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Abstract—Regenerating codes are a class of recently developed

codes for distributed storage that, like Reed-Solomon codes,

permit data recovery from any arbitrary of nodes. However

regenerating codes possess in addition, the ability to repair

a failed node by connecting to any arbitrary nodes and

downloading an amount of data that is typically far less than

the size of the data file. This amount of download is termed

the repair bandwidth. Minimum storage regenerating (MSR)

codes are a subclass of regenerating codes that require the least

amount of network storage; every such code is a maximum

distance separable (MDS) code. Further, when a replacement

node stores data identical to that in the failed node, the repair

is termed as exact.

The four principal results of the paper are (a) the explicit

construction of a class of MDS codes for

termed the MISER code, that achieves the cut-set bound on the

repair bandwidth for the exact repair of systematic nodes, (b)

proof of the necessity of interference alignment in exact-repair

MSR codes, (c) a proof showing the impossibility of constructing

linear, exact-repair MSR codes for in the absence

of symbol extension, and (d) the construction, also explicit, of

high-rate MSR codes for . Interference alignment (IA)

is a theme that runs throughout the paper: the MISER code is

built on the principles of IA and IA is also a crucial component

to the nonexistence proof for . To the best of our

knowledge, the constructions presented in this paper are the

first explicit constructions of regenerating codes that achieve the

cut-set bound.

Index Terms—Distributed storage, interference alignment,

maximum-distance-separable (MDS) regenerating codes, network

coding, node repair, partial data recovery.
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I. INTRODUCTION

I N A distributed storage system, a data file (the message)

is dispersed across storage nodes in a network in such a

manner that an end-user (whom we term as a data collector, or a

DC) can retrieve the data file by tapping into one ormore storage

nodes. It is also desirable that a distributed storage system be

reliable in the face of node failures. The simplest means of

increasing reliability of a storage system is through replica-

tion, i.e., by storing identical copies of the message in multiple

storage nodes. However, for a given level of reliability, such sys-

tems are inefficient in storage space utilization as compared to

other approaches. A popular option that reduces storage space

utilization and leads to increased resiliency is to employ erasure

coding, for example, by calling upon maximum-distance-sepa-

rable (MDS) codes such as Reed-Solomon (RS) codes.

Let be the total number of message symbols, over a fi-

nite field of size . An RS code encodes a message

of size to obtain symbols over , and stores one

distinct coded symbol in each of the nodes in the network.

Under this encoding, the entire data can be recovered by a data

collector by connecting to any arbitrary nodes, a process of

data recovery that we will refer to as reconstruction. Several

distributed storage systems such as RAID-6, OceanStore [1],

Total Recall [2] and Wuala [3] employ such an erasure-coding

option.

Upon failure of an individual node, a self-sustaining data

storage networkmust necessarily possess the ability to repair the

failed node. An obvious means to accomplish this is to permit

the replacement node to connect to any nodes, download the

entire data, and extract the data that was stored in the failed

node. For example, RS codes treat the data stored in each node

as a single symbol belonging to the finite field . When this is

coupled with the restriction that individual nodes perform linear

operations over , it follows that the smallest unit of data that

can be downloaded from a node to assist in the repair of a failed

node (namely, an symbol), equals the amount of information

stored in the node itself. As a consequence of the MDS prop-

erty of an RS code, when carrying out repair of a failed node,

the replacement node must necessarily collect data from at least

other nodes. As a result, it follows that the total amount of

data download needed to repair a failed node can be no smaller

than , the size of the entire message. But clearly, downloading

entire units of data in order to recover the data stored in a

single node that stores only a fraction of the entire data is

0018-9448/$26.00 © 2011 IEEE
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Fig. 1. Regenerating codes setup. (a) Data reconstruction and (b) repair of a failed node.

wasteful. This naturally raises the question as to whether there

is a better option. Such an option is provided by the concept of

a regenerating code introduced by Dimakis et al. [4], [5].

Regenerating codes overcome the difficulty encountered

when working with an RS code by working with codes whose

symbol alphabet is a vector over , i.e., an element of for

some parameter . Each node stores a vector symbol, or

equivalently stores symbols over . In this setup, it is clear

that while maintaining linearity over , it is possible for an

individual node to transfer a fraction of the data stored within

the node.

