calculated. The ones

p. mentioned in the literature involve the method of oscillating jets,

oscillating drops, and ripples [1]. In the static methods, quiescent

interfaces are involved, and the interfacial tension plays the role of

balancing other forces on the interface due to either the gravitational

'"2
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field or the pressure differential across the interface. The

capillary-height method, the ring detachment method, and the drop-weight

method are three examples [1].

In general, dynamic methods do not give results as reproducible and

consistent as static methods. Also, the results obtained by dynamic

methods do not generally agree with those obtained by static methods.

This discrepancy is especially significant when either of the two

liquids is a solution of surface active solutes. When a solution is in

equilibrium, the composition in the interfacial region is different from

that in the bulk phase. The true interfacial tension can be obtained

only when all involved liquids are in equilibrium. Therefore, if the

time required by the diffusion of the solute molecules 'o establish the

state of equilibrium is significant compared to the time scale of i

measurement, dynamic methods can not give the true interfacial tension

[2] [1].

1.3 Superheated Liquids

At atmospheric pressure, 100 0C is referred to as the normal boiling

point of water. It is also known that, under the same pressure, there

are circumstances in which water can be heated beyond 100 0C w"ithout

boiling; we call water in this state "superheated". A superheated

liquid is one particular instance of a metastable state of matter. In

thermodynamics, the stable states of matter are separated by equilibrium

lines in pressure-temperature coordinates. Matter that starts from a

J
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stable state and transgresses an equilibrium line without phase

" conversion enters a metastable state. How far the state deviates from

equilibrium is characterized by the depth of penetration--the

corresponding temperature or pressure difference. A metastable state

can survive for a very long time even under large variations in the

thermodynamic parameters. On the other hand, the metastable state may

revert to a stable phase if that phase (like vapor bubbles in the above

example of superheated water) is introduced in some way into the

metastable state.

Generally, phase transitions can I'. either of two types. The first

type is homogeneous nucleation. This happens if the nucleus of the new

phase arises spontaneously due to thermal fluctuations and

j" intermolecular interactions. But usually the phase transition starts at

the walls of the container or on foreign inclusions. This type of

process, called heterogeneous nucleation, requires a much lower degree

of superheat [3]. Therefore, one expects that a difficulty in

experimental studies of superheated liquids is the prevention of

heterogeneous nucleation. Metastable liquids are of interest in fields

like molecular physics and in problems such as the study of the initial

stage of phase transition, where the interfacial or surface tension is a

very important parameter. The vaporization of superheated liquids may

be explosive in character. One of the motivations for this work is that

the unintentional contact of a cold liquid, like liquified natural gas

(LNG), with a much warmer stable liquid, like water, may cause dramatic

*vapor explosions [4]. The interfacial tension may be needed in modeling

1.I . . , ' ' ' ' ' .. ' " " " . . ."
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this phenomenon if the superheat mechanism is assumed to be the

initiator of the physical explosion.

1.4 Acoustic Levitation

To measure the interfacial tension between water and a superheated

liquid, most of the commonly used techniques have to be ruled out

because of the involvement of solid surfaces which would trigger the

vaporization of the superheated liquid. The idea of oscillating drops

seems to be the natural choice. If we can put a drop of a superheated

liquid (say a hydrocarbon) into an immiscible "host" liquid (say water),

then the host will act as a very smooth and clean container for the

drop, thereby reducing the probability of the presence of solid

heterogeneous nucleation sites. If a hydrocarbon drop oscillates in

water, then the interfacial tension which provides the restoring force

in the interfacial disturbances could be inferred from some measurements

of the oscillation.

The method which we use to introduce a superheated hydrocarbon drop

-". into water will be described in chapter 4. But, how do we excite the
0',

$1 drop into oscillation and take measurement of the oscillation? Acoustic

levitation is a very appropriate technique for this situation [5]. A

strong acoustic standing wave can be established in a host liquid, water

in this work, and produce an acoustic force on an immersed drop. By

adjusting this force to balance the gravitational force on the drop, '-

acoustic levitation is achieved. Several features of acoustic

%..... . ............... ,................
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levitation are particularly useful in this experiment. First of all,

the host water is a very good container for the superheated drop as

mentioned above. Secondly, the drop can be held in water very steadily

in a certain position. In the traditional method of oscillating drops,

measurements have to be made while the drops are rising or falling. So

Si"acoustic levitation allows accurate measurements of the drop's size and

oscillation frequency with comparative ease. Furthermore, another

acoustic wave can be coupled into the system, providing a means to

excite the drop into oscillations without touching the drop with any

solid object.

The acoustic force exerted on a levitated drop is a known function

of the densities and compressibilities of the drop and host liquids. By

U na simple technique of comparing the voltages needed to levitate two

drops of different liquids, one as a reference and the other one as an

unknown, at the same position, the parameter "compressadensity" of the

_- unknown liquid can be obtained providing that the preperties (density

and compressibility) of both the reference and host liquids are known

, '[5]. Compressadensity is a known function of density and adiabatic

compressibility as expressed in Eq. (60), therefore, if we know the

density, then the compressibility can be calculated. This

compressadensity of a superheated liquid can also be obtained when the

interfacial tension is measured. It, too, is difficult to measure by

other methods and provides additional thermodynamic data in temperature4"4

regimes where little data exist (e.g. [6]).

4.
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1.5 Oscillations of a Spherical Drop

To evaluate the interfacial tension between a levitated drop and its '

host liquid, we need a model relating the interfacial tension with other

parameters, such as the oscillation frequency, the size of the drop and

the densities and viscosities of the drop and host liquids. The

equilibrium shape of the drop should be approximately spherical, since

the gravitational and acoustical forces in this experiment are

insignificant compared to the interfacial forces. For the frequencies

and the drop deformations in this work, the drops behave incompressibly.

Therefore, the disturbance of the interface is accompanied by the drop's

shape oscillation about a spherical shape without volume change. The

quadrupole mode (alternatively prolate and oblate), which is the

simplest mode of shape oscillation, is studied in this experiment.

The small oscillations of a liquid mass about its spherical

equilibrium shape was derived by Rayleigh [7]. Lamb generalized the

problem by supposing that the liquid drop was surrounded by an infinite

mass of another liquid [8]. The liquids were assumed inviscid by both

authors so that viscosity did not enter their expressions for the

oscillation frequency. Lamb also discussed the effect of small

viscosity on the small oscillations of a mass of liquid about the

spherical form; no host liquid was included in this calculation [8]. "

Miller and Scriven [9] did an analysis of small oscillations of a

viscous fluid droplet immersed in another viscous fluid. The frequency

and rate of damping of free oscillations were derived for arbitrary

values of the physical properties of the fluids as well as interfacial
-- S

S..

4
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viscosity and elasticity coefficients. Marston [10] independently

p derived the same general results for free oscillations, and found a new

term to correct the decay time. The phase-frequency relation for forced

* *t oscillation was also established for the first time in this work of

Marston.

On the experimental side, Marston and Apfel have measured the

interfacial tension between water and p-xylene [11]. The p-xylene drops

were levitated in water and excited into quadrupole shape oscillations

by acoustic forces. The oscillations were detected by a rainbow

photometry technique which utilized light scattered by a drop at the

scattering angle normally associated with the rainbow. The interfacial

tension obtained was 4% lower than static measurements with an

uncertainty of about 10%. Trinh, Zwern, and Wang [12] have done

experimental studies of drop oscillations with emphasis on the

frequencies of the first few modes and the damping constant for the

3s fundamental (quadrupole) mode. They used a slit and the shadow of the

4. uniformly illuminated drop to detect the oscillation.

- lViscosity, which causes energy dissipation, should relate to the

damping of the drop oscillation. In his theory, Marston gave a relation

* "between a measured damping constant and the viscosities of the two

liquids, though the experiment data for p-xylene drops in water did not

show very good agreement with it [11].

4 . * .,, < €.. ... ' ,.........,..4,-*... ... .;-, . . ..... . ..- -- .-.......... . .. .. ,
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1.6 Fowkes' Equation for Interfacial Tension

There is a need for a theory that predicts the interfacial tension

between two liquids based on some other properties such as the surface

tensions of each liquid against its vapor. Unfortunately, there has not

been a theory that can be satisfactorily applied to all different cases.

Here, we briefly introduce a semi-empirical model developed by Fowkes

[13] for water-hydrocarbon interfaces. Fowkes' model has been widely

used, though it is also criticized by some people (e.g. [14]).

The interfacial tension aAB between liquid A and B is the work

.. needed to expand one unit area of the interface by bringing molecules A

and B from the interior to the interface. It may be regarded as the sum

of the work for overcoming the cohesion between similar molecules of

each liquid minus the work done by adhesion between the two different

species across the interfacial region. So

0AB = oA+OB WAB,

where W is the work done per unit area by the adhesion or,
AB

equivalently, the increase in free surface energy upon separating the

interface AB. There are different kinds of intermolecular forces such

as the London dispersion force, dipole-dipole force, and hydrogen

bonding. For the water-hydrocarbon system, Fowkes assumed that the

interaction between water and hydrocarbon molecules is only due to the

dispersion force, since the hydrocarbon molecules are non-polar. The

geometric mean was applied to give WAB, so that

d0WH = W + 0H 2 (ow H) a(1)

Va
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"* where the subscripts W and H represent water and hydrocarbon

respectively, and the superscript d stands for dispersion part of the

d h
. intermolecular force, For hydrocarbons a H  = aH* For water ow = OW  +

dW d where the superscript h denotes the intermolecular force due to

d
hydrogen bond. The value of aw  was given as 21.8±0.7 dyne/cm according

to Fowkes' calculation based on the literature data of the interfacial

tensions between water and each of eight kinds of hydrocarbons.

The data obtained in the experiments described in this manuscript

will provide additional tests of the applicability of different theories

of interfacial tension, such as Fowkes'. It should supplement the

existing interfacial tension data in a region never before investigated,

and could in the future be useful in the development of more accurate

* models of liquid-liquid interfaces.

1b

1.7 Purpose and Scope

The purpose of this study is to obtain experimentally the interfacial

tension between water and each of three superheated liquids, butane,

O isobutane, and propane, at room temperature and atmo ; heric pressure.

The data and method of this work may have applications in different

areas. For example, as discussed before, they may be important in
.°4

. modeling the early stage of the phase transition (vapor explosion) of

these superheated liquids in contact with water. Also the data may be

S useful in testing or developing models on interfacial tension. In

addition to interfacial tension, measurements of the compressibilities

................. ,-.-.-. .
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* of the superheated liquids will be reported, thereby providing data on

this thermodynamic property previously unavailable in the literature.

The technique developed for this experiment is based on the shape

oscillations of one liquid drop in another liquid--the host. The method

developed by Marston and Apfel [11] has been modified to fit this

special circumstance and to improve the accuracy. The detection of the

drop's oscillation is adapted from the work'of Trinh, Zwern, and Wang

[121.

A simplified model for the quadrupole oscillation of a drop in

another liquid will be presented in chapter 2. The purpose is to reveal ,

the physical nature of the problem more explicitly while appealing to

less sophisticated mathematics. The simplified model will also be

compared with the previous theories.

In the next chapter, we begin with a review of the previous

theories on the shape oscillation of a drop. A simplified model is then

developed. This chapter ends with the equations needed for the

compressadensity measurement employing the established acoustic

levitation technique. In chapter 3 and 4 we describe the experimental

equipment and procedures respectively. Then we present and discuss the

experimental results in chapter 5. Finally, chapter 6 will include a

summary and conclusions of this work.

...
.,9
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'1 Chapter 2

THEORY

U

In this chapter we discuss the theoretical model which we use, in

conjunction with experimental measurements, to determine interfacial

tension. We first describe the problem and basic assumptions. We then

review several previous theories for the oscillation of a drop in

another fluid. Most of this chapter is devoted to the derivation of a

simplified model which we developed for computing the damping of a

freely oscillating drop and the phase-frequency relation of the forced

oscillation of a drop in its quadrupole mode (section 2.3). The chapter

ends with a brief review of equations used in the acoustic levitation

technique for measuring compressadensity.

2.1 Problem and Basic Assumptions

The physical phenomena of the method of oscillating drops for measuring

interfacial tension can be simplified and described as a drop, which is

immersed in another fluid and has a spherical equilibrium shape,
* p

undergoes shape oscillation with small amplitude, under the following

assumptions:

1) The gravitational force and the levitational acoustic force on

the drop balance each other, and their effects on the equilibrium shape

* of the drop are negligible compared with the interfacial tension.

-13-

.'4
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Therefore, the drop has no steady motion relative to the host fluid, and

the drop is spherical at equilibrium.

2) The drop behaves incompressibly; thus there is no volume change

but only shape change accompanies the oscillation.

3) The interface is free from surface active contaminants, and the

interfacial tension is a constant, uniform value.

4) The amplitude of the shape oscillation is so small that the

response of the drop-host system is linear with the driving force.

5) The liquids of the drop and the host are immiscible, so that

there is negligible mass transport across the interface. The interface

is so thin (see section 1.1) that it may be considered as a

two-dimensional discontinuity; the physical properties of the fluids on

each side of the interface are uniform.

.' .i2.2 Previous Theories for Shape Oscillations of a Drop

For analyzing the above problem of an oscillating drop in a host,

several previous theories are relevant and are briefly reviewed in this

section. We first review some theories in which both the drop and host

liquids were assumed inviscid. We then review some theories in which

small viscosity of both the liquids were assumed.

.." 2.2.1 Drop and Host Liquid of Negligible Viscosity

2.2.1.1 Resonance Frequency

%..
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- Rayleigh [7] investigated small oscillations of a liquid mass about its

*spherical shape of equilibrium, and obtained the resonance frequency

rn(n-1)(n+2)o 1
, = I I , (2)

L PR3

where w is the angular frequency, n is the mode, o is the surface

tension, p is the density of the liquid, and R is the radius of the drop

at equilibrium. The host medium and viscosity were not considered, which

S. may be an acceptable approximation in studying, say, a water drop in

air.

Lamb [8] later discussed the small oscillations of a liquid drop

about its spherical form, and generalized the question by supposing that

the drop is surrounded by an infinite mass of another liquid. He

obtained the following resonance frequency:

4 " r n(n+l)(n-1)(n+2)o
4. = 1 (3)L {(n+1)pi + npo}R3.- J

where w* is the angular frequency, n is the mode, a is the interfacial

tension, pi and po are the densities of the inner (drop) and outer

(host) liquid respectively, and R is the mean radius of the drop. When

P is negligible compared with pi, Eq. (3) is equivalent to Eq. (2).

The viscosities of the two liquids were ignored in the derivation of Eq.

(3). The calculated values of w* are higher than the measured resonance

frequency, for example, by about 10% for a p-xylene drop of mm size in

water [11], where both liquids are similar in density and in viscosity.

fS

.*
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2.2.1.2 Damping

Lamb [8] also discussed the effect of small viscosity on the small,

osc.illation of a liquid drop. Assuming that the motion is irrotational

and the velocity potential of inviscid flow is applicable, he calculated

the energy dissipation and gave the damping constant:

1 R2
.4.

(4)
S (n-1)(2n+l) v

where s is the damping constant and v is the kinematic viscosity of the

liquid of the drop. The damping constant is defined in such a way that

if A is the amplitude of a damped oscillation, t is the time, then A

e ts. Eq. (4) ignores the host medium, which is reasonable if the host

is a gas of negligible density and viscosity.

Lamb also derived the damping for a spherical bubble in a liquid

with viscosity v by a similar method:

1 R2

- = (5)
s (n+2)(2n+l) v

For a quadropole mode, n=2, this equation gives an s that is four times

the s of Eq.(4).

-4-

2.2.2 Drop and Host of Viscous Liquids

Miller and Scriven [9] gave a rather comprehensive analysis of a viscous

.4 drop immersed in another viscous fluid, by which the frequency and rate

of damping of free oscillations can be calculated for arbitrary values

.4..

4,'
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of drop size, physical properties of the fluids, and interfacial

3 viscosity and elasticity coefficients.

Marston [10] independently derived similar results for free

i oscillation of a drop for a situation in which both drop and host

liquids have small viscosity so that the "viscous wavelength" at each

side of the interface is much smaller than the radius of the drop. He

found a new term to correct the decay time for free oscillation. Also,

'.. for the first time, Marston derived the phase-frequency relation for

forced oscillation of a drop immersed in another fluid. In his theory,

the damping constant for free oscillation is given as

s = (41)w* + z- (6)

For forced oscillation, the phase-frequency is given as

tant = (w3/2 rw)/(w*Z - a3/2 -w) (7)

S.%. Here,

(2 n+l)2 (Viopio)2

cc = = (8)

2 Rr[(uipi) + (POP,) I

(2n+l){2(n2'1)ji 2pi + 2n(n+2)po
2po + pi1o[(n+ 2)pi - (n-l)po]}

(9)

R2r[(Pipi)2 +(

and

r = (n+l)pi + np, (10)

In the above equations,

s = damping constant of the free oscillation (see Eq.(4)),

W* = Lamb's natural frequency, as given in Eq. (3),

= the phase of the displacement relative to the

driving force in the forced oscillation,

w = the frequency associated with phase 4,

,-, ' ,', ', " .- .....-..-.. . 4 . . . './ . . .-. . ". . "- . 4. - -. .- . ° .
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.. n = the mode,

Pi = the density of the inner (drop) fluid,

PO = the density of the outer (host) fluid,

Ili = the dynamic viscosity of the inner (drop) fluid,

I = the dynamic viscosity of the outer (host) fluid, and
"p.

