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The scientific community has witnessed an exponential increase in the applications of

graphene and graphene-based materials in a wide range of fields, from engineering

to electronics to biotechnologies and biomedical applications. For what concerns

neuroscience, the interest raised by these materials is two-fold. On one side, nanosheets

made of graphene or graphene derivatives (graphene oxide, or its reduced form) can

be used as carriers for drug delivery. Here, an important aspect is to evaluate their

toxicity, which strongly depends on flake composition, chemical functionalization and

dimensions. On the other side, graphene can be exploited as a substrate for tissue

engineering. In this case, conductivity is probably the most relevant amongst the various

properties of the different graphene materials, as it may allow to instruct and interrogate

neural networks, as well as to drive neural growth and differentiation, which holds a great

potential in regenerative medicine. In this review, we try to give a comprehensive view

of the accomplishments and new challenges of the field, as well as which in our view

are the most exciting directions to take in the immediate future. These include the need

to engineer multifunctional nanoparticles (NPs) able to cross the blood-brain-barrier to

reach neural cells, and to achieve on-demand delivery of specific drugs. We describe

the state-of-the-art in the use of graphene materials to engineer three-dimensional

scaffolds to drive neuronal growth and regeneration in vivo, and the possibility of

using graphene as a component of hybrid composites/multi-layer organic electronics

devices. Last but not least, we address the need of an accurate theoretical modeling

of the interface between graphene and biological material, by modeling the interaction

of graphene with proteins and cell membranes at the nanoscale, and describing the

physical mechanism(s) of charge transfer by which the various graphene materials can

influence the excitability and physiology of neural cells.

Keywords: graphene, neurology, brain, blood-brain barrier, nanomedicine, scaffolds, smart materials,

computational modeling

INTRODUCTION

Graphene (G) is a single- or few-layered sheet of Sp2-bonded carbon atoms tightly packed in a
two-dimensional (2D) honeycomb lattice, with a thickness of only 0.34 nm (Geim, 2009). Each
carbon atom has three µ-bonds and an out-of-plane π-bond that can bind with neighboring
atoms (Geim, 2009), making G the thinnest compound ever known at one atom thick and the
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strongest compound discovered. Moreover, it is light, flexible
and transparent and both electrically and thermally highly
conductive, which opens the possibility of using it in a broad
spectrum of applications, including supercapacitors (Hess et al.,
2011; Sahoo et al., 2015; Casaluci et al., 2016), flexible electronics
(Eda et al., 2008; Meric et al., 2008), printable inks (Zhu
et al., 2015; Bonaccorso et al., 2016), batteries (Hassoun et al.,
2014; Dufficy et al., 2015), optical and electrochemical sensors
(Pumera, 2009; Du et al., 2010; Kang et al., 2010), energy storage
(El-Kady and Kaner, 2013; Bonaccorso et al., 2015; Ambrosi and
Pumera, 2016) and medicine (Novoselov et al., 2012; Casaluci
et al., 2016; Kostarelos et al., 2017; Reina et al., 2017). G-related
materials (GRMs) include single- and few-layered G (1–10 layers;
GR), G oxide (single layer, 1:1 C/O ratio; GO), reduced G
oxide (rGO), graphite nano- and micro-platelets (more than
10 layers, but <100 nm thickness and average lateral size in
the order of the nm and µm, respectively), G and G oxide
quantum dots (GQDs and GOQDs, respectively), and a variety
of hybridized G nanocomposites (Bianco, 2013; Wick et al.,
2014; Cheng et al., 2016). Having such different composition
and structures, these compounds possess very diverse properties
that have to be taken in consideration when planning biomedical
applications, as they elicit completely different biological
responses. Thus, it is fundamental to properly identify and
characterize the GRMs employed, to overcome the widespread
lack of reproducibility affecting biological experiments with G
materials.

In the last few years, biomedical applications of G have
attracted an ever-increasing interest, including the use of G and
GRMs for bioelectrodes, bioimaging, drug/gene/peptide delivery,
nanopore-based DNA-sequencing, stem cell differentiation and
tissue engineering (Feng et al., 2013; Yang et al., 2013).
Moreover, GRMs have generated great interests for the
design of nanocarriers and nanoimaging tools, two- and
three-dimensional tissue scaffolds, anti-bacterial coatings and
biosensors (Bitounis et al., 2013; Ding et al., 2015). The interest
in using GRMs in medicine lies chiefly upon the extraordinary
properties of G, including its mechanical properties,
flexibility, transparency, thermo-electrical conductivity and
good biocompatibility. GRMs could therefore overcome the
limitations of metals and silicon, which are currently used for
implantable devices, but are characterized by elevated stiffness,
high inflammatory potential and poor long-term stability
in physiological environments. Moreover, the biomedical
field witnesses a strong need for innovative therapies to
assess the increasing demand of more specific, safer and
effective treatments for pathological conditions. Given these
premises, a large amount of research on G focuses on medical
applications, and particularly in the field of neurology, where its
mechanical and electronic features make it a strong candidate
for replacing current devices (Kostarelos et al., 2017; Reina et al.,
2017).

Another appealing aspect of GRM-based medical devices
lies on the increasing evidences of G biocompatibility, an
extreme important issue to take into consideration for any
new biomaterial brought to the market. Due to its chemistry,
G surface allows strong and non-destructive interactions at

the cellular level, which could even be improved by specific
chemical functionalization (Cheng et al., 2016; Kang et al.,
2016). This is particularly true for G-based supports and
scaffolds oriented to tissue repair and regeneration, and in
fact promising results have already been shown for neural and
bone tissue engineering (Cheng et al., 2016; Reina et al., 2017).
For what concerns G nanosheet dispersions, mostly intended
for drug/gene delivery and diagnostic imaging purposes, the
scenario is instead more complex (Bramini et al., 2016;
Mendonça et al., 2016a; Rauti et al., 2016). The safety of this
material is indeed still a challenging problem to address and
every case needs to be analyzed separately by taking into account
the synthesis method, the quality of the final product including
its purity and the eventual presence of trace contaminants,
as well as the biological environment in which G is to be
applied.

Graphene Applications in Neuroscience
The biomedical applications of G represent a field in continuous
expansion. Traditional treatments for central nervous system
(CNS) disorders present a number of challenges, thus, developing
new tools that outperform the state of the art technologies
for imaging, drug delivery, neuronal regeneration and electrical
recording and sensing is one of the main goal of modern
medicine and neuroscience (Baldrighi et al., 2016). Since the
development of carbon-related materials, nanotechnology has
strongly impacted a number of applications (Figure 1) including:
drug, gene and protein delivery, to cross the blood-brain barrier
(BBB) and reach compromised brain areas; neuro-regenerative
techniques to restore cell-cell communication upon damage
by interfacing two (2D) or three (3D) dimensional scaffolds
with neural cells; highly specific and reliable diagnostic tools,
for in vivo sensing of disease biomarkers by cell labeling
and real-time monitoring of biological active molecules; and
neuronal activity monitoring andmodulation, by highly sensitive
electrodes for recordings and G-based platforms for electrical
local stimulation (Mattei and Rehman, 2014; John et al.,
2015; Chen et al., 2017; Kostarelos et al., 2017; Reina et al.,
2017).

In detail, researchers have already started exploring the use of
G at the CNS for cell labeling and real-time live-cell monitoring
(Wang et al., 2014; Zuccaro et al., 2015); delivery to the brain
of molecules that are usually rejected by the BBB (Tonelli et al.,
2015; Dong et al., 2016); G-based scaffolds for cell culture (Li N.
et al., 2013; Menaa et al., 2015; Defterali et al., 2016b); and cell
analysis based on G-electrodes (Medina-Sánchez et al., 2012;
Li et al., 2015). In addition, interfacing G with neural cells
was also proposed to be extremely advantageous for exploring
their electrical behavior or facilitating neuronal regeneration by
promoting controlled elongation of neuronal processes (Li et al.,
2011; Tu et al., 2014; Fabbro et al., 2016). These applications open
up new research lines in neuro-therapeutics, including neuro-
oncology, neuro-imaging, neuro-regeneration, functional neuro-
surgery and peripheral nerve surgery (Mattei and Rehman, 2014).

