
Interfacing a High Speed Crypto Accelerator to an
Embedded CPU

Alireza Hodjat
ahodjat @ee.ucla.edu

Electrical Engineering Department
University of California, Los Angeles

Ingrid Verbauwhede
ingrid @ee.ucla.edu

Electrical Engineering Department
UCLA and K.U.Leuven

Abstract- Crypto co-processors are needed for acceleration
of encryption functions. But critical to the performance
gain is the selection of an adequate interface. This paper
presents the AES acceleration for two interface options to
the LEON CPU core: the CPI interface and the memory-
mapped interface. The complete system including the
LEON core and the loosely coupled AES accelerators are
implemented on an FPGA and the software programs that
control the AES accelerators are tested. The cycle count,
the throughput, the LUT usage, and the energy cost of
running a complete AES program using the above
accelerators are compared with a pure software
implementation, and with a tightly coupled instruction set
extension option.

I. INTRODUCTION

Hardware coprocessors for cryptographic algorithms are
required for different applications. Choosing the right
interface for the hardware accelerator is always a challenge to
satisfy the required throughput of the security applications.
This paper presents a complete system that includes the LEON
CPU core [1] and a hardware AES [2] accelerator. The AES
accelerator is attached to the LEON core using two different
interfaces. One of them is memory-mapped interface and the
other one is the CPI interface (Co-Processor Interface), which
is a LEON specific interface. The cycle count, throughput, the
area cost, and the energy consumption of running the AES
algorithm using these interfaces are computed and compared
with a software implementation of AES on the LEON core.
The FPGA prototype is implemented and the software routines
are tested on the actual board. The complete design is mapped
onto the Virtex-II (XC2V1000) FPGA [3] and the Virtex-II
V2MB1000 board from Insight [4] is used for this experiment.

Our approach is based on a loosely coupled, independently
working coprocessor, which is a programmable coprocessor
that is designed for a specific domain and is attached to the
main processor on a dedicated interface [5]. An alternative
approach, based on a tightly coupled, instruction set extension
approach is presented by Ravi in [6]. It presents a system level
design methodology for programmable security processor

platforms. It uses the Xtensa processor from Tensilica [7] and
includes customized instructions. This way, the performance is
improved from less than one Mbits/s to several 10’s of Mbits/s.
The main CPU (Xtensa) is customized for a specific domain
by adding a new functional unit to its pipeline. Then custom
instructions flow through the pipeline and are decoded and
executed on the new functional unit.

A typical embedded system contains multiple domains.
Examples are the networking domain for network protocol
processing, DSP domain for image or speech processing, and
the security domain to provide authentication and privacy to
the application. Figure 1-a shows a typical example where the
stream of data samples flow from the image-processing unit
(DSP) to the security unit and continue to the networking unit.
Figure 1-b shows the solution for mapping this dataflow on a
processor with a tightly coupled instruction set extension. The
processor is customized for each domain by adding new
functional units (Dsp, Sec, Net) to its pipeline. This way, the
domain instructions are decoded and executed in the
corresponding functional units. On the other hand, figure 1-c
shows the mapping of this dataflow on our architecture with
loosely coupled coprocessors. The programmable co-
processors that meet the throughput requirements are designed
for each domain. Then it is the job of the main embedded
processor to program each domain specific coprocessor. Here,
control is done through the embedded processor while the data
is transferred between the coprocessors themselves. In
comparison, the tightly coupled approach is a top-down
methodology because each domain is first specified by a C
code and then it is decomposed to custom instructions and the
software that calls the domain instructions. On the other hand,
what we propose is a mixed bottom-up, top-down
methodology. Each domain is first mapped on a
programmable, high throughput coprocessor (bottom-up) and
then the application is defined as the software on the
embedded processor core that controls each domain specific
coprocessor (top-down). In the top-down methodology, the
control and data streams remain coupled. In the mixed
methodology, a better performance is achieved since the data
and control are not tightly coupled and each coprocessor is
designed for the required performance.

4880-7803-8622-1/04/$20.00 ©2004 IEEE

Figure 1. Acceleration options in a typical embedded SoC

This paper compares the performance trade-offs of using two
interface options of the LEON CPU core, either the memory-
mapped interface or the CPI interface. Moreover, the results
will be compared to the tightly coupled processing approach
as is reported in [6]. The AES algorithm is used as the driver
application and the accelerators are designed for the LEON
embedded CPU core.