R = the radius of the drop in spherical form.
Marston further approximated Eq. (7) by applying Newton's method of

iteration and obtained the following expressions:

w(90 0 ) w*- (a/2)w*' + a2/4 (11)
'--'. = W* - S ,

w( ) w(900) - s/tan4 + a2/(2tan&) 2  
(12)

W(900) - s/tan.

Eqs. (11) and (12) were used directly in calculating the interfacial

tension in the experimental work done by Marston and Apfel [11) in the

following way (also see section 5.2). The damping constant s was given

by Eq. (12) with measured w(4) and w(90 0), and w* was then obtained via ""

Eq. (11). With this w* substituted in Eq. (3), the interfacial tension a -

was obtained.

2.3 A Simplified Model for Shape Oscillation of a Drop

Eqs. (2) and (3), though straightforward in derivation, can not .

accurately describe the oscillation of a liquid drop in another host

liquid due to the neglect of viscosity. On the other hand, Eqs. (6) and

(7) show much better agreement with experiments, but the derivation is

rather lengthy and complicated. With the purpose of revealing the

•"4. .v v . .- . .- -. .-. . - -. - - . . . .. -, . . • " ' - - • . .- v :'- . . . , ... . .



19

physical nature of this problem more explicitly and appealing to less

sophisticated mathematics, we developed a simplified model. The basic

* idea and the derivation are described in this section.

%'S

2.3.1 Analogy with the Basic Mass and Spring System

Although the motion of the small oscillation of a drop in a host fluid

in a certain mode is three-dimensional, there is only one degree of

freedom. Let us compare this drop-host system with a basic mass-spring

system.

2.3.1.1 Resonance Frequency of a Mass and Spring System

For an object of mass m acted on by a spring of spring constant k,

" without driving force, the equation of motion is

-. m- + kx 0

dt2

- where the x is the displacement of the mass relative to its equilibrium

position. The natural frequency is then

w = (k/m) . (13)

When this mass-spring system is subject to a resistive force,

- ., proportional to velocity, and is driven by a force F0cos(wt), the

1. equation of motion becomes:

S. d
2
x dx

m- + b- + kx F0coswt. (14)

dt2  dt

-%0 .

0. V
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The resonance frequency, if we define it as the frequency with 900 phase

angle, has the same form as that given in Eq. (13):

w(90
°) = (klm)1  (15)

Notice that the damping term b does not appear in Eq. (15), therefore,

the spring constant k can be obtained by knowing only w(900 ) and m. The

phase-frequency relation may be illustrated more explicitly by an

schematic impedance diagram shown in Fig. 2.1(b), accompanied by a

vector representation of Eq. (14) in Fig. 2.1(a), and with a typical

phase-frequency diagram in Fig. 2.1(c) [15]. In Fig. 2.1(b), the

component due to damping, jwb, has a phase angle of 900; this fact is

responsible for the resonance frequency, w(90 0), being independent of

the damping coefficient b.

9...

t. . .-...
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Jq

assume x=A.cos(wt+&)

• mm

.'

-, j2 2 mA

j wb
F0  jwbA

"KA 2j 2M

(a) (b)

1800 ---
I (viscous damping)

* . I\ \, 900 -- - -

W(90 0 ) w (m K

.- (c) (d)

Figure 2.1: (a) Geometrical representation of Eq. (14).

(b) Impedance diagram for the system described by Eq. (14).

(c) Phase vs. frequency for the system described by Eq. (14);
- w(90 0 ) is given by Eq. (15).

(d) Schematic impedance diagram for the shape oscillation

"a of a drop in another liquid.
- '.•
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2.3.1.2 The Shape Oscillation of a Drop in Another Liquid

Let us consider the analogy between a mass-spring system and a drop-host

system. The interfacial tension, which we want to measure in the
I

" experiment, is equivalent to the spring, providing the restoring force.

The equivalent mass of the drop-host system should be a function of the

densities of the two fluids and the size of the drop. The damping is

K- - due to the viscous dissipation in the drop and host fluid.

:For the free oscillation of a drop-host system without damping, the

natural frequency is given by Eq. (3). For the quadrupole mode, n=2, we

have

r 24a

w*=I I (16)

L R3 (3 pi+ 2 po) J

Eqs. (16) and (13) show clearly the analogy between the drop-host system

and the mass-spring system. However, when the viscosity of the two

fluids is non-negligible, due to the nature of the viscous damping in

liquid, the resonance frequency w(900 ) is no longer the same as the w*

. 9in Eq. (16). The w(90 0) is not only a function of stiffness k and mass

m, but also a function of viscosity,

w(900) = function (k, m, viscosity).

The above function has to be derived, which is the essential goal of our

simplified model. The impedance diagram for a drop-host system may be

something like the one shown in Fig. 2.1(d).

-. ..

.. .

,-"

44*9
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2.3.2 Velocity Profile for an Inviscid Drop in an Inviscid Host

For simplicity, all the following expressions are for oscillations in

the quadrupole mode only. Nevertheless, the method can be applied

similarly to other modes. Spherical coordinates with polar angle 6 and

radius r are used to describe the motion. Due to the symmetry with

respect to the vertical axis through the center of the spherical drop,- .. ~

expressions are independent of the azimuthal angle.

"- 'For small quadrupole oscillation about a spherical form, the radial

- iposition of the interface, r, at any instant may be given as [8] [7]:

r = R0 + EY2 (8)sin(wt). (17)

where

r = the radial position of the interface relative to the center

a of the equilibrium sphere,

R = the equilibrium radius,

-L = a value close to but not equal to the equilibrium radius R

r 4e2 1-

= 1 - 1 ,(18)
L 5R2J

E = the amplitude of the oscillation,

qmw = the angular frequency,

Y2 (8)
= spherical harmonic function of order 2

= 3cos2 8-1.

The spherical harmonic function of order n satisfies the

Laplace equation in the following way:

V(rnY )=O V2(r-n-i )=0.
LIn n

(r,) 0

U.°. ''
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Assuming the flow is inviscid, we have the velocity potential which

is determined by the boundary condition in Eq. (17), at the internal

points [8],

wR r
2

Si - - C Y 2 (8) cos(wt) , (19)

2 R2

and, at the external points,

* wR R
3

0 - Y2 (8) cos(wt) , (20)

3 0s "

We use subscripts i and o to denote the terms related to the inner

(drop) and the outer (host) flow, respectively.

The corresponding velocity distribution is readily obtained from

the velocity potential,

u = u e + u e = -VO (21)

where the subscripts rand 6 denote the components in the direction of r

and 6 respectively. From Eqs. (19), (20), and (21), the radial and

tangential component of the flow velocity in the inner and outer region

are:

ui = (1/R)ewr(3cos2 9-l)cos(Wt) , (22)

u6i = (-3/2R)Ewrsin(20)cos(wt) , (23)

u = (R/r)4cw(3cos 2 8-1)cos(wt) , and (24)ro.-

u00 = (R/r) 4Ewsin(28)cos(wt) (25)

Fig. 2.2 shows a schematic diagram of the streamlines at a certain

instant when the drop is moving from a spherical shape toward a prolate

shape.ZJ
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For very small amplitude s, the velocity at the interface may be

g Iconsidered as the value of the above functions evaluated at r=R. Notice

that the radial velocity is continuous across the interface as expected,

- anl

= Uri = Uro Ew(3cos26-1)cos(Wt) , (26)

P atlr=R

where U . and U are the values of u . and u evaluated at r=R

ri ro ri ro

respectively. But the tangential velocities at the two sides of the

interface are opposite in direction and have their magnitudes related

as:

U (3/2)U (27)
ei 3/) 00

-=-(3/2)Ewsin(28)cos(wt)

where Usi and U are the values of usi and u o evaluated at r=R

respectively.

-. % --
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Figure 2.2: Schematic stream line pattern resulting from quadrupole

oscillation of a drop in an host; inviscid flow was assumed.
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\ . 2.3.3 A Modified Velocity Distribution with Small Viscosity

NThe velocity distribution predicted by the velocity potential of
inviscid flow, as shown in Fig. 2.2, is found to agree with the outcome

of a qualitative photographic study done by Trinh, Zwern, and Wang [12].

On the other hand, the discontinuity of the tangential velocity across

the interface can not be true physically. This velocity "jump" has to

be smoothed out by viscosity.

4' We assume the viscosities of both inner and outer fluid are small,

so that the boundary layer thickness (or viscous wavelength) at each

side of the interface is smaller than, say, 1/10 of the radius of the

drop. Then we may model the flow distribution in an ad hoc way by

combining a thin boundary layer at each side of the interface with the

potential flow, derived on the inviscid assumption, at all points other

: '* "than the boundary layer. Based on this approximate flow distribution,

we compute the damping rate and the phase-frequency relation.

To consider the flow in the boundary layer around the interface, we

take a rather simple approach. We first estimate the tangential

velocity of the interface, uI and then consider the boundary layer at

each side of the interface separately as a consequence of an enforced

oscillation of a solid boundary.

2.3.3.1 Tangential Component of the Interfacial Velocity

.4
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If we assume that there is no pure rotation associated with this

oscillation, then the interface should oscillate in phase with the

potential flow, as does u --the tangential component of the velocity of
s

the interface. Physically, we know that the amplitude of U must be in5

between U and U o. The ratio U /Ui or Us/Uo should be determined by

the following two factors: 1) The momentum carried by the "external

stream", which is a function of the density and velocity. 2) The

diffusivity of momentum, that is, the viscosity.

Assume that for the tangential velocity in the boundary layer the

gradient in radial direction is much greater than the gradient in

tangential direction. In other words, the boundary layer thickness is

much smaller than, say, a quarter of the circumference of the space.

Then, locally, we may approximate the flow in the boundary layer as a

stream of viscous, incompressible fluid over a parallel stream of

different density and viscosity. Also, to a first approximation, we may

use U and U6o as the "external stream velocities". Under these
Oi Go

approximation, the results of the work " The Velocity Distribution in

the Laminar Boundary Layer between Parallel Stream" done by Lock [16]

can be applied to compute the U as follows:
s

4 U s +6p
5

C -(28)

U6 i 1 + (6/)

A 6 r 1.425X + 0.858 j

-= I I ,(29)
L 2.283Xpp J

, , L 
°

% % - % - ' - , -j % . . . - . - , .. . . . .. - . . . - . . !-,
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- U 2 6 P
8o o ~0 01

where X - - (see Eq. (27)), 6=, p=-, V=-

U. 3 6i Pi i

' 6 denotes boundary layer thickness, p denotes density, and 11 denotes

dynamic viscosity. The value c given in Eq. (28) depends upon the

velocity, density, and viscosity of the two parallel streams, as

expected'. With a given Us, the boundary layer at each side of the

interface can be modeled as the flow over an oscillating boundary, as

described in the next subsection.

2.3.4 Damping of Free Oscillation

In this subsection we discuss the damping rate of the free oscillation

of a drop immersed in another fluid, making use of the flow distribution

I
described in section 2.3.3. The resultant damping rate is expressed in

N .. terms of known parameters including the inner and outer density, pi and

p0 ; the inner and outer viscosity, Vi and 1o ; the radius of the drop

R; and the oscillation frequency w. The result will be used in the

derivation of phase-frequency relation.

We give two extreme cases as examples for Eq. (28)

a) For a water drop in air, X=-(2/3), pp=(p1Ao )/(pii)=2xlO-5

(6/U)>>1, then c=1.O, which means that Us is very close to Usi, the

tangential velocity of the water surface.

b) For an opposite case of an air bubble in water, X=-(2/3), pV=6x104,

(6/U)<<1, c-X=-(2/3), which means that U is very close to U the
s 80t

tangential velocity of the surface of the water host.
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The damping rate is a function of the instantaneous total energy of

the system and the rate of dissipation at that instant, as governed by

the following expression:

%.'

d
- (total energy) = (rate of dissipation)

dt

In the problem of an oscillatory drop in a host, the total energy T.E.

is the sum of the instantaneous potential energy P.E. and kinetic energy

K.E. The potential energy is a function of the interfacial -tension, and

the change of the interfacial area. The kinetic energy is a function of

the density and the flow distribution. The energy dissipation is due to

the viscous dissipation in the boundary layer near the interface and in

the potential flow at the other points.

The viscous dissipation may be considered as the sum of the
;a.i
.* following four parts:

-of
1) the dissipation in the inner irrotational flow,

2) the dissipation in the outer irrotational flow,

3) the dissipation in the inner boundary layer, and
'-.

-%": 4) the dissipation in the outer boundary layer.

2.3.4.1 Dissipation in the Inner Irrotational Flow

The dissipation in a spherical mass of fluid with radius r, calculated

on the assumption that the motion is irrotational, is, by art. 355 of

[8],

P If- r2d2 = pr2 - f f u2 dQ , (30)

ar ar

-'a-

-a.-,

"- ' . " ' , -.' ..., ..--..-' . ' , -.' , -, -.-.-' .' '- . " " .' '- , -% .' .-' .- k ,' ' ', . " " .' " " - ' " .' -" .-. -
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where u2=Ur2 U82, denotes the solid angle, and dQ=27sinede. Velocity

- I u can be expressed in terms of velocity potential 0, and the following

relation is applied,

1 a ao
n ffu 2 dQ - -f!0-r 2 dQ • (31)

r2 ar ar

-. We substitute Eqs. (19) and (31) in Eq. (30), take the time average over

%. one period 2n/w, which yields for the cos 2(Wt) term a result of , then

evaluate Eq. (30) at r = R. The result is

W21r/w U2w u2

- dt Uff -r 2dQ = 8nie2RW2  (32)

2f t=O ar

The above expression gives the dissipation in the irrotational flow in

the drop, on the assumption that the amplitude of oscillation and the

3boundary layer thickness are much smaller than the radius of the drop.

2.3.4.2 Dissipation in the Outer Irrotational Flow'.

. "". The same method can be applied to the irrotational flow outside the drop

. .. * !ii and gives the rate of dissipation, averaged over one period 27/w as:

(64/3)lp 0 e2RW2  (33)

2.3.4.3 Dissipation in the Inner Boundary Layer

S.In an oscillatory boundary layer, the time average, over one cycle, of

the rate of dissipation in the boundary layer per unit area of the

surface (boundary) is, as given in ::7),

.' " (34)

26

o4
'.I "
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where U is the amplitude of the oscillatory velocity of the irrotational

flow outside the boundary layer (external stream velocity), and 6 is the

boundary layer thickness. The boundary layer thickness goes up with the

viscosity (diffusivity of momentum) and with the time that the diffusion

of momentum takes place. We approximate the boundary layer thickness

as: 6=(2v/w)1 [17]. Suppose the boundary layer thickness is much

smaller than the radius of the drop, so Eq. (34) is applicable and the

amplitude of the "external stream velocity" may be approximated by

U i-us . U is the tangential velocity of the interface and Us=CUsi (see

Eq. (28)). On making use of Eqs. (23), (28), and (34), integrati.g over

the interface r=R, we have the rate of dissipation in the inner boundary

layer as:

2 E2 2W5/2.
U(-c)2 [(3/2)Ewsin(28)]2 12i(l-c)2Ui. zRw

ff dA . (35)

2(2vi/W) 2  5(2v. )

2.3.4.4 Dissipation in the Outer Boundary Layer

Again, assuming that the outer boundary layer is much thinner than the . -

radius of the drop and the amplitude of the external stream velocity may

be approximated by Uso-Us, making use of Eqs. (25), (27), (28), and

(34), we apply the same method as that in the above paragraph and obtain

the time averaged rate of dissipation in the outer boundary layer

o (1+1.5c)2 cEw 2 (sin28) 2  16.(1+1.5c)2iiE2R2W 5/2

0 0

If dA
(36)

2(2v i/) 15( 2v )
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2.3.4.5 The Total Energy of the Oscillation

The total energy at any instant is the sum of the instantaneous

potential and kinetic energy. The kinetic energy reaches its maximum

value, while the potential energy is (set) zero (see section 2.3.5.2),
U

at, say, t=O in Eq. (17). We take this maximum kinetic energy as the

total energy of the drop-host system in oscillation. Kinetic energy is

' -a function of velocity and, therefore, is a function of velocity

potential [17],

K.E. = p ff iT. KdA

in~~ 12P fou rdA

The velocity potential with an assumed amplitude is given in Eqs. (19)

and (20). Based on the same velocity potential, we calculated the rate

of dissipation in the previous section. Assuming that the interface is

approximated by r:R, and substituting Eqs. (19) and (20) in the above

equation, we have

K.E")innermax = (4/5)ie 2R3 Piw 2  (37)

S"Similarly, we have

K.E.)outermax = (8/15)IE2R3 Po w (38)

Therefoee, the total energy is

T.E.) = (4/15)7E2R 3(3pi + 2po)w . (39)

2.3.4.6 Damping Constant

If the total energy T.E. : pE2, and the rate of d&:sipation is qc2 , then

d
~4 ~-(pe 2) = -

dt.