In this review we will focus on few aspects of GRM research
that we deem of particular interest for future neuroscience
applications, i.e., (i) G as nano-carrier for drug and gene
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FIGURE 1 | Graphene based neural interfaces for a variety of neuronal functionalities like recording, stimulation and biosensing. Modified with permission from

Kostarelos et al. (2017).

delivery; (ii) G interaction with the BBB; and (iii) G-based 2D
and 3D composites for neural regeneration, stimulation and
recording. A final (iv) chapter is dedicated to an overview of
computational modeling approaches that can help biologists and
medical scientists to better understand the molecular and cellular
interaction of G with living systems.

HOW TO REACH THE BRAIN: G-BASED
NANOCARRIERS AND THE BLOOD-BRAIN
BARRIER

Graphene Nanosheet Interaction With
Neural Cells
Common mechanisms of cytotoxicity of G nanosheets have been
reported in literature on different cell types, and include the
physical interaction with cell membranes (Seabra et al., 2014);
disruption of cell cytoskeleton (Tian et al., 2017); oxidative stress
due to production of reactive oxygen species (ROS; Chen M.
et al., 2016; Mittal et al., 2016); mitochondrial damage (Pelin
et al., 2017); DNA damage, such as chromosomal fragmentation,
DNA strand breakages, point mutations and oxidative DNA
alterations (Akhavan et al., 2012; Fahmi et al., 2017); autophagy
(Chen et al., 2014); and apoptosis and/or necrosis (Lim et al.,
2016). Furthermore, published data suggest that GO is less toxic
than G, rGO and hydrogenated-G; smaller nanosheets are less

toxic than large flakes and highly dispersible G solutions are safer
than aggregating ones (Donaldson et al., 2006; Akhavan et al.,
2012; Bianco, 2013; Kurapati et al., 2016; Ou et al., 2016).

In the case of the CNS, the mechanisms of interaction of
GRMs with neurons and astrocytes are still poorly investigated
and unclear, depicting an undefined scenario mainly dependent
on GRM intrinsic characteristics. Few studies have been carried
out in neuronal-like cell lines, showing some toxic effects of
G at high doses. In particular, both G and carbon nanotubes
induced toxic responses in PC12 cells in a concentration-
and shape-dependent manner (Zhang et al., 2010). Upon G
exposure, ROS were generated and evidences of apoptosis were
noticed at a concentration of 10 µg/ml. In agreement with this
study, GO nanosheets induced no obvious cytotoxicity at low
concentration, but dose- and time-dependent cell death was
observed in the human neuroblastoma SH-SY5Y cell line (Lv
et al., 2012). For what concerns primary cultures, no changes in
neuronal and glial cell viability were detected upon G exposure,
both in vivo and in vitro (Bramini et al., 2016; Mendonça
et al., 2016b; Rauti et al., 2016). However, primary neuronal
cultures exposed to GO nanosheets displayed clear alterations
in a number of physiological pathways, such as calcium and
lipid homeostasis, synaptic connectivity and plasticity (Bramini
et al., 2016; Rauti et al., 2016). Once internalized in cells, G
nanosheets were seen to preferentially accumulate in lysosomes,
as well as to physically damage mitochondria, endoplasmic
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reticulum and, in some cases, nuclei (John et al., 2015).
Another study suggested that the irregular protrusions and sharp
edges of the nanosheets could damage the plasma membrane,
thus letting G entering the cell by piercing the phospholipid-
bilayer (Li Y. et al., 2013). These features raise additional
safety concerns, as free GRMs in the cytoplasm may lead
to disruption of the cytoskeleton, impaired cell motility and
blockade of the cell-cycle, similar to carbon nanotube-induced
cytotoxicity.

The above-described effects were observed upon chronic
G exposure, stressing the need of urgent and further
biocompatibility assessment of the material with nerve tissues
in long-term studies, hopefully linking in vivo effects to in vitro

cellular and molecular interactions. A first strong evidence
of G-induced CNS toxicity came from a recent in vivo study
(Ren et al., 2016). To recreate a situation of G environmental
pollution, researchers dispersed GO in water in the presence of
Danio rerio (zebrafish) larvae. Exposed larvae displayed GO in
the CNS and, most importantly, an induction of Parkinson’s
disease-like symptoms such as disturbance of locomotor activity,
dopaminergic neurons loss and formation of Lewy bodies.
These effects were likely a consequence of mitochondrial
damage and apoptosis through the caspase 8 pathway, in the
presence of a more general metabolic disturbance. G and
GO nanosheets accumulate in small quantities in the CNS
of rodents after intravenous (i.v.) injection without prior
surface functionalization (Mendonça et al., 2016a,b). rGO was
also detected in brain tissues, particularly in the thalamus
and hippocampus, after i.v. injection that was accompanied
by BBB disruption (Mendonça et al., 2016b). Interestingly,
rats treated with rGO flakes did not show any clinical signs
of neurotoxicity, including no signs of tremor, convulsions,
salivation, lacrimation, dyspnea and motor abnormalities.
These findings are in contrast with the work carry out by
Zhang et al. (2015), who reported the short-term decrease in
locomotor activity and neuromuscular coordination in mice
orally administered with rGO nanosheets. This discrepancy
underlines that the route of administration is key parameter in
determining G biocompatibility. Thus, the portal of entry of G
into the organism, together with its dose, size, functionalization
and aggregation, will determine the final biological effects.

In summary, the current data on G nanosheet
biocompatibility are still controversial. This is due to the
high heterogeneity of materials present on the market and the
large variety of synthesis methods. Depending on the graphite
source (starting material), the synthesis method, the use of
chemicals and the dispersion form (solution or powder) of the
final product, G can present different sizes, thickness, chemical
surface and aggregation state, which all affect to various extent
its interaction with the biological systems. It is clear, however,
that G nanosheets may cause adverse environmental and health
effects, leaving open the debate about their use as biomedical
platform (Bramini et al., 2016; Reina et al., 2017). To date,
GO nanosheets are preferred with respect to pristine G for
biomedical studies, because of their major solubility and stability
in biological fluids (Chowdhury et al., 2013; Servant et al., 2014a;
Reina et al., 2017).

Graphene for Biomolecule Delivery to the
Central Nervous System
As discussed above, the use of G nanosheet dispersions for
biomedical applications could give some unwanted effects due
to the intrinsic characteristics of the material. Interestingly,
functionalizing the G surface could alleviate most of these
drawbacks. The physical-chemical properties of G nanosheets
can be tuned toward a higher degree of biocompatibility.
Moreover, cargoes can be loaded via π-π stacking interactions,
hydrogen bonding, or hydrophobic interactions (Georgakilas
et al., 2016) giving the attractive possibility of using G as a
platform for delivery of biomolecules that are usually rejected
by the BBB. In fact, the large surface area available and
the possibility of conjugating different molecules onto its
surface, make G a suitable material for holding and carrying
drugs, genes (including siRNA and miRNA), antibodies and
proteins (Chen et al., 2013). In addition, it is also possible
to modify its chemical structure by adding functional groups
such as amino, carboxyl, hydroxyl, alkyl halogen, or azide
groups (John et al., 2015). Surface functionalization has the
double advantage of loading high quantity of biomolecules
and specifically deliver them to target cells, while allowing
a more homogenous dispersion of the material, since pure
G is highly hydrophobic and tends to aggregate in aqueous
solution, including biological fluids containing salts and proteins
(Mattei and Rehman, 2014; John et al., 2015). Additionally,
functionalized G nanosheets could be applied in systemic,
targeted, and local delivery systems (Feng et al., 2011; Kim
et al., 2011; Liu J. et al., 2013). Thus, this approach could fulfill
the increasing demand of multifunctional and versatile medical
platforms.

Because of its unique fluorescent, photoacustic and magnetic
resonance profiles, several studies have also explored the
possibility of incorporating G-based nanoparticles (NPs) to
enhance the in vivo visualization of brain tumors and improve
tumor targeting of molecular anticancer strategies (Kim et al.,
2011; Yang et al., 2012; Zhang et al., 2013; Hsieh et al., 2016).
Also in this case, in vivo studies revealed that GO, more than
GR, has good potential for these applications, in fact, systemically
administered radiolabeled GO (188Re-GO) could reach the brain
parenchyma, although in a small amount (0.04%; Zhang X. et al.,
2011).