Apart from this new parameter , two other parameters,

and , are associated with regenerating codes. Under the defi-

nition of regenerating codes introduced in [4], a failed node is

permitted to connect to an arbitrary subset of nodes out of the

remaining nodes while downloading symbols

from each node. The total amount of data downloaded for

repair purposes is termed the repair bandwidth. Typically, with

a regenerating code, the average repair bandwidth is small

compared to the size of the message . Thus we have

as the parameter set of a regenerating code. Fig. 1(a) and (b)

illustrate reconstruction and node repair respectively, also de-

picting the relevant parameters.

The cut-set bound of network coding can be invoked to show

that the parameters of a regenerating code must necessarily sat-

isfy [6]:

(1)

Since both storage and bandwidth come at a cost, it is naturally

desirable to minimize both as well as . However, it can be

deduced (see [6]) that achieving equality in (1), for fixed values

of and , leads to a tradeoff between the storage space

and the repair bandwidth . The two extreme points in this

tradeoff are termed the minimum storage regenerating (MSR)

and minimum bandwidth regenerating (MBR) points. The pa-

rameters and for the MSR point on the tradeoff can be ob-

tained by first minimizing and then minimizing to obtain

(2)

Reversing the order, leads to the MBR point which thus corre-

sponds to

(3)

The focus of the present paper is on the MSR point. Note that

regenerating codes with and are

necessarily MDS codes over the vector alphabet . This fol-

lows since the ability to reconstruct the data from any arbitrary

nodes necessarily implies a minimum distance of .

Since the code size equals , this meets the Singleton bound

causing the code to be an MDS code.

A. Choice of the Parameter (Striping)

Let us next rewrite (2) in the form

(4)
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Thus if one is able to construct an MSR code with

repair bandwidth achieving the cut-set bound for a given value

of , then both and the size

of themessage are necessarily fixed. It thusmakes sense

to speak of an achievable triple

However if a triple is achievable, then so is the triple

simply through a process of divide and conquer,

i.e., we divide up the message into sub-messages and apply

the code for to each of the sub-messages. It follows

that if one can construct an (optimal) MSR code with

, then one can construct an (optimal) MSR code

for any larger value of via a concatenation of the code.

This motivates us to consider the case of as the first step

towards design of exact-repair codes. In addition, a code with

a small value of will involve manipulating a smaller number

of message symbols, and may also lead to algorithms of lesser

complexity. For these reasons, in the present paper, codes are

constructed for the case . In the terminology of distributed

storage, such a process is called striping. Setting at the

MSR point yields

(5)

Note that when , we have and meeting the

cut-set bound would imply . In this case, any -MDS

code will achieve the bound. Hence, we will consider

throughout.

B. Additional Terminology

1) Exact Versus Functional Repair: The cut-set bound (1)

is derived in [6] for the case when failed nodes undergo “func-

tional repair.” Under functional repair, a failed node is re-

placed by a new node such that following replacement, the re-

sulting system continues to possess the data-reconstruction and

repair properties. In contrast, under exact repair, a failed node

is replaced by a new node which stores exactly the same data

as was stored in node prior to failure. We will use the term

exact-repair MSR code to denote a regenerating code operating

at the minimum storage point, that is capable of exact repair.

Exact repair is to be preferred over functional repair wherever

possible, due to the following reasons. In a system where the

code coefficients are globally known, under functional repair

there is need for the network to inform all nodes of the new code

coefficients at the replacement node. Moreover, the repair and

decoding algorithms also need to be re-tuned for the new set of

coefficients. These additional overheads are clearly unnecessary

under exact repair. In addition, exact repair permits the code to

be systematic, as described below.

2) Systematic Codes: A systematic regenerating code can be

defined as a regenerating code designed in such a way that the

message symbols are explicitly present amongst the code

symbols stored in a select set of nodes, termed as the system-

atic nodes. Clearly, in the case of systematic regenerating codes,

Fig. 2. MSR code design problem for the exact repair of just the systematic
nodes, as a non-multicast network coding problem. Here,
with giving . Unmarked edges have capacity
. Nodes labeled DC are data-collector sinks, and those labeled and are
replacement node sinks.

exact repair of the systematic nodes is mandated. A data col-

lector connecting to the systematic nodes obtains the mes-

sage symbols in an uncoded form, making systematic nodes a

preferred choice for data recovery. This makes the fast repair

of systematic nodes a priority, motivating the interest in mini-

mizing the repair bandwidth for the exact repair of systematic

nodes.