This reduces to

,r , ,=-*-,,, .,.'v ..',,'', ..,.'.- -.,''.,'-...j "'..',., ,....- '.. .- -.' .- -.- . - . '< - - - .-.' . . .. .' .-. " ." .. ". ",
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=re

where E0 represents the amplitude at the time t=O, and £ represents the

amplitude at the time t. If we define damping constant S in such a way

that E = Ee when t=/S, then

S = ( )(q/p) (40)

By using the total energy and the rate of dissipation obtained

above, together with the Eq. (40), we have the damping constant S as:

S Sb  + S + S (4 1 )

where

-~ (2w)
1

Sb - [2.25(-c)
2
( ip)2 + (1+1.5c) 2 (UP)2],

Rr

Ispi

R2r

r =3pi + 2po,

where the subscripts b denotes the contribution of dissipation from the

boundary layer, i denotes the contribution from the inner irrotational

flow, and o denotes the contribution from the outer irrotational flow.

Comparing this expression with Lamb's formula, we see that the S. is

equivalent to the s in Eq. (4), and the S is equivalent to the s in Eq.
0

-5, (s).
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... 2.3.4.7 Examples and Comparison with the Previous Theories

- We take three examples to illustrate the calculation and to compare the

results with that obtained by previous theories and with one set of

" experimental data from previous work.

1) For an air bubble of radius 0.1 cm in water, pO.0012 g/cm 3,

i=0.018 cp, po=0.997 g/cm 3 , UO=0.894 cp, o=72 dyne/cm.

(a) By Marston's theory,(see table 1 and 2 of [10])

W*/2v = 148.03 Hz (by Eq. (3))

w /2n = 147.9 Hz (by Eq. (11))

,. s = aW* + -_1 IM2

= 0.6 + 17.75 - 0.0008

= 18.35 Hz

S-' (b) By Lamb's formula (Eq. (5)),

V = 1o/po = 0.897 cSt

s = 17.94 Hz

(c) By this simplified model:

- mmw /21 = 147.9 Hz (a given value)

,- -(polio /(pili = 4.1x10
4

c 0.6667 (Us  UGo)

S = S + S. + S
b 1. 0

= 0.627 + 0.135 + 17.898

= 18.66 Hz.

The damping constants obtained by both models are very close, and the

",-,, . . . . ,, ,*,.,. . , , - . .- . ., ,' - - .- . . ,. , .. - .. , , ,,A...... , - - - , . .. . • . ,' " . .. " . . . . , .
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simplified model gives a little higher value. The dominant term is due

to the dissipation in the outer irrotational flow, as should be

'V.. expected.

2) For a water drop of radius 0.1 cm in air,

(a) By Marston's theory,

W*/ 2
1 = 120.87 Hz (by Eq. (3))

w /21 = 120.81 Hz (by Eq. (11))

S = 
* 

+ - 2

= 0.376 + 4.498 - 0.00035

= 4.87 Hz

(b) By Lamb's formula (Eq. (4))

v = p= 0.897 cSt

s = 4.49 Hz
*° 4.

(c) By this simplified model,
.2

. u. w/ 21 = 120.81 Hz (a given value)

(Po o)/(pii.) = 2.4x10

c = 1.0 (us  = u .)

S Sb + S + S

= 0.378 + 4.480 + 0.241

= 5.10 Hz

Again, the calculated damping constant obtained by this simplified model

is close to and a little higher than -ie calculated value by Marston's

theory. The dominant term is due to the dissipation in the inner

V.", ..

'V % . % '.. '.., . /'.- ' ° """ "" ' " "" ' ' " " " " " ' " " " " "" ' ""
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irrotational flow, as one expects.

3) Trinh, Zwern, and Wang did some experimental work on the free

. oscillation of a drop in another liquid [12]. One set of their data for

-.phenetole drops in a mixture of water and methanol was compared with the

theoretical predictions given by Marston's theory and the simplified

model, the result is shown in Fig. 2.3. It shows good agreement between

the data and the calculated values based on both models. This set of

data is chosen because of the small viscosity of the inner liquid, for

which R/6i - 10. Good agreement is also found between other sets of

C data and the simplified model even when R/6i - 5, although the

discrepancy grows as the ratio R/6i decreases, as we expect. For

1

example, in the experiments with drops of mixture consisting of silicon

oil and CC1 4 in water host, done by Trinh et al, Pi=0. 999 g/cm3 ,

.00.997 g/cm3 , pi=16.5 cp, Vo=0.89 cp, R-0.5 cm, the calculation using

our simplified model gives R/6i-3, and the predicted damping constant is
" 1

about 40% higher than their measured value.

- *Z

-, ..
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R 0.1 (radius/inner boundary layer thickness)

M (Measured value)/(prediction by Marston's theory)
L S (Measured value)/(prediction by sim!-lified model)

L

HM

A

P LI-

N

A
.4 T

Lp

I3L48 3.46 LU 3.8L2 L.54 L 5 LU L 0 LU 0.2 L 843L. 3L88

4 RADIUS OF DRMP IN CH

Figure 2.3: The ratio of the experimental to the predicted damping as a

function of drop radius. The experimental data were taken

* from the work by Trinh et al. The predictions are given by
the simplified model and Marston's theory respectively.

Va
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2.3.5 Phase-Frequency Relation in Forced Oscillation

As mentioned in section 2.2.1, the phase-frequency relation for forced

oscillation is readily obtained if we know each component (both

magnitude and phase) of the impedance corresponding to stiffness,

i inertia, and damping, respectively. Here, the impedance is defined as:

-I

p driving pressure (associated with quadrupole mode)

impedance =_- =

A displacement (of quadrupole mode) (42)

-_ Thus, the phase of the displacement is relative to the driving pressure.

We compute each component of the impedance separately by the

following approach. First, the phase angle is determined by physical

- reasoning. We then compute, by energy balance or force balance, the

driving pressure associated with the quadrupole displacement described

by r = R + zY2 (8)sin(wt) (see Eq. (17)).

2.3.5.1 Driving Force

% "' In experiments described in this manuscript, the drop is driven into

oscill&zion by a modulated acoustic wave (see section 3.1). Detailed

analysis of the acoustic radiation force, which is a time averaged

second order effect [18], exerted on the interface would require the

S' first order pressure distribution of the incident wave in the specific

.[ .*configuration of this experiment, and the scattered wave incorporated

with the boundary condition at the interface of the drop and the host.

The normal and tangential component of the resultant iddiation stress

may be obtained by radial and tangential projection; further expansion

5' * ...
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of the radiation stress in terms of spherical harmonic functions will

give the normal and tangential component of the radiation stress

responsible for the quadrupole oscillation [10] [19].

Yosioka and Kawasima [20] derived the acoustical radiation force on

a compressible sphere, the tangential radiation stress is vanished inN.

their derivation due to the inviscid assumption. Some experiments for

measuring "compressadensity" using acoustical levitation technique is

based on their theory, and the results of measurement show very good

agreement with the theory [5]. Herrey [21] has shown that the

tangential radiation stress is much smaller than the normal stress at a

highly reflecting metallic surface in water induced by a sound beam.

For a liquid-liquid interface, the boundary is relatively "free" to move

compared with the boundary of liquid-solid interface; hence the velocity

gradient and the stress at the liquid-liquid boundary would be expected

even smaller. Also, the viscosities of both inner and outer liquids in

our experiments are small. In the following calculation, we assume that

the tangential component of the radiation stress is much smaller than

the normal component, and the power input due to the tangential

radiation stress is negligible compared with the contribution of normal

:" radiation stress.

2.3.5.2 Impedance Due to Stiffness

The displacement of a component of pure stiffness subject to a driving

force is in phase with this driving force, that is, 4 = 0. In the

problem of an oscillating drop, stiffness is due to the interfacial

N.
4 .
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tension, as assumed in section 2.1. We derive the impedance due to

p stiffness, denoted by K, in two different ways which employ force

balance and energy balance, respectively, as follows:

1) The fluid pressure is discontinuous at a curved surface of

separation; the pressure differential is

Pi P o( R " + R2
- ) (43)

This is Laplace's formula, where R, and R2 are the principal radii.
.4

Since we are only interested in the pressure variation accompanying the

quadrupole oscillation, let us set po 0 at equilibrium (the ambient

pressure). Then, pi o(2/R) at equilibrium. The inner pressure p,

will not vary with the shape oscillation, since there is no volume

change and there is no mass involved in this discussion. The interface

is described as (see Eq. (17))

r = R + eY2 (8)sin(wt)

% which gives [8]

I/R + 1/R2 = 2/R + (4/R2 )eY2 (8)sin(wt) (44)

Therefore, the variation of p accompanying the shape oscillation due to

the interfacial tension is, from Eqs. (43) and (44),

S'P = (4/R2 )oY,(8)sin(wt) , (45)

where the minus sign indicates that the outer pressure at the two poles

reaches a maximum when the drop is in an oblate shape with maximum

displacement. For this reason, we define the displacement A in the

following way, so that the displacement is in phase with the driving

, ,. pressure for a pure stiffness,

A= R-r = - EY2 (8)sin(wt) (46)

. -.. .
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Since pi is constant, po equals the driving pressure p. Thus the

component of the impedance due to stiffness is 4.

p 4o
K -- (47)

A R2

2) The potential energy, set zero when the drop is in a spherical

shape at equilibrium, equals the product of the interfacial tension and

the change of the interfacial area. For a small quadrupole displacement

with an amplitude E, as in Eq. 17 with t=n/(2w), the potential energy is

(32n/S)OE2 [7]. The driving pressure on the interface responsible for

the quadrupole displacement can be assumed to be p = -PY2 (0)sin(wt),

where P is the amplitude, and the minus sign is assigned to give the

correct phase angle as discussed previously (see Eq. (45)). The

instantaneous power input per unit area is therefore

dA ,

p - = PY2
2 (8)ewsin(wt)cos(wt) (48)

dt

The integration of the above expression over the interface r=R, and over

the period from t=O to t=v/( 2w) is found to be (8n/5)PER2 , which should

o

equal the potential energy, (32u/5)oE2 , corresponding to the

displacement A = -EY2 (8) at t=n/(2w). Hence P = 4oE/R 2 . We therefore

%-0

have

p 4o
K - -

A R2

which is identical with that obtained via force balance, in Eq. (47).

". 4.

4%o,

'p+
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2.3.5.3 Impedance Due to Inertia

I- The acceleration of a mass is in phase with its driving force, so the

displacement lags by 1800 the driving force; = 1800. Here we compute

the pressure on the interface required to drive a spherical liquid mass

into the oscillation described as r = R + cY2 (0)sin(wt). The

calculation is first carried via force balance and then via energy

* " balance.

1) With the inviscid assumption, the velocity potential is

determined by the boundary condition, as given in Eqs. (19) and (20).

Then the pressure variation at both sides of the interface accompany
S:-J

"N this potential flow is

pi= pi-1 = (1/2)piRw2EY2 (6)sin(wt)

at Ir=R

Po p = -(1/3)poRW2cY2 (6)sin(wt)

at Ir=R

%.% °

The required driving pressure is p = pi - po, and

S-= Pi - po = (1/6)RW2 (3pi+2po)EY2 (8)sin(wt) (49)

Thus the component of the impedance due to inertia, denoted by M, is,

- .. from Eqs. (42), (46), and (49),

... >

p
M- - j2 (1/6)w 2R(3pi+2po) , (50)

where j is (-1)
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It is worth noticing that K + M = 0 when the driving force has a

frequency w that

24O
= ,(51)

R3 (3pi+2p o )

which is the quadrupole resonance frequency for the inviscid situation,

as in Eq. (3).

2) The kinetic energy reaches its maximum value

(4/15)w2R3 (3pi+2 Po)E2 (see Eq. (39)), when t 0, and it is zero when

t = 1/(2w). The driving pressure may be written as: p = PY2 (8)sin(wt),

so that the acceleration, d2A/dt2 = w2 Y 2 (0)sin(wt), is in phase with

the driving pressure. For instance, when t = 7/(2 w), the driving

pressure is positive and maximum at the two poles, while the

acceleration at the two poles are inward and maximum. Then, during this

period, from t = 0 to t = 1/(2w), the power "input" is -(87/5)PER 2 (see

Eqs. (46) and (48)). This power input should equal the maximum kinetic

energy, thus -(87/5)PcR2 = -(47/15)W 2 2R3(3pi+2po). We obtain an

expression for P and therefore

p WZR

M - - j2 - (3pi + 2po)

". A 6

which is identical with that obtained via force balance as in Eq. (50).

A.

.- 2.3.5.4 Impedance Due to Viscosity

The question of what is the impedance due to viscosity is equivalent to

the question of what is the driving pressure on the interface needed to

supply the energy dissipation in the motion r R + EY,(8)sin(wt).
.. 1

-°°
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1) Let us first look at the irrotational flow. In the irrotational

flow associated with the oscillatory drop, the velocity at every point

is oscillating in phase, since the fluids behave incompressibly. The

viscous stress, which is proportional to the spatial gradient of

* velocity distribution, is therefore in phase with the potential

velocity. Hence, the driving pressure on the interface is in phase with

the potential velocity and has a phase lead of 900 over the displacement

A = -EY2(8)sin(wt)

~ .: The radial velocity of the interface is

dA
.,.- WY2 (8)cos(Wt)
dt

The driving pressure, which is in phase with the velocity, is assumed in

the form

p = -PY2(8)cos(wt)

. Then the instantaneous power input by the driving pressure acting on the

-. interface is

dA
f.p-dA = (16i/5) wR2Pcos 2 (wt) , (52)

dt
4-

which should equal the rate of energy dissipation. (a) In the inner

irrotational flow, the rate of dissipation has been obtained (see Eq.

(32)) as:

16wri.2RW2cos 2(Wt)

By equating this rate of dissipation with the power input (Eq. (52)), we

get an expression for P, P = 5pc/R, which leads to Bpi, the component
ofi

of impedance due to viscous dissipation in the inner irrotational flow,

. p 5Viw

Bpi -j (53)

AR
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(b) In the outer irrotational flow, the instantaneous rate of

dissipation is (see Eq. (33))

(128/3)vpoE2RW2 cos 2 (Wt)

By equating the power input (Eq. (52)) and this rate of dissipation, we

have Bpo, the component of the impedance due to the viscous dissipation

in the outer irrotational flow,

B = j(40/3R)p w (54)
po 0 .

2) Now we consider the energy dissipation only in the boundary

layer, and compute the associated impedance. The velocity distribution

in the boundary layer may be described as [17]:

iWt
v(y,t) = Ue (1-exp[-(l+j)y/6])

iWt
where Ue is the external stream velocity, y is the coordinate normal

and relative to the boundary. The frictional stress at the boundary is

the real part of the following expression [17]:
I u

aul U

U- I = U(I+j)- eiWt

ay ly0o 6

so this skin friction has a phase lead of n/4 over the external stream

velocity Ue i t . In this problem of an oscillating drop, the external

stream velocity is in phase with the potential velocity, as discussed in

section 2.3.3.1. The tangential component of the acoustic radiation

stress, which is the driving force, though small, has to be in phase

with the skin friction, in considering the balance of tangential stress

on the interface. Therefore the phase of the radiation stress is r/4

ahead of the potential velocity and is 3 r/4 ahead of the interfacial

displacement, that is, &=135 0 . For the motion r=R+EY 2(8)sin(wt), we

-.°°j
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have (see Eq. (46))

* dA
- = -CWY2(0)COS(Wt)

;.. dt

' "Writing

* p= -PYz(8)cos(wt + 7/4)

the power input averaged over one cycle along the whole interface is

then

27i/w dA

"i(w/2n) I dt $1 p-- dA = 4 2/ )eR2Wp ,(55)

t=O dt

iwhere the contribution of the power input due to the tangential

- radiation stress has been neglected.

In considering the rate of dissipation, we assume the tangential

radiation stress is much smaller than the normal component, so that the

m ..' model of the flow distribution developed in section 2.3.3 is still a

a good approximation for the flow in the forced oscillation. We then have

- the time averaged rate of dissipation in th( boundary layer as given in

Eqs. (35) and (36). By equating this time averaged rate of dissipation
with the above time averaged power input in Eq. (55), we have an

expression for P and thus obtain the component of impedance (see Eq.

(42)) due to viscous dissipation in boundary layer, Bb as:

Bb  [(j-1)/v/2](2/3)3/2 [2.25(l-C)2(ViP)1 + (1+1.5c)2(poPo)]. (56)

% 2.3.5.5 Total Impedance

The total impedance is the vector sum of these components given in Eqs.
(47), (50), (53), (54), and (56).
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impedance K + + B B (57)
p b

where B =B + B.k,.p pi po0

= i(w/R)[5pi + (40/3)iI ,

K = 4a/R2

H M (j2/6)w2R(3 pi + 2 p0 )

Bb = [(j-l)/2](2/3)w3/212.25(l-c)2tgipi + (1 +1.5c)2(,oPo)]

A schematic vector diagram of the four components is shown in Fig. 2.4.