Blood-Brain Barrier Crossing
The BBB is one of the most important physiological barriers
in the organism, forming a dynamic interface that separates
the brain from the circulatory system (Pardridge, 2001; Begley,
2004). The barrier is formed by cerebrovascular endothelial
cells, surrounded by basal lamina and astrocyte perivascular
endfeet that link the barrier system to the neurons (Abbott et al.,
2010). Together with pericytes and microglial cells, endothelial
cells support the barrier function and regulate its intercellular
signaling to control the flow and trafficking to the brain (Dohgu
et al., 2005; Abbott et al., 2010). The BBB, together with
arachnoid and choroid plexus epithelium, restricts the passage
of various chemical substance and foreign materials between
the bloodstream and the neuronal tissue, while still allowing
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the passage of substances and nutrients essential to metabolic
functions, from oxygen to various proteins, such as insulin and
apolipoprotein E (Abbott et al., 2006; Strazielle and Ghersi-
Egea, 2013). An interesting point is that the brain capillary
endothelial cells clearly differ from the endothelial cells in the
other districts of the body, in that they present a larger number
of adherens and tight junctions between adjacent cells, so that
no inter-cellular fenestrations exist (Abbott et al., 2006, 2010).
The tight junctions between the brain capillary endothelial
cells are one of the most important structural and anatomical
elements of the BBB. They create the major barrier, associating
cell membranes tightly together and regulating paracellular
movements of water, molecules, ions and other biomolecules
(Begley and Brightman, 2003; Abbott et al., 2010). Based upon
these characteristics, some researchers have highlighted that
the permeability properties of the BBB reflect the tightness
of intercellular junctions between brain capillary endothelial
cells (Rubin et al., 1991). In other words, the low permeability
characterizing the BBB is caused for the most part by tight
and adherens junctions that limit paracellular passage (Wolburg
and Lippoldt, 2002). The result is that most molecular traffic
is forced to take a transcellular route across the BBB, rather
than moving paracellularly through the junctions, as in most
endothelia (Abbott and Romero, 1996; Wolburg and Lippoldt,
2002; Hawkins et al., 2006).

To date, several mechanisms of transport across the BBB
have been identified (Figure 2), including paracellular or
transcellular pathways, transport proteins (carriers), receptor-
mediated transcytosis and adsorptive transcytosis (Abbott et al.,
2006). Transcytosis is a process whereby biomolecules are
engulfed into a plasma membrane invagination and further
transported from one side of the polarized cell monolayer to the
other side. Specific proteins, such as insulin and transferrin, are
taken up by receptor-mediated endocytosis and transcytosis, a
process known as receptor-mediated transport (Kreuter et al.,
2002; Rip et al., 2009; Ulbrich et al., 2009, 2011). Native
plasma proteins, such as albumin, are poorly transported, but
cationization can increase their uptake by adsorptive-mediated
endocytosis and transcytosis (Abbott and Romero, 1996;
Pardridge, 2007a). In addition to transcytosis, very small water-
soluble compounds can penetrate the tight junctions through
a paracellular aqueous pathway. In paracellular transport, tight
junctions act as a ‘‘gatekeeper’’ and regulate paracellular diffusion
of water-soluble agents. For example, sucrose is a water-soluble
molecule and is able to cross the BBB in limited amounts by
paracellular diffusion (Ek et al., 2006). The large lipid membrane
surface area of the endothelium also offers an effective diffusive
route (transcellular transport) for small gaseous molecules
such as O2 and lipid-soluble agents, including drugs such as
barbiturates and ethanol. The endothelium furthermore contains
transport proteins for glucose, amino acids, purine bases,
nucleosides, choline and other substances. Some transporters,
i.e., the P-glycoprotein, are energy-dependent and act as efflux
transporters (active-efflux transport).

The complex network of transport systems described above,
gives the BBB a vital neuroprotective function that however
comes with some drawbacks, as the BBB also impedes the

passage of drugs for CNS diseases. Pharmaceutical companies
have invested significant effort and sums in trying to design drugs
that can cross the BBB, with very limited success. It is reported
that only 5% of the total amount of drugs developed for neuronal
diseases actually reach the CNS (Pardridge, 2007b).

Nanoparticle Engineering
The therapeutic potential of NPs exposure depends chiefly on
the rate of NP penetration when delivered from the external
environment to the internal bio-compartments. Thus, biological
barriers are central in determining the biological impact of
NP exposure. Nanomaterials offer enormous potential for
therapeutics and diagnosis, but also raise the possibility of
unintended access to the brain (Herda et al., 2014). In vivo studies
showed that NP could be found in the CNS upon various ways
of administration (Semmler-Behnke et al., 2008; Zensi et al.,
2009, 2010). In parallel, in vitro models of human and murine
BBB have been used and developed for the investigation of NP
translocation (Andrieux and Couvreur, 2009; Ragnaill et al.,
2011; Bramini et al., 2014; Herda et al., 2014; Raghnaill et al.,
2014).

Numerous nano-delivery systems have been proposed and
tested for therapeutic purposes, both in vitro and in vivo (Pandey
et al., 2015). Amongst the state-of-the-art systems, polymeric
NPs are promising because of their high drug encapsulation
capacity, so they protect and transport hydrophobic drugs
without damaging the BBB structure (Tosi et al., 2008). Binding
apolipoprotein E to NPs has been suggested as a mechanism
via which NPs could utilize existing pathways to access the
brain (Kreuter et al., 2002; Wagner et al., 2012), and it indeed
enhances the uptake of drugs (Michaelis et al., 2006). This
approach is particularly promising with liposomes, which are
highly biocompatible (Re et al., 2011). In general, exploiting
receptor-mediated transcytosis by linking specific peptides to
the NP surface has been the most studied system in the
field of BBB crossing. Various molecules, such as transferrin,
insulin, lectin and lipoproteins, physiologically use this route
to pass from the blood stream to the brain; thus these
ligands could increase the passage ratio of drug-loaded NPs
through the BBB for therapeutic purposes (Herda et al., 2014;
Pandey et al., 2015; Åberg, 2016). Recently, exogenous peptides
known to undergo transcytosis in the BBB were also grafted
to the NP surface to enhance their entrance in the CNS.
Here, particular attention has been given to the diphtheria
toxin receptor (DTR) and the Human Immunodeficiency Virus
(HIV)-TAT proteins. A mutant of DTR with no toxicity or
immunogenicity has been tested to transport nano-liposomes
and polybutylcyanoacrylate NPs across the BBB, both in vitro

and in vivo, and indeed, only grafted NPs were able to
transcytose the barrier (van Rooy et al., 2011; Kuo and
Chung, 2012; Kuo and Liu, 2014). The same strategy was
successful when using a derivate of the HIV-TAT protein,
linked to the surface of polymeric micelles or SiO2 NPs through
polyethylene glycol (PEG) molecules (Liu et al., 2008a,b; Zhao X.
et al., 2016). In addition, antibody-grafted NPs have been
synthetized to specifically target brain vascular endothelium
receptors (Loureiro et al., 2014; Saraiva et al., 2016), in
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FIGURE 2 | Pathways across the blood-brain barrier (BBB). Modified with permission from Abbott et al. (2006).

order to exploit the physiological transcytosis mechanisms
of the BBB. Once again, the most promising results were
obtained with antibodies anti-Insulin (Ulbrich et al., 2011),
anti-transferrin (Clark and Davis, 2015) and anti-LDL (Kreuter,
2014) receptors. Even though these recent developments in
antibody engineering have improved the knowledge on brain
therapeutics, by increasing targeting specificity and avoiding
peripheral loss of the material, still significant efforts have to
be made to translate these findings from research to clinical
applications.

A major challenge of spherical NPs is that it is difficult to
obtain a multifactorial engineered system able to encapsulate
a drug, cross the BBB by receptor-mediated endocytosis and
finally target a specific cellular subpopulation. In fact, even
though NPs present a high surface area, the room for engineering
peptides and molecules on the surface to drive and guide the
system towards various body compartments is still limited. In
this scenario, new approaches that combine external modulation
of BBB permeability with NP engineering have been recently
developed and are currently under investigation.