As mentioned above, the cut-set bound (as derived in [6])

applies to functional repair. The immediate question that this

raises, is as to whether or not the combination of (a) restriction

to repair of systematic nodes and (b) requirement for exact re-

pair of the systematic nodes leads to a bound on the parameters

different from the cut-set bound. It turns out that the

same bound on the parameters appearing in (2) still

applies and this is established in Section III.

C. Exact-Repair MSR Codes as Network Codes

The existence of regenerating codes for the case of functional

repair was proved [4], [6] after casting the reconstruction and re-

pair problems as a multicast network coding problem, and using

random network codes to achieve the cut-set bound. As shown

in [7], construction of exact-repair MSR codes for the repair

of systematic nodes is most naturally mapped to a non-multi-

cast problem in network coding, for which very few results are

available.

The non-multicast network for the parameter set

with is shown in Fig. 2. In general, the network

can be viewed as having source nodes, corresponding to the

systematic nodes, generating symbols each per channel use.

The parity nodes correspond to downlink nodes in the graph. To

capture the fact that a parity node can store only symbols, it is

split (as in [6]) into two parts connected by a link of capacity :

parity node is split into and with all incoming edges

arriving at and all outgoing edges emanating from .

The sinks in the network are of two types. The first type corre-

spond to data collectors which connect to an arbitrary collection

of nodes in the network for the purposes of data reconstruc-

tion. Hence there are sinks of this type. The second type of
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sinks represent a replacement node that is attempting to dupli-

cate a failed systematic node, with the node replacing systematic

node denoted by . Sinks of this type connect to an arbitrary

set of out of the remaining nodes, and hence they are

in number. It is the presence of these sinks that gives

the problem a non-multicast nature.

The MISER code construction presented in Section V of the

present paper is an explicitMSR code performing exact repair of

systematic nodes. Hence, this code serves as an instance where

an explicit code construction achieves the cut-set bound for a

non-multicast network, by exploiting the specific structure of

the network.

Relation Between and Scalar/Vector Network Coding: The

choice of as unity (as in Fig. 2) may be viewed as an instance

of scalar network coding. Upon increase in the value of , the

capacity of each data pipe is increased by a factor of , thereby

transforming the problem into a vector network coding problem.

Thus, implies the absence of symbol extension, which

may reduce the complexity of system implementation and is

thus of greater practical interest.

D. Results of the Present Paper

The primary results of the present paper are:

� The construction of a family ofMDS codes for

that enable exact repair of systematic nodes while

achieving the cut-set bound on repair bandwidth. We have

termed this code the MISER1 code.

� Proof that interference alignment is necessary for every

exact-repair MSR code.

� The proof of nonexistence of linear exact-repair MSR

codes for in the absence of symbol extension

(i.e., ). This result is clearly of interest in the light of

ongoing efforts to construct exact-repair codes with

meeting the cut-set bound [8]–[17].

� The construction, also explicit, of an MSR code for

. For most values of the parameters,

falls under the regime, and in light of the

nonexistence result above, exact repair is not possible. The

construction does the next best thing, namely, it carries out

repair that is approximately-exact.2

� A shortening technique for constructing high-redundancy

MSR codes from low-redundancy MSR codes, i.e., con-

structing an MSR code from any

MSR code.

Note that the only explicit regenerating codes of the MDS

type to previously have been constructed are for certain spe-

cific values of parameters, and

. Prior work is described in greater

detail in Section II.

The repair algorithm of the MISER code also minimizes the

number of disk reads and computations required at the helper

nodes during repair. Moreover, in a work ([14]) following the

1Short for an MDS, Interference-aligning, Systematic, Exact-Regenerating
code, that is miserly in terms of bandwidth expended to repair a systematic node.

2The code consists of an exact part which is exactly repaired, along with an
auxiliary part which is only functionally repaired. This is explained in greater
detail in Section VII.

initial submission of theMISER code ([10]), Suh and Ramchan-

dran show that MISER code can also perform exact repair of

parity nodes optimally, and provide explicit mechanisms for the

same.