We obtain, finally, the phase-.frequency relation as the following

. tan =(B + Bb/.2)/(K-M-Bb/v2) (58)

.bb

'_..

J . ,,

• .. ,
-U ."
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2.3.5.6 Comparison with the Theory by Marston

Eq. (7) is the phase-frequency relation derived in the work done by

C]. Marston. We change the form of Eq. (7) by multiplying each term with

(3pi+2po)R/6 to get the "equivalent components of the impedance" as

follows:

SK' =4/R
2

M' = j2(l/6)W2R(3pi+2po) , (59)

=J5w[Ui2 + (8/3) °2p° + (I/ 6 )Vi1°( 4pi-p°)]

p Ib

~R[(ip. ) 
+(oo)]

:- (j -l) 25w3/27 i o~ ~ )

-.. , B

1-2 6[(Uipi)(112 + (oPO) 1

Compared with the impedance obtained in the simplified model, they have

components of similar dependence upon parameters like density,

viscosity, and frequency at the same phase angles. The components due'due

to stiffness and inertia are identical. For both inner and outer

liquids of small viscosity, the value of Bb is close to the value of

B b ' whereas the value of B is much greater than that of B ' Two

p p

examples in the following show the typical numerical values of impedance

.due to damping:
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a) For a hexane drop in water, pi=0. 655 g/cm3 , Vi=0.29 cp, Po=0.997

g/cm3 , po=0.89 cp. On making use of Eqs. (28) and (29), we have

- 6/U=0.114 , c=-O.5, therefore, Bb=0 .15w3 2  Bb=0.133 whereas

p". Bp=0.13w/R, Bp '=0.07w/R.

b) For a p-xylene drop in water, pi= 0 .857 g Ucm, =0.614 cp. Eqs. (28)

1 3/.

and (29) give 6/V=0.19, and c=-0.4. Therefore, B =0 22w3 / 2

.i~ i  Bb  0.17 3 / 2

B b '0.17w ; B =0.15w/R, and B '0.05w/R.b""-p P

. Fig. 2.5 illustrates the phase-frequency relation for a hexane drop in

* *' water predicted by Marston's theory and the simplified model

respectively with given drop size and properties of the liquids

(interfacial tension, density, and viscosity) as listed in Table 1.

" "-'* This figure is meant to be representative, and good agreememt between

the simplified model and Marston's theory is shown.
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2.4 Compressadensity Measurement

The droplet-levitation formula is given by [5]

dP= - pg(

1* dz s  as  P

Il-p*/pI
G*, (60)

s*/s (5p*-2p)/(2p*+p)

where P(Z) is the acoustic pressure amplitude of the standing wave along

the vertical axis (Z), g is the gravitational constant, s* and as are

the adiabatic compressibility of droplet and host, respectively, and p*

and p are the densities of droplet and host liquid, respectively. The

nondimensional function G is called the "compressadensity" function.

"* ".. The above expression is independent of the size of the drop, based on

the assumption that the acoustic wavelength is much greater than the

drop's diameter. On the other hand, adiabatic compressibility is used

when the thermal wavelength is much smaller than the diameter of the

droplet. These assumptions hold in our experiment where the levitation

frequency is about 52 kHz and the radii of drops are smaller than 1 mm.

£We may extract information about a liquid by using a method of

comparison and without measuring the acoustic field [5]. A drop of a

"reference" liquid with known compressibility and densit-! is first

levitated at a position ZZ0 with a levitation voltage VI, and then a

drop of an "unknown" liquid is levitated at the same position with a

voltage V*, The pressure amplitude P(Z0 ) and pressure gradient (dP/dZ) z

.4,

.,1

4. .' .,'' ,v , , '' '" .v~ ". ' ' ' ,".-.'. "" - "-,. '.. , .- . ..
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are assumed each proportional to the levitation voltage, so we have the

result: .

P'(dP/dZ)' rV' 2  G(s'/s, p'/p)

__________= I-I =,(61)
P*(dP/dZ)* LV*J G(Os*/0s, p*/P)

Swhere the superscript denotes the reference liquid, and the

w tsuperscript * denotes the unknown liquid. Eqs. (61) and (60) give us a

the compressadensity function of the unknown liquid providing that p,

s', p'' s are known, and that V1 as well as V* are measured. If we

know p*, then 5* can be calculated from Eq. (60), (and vice versa).

.4K• 
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Chapter 3

.0 APPARATUS

In this chapter, we focus on the equipment used for size and

phase-frequency measurements. A schematic diagram of the equipment is

shown in Fig. 3.1. We briefly mention some standard instruments used

for measuring sound speed and density in the last section.

The equipment in Fig. 3.1 may be described in four parts. The

first part is the apparatus used to levitate a drop in water and to

drive the drop into shape oscillations. The second optically detects

the drop's shape oscillations and converts the oscillations into

-. electric signals. These signals are processed by the third part, and

the frequencies corresponding to several phase angles are measured. The

forth part takes pictures of the drop and some calibrated.reference

objects. These pictures are used to measure the size of the drop. One

section of the following will be devoted to describing each of the four

pe parts of the apparatus.

45
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3.1 Levitation and Shape Oscillation

- The levitation cell, which holds the host liquid and transducer, is a

C. box with a cross section of 5.4 cm square and a height of 11 cm. The

box is made of Lucite plates, 3.18 mm in thickness for the walls and

6.35 mm for the bottom, and it is open at the top. This cell sits on a

lab jack which adjusts the vertical position. The transducer, which

". converts electric energy into mechanical motion and generates waves in

the host water, is a Channel Industries (Santa Barbara, CA) 5400, Lead

Zirconate Titanate piezoelectric ceramic disk with a diameter of 3.9 cm

and a thickness of 1.3 cm. The transducer is immersed in water and sits

on the bottom plate of the cell.

At a selected height of the water in the cell, and with an input to

the transducer at certain frequencies (e.g., two frequencies used in our

* ,', work are about 52 kHz and 510 kHz), the transducer-water-cell system

resonates and generates standing waves in the water column (see section

.4.1). A drop of a liquid other than water in this standing wave field

is subject to an acoustic radiation force, which is a time averaged (dc)

second order effect of the wave. This force tends to drive the immersed

.-, drop toward a position of maximum pressure if the drop is more

compressible than the water "host", while gravity tends to push the drop

up or to pull it down depending on the densities of the drop and the

° ~.host. If the drop can find a position where the acoustic radiation

force counterbalances the gravitational force, it is acoustically
.4

levitated at that position. The radial pressure distribution (maximum

at the center) forces the drop to the center of the water column if the

S.V I.* k- .
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drop is more compressible than the host. Also, the local pressure

distribution affects the shape of the drop, while the interfacial

tension tends to keep it spherical.

An input voltage at about 52 kHz is used to levitate drops. At

this frequency and a proper water level, drops can be levitated at an

input of only a few volts for all the test liquids in this work. At

this frequency, the wavelength is much longer than the diameter of a

test drop (less than 2 mm mostly), so that Eqs. (60) and (61) are

applicable for calculating compressadensity, and the equilibrium shape

of the drop does not deviate from sphericity much.

N..

At about 510 kHz, the wavelength is comparable with the diameter of

the drop, the radiation force is stronger 10], and the deformation of

the drop is greater. We can further enhance the deformation by turning

this signal on and off at a frequency matching a resonance frequency of

the drop; this can be done by modulating this high frequency signal (see q

Fig. 4.2).

Therefore, three sinusoidal electric signals are combined in such a

way to give vt driving the transducer, that is

vt v l + vc v m

According to their functions, we call these signals the levitation

signal (-52 kHz), the carrier signal (~510 kHz), and the modulation

signal (-50 Hz), associated with subscripts 1, c, and m respectively.

The circuits for multiplication, using a MC 1595L linear four-quadrant

9I
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multiplier, and for summation, using a ML 318S integrated circuit, was

built by Marston in previous work (11] (see Fig. 3.1).

', ~The levitation signal is generated by a versatile circuit built by

Baxter, Apfel, and Marston [22]. This circuit has features that are

very useful in tuning the acoustic levitation system. We can manually

•. 2 scan the resonances of the acoustic levitation system and view the

resonances on a storage oscilloscope (Tektronix Model 5103N). The

' ~ordinate is a dc manifestation of the current through the transducer,

. and the abscissa is linear in the frequency. A Tektronix P6016 current

probe senses the current through the transducer and produces a voltage

signal, which is then converted by the versatile circuit to the dc

manifestation.

i 44 The carrier signal is generated by a Krohn-Hite Model 4300

generator. A Krohn-Hite Model 1000 generator and a Kepco Model FG100A

ramp generator are used for the modulation signal. The Model 1000

generator operates in an external frequency control mode and is driven

by the ramp generator, thereby providing easy manipulation of sweeping

rate and direction.

The combined signals vt are fed into a Krohn-Hite Model 7500

' amplifier before going into the transducer. After amplification, the

4 rms value of vI is about 4 V or less. The rms value of vt is about 5 V

or less. A Data Precision Model 5740 frequency counter (also period

meter) and a Data Precision Model 3500 digital voltmeter are used in

monitoring the system.
a'

" h %2'~'S'.. . . .. . . . . -
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3.2 Detection of Shape Oscillation

In this work, we study small amplitude (in the order of 10 pm) shape

oscillations of a drop (radius in the order of 1 mm) which can not be

touched with any solid object. These two features suggest the use of

light to detect the shape oscillation. We use a technique adapted from

an experimental work done by Trinh, Zwern, and Wang [12].

We use a microscope illuminator as a light source, which has a

Sylvania 1493, 6V, 20 W bulb with a short filament and a lens with a

short focal length to give an approximately parallel beam. A dc power

supply is used for the lamp. The light beam passes horizontally through

the levitation cell, then is enlarged by a lens and is projected onto a

plate with a slit on it. The slit is vertical with a width about 1 mm

and a height about 5 cm. The light through the slit is focused onto the U
sensing surface of a photomultiplier (ENI type 9798B). The shadow of a

levitated drop centers across the slit and blocks part of the light

going through the slit. When the drop oscillates in its quadrupole

mode, the amount of light going through the slit changes accordingly,
-"I

therefore, an ac voltage signal coherent with the drop's oscillation is

obtained. The sensitivity of the photomultiplier is a function of the

power supply. We use a Pacific Photometric Instruments Model 227 high

voltage power supply at 1000 to 1200 V for the photomultiplier.

9%,
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The shadow of the drop usually is not a uniformly dark circle, but

has a bright area in the center part. If the refraction index of the

drop liquid is very close to that of water, as the index of refraction

of butane is, the shadow looks like a ring of a very thin band.

Therefore, we use a adjustable stop to block the light inside the circle

of the shadow. Also, we use an iris diaphragm, which is concentric with

the shadow and opened a little bigger than the shadow, yielding a "halo"

outside the shadow. The stop and the iris diaphragm reduce the light

going through the slit and result in two advantages. First, the

S.... photomultiplier can operate at a higher sensitivity to give a stronger

ac signal for a given amplitude of a drop's oscillations. Secondly, the

noise due to light scattering by particles in the path of the light beam

is reduced.

3.3 Frequency and Phase Measurements

We need to measure the frequencies corresponding to 900 and some other

phase angles (of the drop's oscillation relative to its driving force)

around the quadrupole resonance of the drop. This is accomplished

* -mainly by the aid of a lock-in amplifier, which is a Princeton Applied

. '-" Research Model 5101 lock-in amplifier with a common mode rejection

typically 85 dB at 1 kHz.

Lock-in amplifiers have an output channel and two input channels,

one channel for reference and the other channel for signals to be

measured. The signal is compared with the reference, and only those
;- o
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signal components which are synchronous with the reference yield a net

dc output. Noise and other non-synchronous signals do not contribute a

net dc output, but only ac fluctuations which can be reduced to very

small value by time averaging (filtering). There is a phase control on

a lock-in amplifier which allows the phase of the reference drive to the

internal circuit of phase sensitive detector to be set at any angle

relative to the input reference signal. For example, a sinusoidal

signal, say v rcos(2nf rt) is used as reference, signals to be measured

have a synchronous component vicos(21frt + ), and the phase control is

set at A. Then the output of the lock-in amplifier is a dc voltage

proportional to the time average of the following product:

VrcOs(21f rt + A) * v.cos(2f rt +

This dc output reaches maximum when A= ; it is zero when A=&+900. It

is easier to take measurement at zero-output than to take measurement at

maximum-output. In this experiment, by setting the phase dial A=&+900 ,

and sweeping the modulation frequency, we get the frequency f( ) which

4

* nulls the output of the lock-in amplifier. This process of sweeping is

viewed on the storage oscilloscope with the output of the lock-in

amplifier as the ordinate and the sweeping frequency as the abscissa.

We use the Data Precision Model 5740 counter to measure the period of

the modulation signal, then take the reciprocal of the period to get the

frequency, because it is easier to measure period than frequency in the

low frequency region (on the order of 100 Hz).

When the Model 5101 lock-in amplifier operates in the region of

about 100 Hz, the true phase shift A is different from the set value on

, ... |
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the dial. So we calibrate this Model 5101 lock-in amplifier. The

calibration is carried out by applying two in-phase signals into the

reference and signal channel, followed by adjusting the phase control

for zero output. Comparing this phase reading with the true value

_ (900), we obtain the error in the phase reading at this frequency. The

calibration covers the frequency range from 40 Hz to 140 Hz, the signal

. *: level from 0.01 to 0.3 V, and concludes that:

the phase reading from the dial + 400 = the true phase

* with error less than 0.20 in phase angle. Hereafter, the phase set on

the lock-in amplifier mentioned in this manuscript is the corrected

phase.

For better phase accuracy, the amplitude of the reference signal is

.. set to I V rms as suggested in the manual, in both the actual

measurements and the calibration.

When the reference signal sweeps, the internal reference circuit of

the lock-in amplifier automatically tracks but with some delay. A

relation between the slewing rate df/dt and the phase error 6 stated in

.**4 the manual is df/dt = 3.10 f-8. In this experiment, f-100 Hz, df/dt :

1/30 Hz/sec, so the error in phase angle introduced by sweeping is less

~ than 0.10.

4-

.
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3.4 Size Measurement

As shown in Eq. (3), the interfacial tension goes with the cube of the

drop's radius. For a drop with 1 mm radius, an acceptable error of 1%

in radius will cause an unacceptable error of 3% in interfacial tension.

AThe size measurement was the most significant factor of the experimental

uncertainty in the work of Marston and Apfel [11].

. In this experiment, we take pictures of a levitated drop and some

reference objects, then enlarge the pictures and obtain the size of the

drop. We use a Polaroid #545 film holder loaded with a Polaroid Type

55/Positive-Negative 4x5 land film positioned right in front of the slit

and facing the light beam. By turning the toggle switch of the power

supply for the lamp on and off for a duration about half second, we get

an exposure of the shadow of the drop. The shadow is about ten times

larger than the drop. The negative is then further enlarged yielding a

positive print which is about 75 times the size of the drop. A truss is

built to support the film holder firmly, and two tracks on the truss

enable the film holder to slide in and out the optical path.

We take pictures of a drop before and after the frequency-phase

measurement. Then we take pictures of the following reference objects:

three precision plug gauges of diameters 1.395, 1.614, and 2.018 mm

(from Zero-Check Inc.). When we take the picture, the gauge is located

through the position where the drop was levitated. Care is exercised to

enlarge these negatives by the same factor. The average of the

enlargement ratios (between the shadow on the final positive print and

°- '
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-' the gauge itself) of the three gauges is used to evaluate the drop's

diameter. The consistency of the three ratios indicates the accuracy of

the size measurement. Generally, they are good to within 0.15%.

fi.arWhen we take a picture of each gauge, it is important to have the

gauge located through the position where the drop was levitated. A

filar telescope with magnification of 20 and a ruler horizontally

affixed to the plate with the slit on it serve to mark the position of

.4 the levitated drop in three dimensions.

3.5 Measurement of Sound Speed and Density

We use standard laboratory equipment to measure some properties, sound

speed and density, of the non-superheated liquid samples. Since these

% techniques are well known, we will not discuss these methods in detail.

The values obtained are incorporated into the calculation for

interfacial tension or compressibility.

We measure the sound speed in hexane, pentane, and heptane by using

a Nusonics sonic solution monitor Model 6105 (manufactured by Mapco

Inc., Tulsa Oklahoma) (referred to Table 10). The container for the

.:A ultrasonic probe and the sample liquid is placed in a water bath which

maintains a constant temperature with variations less than 0.10C. The

sound speeds obtained using this technique are good to within 0.1%.

.4,.
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For measuring density, a Mettler/Parr DMA-40 densitometer is used.

The chamber for the test liquid is also in a water bath to maintain a

constant temperature. The uncertainty of this measurement is less than

.'- "0.1%.

• I".:::::: I
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Chapter 4

PROCEDURE

The procedure for measuring interfacial tension in this experiment is as

follows: We first set and tune the levitation system to get a strong

acoustic standing wave in the water "host". Then we put a drop of the

liquid to be measured into the water. While the drop rises up due to

* buoyancy, the acoustic field traps the drop and levitates it at a

certain position. We take pictures of the enlarged shadow of the drop

-. for measuring the drop's size. Then we drive the drop into quadrupole

shape oscillation. Around the resonance, several frequencies

* corresponding to different phase angles of the oscillation relative to

its driving force are measured. Details of the above procedure are

described in the following sections.