Surfactants Coverage and Hyperthermia
A very similar approach to the above-described NP surface
modification with ligands consists in covering NPs with
surfactants (Pardridge, 2012). This strategy induces a transient
disruption of tight junctions, leading to higher permeability of
the endothelium, thus allowing large molecule and nano-carriers
to easily cross the BBB and reach the brain (Pardridge, 2012;

Saraiva et al., 2016). Moreover, poly(sorbate 80) can adsorb
apolipoprotein E and/or A-I, additionally giving NPs the
capacity of binding lipoprotein receptors expressed in the brain
endothelium and crossing the BBB (Kreuter et al., 2003; Petri
et al., 2007).

In the last few years, researches have adopted innovative
strategies with the aim of reduce BBB damage and increase
the amount of drug transported to the CNS. One stream
of research aimed at obtaining the time- and area-specific
upregulation of BBB permeability, to facilitate NP passage. This
was achieved, for example, by activating the A2A adenosine
receptor, which increases the intercellular space between the
brain capillary endothelium (Gao et al., 2014). A similar effect
can be obtained by physically interacting with the BBB by
inducing hyperthermia, a procedure that increases the local
temperature of the endothelium to 41–43◦C. The change in
temperature acts by selectively disrupting tight junctions and
increases the paracellular permeability of the BBB. Interesting
results were obtained using focused ultrasounds (FUS) and
microbubbles, which showed very low tissue toxicity and
high accumulation of doxorubicin (DOX) in the CNS (Treat
et al., 2007). Other techniques to produce hyperthermia are
microwaves and radiofrequency. The latter has been tested
in vivo for glioma treatment, in combination with classical
chemotherapy and radiotherapy, displaying encouraging results
(Wang et al., 2012). Finally, two more advanced strategies
to induce hyperthermia have been recently tested: laser
pulse and magnetic heating. Near-infrared (NIR) ultrashort
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laser pulses induced BBB disruption in selected regions,
thus allowing the passage of large molecules in the brain
(Choi et al., 2011). Magnetic NPs (MNPs) were instead used
for delivering bioactive compounds via heat generated from
magnetic heating, using a low radiofrequency field (Tabatabaei
et al., 2015). Since MNP location can also be monitored live, this
technique can be applied for both treatment and diagnosis of
diseases.

Despite the promising results, techniques that modulate and
interfere with the BBB permeability, even if transiently and
locally, are burdened by a major problem, i.e., that there is very
poor control over the passage of unwanted molecules and/or
microorganisms that populate the blood stream. If it is true that
the amount of drug reaching the brain is increased upon tight
junction opening, it is also true that toxic compounds, safely
constrained to blood vessels by an intact BBB, may pass at the
same time, posing high risks to the patient.

Graphene and the BBB: A New Way for
Drug and Gene Delivery to the Brain
The key goal of any drug delivery system is to create a
smart tool that recognizes specific targets and releases the
drug in a controlled way (Allen and Cullis, 2004). The main
limitation of G-based applications in neuroscience is its very
low accumulation in the brain parenchyma upon intravenous
injection. Once injected intravenously, G will engage with
ions, lipids and proteins, resulting in the aggregation of
the material and formation of a biomolecular corona that
might affect the distribution of G and trigger inflammatory
responses (Dell’Orco et al., 2010). In addition, nanosheets can be
phagocytosed by macrophages, inducing activation and release
of pro-inflammatory cytokines (Zhou et al., 2012), and interact
with several blood components inducing hemolysis (Liao et al.,
2011). Last but not least, G nanosheets could accumulate in the
reticulo-endothelial system rather than in the tissue to which they
are targeted (McCallion et al., 2016).

Particularly challenging is the passage through the BBB,
which significantly limits the delivery of drugs, blocking
roughly the 100% of large molecule neuro-therapeutics and
more than 98% of all small-molecule drugs (Upadhyay,
2014). Accordingly to Mendonça et al. (2016b) systemically
injected rGO nanosheets cross the BBB through a transitory
decrease in the BBB paracellular tightness and accumulate
in the thalamus and hippocampus of rats. On the contrary,
functionalization of rGO with PEG, usually used to improve
biocompatibility of nanomaterials, induces BBB breakdown and
astrocyte dysfunctions in vivo (Mendonça et al., 2016a). Among
the various approaches to make G cross the BBB, ultrasounds
were applied to mice to physically open BBB tight junctions
and allow the drug delivery system to enter the brain. By
following this method, GO nanosheets grafted with Gd-DTPA
and poly(amidoamine) dendrimer, and loaded with EPI and the
tumor suppressor miRNA Let-7, could reach the brain upon tail
vein injection (Yang et al., 2014). The main advantage of this
approach is the reversibility of the BBB opening. Interestingly,
G allowed at the same time high contrast MRI analysis and a
quantification of the distribution of the delivery system inside

the brain tissue (Yang et al., 2014). These results are promising,
however in-depth pharmacokinetics and toxicological studies
are needed, especially for long-term treatments, keeping in
mind that, with respect to what has been studied so far,
this technique achieves a much higher G accumulation in the
CNS.

Alternatively, G surface can be functionalized with specific
biomolecules that enable the material to cross the BBB (Allen
and Cullis, 2004; Goenka et al., 2014; John et al., 2015). A
recent study has investigated an innovative nano-delivery system
with high loading capacity and a pH dependent behavior. The
GO@Fe3O4 nanocomposite was conjugated to lactoferrin (Lf),
an iron transporting serum glycoprotein that binds to receptors
overexpressed at the surface of vascular endothelial cells of the
BBB and of glioma cells, in order to obtain Lf@GO@Fe3O4.
After loading the NPs with DOX, a drug used to treat glioma
(Figure 3), NPs were intravenously injected and the particles
were seen to migrate from the bloodstream to glioma cells
(Liu G. et al., 2013). NPs were more concentrated in the CNS
compared to other organs, and a higher efficiency in tumor
regression was observed, compared to the control of animals
injected with DOX alone. Following a similar approach and with
similar promising results, Yang L. et al. (2015) functionalized
PEG-GO nanosheets with the Tat protein of the HIV, which
allowed the drug-loaded PEG-GO system to cross the BBB
by transcytosis, while leaving the barrier endothelium fully
preserved.

As previously discussed, another promising strategy to
challenge the BBB is NP coating with surfactants (Kreuter et al.,
2003; Gelperina et al., 2010). Kanakia et al. (2014) improved
GO delivery to the CNS by functionalizing the nanosheets with
dextran; the material was found to cross the BBB and reach
the brain without exerting toxic effects. Surprisingly, the GO
concentration in the CNS increased with time, while remaining
almost absent in other organs. Thus, the study suggests a slow
accumulation of G in the CNS and long-term persistency of
the material, that is encouraging from the point of view of the
drug delivery system, but also raises safety concern on long-term
toxicity of G nanosheets (Baldrighi et al., 2016), an issue that still
needs to be assessed.

The number of drugs successfully linked to G nanosheets
is increasing. Liu Z. et al. (2008) showed that GO-PEG flakes
could be decorated with the water insoluble aromatic molecule
7-ethyl-10-hydroxy-camptothecin (SN38), via non-covalent van
der Waals interactions. Similarly, other drugs, including
different camptothecin analogs (Liu Z. et al., 2008), Iressa
(gefitinib; Liu Z. et al., 2008), and DOX (Sun et al., 2008),
were successfully attached onto the GO-PEG complex by
simple non-covalent binding. rGO-PEG particles were able
to cross the endothelial layer of the BBB without disrupting
the tight junctions, in both in vitro and in vivo studies
(Mendonça et al., 2016a,b). Recently, Xiao et al. (2016)
used GQDs conjugated to a neuro-protective peptide. Once
injected intravenously in a murine model of Alzheimer disease,
they were able to increase learning and memory, dendritic
spines formation and decrease pro-inflammatory cytokine
levels.
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FIGURE 3 | Transferrin modified G oxide (GO) for glioma-targeted drug delivery. Modified with permission from Liu G. et al. (2013).

One of the main applications of G-based drug delivery
systems is anticancer therapy, by linking G composites with
chemotherapeutics. Given their strong optical absorbance in the
NIR region, G-based hybrid materials are also intensively studied
for their promising applications in cancer phototherapy (Liu
et al., 2011; Robinson et al., 2011; Yang et al., 2012; Hönigsmann,
2013). The rationale beyond this approach is to exploit the
heat produced by the G accumulated in tumor regions upon
NIR laser stimulation to kill cancer cells. This technique was
successfully applied in vitro using U251 glioma cells (Markovic
et al., 2011). Such experimental approaches are of special interest,
as they might help overcoming the limitations imposed by
the BBB (Abbott, 2013), and are very promising especially for
the treatment of very resistant and aggressive tumors, such as
the glioblastoma.