The remainder of the paper is organized as follows. A brief

overview of the prior literature in this field is given in the next

section, Section II. The setting and notation are explained in

Section III. The appearance of interference alignment in the

context of distributed storage for construction of regenerating

codes is detailed in Section IV along with an illustrative ex-

ample. Section V describes theMISER code. A shortening tech-

nique forMSR codes is also provided in this section. The nonex-

istence of linear exact-repair MSR codes for in

the absence of symbol extension can be found in Section VI,

along with the proof establishing the necessity of interference

alignment. Section VII describes the explicit construction of an

MSR code for . The final section, Section VIII, draws

conclusions.

II. RELATED WORK

The concept of regenerating codes, introduced in [4], [6],

permit storage nodes to store more than the minimal units

of data in order to reduce the repair bandwidth. Several dis-

tributed systems are analysed, and estimates of the mean node

availability in such systems are obtained. Using these values, the

substantial performance gains offered by regenerating codes in

terms of bandwidth savings are demonstrated.

The problem of minimizing repair bandwidth for the func-

tional repair of nodes is considered in [4], [6] where it is for-

mulated as a multicast network-coding problem in a network

having an infinite number of nodes. A cut-set lower bound on

the repair bandwidth is derived. Coding schemes achieving this

bound are presented in [6], [12] which however, are nonexplicit.

These schemes require large field size and the repair and recon-

struction algorithms are also of high complexity.

Computational complexity is identified as a principal concern

in the practical implementation of distributed storage codes in

[18] and a treatment of the use of random, linear, regenerating

codes for achieving functional repair can be found there.

The notion of exact repair is independently introduced in [8]

and [9]. The idea of using interference alignment in the context

of exact-repair codes for distributed storage appears first in [8].

Code constructions of the MDS type are provided, which meet

the cut-set lower bound when . Even here, the construc-

tions are not explicit, and have large complexity and field-size

requirement.

The first explicit construction of regenerating codes for the

MBR point appears in [9], for the case . These codes

carry out repair-by-transfer (uncoded exact-repair) and hence

have zero repair complexity. The required field size is of the

order of , and in terms of minimizing bandwidth, the codes

achieve the cut-set bound.

A computer search for exact-repair MSR codes for the pa-

rameter set , is carried out in

[11], and for this set of parameters, codes for several values of

field size are obtained.
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A slightly different setting, from the exact-repair situation

is considered in [12], where optimal MDS codes are given for

the parameters and . Again, the schemes

given here are nonexplicit, and have high complexity and large

field-size requirement.

The bound in (1), which is known to be tight for functional re-

pair, also trivially turns out to be a bound for the case of exact re-

pair. However, it is not known whether the bound is tight under

this setting. After the initial submission of the present paper,

some new results have shed more light on this question. In the

limiting case of (and hence and ) approaching infinity, the

MSR point is shown to be achievable under exact repair for all

in [19] and [20]. On the other hand, it is shown in [17]

that essentially all interior points on the tradeoff are not achiev-

able under exact repair.

We next describe the setting and notation to be used in the

present paper.

III. SETTING AND NOTATION

The distributed storage system considered in this paper con-

sists of storage nodes, each having the capacity to store sym-

bols. Let be the message vector of length comprising the

message symbols. Each message symbol can independently

take values from , a finite field of size .

In this paper, we consider only linear storage codes. As in tra-

ditional coding theory, by a linear storage code, we mean that

every stored symbol is a linear combination of themessage sym-

bols, and only linear operations are permitted on the stored sym-

bols. Thus all symbols considered belong to .

For , let the matrix denote the

generator matrix of node . Node stores the following

symbols

(6)

In the terminology of network coding, each column of the

nodal generator matrix corresponds to the global kernel

(linear combination vector) associated with a symbol stored

in the node. The generator matrix for the entire

distributed-storage code, is given by

(7)

Note that under exact repair, the generator matrix of the code

remains unchanged.

We will interchangeably speak of a node as either storing

symbols, by which we will mean the symbols or else

as storing vectors, by which we will mean the corresponding

set of global kernels that form the columns of nodal generator

matrix .

We partition the -length vector into compo-

nents, for , each comprising distinct message

symbols:

... (8)

We also partition the nodal generator matrices analogously into

submatrices as

... (9)

where each is an matrix. We will refer to as

the th component of . Thus, node stores the symbols

(10)

Out of the nodes, the first nodes (i.e., nodes ) are

systematic. Thus, for systematic node

if

if
(11)

where and denote the zero matrix and identity

matrix respectively; systematic node thus stores

the message symbols that is comprised of.