Some other parameters, such as density and viscosity, are either

measured by other techniques (see section 3.5) or obtained from the

literature. The procedure for measuring compressadensity by the

acoustic levitation technique is described in the last section.

a.6
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4.1 Drop Levitation

The host liquid in the levitation cell is water for all experiments in

this study. Surface active contaminants, even in trace amount, may

change the surface or interfacial tension significantly. Therefore, we

are very careful in keeping the host water and the apparatus components

in contact with the host water clean. Distilled water is fed into a

Barnstead Nanopure-A 4-holder system, and circulates through the system

to reach a resistivity, which indicates the purity, of 17.7 - 17.9

megohm/cm. The levitation cell, the transducer, and others like

syringes and needles are kept away from dirt and are flushed a few times

with the clean water before an experiment is conducted. The clean water

is degassed and then slowly poured into the levitation cell. Then we

place the transducer at the center of the bottom of the cell. There are

no bubbles visible in the cell when an experiment is performed.

We tune the levitation system as follows: To find a configuration

at which the transducer-water-cell system resonates, we adjust the water

level and sweep the levitation frequency, while monitoring the current

going through the transducer. The carrier and modulation voltage are

zero at this stage. The level of the water is changed by taking out or

injecting in small quantities of water with a syringe. The frequency is

swept manually. At the same time, we view the resonances of the

levitation system on the storage oscilloscope with the display of

current versus frequency (see section 3.1). There are several

configurations of water level and frequercy which give sharp peaks on

the current-frequency display. Each configuration requires a different

-a.
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minimum voltage to trap a drop of a certain kind of liquid, and

~levitates the drop at a different position with this minimum trapping

voltage. The water level (about 8.3 cm from the top of the bottom

etplate) and the levitation frequency (about 52 kHz) that we chose provide

stable levitation at low voltage (about 4 V for hexane drops). The
n

volume of water in the cell is about 220 cm3 . The levitation position

is about at the middle of the height of the water column.

To levitate a drop, we put it into the bottom part of the cell

(details described in section 4.2) and trap it as it rises (all the

liquids to be measured in this study are less dense than water) by

turning on the levitation voltage. After tuning the levitation system,

we levitate a hexane drop which serves for checking the tuning and for

aligning the optical system. A stable levitation condition at about 4 V

for a hexane drop indicates good tuning of this levitation system. The

positions of the cell and the enlarger lens are adjusted to project a

sharp shadow onto the film plane and to center across the slit. Then we

use the filar telescope and the ruler to mark the position of the drop

in three dimensions (see section 3.4).

After finishing these procedure for preparation , we release the

hexane drop for alignment and levitate a drop of the liquid to be

measured at the same position as that of the hexane drop for alignment.

The size and frequency-phase measurements are then conducted.
p.

* ° . . .,
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4.2 Drop Making and Transportation

For non-superheated liquids like hexane and pentane, we use a threaded

plunger syringe and a needle (from Hamilton company) to transport the

liquid. A drop that adheres to the tip of the needle can be detached by

a little disturbance; then the drop rises up and is trapped by the

acoustic field.

Introducing superheated drops is somewhat complicated compared to

non-superheated drops. The process is shown in Fig. 4.1. The test

liquid is contained in a lecture bottle and is in equilibrium with its!' -
vapor at room temperature. Some of the liquid is drawn into a threaded

plunger syringe with a miniature inert valve (from Hamilton Company)

fitted on the tip of the syringe. The threaded plunger and the valve

can take pressure so as to keep the liquid in equilibrium (not

superheated) (referred to Fig. 4.1(a)). The syringe is precooled for

working with propane. A glass tube of 5 mm i.d. has been filled with

gel and cooled in a freezer. The gel is composed of (by weight) 1 part

of water, 1 parts of glycerine, and 1.25 parts of water soluble

Aquasonic 100 ultrasound transmission gel (from Packer Laboratories,

Inc., NJ), mixed uniformly and centrifuged to remove gas bubbles. We

put this glass tube into a pressure vessel, pressurize it with nitrogen

gas at a pressure a little over the vapor pressure of this liquid at

room temperature. Then we push the needle of the syringe containing the

liquid through a septum, open the miniature valve, and inject the liquid

into the gel forming liquid drops (referred Fig. 4.1(b)). After

releasing the pressure, we get "superheated" drops in the gel. The

,4,,. . : °.
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viscosity of the gel retards the drops's moving, and the smoothness of

the gel prevents the drops from vaporization. This technique has been

adapted from a technique developed by Apfel for producing neutron

detectors based on superheated drops in a gel [23].

, The next step (referred to Fig. 4.1(c)) is to get a cluster of the

gel containing one superheated drop into the host water by squeezing a

rubber bulb fitted to the glass tube. This cluster of gel sinks and

- sits on the top surface of the transducer. The gel gradually dissolves

in water, then the drop floats up and is trapped by the acoustic field

(referred to Fig. 4.1(d)). The amount of the gel going into water with

* .4 the drop is no more than 0.1 g, which is no more than 0.05% of the

K' amount of host water. It takes about 20 minutes for the gel to dissolve

before the drop is released.

S. All the apparatus, such as the syringe, needle, and glass tube,

n used to transport the liquid are cleaned very carefully before being

used, usually flushed by acetone followed by methanol then air dried.

-.: We always use the liquid directly from the bottle and conduct

measurements immediately to reduce the possibility of contamination.

I., *
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Figure 4.1: Procedure for introducing superheated liquid drops into the
host water in the levitation cell.

!I
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4.3 Procedure for the Size Measurements

I By observing the drop through the telescope and by adjusting the

levitation voltage, we can align the drop to be measured at the same

position as that of the hexane drop. We then load the film holder and

.shoot a picture of the drop's shadow. After the frequency-phase

measurement (section 4.4), we null the modulated carrier signal, adjust

the levitation voltage to move the drop back to the original position,

and then shoot another picture of the shadow. Then we release the drop,

put one reference gauge into the cell and through the position where the

drop was levitated, and take a picture of the shadow of the gauge. Two

other reference gauges are used following the same procedure. It is

essential for accurate size measurement to position the reference gauge

through the levitation position. Very good stability of the levitated

drop is required for taking good pictures. Therefore, we fine-tune the

levitation frequency before exposures of the drop. These negatives are

then processed for measuring the size of the drop, as mentioned in

section 3.4.

4.4 Procedure for the Phase-Frequency Measurement

After taking a picture of the levitated drop, we slide the film holder

away from the light beam and adjust the stop and iris diaphragm, as

- mentioned in section 3.2. The light going through the slit is only two

bright spots immediately outside the shadow of the drop. We turn on the

carrier and modulation signal, drive the drop into shape oscillation,

then perform the frequency-phase measurement.

-"
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4.4.1 Tuning of the Carrier Frequency

To get appreciable amplitude of this shape oscillation, the carrier

frequency should match a resonance frequency of the levitation system so

that enough power can be fed into the transducer to generate strong

standing waves therefore to give a strong radiation force on the drop;

the modulation frequency should match the quadrupole resonance frequency

of the drop to enhance the motion. The drop's quadrupole resonance

frequency can be estimated from the apparent size of the drop and a

priori interfacial tension. The carrier frequency can be tuned by

monitoring the response of the drop in the following way:

We display two signals on a Tektronix T922 oscilloscope (referred

to Fig. 3.1), one is the square of the modulation signal (v 2) as
m

reference, which represents the driving force (explained later in this

subsection), the other one is the signal (vp) coming from the

p

photomultiplier, which represents the drop's response. By varying the

* modulation frequency around the estimated quadrupole resonance frequency

of the drop while sweeping the carrier frequency (around 510 KHz), and

observing the two traces of signals (Vm 2 and v p) on the oscilloscope, we

can get a signal v that appears synchronous with the reference V 
2 . We

S. p m

fix the carrier frequency at the value where the synchronous signal

appears to be strongest for a certain modulation frequency. The signal

v includes noise in addition to this synchronous component. A low-pass
p

filter (Krohn-Hite Model 3202 filter) helps us visualize this

o' ... , .;- . --. -" -: , ' --, ;. .-. ..' .: .:. .-.-... .. . . . . . . . . . .. .. . .i. . . .. . . .. . .. .. -. ... . .. .. ..- .. -
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synchronous component when the output of the photomultiplier is too

.noisy (see Fig. 3.1).

We confirm by the following observations that (the synchronous

Scomponent of) the signal v corresponds to the drop's oscillation in its
p

quadrupole mode. 1) The signal has the same frequency as that of V 2 .
-R.

2) The amplitude of the signal goes up or down in phase with either the

. ,. carrier or the modulation voltage. 3) The phase and amplitude of the

-signal vary with modulation frequency as in a regular resonance

(referred to Fig. 2.1(c)). 4) By blocking the upper or lower half part..4

-. "of the light beam with a piece of card board, we observe that the

amplitude of the signal reduces to about half, and the phase of the

signal shows no change.

.9

The frequency of the forced oscillation of a drop is the same as

that of the exciting force (assuming the drop is a linear system), but

it is twice the modulation frequency. This factor of 2 comes from the

fact that acoustic radiation pressure is a time averaged, second-order

effect. A schematic diagram, Fig. 4.2, illustrates this frequency

relation. Therefore, the signal v 2 with an amplitude 1V in rms with

respect to its mean is fed into the reference channel of the lock-in

amplifier (see section 3.3 and Fig. 3.1); it is also displayed on the

Tektronix T922 oscilloscope to help in tuning the carrier and modulation

J ,frequencies (see Fig. 3.1). The square of the signal vm is obtained by

,./ feeding v through a circuit with an MC 1495L linear, four-quadrant
in

multiplier.

. ... 4. . . . . . . . . -
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S- 4.4.2 Phase-Frequency Measurement
4%

After tuning the carrier frequency to get an appreciable amplitude of

" the drop's oscillation, we feed the output of the photomultiplier into

the signal channel of the lock-in amplifier, apply the v m2 signal to the

reference channel, and set the phase control A at +900, where is one

... of several selected phase angles. The dc output of the lock-in

amplifier is displayed on the storage oscilloscope as the ordinate,

whereas the control voltage output of the modulation signal (a voltage

proportional to its frequency) is the abscissa. Then we sweep the

modulation frequency about the quadrupole resonance frequency of the

drop, and obtain the f( ) as the frequency where the dc output of the

lock-in amplifier crosses zero (see section 3.3). We sweep the

modulation signal very slowly, especially when the trace is close to the

zero-crossing point. Also we sweep the frequency in both directions to

" ~make sure that the sweeping rate is slow enough that sweeping up or down

makes negligible difference in measured f(&).

' .,., We repeat the process for several different phase angles: 550,

67.5', 90', 112.50, and 1250, which are centered at 900 and chosen

* arbitrarily. The f(90 0 ) is measured at least three times, because it is

the most significant in calculating interfacial tension. A drop of

either superheated or non-superheated liquid can be acoustically

levitated for more than two hours. But a levitated drop tends to be

unstable in position as time goes on, possibly because that small

variations in temperature or in the level of the host water de-tune the

- levitation system a little, or because small particles or bubbles are
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introduced into the water in some way. Usually, we complete the

frequency-phase measurement in 30 minutes.

4.5 Procedure for the Compressadensity Measurement

The measurement of compressadensity may be either incorporated in the

interfacial tension measurement or as a separate measurement. We first

levitate a drop of liquid A, adjust the input voltage close to the

minimum trapping voltage. We record the input voltage and mark the

drop's center position by using the filar telescope. Then we release

drop A and levitate a drop of liquid B. We vary the input voltage to

-\ bring drop B to the same position as was drop A, recording this input

voltage. One of the two liquids A and B is considered the "reference"

with known density and compressibility. By applying Eqs. (60) and (61),

we can calculate the compressadensity of the other "unknown" liquid.

The host liquid is water for all tests. The diameters of the drops,

which need not be the same size [5], are much smaller than the acoustic

wavelength.

4
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.~

RESULTS AND DISCUSSION

In this chapter we present the results of the quadrupole oscillation

experiments described in chapter 4. In section 5.1 we list some

relevant physical properties of two common liquids (non-superheated) for

which we performed experiments in order to test the accuracy of our

measurements for interfacial tension. An approximate method for

reducing data used in a previous work is reviewed in section 5.2. Some

observations and problems associated with experiments involving gel are

discussed in section 5.3. A method for inferring interfacial tension

3 from data employing a least-squares principle is presented in section

d 5.4. Section 5.5 deals with the results and discussion for

.., non-superheated liquids. In section 5.6 we present the results for

superheated liquids. The last section is devoted to the results of the

-, compressadensity measurements for three superheated liquids.

5.1 Non-superheated Sample Liquids

A number of quadrupole oscillation experiments were performed for two

common liquids in order to test the accuracy of our technique for

measuring interfacial tension and to establish the method for data

Sk61reduction. N-hexane and n-pentane were chosen; the interfacial tensions

between water and each of them are known to within ±0.4% (see Table 1),
7
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and they are saturated hydrocarbon compounds similar to the superheated

liquids studied in this work.

The liquid samples were from Aldrich Chemical Company, Inc.:

n-hexane with 99+% purity, catalog #13938-6; n-pentane with 99+% purity,

catalog #15495-4. Some relevant properties of these two liquids and

water are listed in Table 1. In this table, the densities of n-hexane

and n-pentane were measured using the Mettler/Parr density meter, and

the measured values agree with literature values (e.g. [25]) very well.

* The viscosity was taken from literatures [25], as was the density of

water [26]. The interfacial tension was taken from the literature [27]

[28] and is compared with our measurements. In this article, wherever

hexane and pentane are mentioned, they are abbreviations for n-hexane

and n-pentane.

.4!



| -,

mm

P TABLE 1

Some physical properties of two sample liquids and the host.

Liquid f Temperature Density Viscosity Interfacial Tension

" I x10 2  with waterI I f
I I deg C I g/ml poise dyne/cm I
I fI
n-hexane 20 j 0.6594 0.326 51.1 ± 0.2 I

(CH3 (CH2 ) 4 CH3 )1 25 0.6548 0.294 I

I n-pentane 1 20 j 0.6262 0.240 49.0 I
1 I (CH3 (CH2 ) 3 CH3 )I 25 I 0.6213 1 0.230 I

J water i 20 I 0.9982 1 1.002 I
(H20) 25 0.9971 0.955

-i ""I I __ _ __ _ .L_ _ _ _ _ I_ _ _ _ _

Note: for water-hexane interface, da/dt = -0.026 dyne/cm C, where a denotes
interfacial tension and t denotes temperature [24].

4%°



4 -, S S t t .. . . -'... -_ .-< .,. -o- - . .- ... . -'. " ." + . . ". - - ." . . . '- ' .' . ", J " . '- - -' ' '

82

5.2 Approximation by Newton's Iteration

5.2.1 Approximation Method

Our experiments for measuring interfacial tension may be described

briefly as follows: We drive a levitated drop into forced oscillation at

frequencies around its quadrupole resonance and measure the frequencies .-.
associated with several phase angles; we then compute the interfacial

tension based on the resonance properties or, more specifically, the

phase-frequency measurements. This phase-frequency relation
.5-

incorporated with interfacial tension may be expressed by the following

equation, according to the model derived by Marston (see Eq. (7)),

T = (3/2 + 3,)/(W*2 - 3/2 ) (62)

where w* is the inviscid resonance frequency and is related directly to

the interfacial tension to be measured as in Eq. (16), T = tan&, is

the phase angle of the drop's displacement with respect to its driving

force, w is the frequency of the forced oscillation, a and I are

functions of the drop's size and of the properties (density and

viscosity) of the host as well as the drop liquid (see Eqs. (8), (9),

and (10)). The phase-frequency relation given by the simplified model

derived in chapter 2 can also be expressed in the same form as Eq. (62),

though a and T will then represent different functions of the size and

the properties from that given by Eqs. (8) and (9) (see Eq. (58)).

In the work done by Marston and Apfel [11] Eq. (62) was

approximated in the following way and then employed with data for

deducing interfacial tension. First, Eq (62) may be rewritten as a

function of w,

f(w) = TW2 + a(I+T)w3 /2 + Tw - Tw
* 2  0 (63)

"€ . " " " . ' . 4 - " . . ' . - . " . " - " + - . . . .•. - ... . . .. ,

. - , " -- -' . , . . . . .. . • - .. . .. . . , -,. ' .' 5. ' -. ,f , +,.
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"' " By applying Newton's method of iteration, and using w* as an initial

approximation, w can be expressed as a function of T [24] [10],

f(w*)
W W* -(64)

f'(w*)

q (w* - aw*Z + 3/8a 2) " lIT ( zw* - 3/4U 2 + )

Therefore,

w(9
0
1) w* - +w

* + (3/8)a2  (65)

and

. w(t) 
= 

w(901) - 1IT[ ca w*- (3/4)a
2 

+ 1 • (66)

If we define s as

S = [w(t) - w(901)] (-T) , (67)

.", . -then from Eq. (66), we have

s - %aw*! - (3/4)a2 + . (68)

Ui The damping constant s can be obtained experimentally by substituting

the data of phase-frequency measurements into Eq. (67), and s is used
e

to denote it in this article. For an interface composed of two liquids

with known density, viscosity, and interfacial tension, a (from Eq.