The intrinsic properties of G in the visible (VIS) and
NIR range make it also an attractive tool for bio-imaging
(Zhang et al., 2013) both in vitro and in vivo (Gollavelli
and Ling, 2012). For example, aptamer-carboxyfluorescein/GO
complexes were employed for intracellular monitoring and
in situ molecular probing of specific clusters of living cells,
such as artificially implanted tumors in mice. GO nanosheets
were also used for photo-acoustic imaging, which relies on
the acoustic response on heat expansion following optical
energy absorption (Wang et al., 2010; Yang et al., 2010;
Qian et al., 2012). Specifically for CNS applications, in vivo

studies showed that intracranial administered PEG-GO and its
derivatives can be imaged in the brain by two-photonmicroscopy
(Qian et al., 2012). Through this imaging technique, a 3D
distribution map can be reconstructed in the brain parenchyma
due to the high tissue penetration of the fluorescence signal
of PEG-GO composites. These promising results could lead
to the use of G as a diagnostic tool for imaging brain

cancerous lesions, especially if the material is engineered
with biomolecules that specifically target tumorigenic cells.
Furthermore, once the targeting is achieved, G properties
can be optimized according to the specific application,
i.e., the size and oxidation state might be changed to
shift the emission wavelength from VIS to NIR, which has
a deeper tissue penetration, thus improving the depth of
the diagnostic imaging device. By combining the optical
properties of G with other biodegradable and functional
materials, it will be possible to create G-based composites
and hybrids suitable for several live-imaging applications. So
far, most of the tools have been tested in vitro on cancer
cell lines, and in vivo for cancer detection and diagnosis,
leaving unaddressed the possibility of using them to explore
and image the CNS (Zhang et al., 2013; Cheng et al.,
2016).

Similarly to drug delivery, also genetic engineering can exploit
G properties and open new opportunities in biomedicine. The
concept in this case would be to deliver nucleic acids, i.e., DNA or
various types of RNA molecules, including miRNA and shRNA,
to specific target cell populations, to restore physiological
conditions (Cheng et al., 2016). The development of non-viral
systems is of great importance for future medical approaches
as G could allow overcoming some of the intrinsic limitations
of viral systems, such as difficulties in accommodating long
nucleic acids, batch-to-batch variations, elevated costs and the
immunogenicity of viral vector systems (Kim et al., 2011; John
et al., 2015). Different strategies have been developed, including
the decoration with positively charged polymers (PEI, BPEI),
dendrimers (PAMAM) and polysaccharides, which enhance
gene transfection efficiency by promoting the interaction with
the cell membrane (Liu et al., 2014; Paul et al., 2014). Being
the technique of functionalization the same, both drugs and
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genes can be delivered simultaneously using G-based hybrid
materials (Zhang L. et al., 2011). This would exhibit a synergic
effect, as it would bring a significant enhancement of drug
as well as transfection efficiency. On this line, G-nanosheets
were functionalized with the cationic polymer PEI, a non-viral
gene vector that forms strong electrostatic interactions with the
negatively charged phosphate groups of both RNA and DNA
(Feng et al., 2011). A step further was taken by Chen et al. (2011)
that used PEI-functionalized GO for gene delivery yielding a
high transfection efficiency in the absence of any cytotoxic
effect.

In summary, G-based delivery systems, when conveniently
functionalized or associated with complementary technologies,
represent promising candidates for both diagnostics
(i.e., imaging) and therapeutics (i.e., drug and gene delivery)
neuroscience applications. Moreover, in spite of few studies
showing toxic effects of exposure the nervous system to bare
G and rGO (Bramini et al., 2016; Mendonça et al., 2016b;
Rauti et al., 2016), to date there is no solid evidence that
functionalized-G is harmful to neuronal cells and the BBB. Since
G-based technologies for biomedical applications are constantly
and rapidly evolving, the near future may see the development of
new safe and highly neurocompatible materials.

GRAPHENE SUBSTRATES AS NEURONAL
INTERFACES

Tissue engineering aims to restore the functionality of a
disrupted tissue by interfacing it with suitable biomaterials.
This is a fast-expanding field of research in need of innovative
approaches to achieve highly biocompatibile, functional and low
invasive implants for long-term applications. For what concerns
the nervous system, active and dynamic implantable devices
are extremely advantageous as they allow to simultaneously
stimulate and record electrical activity of neural cells. Various
types of implantable devices have been developed to be used
as neural interfaces. Amongst these are deep brain stimulations
implants (DBI) for the electrical stimulation of deep structures
in the CNS, clinically used to treat dystonia and tremor
in Parkinson’s disease (Perlmutter and Mink, 2006), retinal
and cochlear implants to electrically stimulate the surviving
neurons in the presence of retinal degeneration or to convert
external sounds in electrical impulses (Spelman, 2006; Picaud
and Sahel, 2014), central and peripheral nervous system
stimulators for motor rehabilitation after spinal cord lesions
(Hatsopoulos and Donoghue, 2009), and intracranial electrodes
to map brain electrical activity for diagnostic purposes (Chang,
2015).

The intrinsic properties of G can be exploited to design
G-based devices for neuronal interfaces, as G can enhance
the optical, electrical and mechanical properties of composite
nanostructures. In general, fundamental requirements for a good
neural implant are a good biocompatibility coupled to minimal
inflammatory response, adequate signal-to-noise ratio if neural
recordings are envisaged, and minimal invasiveness, preserving
the integrity of the implanted tissue. Typically, G-based
scaffolds can be classified according to their dimensionality,

i.e., one-dimensional (fibers, ribbons or yarns), two-dimensional
(papers, films) and three-dimensional (Cheng et al., 2016;
Reina et al., 2017). The most common applications of G-based
structures in nanomedicine include the engineering of scaffolds
for in vivo neuronal regeneration, stimulation and recording, and
for on-demand drug delivery (Cong et al., 2014; Cheng et al.,
2016). For what concerns in vivo applications, the use of 2D
devices is mostly limited to planar electrodes (Liu et al., 2016;
Park et al., 2018). In fact, several G-based 2D devices have been
engineered, but due to technical limitations, so far they have
been tested mainly in vitro (for a comprehensive review of 2D
G-based substrates applied to neuronal cells see (Bramini et al.,
2018). Promising in vitro results have been recently obtained by
Defterali et al. (2016a). Uncoated thermally reduced graphene
(TRG) substrates were used to grow and differentiate neural stem
cells (NSCs), which grew directly on the G material without any
prior biomolecule coating. Cultures grown on TRG substrates
were characterized by higher cell number and more synaptic
boutons, as well as by efficient multi-lineage differentiation,
compared with cultures grown on carbon nanotube-substrates,
suggesting a potential use of G to study functional neuronal
networks. In the case of CVD-G, instead, the limiting step is the
transfer of the monolayer G onto the final substrate, a process
that often creates contaminants and defects in the G structure. In
addition, a suitable substrate that will interfere as less as possible
with the chemical-physical characteristics of G is still to be found.
Furthermore, 2D devices were less active in vitro with neuronal
stem cells compared to 3D scaffolds with the same surface
chemistry (Jiang et al., 2016), clearly indicating that morphology,
dimensionality, accessibility and porosity are critical scaffold
features. Indeed, foams and hydrogels are the scaffolds of choice
to drive regeneration in the brain, while directional conduits
are preferred to drive re-growth of peripheral nerves. In the
next paragraph we will discuss the latest developments in the
use of 3D G-based scaffold in neuroscience, focusing on the
link between the G content and structure of the device, and its
functionality.

3D G-Based Scaffolds: Composites,
Foams, Fibers and Hydrogels
Applications of G-based materials in the neurology field will only
be possible upon development of three-dimensional scaffolds
able to support nerve regeneration across the injured/lesioned
site. The unique properties of planar 2D G-scaffolds are exceeded
by 3D G-structures, which provide a microenvironment
where cells are able to grow under conditions that are
closer to the in vivo situation. In addition, as previously
mentioned, 3D structures possess an enormous interface area
and provide highly conductive pathways for charge transport,
useful to support neural network formation and neuronal
regeneration.