II. ARCHITECTURE OF THE AES ACCELERATOR

Figure 2 shows the internal architecture of the AES core that is
designed for hardware acceleration of the LEON CPU core.
Different steps of the algorithm are byte substitution, shift row,
mix column, and key addition [2]. The key scheduling
datapath generates the round keys for each iteration of the
algorithm. This AES core performs encryption on data and
key size of 128-bits length. It uses a single round
implementation of the AES algorithm and it takes total of 11
cycles to perform one encryption on the input data.

Figure 3 shows the architecture of the AES accelerator and its
IO interfaces. The AES core of Figure 2 is used along with
input and output interfacing modules [8]. There are four
different IO ports: an 8-bit instruction port, an 8-bit
configuration port, an input port, and an output port. The input
and output ports are 32-bits and 64-bits long for the memory-
mapped interface and the CPI interface, respectively. In order
to program the accelerators, the main CPU (LEON) has to
write data into or read from these ports. The interface to these
ports is built by placing registers between the ports of the co-
processor and the main CPU core.

III. COPROCESSOR INTERFACE OPTIONS

The two different interface options of the LEON CPU core are
the memory-mapped interface and the CPI interface (Co
Processor Interface) as explained next.

Figure 2. The Advanced Encryption Standard core

Figure 3. The architecture of the AES accelerator

A. Memory-mapped Interface

Figure 4 shows the architecture of the LEON CPU core with
the AES coprocessor attached to its memory-mapped interface.
The coprocessor can be programmed using a series of the
LEON assembly instructions. Figure 5 shows a software
routine that is used to program the AES coprocessor. This
program performs one AES encryption in the ECB mode of
operation. In the case of memory-mapped interface, each of
the coprocessor instructions consists of a group of LEON data
transfer assembly instructions. Using these instructions, the
required instruction opcodes and configuration values are
loaded into the AES coprocessor.

B. CPI Interface

Figure 6 shows the architecture of the CPI interface that is
used to program the AES accelerator from the LEON core.
The main difference between the CPI interface and the
memory mapped interface is that the CPI interface is
accessible directly from the integer unit of the LEON core
while the memory mapped interface is accessible using the
AMBA bus. Moreover, in the case of CPI interface the input
and output data registers are 64 bits while they are 32 bits long
in the case of memory-mapped interface.

(a) Dataflow in SoC

(c) Loosely coupled approach(b) T ightly coupled approach

DSP

Networking

Security

C
P
U

M
E
M

MEM

Fetch

Decode

DSP SEC NETALU

Sensor DSP Security Net

Byte
substitution

Shift
Row

Mix
Column A

d
d

Key scheduling
Datapath

Key

Data

Input
Interface

O
utput

Interface

TopController

AES
Core

Key

Data

Input Output

Instruction Configuration

489

Figure 4. AES acceleration using the memory-mapped interface

Figure 6. AES acceleration using the CPI interface

Figure 5. Programming example for the memory-mapped interface

Figure 7. Programming example for the CPI interface

AHB I/F

Integer
Unit

Cache Register
File

LEON Processor

Memory
Controller

RAM
Interface

Bus
Controller

Memory mapped
Coprocessor Interface

AES Accelerator

• Reset
• Move the key from memory to the registers
• Read_32bit_key (First 32-bit)
• Read_32bit_key (Second 32-bit)
• Read_32bit_key (Third 32-bit)
• Read_32bit_key (Fourth 32-bit)
• Move the data from memory to the registers
• Read_32bit_data (First 32-bit)
• Read_32bit_data (Second 32-bit)
• Read_32bit_data (Third 32-bit)
• Read_32bit_data (Fourth 32-bit)
• Encrypt_once (ECB mode)
• Write_32bit_out (First 32-bit)
• Write_32bit_out (Second 32-bit)
• Write_32bit_out (Third 32-bit)
• Write_32bit_out (Fourth 32-bit)
• Move the data from registers to the memory

Hint: Each of the above instructions is equivalent to
a group of assembly instructions, which can set a
value for a register, store a register to a memory
address, or load a memory value to a register.
Example: “ set 0x80000058, %o2”

“ set 0x00000001, %o3”
“ st %o3,[%o2]”
“ ld [%l0],%o3”