.- *2 (8)), T (from Eq. (9)), and w* (from Eq. (16)) can be calculated, and a

t',eoretical prediction of the damping constant, denoted by sth, can be

I ' "obtained via Eq. (68). From Eqs. (65) and (68) we have

W W(90 0 ) + -aw
*  (3/8)Q2

= w(900) + s + (3/8)a2 - 2 (69)

Furthermore, by neglecting the last two terms of Eq. (69), we have

w(90 0) + s (70)

Eq. (70) was used to infer interfacial tensions from measurements in the

work done by Marston and Apfel [11]. In this way, a and W were not

involved in the calculation for interfacial tension.

% b= t ! ' '" - ,'.4 .o '-.-.' o . -.. " ' .'_ . -" -'' . ° ' . --.' ' ,-- -* " '. "
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By using artificial data (that is, a phase-frequency relation given

by Eq. (62) and known radius as well as properties of liquids), we can

show that Eq. (69) is a very good approximation for calculating

interfacial tension, and Eq. (70) gives higher w* than Eq. (69) does by

about 0.7% which introduces about +1.5% error in the interfacial

tension. For our measurements with hexane or pentane drops in water

(those marked with * in Table 5), the theoretical values given by Eqs.

(8) and (9) are probably good approximations for a and 1, judging from

the fact that the measured damping constant s e is very close to the

theoretical value sth. Therefore, we estimate that the error in deduced

interfacial tension introduced by using the approximate model as in Eq.

(70) is about 1.5% too high.

5.2.2 Examples

As an example of this procedure of calculation, we list the data for one

hexane drop in Table 2. To deduce the interfacial tension from these

data, we first apply Eq. (70) and have

W* = (113.69+4.80)2v = 744.50

then from Eq. (16),

a, = w*2R r/24 = 51.5 dyne/cm -

where a, is used to represent interfacial tension obtained by using Eq.

(70). With the literature values listed in Table 1, the theory by

Marston gives sth=27 .64 (Eq. (68)), a th=1.76 (Eq. (8)), and th=13.97

(Eq. (9)). The experimentally determined damping constant s (30.14) is
e

close to the theoretical prediction sth (27.64). If we us Eq. (69) with



'
4

85

the data in Table 2 and the above a th and T th' we get the corrected

S iinterfacial tension, denoted by a., as 50.6 dyne/cm. This set of data

is also shown in Fig. 5.1. In this figure, triangle circular symbols

represents the data points, and the dashed line represents the

Stheoretical prediction based on Marston's theory (Eqs. (62), (8), (9),

and (16)) with physical properties of hexane and water given in Table 1

as well as the known radius of the drop. The data points follow the

slope of the theoretical line closely, which indicates agreement between

se and sth. The measured frequencies associated with 900 and other

I phase angles are less than the theoretical prediction, which indicates

that the measured interfacial tension is less than the literature value

used for the theoretical prediction. The meaning of the solid line will

" be discussed in section 5.4.2. This is a typical example of our

measurements; more data and discussion are presented in section %.5 (see

Table 5).

.4"

''
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TABLE 2

Data for one quadrupole oscillation experiment.

Host : water R=0.0825cm

Droplet: n-hexane t=22 0C "M

Phase(t) Frequency(f(t)) 1
Deg. Hz

I I".
90.0 113.64 I
90.0 113.70 I
90.0 113.72 I

I I
ave:113.69 I

I I I calculation for s

I T=tan( ) [f( )-f(900 )](-T) I

55.0 110.08 I 1.42815 5.15
55.0 110.24 1.42815 4.92 '-

67.5 111.66 2.41421 4.89

112.5 115.58 j -2.41421 4.57
125.0 116.80 I -1.42815 4.45

ave:4.80 -

I Se=(
4 .80) 2w=30"14

.

- - - - -

5-'
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5.3 Gel Effect

As described in section 4.2, our superheated drops was first formed in

gel and then transported into the water host. It is a convenient method

for introducing superheated drops into host water; other possible

alternative methods wculd require pressurizing the whole levitation

cell--up to 10 atm for propane drops or lower pressure with some cooling

mechanism; technically, it is much more complicated and difficult.

However, because of the contact of the test drop with the gel in the

process of transport and the dissolution of gel in the host water, one

must ask whether the drop's surface is contaminated and whether the

interfacial tension is clianged. We have done several tests to explore

this issue.

First, we measured the surface tension of water against air, then

put some gel (about 0.2% by volume) into the water and measured the

surface tension again after the gel was dissolved in the water. A

Fisher Surface Tensiometer, Model 20 (from Fisher Scientific Company),

employing the ring detachment method, was used in th( measurements.

There was no detectable difference in the measured surface tension (72.1

± 0.1% dyne/cm) due to the introduction of gel. Secondly, we performed

several quadrupole oscillation experiments for hexane and pentane (those

marked with ** in Table 5); the host water had gel dissolved in it -

(about 0.1 % in volume); the test drop was injected into water directly

from a syringe. The measured interfacial tension agrees well with other

data which were taken with clean host water, and the measured damping

constant agrees well with the theoretical prediction (see Table 5).

N4
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".1 Therefore, it seems that the gel is not surface active in water-hexane

and water-pentane interfaces: that is, there is no tendency for the gel

to pack into or to migrate away from the interface and to change the

interfacial tension by any detectable amount [29].

On the other hand, for the experiments of hexane and pentane which

had the test drop first formed in gel (following the same procedure as

in Fig. 4.1 but without pressurization), the oscillation of the drop

exhibited much greater damping; the measured frequencies at selected

phase angles showed significant difference with the theoretical

prediction: the frequencies associated with 900 phase, w(900 ), were

lower than theoretical prediction by about 5%, and the values of s were
e

" higher than the theoretical value sth by a factor about 2. The results

of these experiments are marked with *** in Table 5. One example is

shown in Fig. 5.2; the circles denote data points, and the dashed line

represents theoretical prediction as mentioned in the end of section

5.2. The solid line will be discussed in the next section. These

4 "'observations suggest that there might be some residue of gel on the

drop's surface while the measurements were taken, though it could not be

seen from the pictures of the drops. These observations also raise

1: "several questions about how to analyze the measurements which have gel

involved: First of all, is Eq. (62) still a good model for the motion?

If it is, then what is an appropriate way to obtain interfacial tension

from the measurements of resonance properties? The values of a and T

need to be estimated in order to employ Eq. (69) or to assess the

validity of Eq. (70). The fact that the values of w(900 ) were lower and

4'
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the values of s were higher than theoretical values indicates that ae

might be greater than and T might be different from the theoretical

values given by Eqs. (8) and (9) (see Eq. (62)). Therefore, we need a

new scheme to analyze data. We have developed a method employing

least-squares principle to estimate a ,j, and interfacial tension.

Details are discussed in sections 5.4 and 5.5 and the Appendix A and B.

4...
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5.4 Data Reduction by the Method of Least-squares

5.4.1 Model and Procedure

Several methods have been considered for computing interfacial tension

from data of a drop's quadrupole resonance properties (see Appendix A);

the one we chose is presented here. The basic idea is that we assume

Eq. (62) is an appropriate model for the motion but leave a, 1, and w*

all as unknown and then fit this model to data. We evaluate the model

by evaluating how well the fitting is and compute the best fitted w*, a,

and Y in the least-squares sense [31].

The procedure is described as follows: We partition the data of

one drop into two parts and consider them separately. First we consider

only the measurements associated with 900 phase angle. For 4 = 900, we

have (from Eq. (62))

- w(90 0 )2 - aw(90°) 3/2 = 0

or in another form,

a[W(90)] /  
- [w(

9
0
0 )12 - (71)

By assuming an w* or, equivalently, by assuming a a (see Eq. (16)) and

plugging the measured w(900 ) into the above equation, we obtain several

equations for one variable--a. We can find an "optimum" a which fits

these equations the best in the least-squares sense.

The next step is to consider the measurements where 4 900. From

Eq. (62), we have

3/2
Tw T(w*2 -w2 ) - a(l+T)w (72)i .

. .
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By assuming the pair (o, a) obtained in the first step as known (fixed)

." values and several measured w at different or the same phase angles, we

obtain several equations for one variable--r, whose optimum value is

then determined by least-squares method. Therefore, for each assumed o,

we find associated a and T. An "optimum" a or w* is chosen based on the

overall performance of the fitting. The estimate for a and I are

*- :obtained along with it. A general linear model (GLM) in a computer

system for aata analysis named SAS (stands for Statistical Analysis

System) supported by Yale Computer Center was used for the least-squares

regression.

5.4.2 Examples

As an example, this fitting process for the data listed in Table 2 with

assumed o=50.5 dyne/cm is shown in Appendix B. The result of the

fitting for this set of data is shown in Table 3 and Fig. 5.3 (Fig. 5.3

shows only the fitting for T). The GLH printout (Appendix B) contains

some information other than the estimated parameters (a and 1). The

information includes several statistical quantities that were used

together to assess the fitting: the square of the correlation function

(sometimes called the coefficient of determination) (R2 ), the

coefficient of variation (C.V.), and the significance probability

.' (PR>ITI).

The square of the correlation coefficient, denoted R2 in Table 3

* -~and R in Fig. 5.3, measures how much variation in the dependent variable

A

1*. . . q ~ ..550
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can be accounted for by the model. The value of the right hand part of

Eq. (71) or (72) obtained by employing experimental data is called the

observed value. The value calculated by using the fitted parameters (a

or T) and data to the left hand part of Eq. (71) or (72) is called the

fitted or predicted value of the dependent variables. The difference

between the observed and fitted value is called the residual or error.

The parameter R2 is defined as the sum of squares of the predicted

values divided by the sum of squares of the observed values. R2 ranges

from 0 to 1; the larger the value of R2 , the better the model's fit (see

Appendix B and [30]).

In Fig. 5.3 and Table 3 the symbol lPi" represents significance

probability. The significance probability is the probability that the

observed data would occur if a certain Null Hypothesis were true; here,

the Null Hypothesis is that the parameter to be estimated (a or 1) is

zero [32] [30]. The significance probability ranges from 0 to 1; a

small value of P indicates that the Null Hypothesis is unlikedly to be

true or, in other words, the model is significant.

The symbol CV in Table 3 and the symbol c in Fig. 5.3 denote the

coefficient of variation (C.V.) which is used to describe the amount of

variation in the dependent variable (the right hand side of Eq. (71) or

(72)). It is equal to the standard deviation of the dependent variable

(after adjusting for the mean) divided by the mean of the dependent

variable times 100. The values of C.V. shown in Fig. 5.3 is normalized

so can fit into the scale between 0 and 1. Some general observations of

the fitting are discussed below.

',.
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It can be seen in Table 3 that for a around its "optimum" value,

the fitting for a is generally much better than the fitting for T, which

should be expected because the measurements for w(900 ) are generally

much better than the measurements for other phase angles in terms of

repeatability. It also shows that for different assumed values of a the

higher the a is, the better the fitting for a is ; on the other hand,

the higher the a is, the poorer thi fitting for I is, and the fitting

• ." for I degenerates first gradually then dramatically (that is, the R2

decreases, while the C.V. and P increases sharply) as a reaches certain

* value (Fig. 5.3 shows an example).

Considering the fact that the measurements of w(900 ) are the best

measurements we have, and observing the fitting for both a and 1, we

choose the a beyond which the fitting for T degenerates very quickly as

the optimum value. For most experiments, at the value of "optimum" o,

the fitting for T has a R2 about 0.9. The value of C.V. and P for

different test liquids could be very different, because they are

dependent on the mean of the dependent variable which is a function of

interfacial tension and other parameters. However, the variation of

- "C.V. and P with assumed a for individual experiment is clear. The

significance probability of the fitting for I associated with the

optimum a is usually no greater than 0.01, which is the significance

Slevel usually referred to as "highly significant" in statistics.

2 .



96

The optimum a we chose for the above example (data listed in Table

2) is 50.5, and the associated a and T are 1.9 and 13.6 (see Table 3,

Fig. 5.3, and Table 5). Employing the above a, 1, and a obtained from

least-squares fitting, we can reconstruct the phase-frequency relation

by the aid of Eq. (62). The result is shown as the solid line in Fig.

5.1. The same procedure was applied to another set of data which is

shown in Fig. 5.2. The results of the fitting for this set of data are

summarized in Table 4 and Fig. 5.4. The solid line shown in Fig. 5.2

was reconstructed based on these "best fitted" parameters.

From the results of the fitting for the two examples mentioned

above, we may assess the validity of the model of Eq. (62), especially

for describing the oscillation of the drop which is formed in gel.

Judged from the values of R2 (r), P(T), and C.V.(T) listed in Tables 3

and 4, it appeared that the model fitted the data well, even if the test

drop was formed in gel initially. We found that this was generally true

for our experiments for hexane and pentane. The summary and discussion p

of our results for hexane and pentane are presented in the next section.

.*
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TABLE 3

Fitting for one water-hexane experiment (droplet radius 0.825 mm)

I I R2 (a) P() CV(a) a R2 () P() cv(r) T
iI I I _______

" 48.0 0.9979 0.0010 5.60 0.35 0.994 0.0001 8.88 51.55

49.0 0.9997 0.0002 2.19 0.92 0.987 0.0001 12.96 34.48

50.0 0.9999 0.0001 1.38 1.48 0.962 0.0005 21.94 23.41

50.5 0.9999 0.0001 1.16 1.76 0.919 0.0025 32.84 16.47

50.7 0.9999 0.0001 1.10 1.88 0.889 0.0048 39.15 13.56

51.0 0.9999 0.0001 1.01 2.05 0.786 0.0185 57.59 9.34

. 51.5 0.9999 0.0001 0.90 2.33 0.176 0.4080 230.15 2.31

" L O -- 
- -_-_-_-_-_-_-_-J- - J

N.N
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N
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......... I . . . . I. . . '' ' ' ' ' 'I . .' ' I' ' ' ' ' . . . . .l . . . .

4.I 4.5 4L.I 4.5 5. 0 5L 5 51.8 51.5 52.8

i.' INTWEACIAL TENSION QNNE/00

6. R Square of the correction coefficient

C The coefficient of variance (normalized)

P The significance probability

Figure 5.3: Some statistics for the least-squares fitting for 1:
Example for host, water; drop, hexane; drop radius, 0.0825
cm (referred to figure 5.1 and Table 3).
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TABLE 4

Fitting for one water-hexane experiment (droplet radius 0.766 mm)

a R2(a) P(a) CV(a) a R
2
(y) P(W) CV(X) 3'

48.0 0.9960 0.0001 6.96 2.68 0.973 0.0001 21.33 63.74 '

49.0 0.9970 0.0001 5.72 3.31 0.949 0.0004 29.40 48.46

50.0 0.9980 0.0001 4.88 7.94 0.928 0.0030 41.80 33.18

50.5 0.9983 0.0001 4.55 4.26 0.892 0.0122 52.90 21.30

51.0 0.9985 0.0001 4.27 4.58 0.614 0.0370 88.58 13.57

51.5 0.9987 0.0001 4.02 4.89 0.329 0.1785 148.64 10.11

52.0 0.9990 0.0001 3.80 5.21 0.030 0.7280 541.43 2.41

L I-
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46.3 4.5 4.3 4.5 53.9 53.5 51.3 51.5 52.

INTERACIAL TEION VYE/C1O

R Square of the correction coefficient

C The coefficient of variance (normalized)

P The significance probability

Figure 5.4: Some statistics for the least-squares fitting for :

Example for host, water; drop, hexane; drop radius, 0.0766

cm (referred to figure 5.2 and Table 4).
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5.5 Measurements for Non-superheated Liquids

5.5.1 Interfacial Tension

.A summary of our interfacial tension measurements for water-hexane and

water-pentane interfaces is presented in Table 5. Parameters with

subscript "th" are theoretical values; s is calculated using Eq. (68)

th

(assuming the interfacial tension is known and the value is taken from

Table 1), ath "is calculated by using Eq. (8), and I is calcu, ed by
th th

using Eq. (9). Subscript "f" denotes parameters obtained usin( ',e

least-squares method. se is the experimental damping constant

calculated from data and Eq. (67). a, is the approximate interfacial

tension calculated via Eq. (70). a. is the corrected interfacial

m tension calculated using Eq. (69) with ath and Tth"

For experiments which had the drops.formed in water (even the water

had some gel dissolved in it), it appeared that the experimental damping

*I , constant s~ agreed with the theoretical value st well, also do the

- fitted af and Tf with ath and th" For these measurements of drops

which were first formed in gel, the se were much greater than sth; the

ie th'

fitted af is several times greater than a th while Tf is close to I th"

This effect is expected because the potential (bulk) flow (both inside

and outside the drop) and the bulk viscosity are not changed much due to

the presence of gel; on the other hand, the flow in the boundary layer

%4 is affected very significantly due to some residue of gel on the drop's

surface enhancing the damping of the drop's motion.