Several 3D scaffolds have been generated and tested in vitro,
however so far only a very limited number of them have also been
implanted in vivo (Figure 4). Some examples include G-coated
electrospun PCL microfiber scaffolds, which were implanted in
the striatum or the subventricular zone of adult rats. G-coated
implants were associated with a lower microglia/macrophage
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infiltration when compared to bare scaffolds, while supporting
astrocytes and neuroblast migration from the SVZ (Zhou et al.,
2016). Free-standing 3D GO porous scaffolds were implanted
in the injured rat spinal cord, showing no local or systemic
toxicity and a good biocompatibility also in the case of chronic
implantation (López-Dolado et al., 2015). Of note, long-term
(30 days) implants were able to promote angiogenesis and
partial axonal regeneration (López-Dolado et al., 2016). No
attempts have been made so far to use G-based materials to
drive peripheral nervous system regeneration. A first step in
this direction is represented by the engineering of G-silk fibroin
composite nanofiber membranes. This composite material is
of interest as it combines the electrical conductivity and
mechanical strength of G with the good compatibility of silk.
Although they have not been tested in vivo, G-silk membranes
support the growth of Schwann cells in vitro (Zhao et al.,
2017).

Various three-dimensional G and GO foams were shown to
be compatible substrates for stem cells (Crowder et al., 2013;
Li N. et al., 2013; Serrano et al., 2014; Guo et al., 2016; Sayyar
et al., 2016). Li N. et al. (2013) firstly described 3D G-based
foams (3D-GFs) as suitable scaffold for NSCs growth and
proliferation. NSCs grown on 3D-GFs were able to differentiate
into neurons and astrocytes; moreover, it was also noticed that
3D-GFs were optimal platforms for electrical stimulation of
NSCs in order to enhance their differentiation. Similar results
have been obtained more recently with rGO microfibers, which
could support NSC viability and drive them toward a neuronal
phenotype (Guo et al., 2017). Interestingly, the features of
the G scaffolds (i.e., stiff vs. soft) differentially affected cell
adhesion and proliferation and could drive NSC differentiation
toward the astrocyte and neuronal lineages, respectively (Ma
et al., 2016). Hippocampal neurons cultured on 3D-GFs are
characterized by a more extensive connectivity associated to a
higher network synchronization with respect to 2D-G substrates,
thus better mimicking the physiological properties of the
brain (Ulloa Severino et al., 2016). Microglial cells were also
grown on 3D G foams. In this case, the 3D structure of
the scaffolds affected the neuroinflammatory response of the
cultured cells, probably because of spatial constraints due to
the 3D topographic features (Song et al., 2014). Similar to
what described for 2D materials, also 3D G/GO scaffolds were
used as cell stimulating electrodes, to drive neuronal growth
and differentiation of NSCs (Li N. et al., 2013; Akhavan et al.,
2016).

A new generation of electro responsive 3D-G scaffolds is
also being developed, i.e., G-based hydrogels, which mimic
soft tissue and have been proposed for controlled, stimulation-
triggered drug release applications. Hybrid G-based hydrogels
are synthetized mainly using GO, G oxide peroxide (GOP) or
rGO, by incorporating very low amounts of the material into
a hydrogel matrix, to enhance its electrical, mechanical and
thermal properties (Servant et al., 2014b). Such materials are able
to support neuronal growth and the development of synaptic
activity (Martín et al., 2017). Following a similar approach,
dexamethasone, a corticosteroid medication, was loaded onto
poly(lactic-co-glycolic) acid NPs that were subsequently added

into alginate hydrogels. The final composite was used as coating
of gold and iridium electrodes for local drug administration
after implantation (Kim et al., 2004; Kim and Martin, 2006).
These or similar strategies could be employed to engineer
smart coating for neuronal implants, with the final goal of
having a device able to release biologically active molecules
upon controlled electrical stimuli, at the same time improving
the surface softness and enhancing the biocompatibility of the
implants.

Altogether, the use of G materials in 3D implants aimed
at neuroscience applications is still limited. However, much is
to be learnt from other fields of biomedicine. For example,
G-hydrogels and foams have recently been proposed for
anticancer therapy (Xu et al., 2017; Zhang et al., 2017), as well as
for guided bone (Lu et al., 2016), cartilage (Nieto et al., 2015) and
muscle (Mahmoudifard et al., 2016) regeneration.We expect that
the cross-fertilization between these different disciplines will lead
in the close future to the development of functional 3D, G-based
implants for nervous system applications.

Graphene-Based Devices for Neural
Recording and Stimulation
Clinical interventions for the recovery of neural dysfunctions
and motor disorders attract and challenge the research toward
implantable stimulation devices able to adapt to flexible supports
and possibly outperform the most common metal electrode-
based technologies. Polymeric interfaces outperform in terms
of mechanically compliant properties, but often lack durability
under physiological conditions, and, above all, proper electrical
conductivity. Most of the neural stimulation performed so far
with G-based electrodes in contact with living neuronal tissues
or cells has been limited to modulate their growth and/or
differentiation (Thompson et al., 2015).

Neural stimulation techniques, such as deep brain or cortical
stimulation, cochlear and retinal implants, usually rely on the
ability of the implanted devices to elicit a functional response of
the tissue by providing minimum injected charge, and therefore
require electrodes (Kostarelos et al., 2017). To date, in vivo

studies show that G electrodes can stimulate and record neuronal
activity. G electrodes produce slightly higher values of charge
injection with respect to common noble metal electrodes, like
Pt or Au. New promising materials and compounds exploit G
to reach up to tens of mC cm−2 charge injection levels, like
in the case of an in vivo probe of laser reduced GO embedded
into parylene-C (Apollo et al., 2015). The authors employ
the novel flexible freestanding electrodes both to stimulate
retinal ganglion cells ex vivo as much as to record neural
activity in vivo from cat visual cortex. This constitutes one
of the few reported evidences of neural stimulation with a
G-based device. Other interesting applications make use of
copper microwires encapsulated with CVD-G for an MRI
compatible neural device (Zhao Y. et al., 2016), or flexible G
micro-transistors for the mapping of brain activity (Blaschke
et al., 2016) just to mention a few, but still limited to the
recording of neural activity in vivo. In addition, Kuzum et al.
(2014) also developed a flexible, low noise G electrode for
simultaneous electrophysiology and imaging recording in vivo.
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FIGURE 4 | 3D G-Scaffolds in vitro and in vivo. (A) (a) SEM images of neural stem cells (NSCs) cultured on 3D-G foams under proliferation conditions. The insets

illustrate the interaction between the cell filopodia and surface. (b) Fluorescence images of NSCs cultured on 3D-G foams for 5 days. Nestin (green) is a marker for

NSCs, and DAPI (blue) identifies nuclei. Modified with permission from Li N. et al. (2013). (B) (a,b) Brain astrocyte/G-scaffolds interaction and astrocyte process

infiltration 3 weeks after scaffold implantation. Green: GFAP-positive astrocytes, blue: DAPI-stained nucleus, red: surface-functionalized scaffolds. (b) Detailed

astrocyte morphology of the dash-box indicated area in (a). ∗ Indicate astrocytes that bridge a gap between two scaffold layers. Scale bar, 50 (a) and 20 (b) µm.

Modified with permission from Zhou et al. (2016).

After bicuculline injection to evoke epileptiform activity, it was
possible to register simultaneously from rat cortical hemispheres
with G electrodes and Au electrodes of the same size. The G
electrodes showed six times lower signal-to-noise ratio with
respect to Au electrodes, suggesting that the adoption of the
new G-based recording system could offer clear advantages for
studying brain electrical activity (Figure 5). In addition, thanks
to the transparency of the G electrodes, it was also possible to
image the cortical area, combining in vivo two-photon imaging
and cortical electrophysiological recording (Kuzum et al., 2014).