Controller Interface

AHB I/F

Integer
Unit

Cache Register
File

LEON Processor

Memory RAM

Coprocessor Interface

AES Accelerator

• Reset
• Move the key from memory to the registers
• CPOP Instruction #1: Load the whole key to the

coprocessor
• Move the data from memory to the registers
• CPOP Instruction #2: Load the whole data to the

coprocessor
• CPOP Instruction #3: Encrypt_once

(ECB mode)
• CPOP Instruction #4: Write first half of the

output data to the registers
• CPOP Instruction #4: Write second half of the

output data to the registers
• Move the data from registers to the memory

Hint: The CPI interface allows moving two 64-bit
data (128-bit) from the integer unit to the coprocessor
with a single instruction. Also one 64-bit output result
can be moved to the integer unit with a single
instruction.

490

Figure 7 shows a software routine that is used to program the
AES accelerator through the CPI interface. This program is
similar to the program of figure 5 and performs one AES
encryption in the ECB mode. The instructions that are shown
in this figure are the AES accelerator instructions. The CPI
instructions of the LEON core are transferred to the required
instructions and configurations of the accelerator using the
CPI interface.

Notice that the programs of figure 5 and 7 include the
instructions to load the data and key from the LEON core to
the accelerator and return the encrypted results back to the
LEON. This shows that the proposed memory-mapped and
CPI interfaced coprocessors can be considered as an
acceleration option that lies between tightly and loosely
coupled approaches. In a tightly coupled coprocessor (Figure
1-b), the interaction is on an instruction by instruction base, i.e.
every clock cycle. However, the CPI and memory mapped
interfaces are more coarse grain. The communication with the
CPU core is only for the data load/store and crypto
instructions. Here, there is still a large performance overhead
due to the data communications that is caused by the read and
write instructions as shown in Figures 5 and 7. In the loosely
coupled approach (Figure 1-c) the data and control is really
split. Therefore, better performance is achieved for high
throughput encryption applications [8].

IV. PERFORMANCE RESULTS

Table 1 shows the result of the two different interfaces that are
presented in the last section. An efficient C code of the AES
algorithm is compared with the design of Figures 4 and 6. In
this table the complexity of running a complete AES algorithm
is measured in terms of VHDL line count for the accelerator
and its interface, C program line count of the software routine,
the program size in ROM, and the FPGA LUT usage. On the
other hand, the performance is compared in terms of the cycle
count, the execution time, and the estimated energy
consumption. In summery, Table 1 shows that the AES
accelerator using the CPI interface is 1.7 times faster and 35 %
more energy efficient than the AES accelerator using the
memory-mapped interface while it consumes 1.1 times more
LUTs of the FPGA.

Figure 8 shows the cycle count comparison of performing one
AES encryption in ECB mode. According to [6], the AES
algorithm takes 24419 cycles per 128-bit block (1526.2 cycles
per byte) using efficient, high-speed software codes on Xtensa
and it takes 1400 cycles per 128-bit block (87.5 cycles per
byte) to run AES using AES custom instructions on the
customized Xtensa core. In our case, it takes 45254 cycles to
run an efficient software implementation of the AES algorithm
on the LEON core. It takes 1228 cycles to run the AES
algorithm on the memory-mapped crypto coprocessor using
the program shown in figure 5 and it takes 704 cycles to run it
on the CPI-interfaced crypto coprocessor using the program

TABLE 1
Performance of running AES using the memory-mapped and CPI

interfaced accelerators compared to the pure software implementation

AES in
ECB mode

C code
on

LEON

Memory-
mapped

coprocessor

Coprocessor
using CPI
interface

VHDL code
(lines)

- 2260 3030

C program code
(lines)

251 156 107

Performance
(# of cycles)

45254 1228 704

Execution time
(1 AES at 50 MHz)

905
(µsec)

24.5
(µsec)

14.1
(µsec)

Program size in
ROM

36.3
Kbytes

8.6
Kbytes

8.2
Kbytes

FPGA usage
(LUTs)

47.4 %
(4856)

81.3 %
(8330)

95.2 %
(9756)

Estimated Power for
FPGA

558
mWatts

645
mWatts

734
mWatts

Estimated Energy
(one AES in ECB)

505
µJoules

15.8
µJoules

10.3
µJoules

Figure 8. Cycle count comparison for the AES in ECB mode

shown in figure 7. This means that the proposed memory-
mapped AES accelerator and CPI interfaced AES accelerator
are 1.2 and 2 times faster than the AES customized Xtensa
processor of [6], respectively.