Upon failure of a node, the replacement node connects to

an arbitrary set of remaining nodes, termed as helper nodes,

downloading symbols from each. Thus, each helper node

passes a collection of linear combinations of the symbols

stored within the node. As described in Section I-A, an MSR

code with can be used to construct an MSR code for

every higher integral value of . Thus it suffices to provide

constructions for and that is what we do here. When

, each helper node passes just a single symbol. Again, we

will often describe the symbol passed by a helper node in terms

of its associated global kernel, and hence will often speak of a

helper node passing a vector.3

Throughout the paper, we use superscripts to refer to node in-

dices, and subscripts to index the elements of a matrix. The let-

ters and are reserved for node indices; in particular, the letter

is used to index systematic nodes. All vectors are assumed to

be column vectors. The vector represents the standard basis

vector of length , i.e., is an -length unit vector with 1 in

the th position and 0 s elsewhere. For a positive integer , we

denote the zero matrix and the identity matrix

by and respectively. For a -length vector , we use the

notation to denote the diagonal matrix with

elements of the vector as the elements of its main diagonal.We

say that a set of vectors is aligned if the vector-space spanned

by them has dimension at most one.

We next turn our attention to the question as to whether or not

the combination of (a) restriction to systematic-node repair and

(b) requirement of exact repair of the systematic nodes leads to

a bound on the parameters different from the cut-set

bound appearing in (1).

The theorem below shows that the bound in (1) for the MSR

point continues to hold even if functional repair of a single node

is required.

3A simple extension to the case of lets us treat the global kernels of the
symbols passed by a helper node as a subspace of dimension at most . This

“subspace” viewpoint has been found useful in proving certain general results
at the MBR point in [9], and for the interior points of the tradeoff in [13].
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Theorem 1: Any -MDS regenerating code (i.e., a

regenerating code satisfying ) that guarantees the func-

tional repair of even a single node, must satisfy the cut-set lower

bound of (1), i.e., must satisfy

(12)

Proof: First, consider the case when . Let denote

the node that needs to be repaired, and let

denote the helper nodes assisting in the repair of node .

Further, let denote the vectors passed by

these helper nodes. At the end of the repair process, let the

matrix denote the generator matrix of the replacement

node (since we consider only functional repair in this theorem,

need not be identical to the generator matrix of the failed

node).

Looking back at the repair process, the replacement node ob-

tains by operating linearly on the collection of vectors

of length . This, in turn, implies that

the dimension of the nullspace of the matrix

(13)

should be greater than or equal to the dimension of , which

is . However, the MDS property requires that at the end of the

repair process, the global kernels associated with any nodes

be linearly independent, and in particular, that the matrix

(14)

have full-rank. It follows that we must have

(15)

The proof for the case , when every helper node passes

a set of vectors, is a straightforward extension that leads to:

(16)

Rearranging the terms in the inequality above, and substituting

leads to the desired result.

Since exact repair is a special case of functional repair, the

result in Theorem 1 trivially holds for exact repair as well. Thus,

we recover (2), and in an optimal code with , we will

continue to have

In this way, we have shown that even in the setting that we

address here, namely that of the exact repair of the systematic

nodes, leads us to the same bound on repair bandwidth as in (1).

Remark 1: The result in Theorem 1 can also be derived infor-

mation-theoretically (see [17] for an information-theoretic per-

spective on regenerating codes), and hence holds for nonlinear

codes as well. However, since the present paper deals only with

linear codes, we restrict our attention to this case.

The next section explains how the concept of interference

alignment arises in the context of distributed storage.

IV. INTERFERENCE ALIGNMENT IN REGENERATING CODES

The idea of interference alignment has recently been pro-

posed in [21] and [22] in the context of wireless communication.

The idea here is to design the signals of multiple users in such a

way that at every receiver, signals from all the unintended users

occupy a subspace of the given space, leaving the remainder of

the space free for the signal of the intended user.

In the distributed-storage context, the concept of “interfer-

ence” comes into play during the exact repair of a failed node

in an MSR code. We present the example of a systematic MSR

code with and , which gives

. Let

denote the four message symbols. Since here, we may

assume that nodes 1 and 2 are systematic and that node 1 stores

and node 2 stores . Nodes 3 and 4 are then

the parity nodes, each storing two linear functions of the mes-

sage symbols.