A further progress has been achieved by developing G field-
effect transistors (G-FETs), which allow signal amplification
reducing external noise (Veliev et al., 2017). Flexible G-based

supercapacitors showed recently their potential for neural
stimulation thanks to their improved double layer capacitance
when hybridized with polymeric materials, like PEDOT:PSS
and rGO, G-polyaniline nanocomposites or CVD GO foams
(Yang W. et al., 2015; Hu et al., 2016). Another way to
exploit G in bio-medical applications has been to enhance
the optoelectronic properties of photosensitive neural interfaces
deputed to the recovery of compromised vision. A polyimide
array of photodetectors based on MoS2 and inkjet G has recently
been proposed as flexible retinal prosthesis, and tested for
biocompatibility in vitro (Hossain et al., 2017). Nevertheless,
most of these efforts need yet to be translated into usable
electrodes for neuroscience applications.
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FIGURE 5 | Graphene electrodes for in vivo recording. (A) (a) Schematic illustration of a flexible G neural electrode array. (b) Photograph of a 16-electrode

transparent array. The electrode size is 300 × 300µm2. (B) (a) Photograph of a 50 × 50µm2 single-G electrode placed on the cortical surface of the left hemisphere

and a 500 × 500µm2 single-Au electrode placed on the cortical surface of the right hemisphere. (b) Interictal-like spiking activity recorded by 50 × 50µm2 doped-G

and Au electrodes. Recordings with doped-G electrodes are five- to sixfold less noisy compared with the ones with same size Au electrode. Modified with permission

from Kuzum et al. (2014).

COMPUTATIONAL MODELING AND
SIMULATIONS OF
GRAPHENE-INTERACTING
BIOMOLECULAR SYSTEMS

Understanding the fine structural details underlying interactions
between biomolecules and inorganic surfaces is pivotal for many
applications in nanomedicine. Although relevant experimental
results about the dynamics of these interactions have been
recently reported, many topological details remain unclear,
especially at the initial events at ns to µs timescales. To fill this
gap, the use of computational modeling andMolecular Dynamics
(MD) simulations gives a relevant contribution, providing details
that cannot be accessed by experimental techniques (Ozboyaci
et al., 2016).

With its promising properties, G has shown great potential
in various applications, and the number of computational
studies devoted to it is in constant growth (Cavallucci et al.,
2016). Classical MD simulations (i.e., based on a classical
physics description of atom-atom interactions) produced in
the recent years a large amount of results on the interaction

between G-based materials and biomolecules. In particular,
these studies allowed to deeply characterize G as a substrate
or nanopore for the deposition of biomolecules, differentiating
the behavior of pristine G from that of GO. Moreover, MD
simulations have been widely used to test G biocompatibility
by studying its interaction with different biological structures
such as membranes and protein complexes. In these studies,
G has been described as a promising vector against bacterial
agents as well as a material capable of perturbing biological
complexes.

The most important problem in classical simulations of
these systems, still now under debate, is the definition of
an appropriate set of force fields parameters for G, to allow
the implementation of successful simulations with mainstream
software packages used for the simulations of biological systems,
e.g., GROMACS, (Abraham et al., 2015), CHARMM (Brooks
et al., 2009) or NAMD (Phillips et al., 2005). Although different
choices have been investigated, it is commonly accepted to
describe G atoms as uncharged Lennard-Jones spheres (Hummer
et al., 2001; Patra et al., 2009, 2011). A list of G parameters
used in different force fields has been recently reported
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FIGURE 6 | Graphene interaction with biomembranes. (A) Equilibrated superstructure of a graphene sheet inside the phospholipid bilayer formed by

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids. Polar heads of the POPC lipids are depicted as green beads, hydrophobic hydrocarbon chains as

thick blue lines; the graphene sheet is shown with brown lines (water molecules not shown; modified with permission from Titov et al., 2010). (B) The structure of

single (a) and double (b) Cldn15-based paracellular pores, after the respective equilibration protocols. Protomers are shown as ribbons. Each cis dimer is embedded

in a hexagonal POPC bilayer, shown as wire structures with phosphorus atoms as spheres. Modified with permission from Alberini et al. (2017).

(Pykal et al., 2016). The aim of this paragraph is to summarize
the major findings of computational studies on the interactions
between G-based materials and biomolecules, broadly studied
at a multi-scale level. A variety of different approaches have
been used, such as all-atom or coarse-grained models, and
different parameters for interaction studies (the so-called force
fields).

A general problem in computational biophysics is the gap
between the size and time-scale that can be investigated by
simulations and those of biologically relevant mechanisms.
Molecular modeling is able to describe biological systems with
all-atom details, but this limits its application to study systems
of at most ∼150 nm and on the microsecond time-scale. A
possible way to bridge this gap is to use coarse-grained molecular
dynamics (CGMD) simulations, which are based on a controlled
reduction of the number of degrees of freedom and the use of
shorter-range interacting functions. Due to these simplifications,
a CG simulation has a minor resolution but requires less
computational resources, allowing the study of larger systems for

longer time-scales. A promising approach is to employ a multi-
scale description, by alternating the use of classical all-atom with
CGMD simulations.

Several computational studies about G-biomolecules systems
have been recently published, which can be grouped in the
following thematic areas:

1. The adsorption of proteins and peptides (with a particular
interest for enzymes and blood proteins) on G substrates,
in the context of the study of functional architectures for
biomedical applications. Results show that GO has a good
solubility in aqueous solution and other organic solvents,
thanks to the oxygen-containing groups which can act as
reaction sites for the binding of different molecules. As an
example, the immobilization of enzymes on a solid substrate
is an efficient process to improve its activity while a major
factor determining the biocompatibility of a nanomaterial in
contact with blood, e.g., medical implants, is the adsorption of
proteins on its surface.
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2. The interaction of G with biomembranes to assess biological
safety or toxicity of G, as well as its promising function as a
vector of new classes of antibiotics.

3. DNA or protein detection by G nanopores, an encouraging
class of nanosensors that are less sensitive than biological
pores to various factors such as the temperature and pH.

In the next paragraph, we describe in more detail some of the
studies of points 1 and 2 above, while for those in point 3 we
refer the interested reader to the following works for the study of
DNA detection (Sathe et al., 2011, 2014; Wells et al., 2012; Qiu
et al., 2015; Barati Farimani et al., 2017a) and for the study of
protein detection to Barati Farimani et al. (2017b).

Adsorption of Biomolecules Onto
Graphene

Pristine Graphene Substrates

One of the first efforts involving all-atom MD simulations to
study protein adsorption on Graphene is described in Zuo et al.
(2011), where the villin headpiece (HP35) was employed. The
simulations showed a rapid adsorption of HP35 on the substrate,
causing relevant conformational changes in both secondary and
tertiary protein structure. The π/π stacking interactions between
aromatic residues and G dominate the protein-G interaction,
differently from what observed in simulations of HP35 with
curved carbon nanostructures.

The properties of G as a substrate for the adsorption
of biomolecules have been investigated in subsequent years.
Katoch et al. (2012) performed MD simulations, in combination
with experimental techniques such as atomic force microscopy,
Raman spectroscopy, and infrared spectroscopy to elucidate
peptide-binding to G and graphite. In this work, a dodecamer
peptide forms a complex reticular structure upon adsorption,
with a helical conformation different from α-helix. Cheng
et al. (2013) investigated via MD simulations the interaction
between different peptides and G. In these simulations, a
flat G substrate becomes distorted after peptide adsorption.
The authors conclude that multiple factors, including peptide
size, number, distribution, and alignment, can affect the
interaction with the G substrate. Zhou and collaborators (Gu
et al., 2015) performed MD simulations to show how blood
proteins such as bovine fibrinogen (BFG) can rapidly adsorb
onto the G surface. Markedly, these simulations describe, in
addition to the aforementioned effect of strong π/π stacking
interactions, another key interaction due to basic residues. These
residues play a relevant role during the process because of
the strong dispersion interactions between their side-chains
and the substrate. Globally, hydrophobic, electrostatic and
π/π stacking interactions drive the immobilization of the
molecule on G.

Kim et al. (2015) examined the recognition of G by peptides
with respect to the chemical composition of G, the number of
over-imposed layers, and the underlying substrate support. The
results of this computational work, together with experimental
data based on Resonance Raman Spectroscopy, Quartz Crystal
Microbalance and Water Contact Angle measurements, indicate
that G quality is a significant factor in G-peptide interactions,

while the interaction appears to show no significant dependency
on the number of G layers or the underlying support substrate.
Cheng et al. (2013) performedMD simulations between different
peptides of silk fibroin and G (Cheng et al., 2015). This work
illustrates that while G competes with the protein intramolecular
interactions, reducing their β-sheet content, it also enhances the
stability of segments with scarce ordered secondary structures
and weak intramolecular interactions. Globally, G produces
remarkable effects on the molecular conformation of these
representative sequences.