-I", ' ; .- , .. ,..' ". ,, . ' . . ". -" "' , .'.- . .*.. .. -,'-.'- ",' . - - . " ' - - ... - *. . .-. -,- r ,.
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For interfacial tension, the of corresponded closely to the

corrected interfacial tension 02. The data in Table 5 also demonstrate

that, within the uncertainty of our measurement, the measured

interfacial tension of the drops which were first formed in gel was not

different from the measured value of the drops which were injected

directly into host water. Considering the similarity in chemical

structure between the superheated and non-superheated sample liquids

used in our experiments, though without direct justification, we presume

S.' that the interfacial tension between water and the superheated liquids

.- was not significantly changed by the gel involved in the transport

process.

The average measured interfacial tension (of) was 50.7 dyne/cm for

water-hexane interface and 48.6 dyne/cm for water-pentane interface,

which were about 0.8% lower than the literature values. The total

uncertainty of our interfacial tension measurement is estimated at

±0.75%. This total uncertainty is computed as the square root of the

sum of the square of each following error:

1. +0.1% uncertainty in the frequency measurement, which corresponds

to ±0.2% uncertainty in the measur= < interfacial tension.

2. ±0.2% uncertainty in the droplet size measurement, which

corresponds to +0.6% uncertainty in the measured interfacial

tension.

3. ±0.1% uncertainty in the density measurement, which corresponds to

±+0.1% uncertainty in the measured interfacial tension.

-7_
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4. ±0.4% uncertainty in the determination of the optimum o based on

OP ,the least-squares method.

5.5.2 Damping and Viscosity

" In our experiments of the quadrupole oscillation of a drop in water, the

damping of the motion is due to the viscous dissipation. Theoretically,

w.'e should be able to deduce information on the viscosity of either the

* - drop or the host from the measured damping constant. Table 6

di illustrates the variation of the theoretical damping constant

corresponding to several arbitrarily assumed values of viscosity. For

very significant (up to 30%) change in inner or outer viscosity, the

U corresponding variation of the sth appears comparable with the typical

. fluctuation of the ratio s /S (about 15%) (see Table 5). Therefore,

e th

3with the precision of our experiment, it is not practical to get any

significant information about the viscosity of either the inner or the

outer fluid from the measurements. The viscosity of 0.5% glycerol in

_water solution is 1% higher than the viscosity of pure water [26]. For

experiments marked with ** in Table 5, the host water had no more than

0.1% gel dissolved in it. From the above example, the change of

viscosity of host water due to this amount of gel is too small to show

• " up in the measured damping constant, as it is the case we observed in

Table 5.

For experiments denoted * in Table 5, if we assume that near the

interface the viscosity was changed locally, then we can estimate (by

'p .

- ..-. , .,." , - . ,, .,- . . -. . ..*.. J,. .. .. . . . . .. * -. .. .. .•
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" Eq. (8)) what would be the average viscosity associated with the

~interface boundary to give t - value af. An example is shown in Table

. ,7., the value of 0.03 poise is equivalent to the viscosity of a 35%

['['."glycerol in water solution [26]. The above calculation suggests the

) existance of gel residue on the interface for the experiments denoted

." *** in Table 5, as we discussed in section 5.4.

.5..'

', ,5.
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TABLE 5

- Measurements for non-superheated liquids.

-"' T 1 1

Iradiusl f(90 0 ) se I a 02 a f tf T f Sth th th I remark
I - Hz ,ra-/secI dyne/cm I I I

Iwater-hexane interface
I T ITII,

10.749 I 130.63 38.3 1 51.3 50.4 I 50.5 2.3 16.4 32.8 1.8 17.0 *

10.766 I 122.14 64.5 1 51.4 50.5 4.3 21.3 31.5 1.8 16.2 *

10.787 1 121.63 1 33.8 1 51.3 50.5 1 50.5 2.0 15.8 30.0 1.8 15.4 *

10.825 1 113.69 1 30.1 1 51.5 50.6 1 50.7 1.9 13.6 27.6 1.8 14.0 *

10.895 I 100.23 1 28.1 1 51.3 50.5 I 50.7 2.0 10.1 23.9 1.5 11.9 **

10.905 I 94.01 1 57.5 1 51.5 I 51.1 4.7 16.5 23.4 1.5 11.6 *

10.985 I 87.20 1 22.4 1 51.4 50.6 I 50.5 1.5 11.8 20.1 1.4 9.8 **

11.061 77.47 1 23.4 1 51.4 50.7 1 50.7 1.8 8.3 17.6 1.3 8.5"I- _ _ _ _ _ I_ _ _ _ ._ _ _ _ _ _

Iwater-pentane interfaceF i.-.1 T IIT,

10.801 I 118.08 30.5 49.4 48.5 1 48.5 1.7 16.5 28.1 1.6 16.5 *

10.905 I 95.50 44.51 1 49.6 48.8 1 49.0 3.4 14.7 22.6 1.4 12.9 *F--I F 4 4 i i -

10.710 I 141.18 38.9 49.5 48.5 48.5 2.0 20.9 35.0 1.8 20.9 **

10.770 I 118.51 74.0 1 49.3 48.4 48.7 5.3 25.0 30.2 1.6 17.8 *F I F 4

10.791 I 120.66 1 29.3 1 49.5 48.5 1 48.5 1.6 17.5 28.8 1.6 16.9 *- - -II FI I 4

10.944 I 92.83 1 20.7 1 49.5 48.6 1 48.5 1.2 12.5 20.9 1.3 11.8 **

11.047 I 79.51 1 17.7 49.5 48.7 1 48.7 1.2 9.4 17.4 1.2 9.6 *

Note: 1) The ramark * denotes that the drop was injected directly into water from a
dispenser and there was no gel dissolved in the water.

2) The remark ** denotes that the drop was injected directly into water from a
dispenser and there was gel dissolved in the water.

3) The remark *** denotes that the drop was formed first in gel then transported
into water with the gel.

4) The af and ath have a dimension of (radian/second)1 . The Tf and Tth have a

dimension of (radian/second).

V.
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TABLE 6

Variation of damping with viscosity (I).

R=0.0825 cm P0=0.9978 g/ml

a=51.0 dyne/cm 'i 0 .6576 g/ml

S0=0.009548 poiseZ

Piath I th s th
'1

poise (rad/sec) 2rad/sec rad/sec

0.00313 1.67 13.97 27.64

0.002 1.43 15.52 j 25.66
0.004 1.82 j 13.20 J 28.84

1 =0.00313 poise
1

ath Pth th

0.009548 1.67 13.97 27.64

0.007 1.59 9.54 24.49

0.012 1.78 [ 18.53 30.59

TABLE 7

Variation of damping with viscosity (II).

R=0.0766 cm P0=
0 .9 9 7 8 g/ml o=51.0 dyne/cm

P.O0.6 5l 6 g/ml

Iiv a th Tth S th

poise j poise (rad/sec) - rad/sec rad/sec .

0.00313 0.009548 1.80 16.21 31.59
Ia0.01 0.01 2.60 14.12 39.43

0.02 0.02 3.68 28.25 56.93
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5.6 Measurements for Superheated Liquids

5.6.1 Test Liquid

In this section we report measurements for butane, isobutane, and

.. .~propane. Some physical properties of these three compounds are listed

in Table 8. The experiments were all conducted at the condition of room

4 " temperature and atmospheric pressure, and the compounds were all in

liquid state; therefore, they were superheated at a degree from 200C to

over 600C. The boiling point at a pressure of 760 mmHg and the vapor

pressure at 200C are taken from literature [25]. The density in Table 8

was based on the density at 210C and equilibrium pressure [25] and then

3 corrected by using the isothermal compressibility which is extrapolated

from the available data at the equilibrium state. The surface tension

against its vapor listed in Table 8 is taken from a line which

extrapolates the data at the equilibrium state and connects the point of

zero surface tension at the critical temperature (which should be good

far from the critical temperature) (for example, Fig. 5.5). The

viscosity listed in Table 8 was extrapolated from the data at the

4. equilibrium state. For these values in Table 8, the uncertainty is

i "estimated to be ±0.2% for the density, ±1% for the surface tension and

±3% for the viscosity.

~:?-
., .%

4.

4#'
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TABLE 8

Some physical properties of three superheated liquids.

, ILiquid I Structure I Boiling Pt. IVapor Press.I Degree of IDensity ISurf. Tens.I Visc.

I: I at 760mmn I at 200C I Superheatj at 210Cj at 210C I 210C

I I I bar I C g/mlI dyne/cm cp II 111
II III III

IButane I -c-c-c-c- I -0.50 1 2.07 1 22 0.577 1 12.6 0.17II IIIII I
.1 * I

1Iso- I -c- 1 -11.73 2.98 33 0.556 10.6 0.18
Ibutane I -c-c-c- II
I Ie I - 1 8 1 6

I I -I iI
IFropanel -c-c-c- I -42.07 8.40 I 63 0.502 8.0 j0.093

'I , - . . .- . . . . . . .:-i',br..- . > '..,;;..'.'.. ./ ..' L ..... . . .. . *. ....., ... . .....-. ,. ..
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5.6.2 Measurements for Butane and Isobutane

Test drops of butane and isobutane were formed in gel under pressure and

then transported into water. The index of refraction of butane (1.3326)

is so close to that of water (1.3333) [26] that the butane drops could

barely be seen by eyes while levitated in water, and its shadow looked

like a ring with very thin band. Therefore,very stable levitation and

fine adjustment of the stopper (see Fig. 3.1) were required to take

measurements; the signals from photomultiplier for butane drops were

noisier than the signals for drops of other liquids.

The results of quadrupole oscillation experiments for butane and

isobutane are listed in Table 9. As mentioned in the previous section,

for the interfacial tension deduced from data, ai, denotes a first

approximation calculated using Eq. (70), and af is obtained using

least-squares fittings. As shown in Table 9, af is lower than a, by an

average of 1.6%. One can also see that s is two to three times sth, f

is close to Ith (within a factor of two), and af is much greater than

ath (by a factor about four); this behavior similarly exhibited in our

data for hexane and pentane drops which were formed in gel.

From our measurements, the average interfacial tension for

water-butane interface is 53.1 dyne/cm, and that for water-isobutane

interface is 54.3 dyne/cm. Similar to the discussion in Section 5.5, we

estimate that the uncertainty for our measurements of the

water-isobutane interfacia' tension is ±0.8% with ±0.2% uncertainty in

the estimated density; the uncertainty of our measurement for the J
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I ' 1 0 9

water-butane interfacial tension is ±0.9% with greater (±0.2%)

uncertainty in the frequency measurtment due to the noisiness of the

output signal from the photom,:itiplier.

.

..
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TABLE 9

Measurements for butane and isobutane.

I radiusl f(90
0
) Se 1 Of af 'f Sth th 'th

(mm) (Hz) i Ii I
_ _ _ I I _ I. I__ _ I _ _ _ _ _ _ _ _

lwater-butane interface

10.693 1 147.73 194.41 54.0 53.2 6.0 32.4 36.3 1.6 25.0

FIF I I I
10.761 1 127.92 1 84.81 54.0 1 53.3 5.9 29.3 130.6 1.5 20.8
I I I I
0.765 I 125.20 I 93.6 I 53.8 1 53.1 6.6 37.9 I 30.3 1.5 20.5

I I I I I
0.878 I 102.59 1 71.3 1 53.7 1 52.8 5.3 25.8 1 23.6 1.3 15.6
[ 1 I I I

Iwater-isobutane interface

10.720 I 141.75 1 94.9 1 55.3 1 54.3 6.1 37.0 34.8 1.6 23.5*I I I I I

10.794 1 123.11 1 74.7 1 5C9 1 54.2 5.2 24.9 129.1 1.5 19.3
I . I I I I10.8621I110.021I61.5 1 55.31s 4.5 4.4 21.9 I25.1 1.3 16.4
I5L_ _ I I_ _ I_ _ _ I _ _ _ _ _ _ _ _ _ _ _ _

.-.

-.5.
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* 5.6.3 Measurements for Propane

Propane has the highest degree of superheating among our test liquids.

Some special phenomena were observed in the measurements for propane:

the frequency associated with a given phase angle increased with time,

while the size of the drop decreased with time, as can be seen in Figs.

5.6, 5.7, 5.9, 5.10, 5.12, and 5.13. The propane drops dissolved

significantly after being levitated in water for a couple of hours.

This fact makes it impractical to apply the least-squares method, as

described in section 5.4, to the data of propane with water, because the

size and frequencies were drifting with time and the measurements were

not taken at the same instant.

Our approach for analyzing the data is first to get averaged

variation of each measurement (e.g., the frequency associated with

certain phase or the size of the drop) with respect to time by fitting a

line to the data plotted as a function of time, as shown in Figs. 5.6,

5.7, 5.9, 5.10, 5.12, and 5.13. Then we can arbitrarily choose an

instant, read the size and frequencies from the fitted lines, and

calculate the o, associated with this particular instant (using Eq.

(70)). The parameters a and I can be estimated by employing Eqs. (71)

and (72) with the a,, R, w(90), and w(&) at a certain instant.

It was found that the interfacial tension between water and propane

obtained in this way was also time depend:. ; it decreased with time, as

shown in Figs. 5.8, 5.11, and 5.14. This :.ecrease of interfacial

tension with time is presumably due to ti.- dissolution of propane in

I
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water; the concentration of propane in water near the interface

increased with time, reducing the differential attraction force between

molecules across the interface.

The assumption that the concentration of propane in the water near

the interface increased with time is supported by the following

argument: If the diffusivity, K, of propane into water (molecules/unit

time/unit area) is constant, then the rate of change of the drop's

radius should be inversely proportional to the cube of the radius, that

3
is, dR/dt - -K/R . But, as shown in Figs 5.7, 5.10, and 5.13, the slope

of the data line is very different from cubic; the rate of decrease of

the radius was much less than a cubic relation would predict.

Therefore, we presume that the r was not a constant but decreased with

time, as would occur if the concentration of propane in water near the

interface increased.

Assuming that the true interfacial tention is 1.6% lower than 0a,

as observed in previous data, then the interfacial tension between water

and propane was about 58 dyne/cm when a propane drop has contacted with

water for about 10 minutes and continuously decreased to about 54.5 M

dyne/cm when the propane drop had remained in water for two hours. We

estimate the uncertainty of this measurement to be ±1% which is of the

same order as that of measurements for butane.

.4-
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Host: water, Droplet: propane.

Phase =112.5

F F114-
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E
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C
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4" Phase f~=67.5

4%4

Figure 5.6: Variation of frequency with time for three selected

phase angles, experiment #0409.
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Fig. 6.7: Variation of drop radius with time for experiment #0409.
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Fig, 5.8: Variation of the Interfacial tension between water and
propane with time for experiment #0409.



115

Host: water, Droplet:. propane.

Phase =112.5
134'

F 1 Phase t=90
IR
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E
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Figure 5.9: Variation of frequency with time for three selected
phase angles, experiment #0411.
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Host: water, Drop1.t.- propane
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Fig. 5. 10: Variation of drop, radius 'with trns for experimnent #041 1.
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Fig. 5.11: Variation of the inturfaolal tension between water and

propane with time for experiment #0411.
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Host: water, Droplet: propane.
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Figure 5.12: Variation of frequency with time for three selected
phase angles, experiment #0408.
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Fig. 5.13: Variation of drop radius with ime for experiment #0408.
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Fig. 5.14: Variation of the interfaotal tension between water and
propane with time for experiment #0408.
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5.6.4 Comparison with Fowkes Theory

The results of our measurements for interfacial tension are summarized

-.in Fig 5.15. In this figure, the square symbols represent data from the

literature; the circles represent data from this work; the curve

-, represents the calculated value given by Fowkes' equation (referred to

Eq. (1)). Those literature data of several hydrocarbons with water

. denoted by squares in Fig. 5.15 (except that of pentane) were used by

Fowkes to calculate the part of the surface tension of water due to

dispersion force, which he obtained was 21.8±0.7 dyne/cm (referred to

section 1.6 and [13]). The surface tension of the superheated liquids

are taken from Table 8. The interfacial tension between water and

propane shown in this figure is 58 dyne/cm which corresponds to the

measurements taken at an "early stage" in the period of measurement

(refer to section 5.6.3). Fig. 5.15 demonstrates that for the three

superheated liquids, the agreement between our data and Fowkes' theory

is fair, similar to that between the data of pentane with water and

Fowkes' prediction; the trend of increasing interfacial tension with

decreasing surface tension in this region of lower surface tension is

clearly shown in both data and Fowkes' theory.

--.
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S.4

Prediction by Fowkes theory

(with known surfoce tension)

" Data reported in literature

0 Data from this work71F
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Figure 5.15: Comparfson between data and Fowkes theory.
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A 5.7 Measurements for Compressadensity

S Applying the established acoustic levitation technique, we measured the

-:,. compressadensity, which is a bulk property, of the three superheated

liquids. The procedure is outlined in section 4.5, and the calculation

P is based on Eqs. (60) and (61).