Table 2 compares the throughput of our AES-based
coprocessor example with Tensilica’s platforms based on the
experiment in [6]. The throughput is calculated for the case of
FPGA implementation (50 MHz clock) and the ASIC
implementation (188 MHz clock) based on the cycle count
presented in figure 8. In the case of ASIC the clock frequency
of 188 MHz is used because according to [6], the Xtensa

0

200

400

600

800

1000

1200

1400

AES
Customized
Xtensa [6]

Memory-mapped
Crypto

coprocessor

CPI Interface
Crypto

Coprocessor

491

processor core runs at 188 MHz. On the other hand, in the
FPGA case the 50 MHz clock frequency is the actual
frequency of the board on the FPGA prototype
implementation. Notice that the numbers that are reported in
Table 2 include the time that is needed to load the input and
store the output to memory, which takes several hundred
cycles per encryption. As an example, Table 2 shows that the
total cycle count for one AES encryption using the CPI
interface is 704 cycles. The AES encryption itself takes only
11 cycles, but the complete program that includes loading the
data and key, AES encryption, and returning the result back to
the software routine takes total of 704 cycles. The reason is
that all data traffic is still through the LEON core. However
the main performance gain compared to the tightly coupled
approach is because the actual encryption instructions are
coarse grain.

V. CONCLUSION

The AES acceleration for the two interface options of the
LEON CPU core, the CPI interface and the memory-mapped
interface, are explored. The cycle count, throughput, the area
cost, and the energy consumption of running the AES
algorithm using these interfaces are computed and compared
with a pure software implementation, and with a tightly
coupled instruction set extension option. The result shows that
the AES accelerator using the CPI interface is 1.7 times faster
and 35 % more energy efficient than the AES accelerator
using the memory-mapped interface. Moreover, the memory-
mapped AES accelerator and CPI interfaced AES accelerator
are 1.2 and 2 times faster than an AES customized processor,
respectively.

TABLE 2
Cycle count and throughput comparison with approach [6]

ACKNOWLEDGMENT

This material is based upon work supported by the Space and
Naval Warfare Systems Center - San Diego under contract
No.N66001-02-1-8938. The authors would like to
acknowledge the funding of this project.

REFERENCES

[1] LEON SPARC V8 CPU Core, Gaisler Research,
http://www.gaisler.com/

[2] Federal Information Processing Standards (FIPS),
Publication 197, “Advanced Encryption Standard”
November 2001, available at:
http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf .

[3] http://www.xilinx.com/xlnx/xil_prodcat_landingpage
.jsp?title=Platform+FPGAs

[4] http://www.insight-
electronics.com/Memec/iplanet/link1/VIRTEX11MB
V1000.PDF

[5] F. Barat, R. Lauwereins, G. Deconinck,
“Reconfigurable Instruction Set Processors from a
HW/SW Prospective”, IEEE Transactions on
Software Engineering, Vol. 28, No. 9, September
2002.

[6] S. Ravi, A. Raghunathan, Potlapally, Sankaradass,
“System design methodologies for a wireless security
processing platform”, DAC 2002, New Orleans,
USA.

[7] Xtensa application specific microprocessor solutions
– Overview handbook. Tensilica Inc., 2001.

[8] Alireza Hodjat, Ingrid Verbauwhede, "High-
Throughput Programmable Cryptocoprocessor",
IEEE Micro Magazine, Volume: 24 , Issue: 3, Pages:
34 - 45, May/June 2004.Platform

Cycle
Count

Throughput
for FPGA

(At 50 MHz)

Throughput
for ASIC

(At 188 MHz)
Embedded
Xtensa 24419

0.26
Mbits/s

0.98
Mbits/s

Customized
Xtensa for AES 1400

4.57
Mbits/s

17.2
Mbits/s

LEON core 45254
0.14

Mbits/s
0.53

Mbits/s

LOEN core with
memory-mapped
cryptocoprocessor

1228
5.21

Mbits/s
19.6

Mbits/s

LEON core with
CPI interfaced

cryptocoprocessor
704

9.1
Mbits/s

34.2
Mbits/s

492