Furthermore, Hughes and Walsh (2015) used enhanced-
sampling MD methods to investigate the links between the
sequence and binding of adsorbed peptides onto G. First, the free
energy of adsorption of all 20 naturally occurring amino acids
was obtained using Well-Tempered Metadynamics (Barducci
et al., 2008), thus providing a benchmark for interpreting
peptide–graphene adsorption studies. In these calculations,
strong binding is observed for amino acids which have flat
and/or compact side chains. Then, replica exchange with
solute tempering simulations (Terakawa et al., 2011) were
performed to sample the conformational ensemble of two
experimentally-characterized peptides, P1 and its alanine mutant
P1A3, in solution and adsorbed on G. Results show that
while P1A3 presents mostly disordered conformations, both
in solution and when adsorbed, a helical P1 conformation is
stabilized by adsorption on G via interaction of the strongly-
binding residues.

In 2016, Yeo et al. (2016) investigated the adsorption
mechanism of single and multiple bovine serum albumin (BSA)
peptide segments on G, through the analysis of a broad set
of parameters such as root-mean-square displacement, number
of hydrogen bonds, helical content, interaction energies, and
peptide center-of-mass displacement. The authors observed a
destabilization of the helical structures in the single segment
system, due to strong interactions between the peptide and
the substrate. On the other hand, a better conservation in
the total helical content is observed in the multi-segment
system, implying a protective collective action of the peptides.
More recently, No et al. (2017) reported nature-inspired
two-dimensional peptide self-assembly on G via optimization
of peptide−peptide and peptide−G interactions. Atomistic
simulations determined the optimal peptide sequence that leads
to peptide self-assembly on G, suggesting that the optimal
peptide sequence minimizes the peptide−G interaction energy
and also the peptide−peptide interaction energy, resulting in
stable complexes on G.

GO Substrates

The adhesion of biomolecules to GO and rGO layers was
investigated in Chong et al. (2015) to test the different
advantages of GO due to the presence of the oxygen atoms.
The interactions of serum proteins with GO nanosheets were
explored with a large set of experimental techniques and with
MD simulations, showing high adsorption capacities of GO
and rGO. However, it is important to point out that while
GO and rGO were used in the experiments, pristine G was
chosen to simulate the relevant non-oxidized regions of the
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surface present on GO nanosheets. The action of GO was
investigated more explicitly by representing the substrate using
the Lerf-Klinowski model (Lerf et al., 1998), which describes the
behavior of a standard oxidation process. Using this approach,
two paradigmatic articles (Sun et al., 2014; Zeng et al., 2016)
demonstrated that GO displays an enhanced adsorption of the
attached protein. Firstly, in Sun et al. (2014), an atomistic
description of the inhibitory action of GO on the activity of
α-chymotrypsin (ChT), has been provided. The results support
the hypothesis that GO can be considered as a promising
receptor for enzyme inhibition. Secondly, Zeng et al. (2016)
show the details of the binding energy of GO to Vpr13-33, a
fragment of the viral protein R (Vpr), using potential of mean
force (PMF) calculations with the enhanced method umbrella
sampling (Kästner, 2011).

Recently, Willems et al. (2017) investigated the dynamics
of supported phospholipid membrane patches stabilized on
G surfaces. These systems show potential in sensor device
functionalization. The authors integrated experimental measures
and CGMD simulations to characterize the molecular properties
of supported lipid membranes (SLMs) on G and GO supports.
The results described substantial differences in the topologies of
the stabilized lipid structures, depending on the nature of the
surface, providing novel details into the molecular effects of G
and G oxide surfaces on lipid membranes.

Overall, parallel to this considerable amount of data, in this
emerging area of computational applications many fundamental
issues remain unresolved, due to the lack of sufficient
experimental results. In particular, the detailed distribution of
the oxygen-containing groups on the substrate is difficult to
determine, with a considerable loss in the description of the
adsorption mechanism.

Interactions of Graphene With
Biomembranes
The interaction of G with biomolecular complexes is crucial to
understand its biological safety and potential toxicity. A seminal
work (Tu et al., 2013) showed that GR and GO nanosheets
induce the degradation of the inner and outer cell membranes
of Escherichia Coli. Specifically, MD simulations showed that
G is able to actively extract phospholipid molecules from a
lipid bilayer, fixing them on its surface. Although these results
introduce G as a convenient tool able to kill bacteria, there is
an abundant literature where G also shows destructive capacities
towards some biomolecules (Luan et al., 2015).

In this context, the results from CGMD simulations describe
a quite different scenario. One of the first uses of CGMD
for studying G-biomolecules interactions can be found in
Titov et al. (2010). There, the Martini force field (Marrink
et al., 2007) is used to study the interaction of G nanosheets
with phospholipid bilayers formed by 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine (POPC membrane). Results showed
that G sheets are hosted in the hydrophobic interior of the
membrane, forming stable G-lipid structures (Figure 6).

In the following years, other works have investigated these
systems with various CGMD algorithms, such as Guo et al.
(2013), Li Y. et al. (2013) and Mao et al. (2014). In all

these studies, however, lipid extraction or membrane damage
is not observed, in contrast to the results of Tu et al. (2013).
More recently, computational simulations were used to elucidate
whether G causes cell membrane damage (Chen J. et al., 2016).
All-atom MD simulations were used to study the interaction of
both G and GOwith respect to a dipalmitoylphosphatidylcholine
(DPPC) bilayer, and they revealed that G quickly enters into
the membrane by assuming a position parallel to the lipid tails.
Conversely, GO did not enter the membrane spontaneously
during the observed time-scale, but when docked onto the
bilayer, it formed pores in the membrane.

A particularly important biomembrane system is the one
involved in the formation of biological barriers such as for
example the BBB. Computational studies can be useful to
investigate the effect of barrier exposure to G-based materials
(Figure 6), but studying such complex architectures is still
hampered by the lack of structural information (Alberini et al.,
2017).

CONCLUSIONS: FUTURE CHALLENGES
AND PERSPECTIVES

In the past few years, GRMs have been studied and used
in a wide range of technological fields, including biomedical
applications. The treatment of neurological disorders through
non-invasive pharmacological approaches is still a major
challenge. It is crucial for scientist to develop strategies for
efficient cargo delivery of drugs or biomolecules or even genes
to the brain, bypassing the BBB while preserving its structure
and vital functions. One of the purposes of nanomedicine
is indeed to create innovative ways for cell-targeting and
drug-controlled release by avoiding surgery or other approaches
that are very invasive for the patient. In this scenario,
the choice of the appropriate ligand-receptor complex is
a key design element when constructing nano-carriers, as
well as the choice of the material, the size and eventual
functionalization. While receptor-mediated transcytosis is a
fundamental pathway for BBB crossing, the development
of next-generation nano-carriers, like 2D-materials, and the
investigation and optimization of alternative routes for delivery,
such as intranasal administration, is of utmost importance for the
scientific community.

Besides the ‘‘BBB challenge’’, other aspects of neuroscience
could benefit of the latest developments in graphene
research. Neuro-oncology may profit from the development
of G nanosheets and G NPs for tumor-targeted imaging,
photothermal therapy, and anticancer drug delivery and gene
therapy. New electrical, chemical and optical sensors may have
great impact for neuro-intensive care and neuro-monitoring.
Moreover, the combination of different forms and states
of G, diverse chemical functionalization and the possible
association with other biomaterials to form G-based composites,
may allow to devise an all-in one tool for both diagnosis
and therapy, thus effectively building a powerful theranostic
device.

Finally, tissue-engineering research is expected to develop
novel brain-implant interfaces based on G, to exploit the material
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electrical conductivity and enhance cell-cell communication and
repair. Besides the experimental and clinical evidence, MD
studies are emerging as an important aspect of material research,
as they provide extremely precise indications and predictions
on G/cell and G/protein interactions, guiding the researcher to
design more powerful G-based devices.

Nevertheless, despite initial studies demonstrated the
biocompatibility of G, especially when conjugated with other
materials in 2D and 3D scaffolds, only few systems were
demonstrated to be successful in vivo. Further investigations
are still required, in particular about the biological effects of
long-term treatment with G materials, before the promised
technological applications can be fully exploited in and beyond
neuroscience.
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