5.7.1 Control Experiment

As a test of the accuracy of the levitation technique for measuring

'd adiabatic compressibility (0) (assuming the density is known), control

.; experiments were performed in which one of the two liquids, n-heptane

and n-pentane, was considered an unknown, and the other liquid a

3_ reference. The sound speed (C) in the "unknown" liquid was measured by

a direct method (see section 3.5). Making use of the relation C2

if/p, we can compare the results obtained from levitation technique with

that obtained from the direct method. The results are summarized in

Table 10. The densities of n-heptane and n-pentane in Table 10 were

measured using the Mettler/Parr density meter. The density of water is

taken from the literature (e.g. [26]). The sound speeds in the three

liquids were measured using Nusonics sonic solution monitor (see section

3.5).

Our data show that the precision of our measurements for

compressibility is about 1%, and for sound speed is about 0.5%. The

overall uncertainty of this measurement is composed of the following

errors [5]:

-.. °
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1. ±0.2% uncertainty in the voltage measurement, which is

attributable to the precision of the digital ac voltmeter and the

deviation of the actual experimental condition from the assumption

that the pressure of the incident waves for both the unkns:n and

reference drops is proportional to the input voltage to the

t'-.nsducer.

2. ±0.002cm uncertainty in droplet position monitoring, which

corresponds to ±0.2% uncertainty in voltage measurement.

3. ±0.1% uncertainty in density measurement.

4. ±0.1% uncertainty in sound speed measurement for host and

reference liquid.

The compressibility and sound speed measured using the levitation

technique agreed well with that obtained using traditional technique,

with the difference within the uncertainty of our levitation

measurements.

.4,..

5.7.2 Compressadensity of Superheated Liquids

The same procedure was applied to butane, isobutane, and propane liquid,

which were superheated, to measure their adiabatic compressibility and

sound speed. Two references, n-heptane and n-pentane, were used in all

measurements. The densities of the superheated liquids are taken from

Table 8. The results are listed in Table 10. We estimate the total

uncertainty to be about 1% for sound speed and 2% for compressibility.

The results shown in Table 10 demonstrate that the results for the two

-A



123
J

different references are consistent with each other, the difference

j .being within the uncertainty of this measurement. Since the

compressibility and sound speed are bulk properties of liquids, we

judged that the data should not be affected by the presence of little

amound of residuce of gel on the interface. There are no other data

available for the results of the superheated liquids listed in Table 10

to compare with. However, the trend that the liquid of higher degree

superheating behaves closer to being in gaseous state (greater

compressibility and lower sound speed) is clear.

q°
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TABLE 10

Results of levitation technique for compressadensity measurement.

(assuming density is known)

.

.-

iTENP.I LIQUIDS DENSITY(p) SOUND SPEED(C) COMPRESSIBILITY($)xlO
9  -

'CI g/ml m/s m2 /N

II "UNKNOWN" OF TRADITIONALi LEVITATION TRADITIONALI LEVITATION

I and "UNKNOWN" TECHNIQUE TECHNIQUE TECHNIQUE TECHNIQUE
I I(REFERENCE) C2=1/p$ 0=1/pC 2  .

22 Heptane 0.6819 1142 1146 1.125 1.117
I I(Pentane) II . ,IIII 

I 
-d

i 22 I Pentane 0.6242 1019 i1015 1.543 1.556
I I(Heptane)I I I II f-

21 I Butane 0.577 883 2.22
I(Heptane)III

121 I Butane 0.577 88I 2.20
" I I (Pentane) I I

'. i - I I 
I F 

:

I 22 i Isobutane 0.556 803 i 2.79
*A I I (Heptane) I

22 Isobutane 0.556 807 j 2.76 I
I(Pentane) I

S- If I 
I.:

21 I Propane 0.502 695 I 4.12 '
I (Heptane) I I"I.I

I 
I

I 21 i Propane 0.502 700 I 4.06 -

I I (Pentane) I "

Ire I

° ' -;.
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Chapter 6

SUMMARY AND CONCLUSIONS

In this work, we have studied a technique for measuring the interfacial

tension between two liquids and applied it to the interfaces between

water and each of three superheated liquids. The method of measurement

is based on the resonance properties of a drop which is levitated in

another liquid (the host) and also driven into quadrupole shape

oscillation by an acoustic force. The shape oscillation technique

: " :" described here has the special advantage that the host liquid provides a

very smooth and clean container for the levitated drop, thereby greatly

improving its time of survival in the superheated state.

4 We have developed a simplified model to describe the motion of a

q drop oscillating in a quadrupole mode in a host liquid. In this model,

the flow field is partitioned into several parts: the potential (bulk)

flow in the outer (host) and inner (drop) fluid as well as the boundary

layer in the outer and inner fluid contiguous to the interface; they are

superimposed in an ad hoc manner to describe the whole flow. The

phase-frequency relation deduced from this simplified model agrees well

with that given by previous theories (e.g. Marston's) which were derived

in an exact approach. This simplified model reveals the physical nature

of the problem more explicitly. Though the derivation of this

simplified model was specified to the quadrupole mode, the procedure

should be applicable to oscillations of higher modes.

-125-
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The apparatus of this experiment is similar to that of some

previous work, with some modifications. The accuracy of the size

measurement has been improved and it contributes significantly to the

precision of our measurements for interfacial tension. Our results for

the interfaces between water and each of two common liquids were lower

than the literature values by about 0.8%. The uncertainty of the

measurements was estimated to be ±0.75%. Though the damping of the

drop's oscillation is due to viscous dissipation, it appeared that,

within the precision of our experiment, it is impractical to get any

significant information about the viscosity of either the drop or the

host liquid from the measurements.

We developed a process for introducing a liquid drop into water by

the aid of a gel which is immiscible with the drop but soluble in water.

It is a convenient way to handle superheated liquids. However, test

drops that underwent this process exhibited much greater damping in

their shape oscillation and this fact raised questions as to whether we

could infer the interfacial tension from measurements by using the

approximation 7-ethod used in a previous work. We therefore developed a

method based on the least-squares principle for estimating interfacial

tension and damping parameters. The results of this least-squares

method for two common liquids demonstrate that the interfacial tension

and the viscous dissipation in the bulk flow were not affected by

detectable amounts due to the presence of the gel, while the viscous

dissipation in the boundary layer increased very significantly. a

i- ., 4 ,. . . ., , . : ,'.. . .'- . _ - ., . . .. . . . ., - . , . . - .
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Measurements of interfacial tension were reported for the

interfaces between water and butane, isobutane, as well as propane.

These three compounds were in the superheated liquid state under our.5.•

experimental condition (room temperature and atmospheric pressure). The

' uncertainty of the measurements was estimated to be ±1%. The size of

propane drops decreased gradually over a two hour period in water; the

interfacial tension decreased with time due to the increase of propane

concentration in water near the interface. Our results show fair

agreement with the prediction given by Fowkes' theory.

We have reported the sound speed and compressibility of those three

superheated liquids which were measured using an established acoustic

levitation technique. The uncertainty is estimated at ±1% for the sound

speed measurement and at ±2% for the compressibility measurement. Our

4results show that the sound speed decreases and the compressibility

-' increases as the degree of superheat increases, as one should expect.

This v ,rk, as one among others, demonstrates that the acoustic

*. S~ii levitation technique is a useful tool for studying either surface

properties (e.g. interfacial tension) or bulk properties (e.g. sound

speed and compressibility) of fluids with a special advantage in dealing

with metastable liquids. ThjA work reports data which were previously

unavailable for the interfacial tension and compressibility of three

• : "superheated liquids and may have applications in various fields

(referred to page 1, 5, and 11). Though we judged that the measured

U interfacial tensions were not affected by the presence of gel, any

"°4

-4



128

uncertainty on this point can only be removed by conducting experiments

without using gel or other material in the preparatory steps prior to

the actual interfacial tension measurements.

Some future work relating to this technique is desirable. The

approach of the simplified analytical model may be extented to some

special situations in which the exact approach may have difficulty due

to the geometry, such as when the equilibrium shape of the drop is

non-spherical. It is also possible to superimpose terms such as

interfacial viscosity and interfacial elasticity into this simplified

model for describing some situations such as when there is a

surface-active film or membrane between the two fluids; with this

modification in the analytical model and by performing measurements as

described in this manuscript, we should have a sensitive method of

characterizing the surface layer.

A - 1 i
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-. APPENDIX A

* Methods for Data Reduction

The model that we used to describe the motion of an oscillating drop in

a liquid host is expressed in Eq. (62),

3/2 3/2
tang = (a3w + yW)/(w*

2 
- aW -

2
) , (62)

where and w are measured in our experiments (see section 5.2.1). By

measuring three frequencies (w) associated with three different phase

angles (), and by substituting them into the above equation, we get a

system of three linear equations and, theoretically, we can solve the

three unknowns: a, 1, and w*2 (or a) by direct methods such as Cramer's

rule or Gauss elimination. However, it appears that the system of

equations mentioned above is "ill-conditioned", and the direct methods

are of very little use for inferring interfacial tension from the

phase-frequency measurements with the precision we can achieve in our

measurements. An example is shown below in two steps:

(i). Making use of Eq. (16), we may rewrite Eq.(62) in the

following form:

3/2
[(T-24)/(R r)]i - (w)r - [(l+T)w ]a = Tw2  (73)

Assuming R=0.0825 cm, a=1. 88 , 1=13.56, o=50.7 (dyne/cm) (see Table 5),

P =0. 9 9 78 , pi= 0 .6 57 6 (see Table 1), and employing Eq. (62), we may get a

set of "artificial data", such as:

::i~ "f(H Z) & (deg.)

111.729 68.257
U 114.081 95.180

117.609 128.363

2**'%
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Substituting this set of artificial data into Eq. (73), we get a system

of linear equations [A] [X] = [B], where

[]= [o ' ]

r 27005.89 -702.02 -65238.53,
[A] = 1-118809.38 -716.79 192502.121 (74)

L -13606.97 -738.95 5290.33-J
and

r 1235708.00,
[B] = 1-5667649.001

L -689871.87--

Employing Cramer's rule, we solve the unknown matrix,

[X] = [50.71 13.50 1.91]T

which is very close to the original assumed values.

(ii) If we make a small change in the artificial data, say, one of

the frequency from 117.609 to 117.800, then it produces "small" changes

in the coefficients:

r 27005.89 -702.01 -652 3 8 .53,
[A] = 1-118809.37 -716.79 192502.121

L -13606.97 -740.15 5303.22J

r 1235708.00
[B] = 1-5667649.001

L -692114.56J

But the corresponding changes of the solution are very "large".
T..

[X] = [60.67 -126.41 7.54] .

The performance of direct methods can be predicted by a theory in

numerical analysis (e.g. [33]) which provides an estimate of the

relative error:

1 IlAX c  - BII IXc - XtI IlAX - B II

S1hAil 11A 111 _ _ _u1l 1A ' II IBII l t lIB I:

1* 1 . lix * .. . ... .
% . % o o O O .•. . • •. O o O. .- - .- '4 ' .. - - . - - . . . . . . . .
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where I1-1 denotes a matrix norm, subscript c denotes the computed value,

-. %

3 isubscript t denotes the true value, and all variables are matrix. The

term IIAIIA 11 is usually called the condition number and its size is a

measure of how good a solution we can expect direct methods to generate.

Ii The condition number satisfies the inequality III-I~IA'll ? . Following

a specific definition of the matrix norm[33], we can calculate the

1 condition number for the above example (referred to Eq. (74)), such as:

1AIIlI - IIA-111, = 1.6 x 1O4  >> 1

-1IIAII. - IIA 1j. = 3.6 x l04 >> 1

The above calculation indicates that, with the precision we can achieve

in our measurements, if we use direct methods to solve [X], the relative

error could be unacceptably large.

-2

The problem can also be demonstrated by the following observations.

First, the typical magnitudes of the terms in Eq. (62) are very

different, as shown in the following vector diagram which is drawn

approximately to scale for the above example with f 114.081 H and =
z

95.180 degree,

" i-' ~w3/22

I * ~where w*2 = 546062, w2 = 513791, Tw = 9720, and (w3/2)2 = 51023.

Secondly, the dependence on w of the two damping terms (rw and w3/2) is

" "rather close, and the variation in frequency is rather small for the

range of phase angles covered in our measurements.

,- 4
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The idea of our approach to analyze the data is formed by the

following reasoning. To avoid the difficulty in direct methods and to

use all the data we have for one experiment (usually more than three

phase-frequency measurements), we employ a least-squares principle to

fit the model in Eq. (62) to our data. To give greater emphasis

relatively to the terms jw and a(w3/2), we assume that w* is known by

guessing a value for the interfacial tension. Then the terms w*2 and w2

almost cancel out each other. In the remaining two unknowns, j ana a,

only a affects the value of f(900 ) (see Eq. (71)); also, our

measurements for f(90 0 ) are usually much better than f(&), where &$900,

in terms of repeatability. Therefore, we first employ the least-squares

method and only the data of f(90 0 ) to get the best fitted a. We then

use the assumed w*, fitted a, and the data of f(&$900 ) to obtain the

best fitted 1. The assumed w* which is the closest to the "true" value

should lead to the best fitting (referred to section 5.4). Details of

the procedure are described in section 5.4 and Appendix B.

4.,-

V.-o
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APPENDIX B

3 An Example for the Least-squares Fitting

This appendix provides an example for the process of least-squares

fitting that we employed to analyze our data. The first part of the

attached printout is the data set used in this example (see Table 2).

The remaining part of this printout is the GLM printout (see section

5.4). Relevant terms are marked with numbers and are explained as

follows:

(1). the data used in this example (see Table 2)

(2). the assumed interfacial tension.

(3). the coefficient of a in the left hand part of Eq. (71).

". (4). the right hand part of Eq. (71).

(5). the sum of squares for the dependent variable in (4).

(6). the sum of squares for the predicted dependent variable in (10).

'(7) R2  the ratio produced by dividing (6) by (5).

(8). the difference between (4) and (10).

(9). the sum of squares of (8).

(10). the value obtained by employing the estimated parameter (15) into

Eq. (71).

(11). (9) divided by the DF (degree of freedom).
- J

(12). the square root of (11).

(13). the mean value of (4).

- (14). (12) divided by (13), then times 100, (the coefficient of variation).

- (15). the estimated parameter based on minimizing (9).

(16). the value for testing the null hypothesis that the parameter

equals zero, which equals
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(13)-o.o

(12)//n

where n is the number of observations (n=3 in this example) [32].

(17). This value answers the questions, "If the parameter is really

equal to zero, what is the probability of getting a larger value

of (16)?" Based on the assumption that the dependent variable has

a normal distribution with mean zero and estimated standard

deviation obtained from n observations (the term (12)), the value

of (17) is then the probability to get a greater value of (16) or,

equivalently, a greater value of (13) [30] [32].

.1%.

-°-
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*****Substitute the data in Table 2 into Eq. (71),

assume the interfacial tension to be 50.5 dyne/cm, and

invoke SAS GLM program to fit alfa: (2)

S TAT I S T I CA L ANA LY S I S SYSTEM ,

OBS ALFA INER

(3) (4)
1 190.795 340.816
2 190.946 335.434

3 190.996 333.641

S T A T I S T I C A L A N A L Y S I S S Y S T E M

GENERAL LINEAR MODELS PROCEDURE

DEPENDENT VARIABLE: INER

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE

MODEL 1 339956.84381956 339956.84381956 22129.25(+ 9) (11)1 .;333 R

ERROR 2 30.72466672 15.36233336 PR > F

UNCORRECTED TOTAL 3 339987.56848628 0.0001

,-£ R-SQUARE (4) C.V. 12) STD DEV INER MEAN

0.999910 (7 1.1643 3.91948126 336.63020000

SOURCE DFTYPE ISS F VALUE PR >F
+ ORED TP S FVAU R: ALFA 1 339956.84381956 22129.25 0.0001

S TAT I S T I CAL ANA LY S I S SYSTEM -.

GENERAL LINEAR MODELS PROCEDURE

-'N DEPENDENT VARIABLE: INER

SOURCE DF TYPE IV SS F VALUE PR > F

4 ALFA 1 339956.84381956 22129.25 0.0001

T FOR HO: PR > ITI STD ERROR OF

PARAMETER ESTIMATE PARAMETER=O ESTIMATE

* (15 (ie)(17)
ALFA 1.76326420 148.76 0.0001 0.01185316

-. .9 . 4 . . . . +• ++ • + + . . .. . . . . . t
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OBSERVATION OBSERVED PREDICTED RESIDUAL

(4) VALUE (10) VALUE (8)

1 340.81640000 336.42146348 4.39493652

2 335.43360000 "336.68806903 -1.25446903

3 333.64060000 336.77676122 -3.13616122

STATISTICAL ANALYSIS SYSTEM

GENERAL LINEAR MODELS PROCEDURE

DEPENDENT VARIABLE: INER

SUM OF RESIDUALS 0.00430626
SUM OF SQUARED RESIDUALS 30.72466672
SUM OF SQUARED RESIDUALS - ERROR SS -0.00000000
FIRST ORDER AUTOCORRELATION -0.05139501
DURBIN-WATSON D 1.15400921

* The end of SAS GLM output.

:if

'4

9.
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