Consider repair of systematic node 1 wherein the

nodes, nodes 2, 3 and 4 serve as helper nodes. The second sys-

tematic node, node 2, can only pass a linear combination of mes-

sage symbols and . The two symbols passed by the parity

nodes are in general, functions of all four message symbols:

and

respectively.

Using the symbols passed by the three helper nodes, the re-

placement of node 1 needs to be able to recover message sym-

bols . For obvious reasons, we will term

and as the desired components of the messages

passed by parity nodes 3 and 4 and the terms and

as interference components.

Since node 2 cannot provide any information pertaining to the

desired symbols , the replacement node must be able

to recover the desired symbols from the desired components

and of the messages passed to it

by the parity nodes 3 and 4. To access the desired components,

the replacement node must be in a position to subtract out the

interference components and from

the received linear combinations

and ; the only way to subtract

out the interference component is by making use of the linear

combination of passed by node 2. It follows that this

can only happen if the interference components

and are aligned, meaning that they are scalar

multiples of each other.

An explicit code over for the parameters chosen in the ex-

ample is shown in Fig. 3. The exact repair of systematic node 1

is shown, for which the remaining nodes pass the first of the two

symbols stored in them. Observe that under this code, the inter-

ference component in the two symbols passed by the parity nodes

are aligned in the direction of , i.e., are scalar multiples of .

Hence node 2 can simply pass and the replacement node can

thenmake use of to cancel (i.e., subtract out) the interference.

In the context of regenerating codes, interference alignment

was first used by Wu et al. [8] to provide a scheme (although,

not explicit) for the exact repair at the MSR point. However,

interference alignment is employed only to a limited extent as

only a portion of the interference components is aligned and as

a result, the scheme is optimal only for the case .
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Fig. 3. Illustration of interference alignment during exact repair of systematic node 1.

In Section V, we describe the construction of theMISER code

which aligns interference and achieves the cut-set bound on the

repair bandwidth for repair of systematic nodes for all parame-

ters satisfying . This is the first interfer-

ence-alignment-based explicit code construction that meets the

cut-set bound.

V. CONSTRUCTION OF THE MISER CODE

In this section we provide an explicit construction for a sys-

tematic, MDS code that achieves the lower bound on repair

bandwidth for the exact repair of systematic nodes andwhich we

term as the MISER code. Under this code, the parameter takes

the largest permissible value of , resulting in the lowest pos-

sible repair bandwidth for any MDS code.4 This choice of the

parameter also allows for a greater degree of parallelization in

the process of data download during repair.

We begin with an illustrative example that explains the key

ideas behind the construction. The general code construction for

parameter sets of the form , closely follows

the construction in the example. A code-shortening technique

for MSR codes is then described, and employed to extend this

code construction to the more general parameter set ,

.

The construction technique can also be extended to the even

more general case of arbitrary , , under the added

requirement however, that the replacement node connect to all

of the remaining systematic nodes.

A. An Example

The example deals with the parameter set,

, , so that .

We select as the underlying finite field so that all message and

code symbols are drawn from . Note that we have

here. This is true in general: whenever and ,

we have which simplifies the task of code

construction.

1) Design of Nodal Generator Matrices: As , the

first three nodes are systematic and store data in uncoded form.

Hence

(17)

4It can be inferred from the storage-bandwidth tradeoff (1) that for fixed
values of the parameters and , the repair bandwidth decreases
with increase in .

A key ingredient of the code construction presented here is the

use of a Cauchy matrix [23]. Let

(18)

be a matrix such that each of its submatrices is full rank.

Cauchy matrices have this property and in our construction, we

will assume to be a Cauchy matrix.

We choose the generator matrix of parity node

to be

(19)

where the location of the nonzero entries in the th component

are restricted to lie either along the diagonal or else within the

th column. The generator matrix is designed keeping in mind

the need for interference alignment and this will bemade clear in

the discussion below concerning the exact repair of systematic

nodes. The choice of scalar “2” plays an important role in the

data reconstruction property; the precise role of this scalar will

become clear when this property is discussed. An example of

the MISER code over is provided in Fig. 4, where

the Cauchy matrix is chosen as

(20)

Also depicted in the figure is the exact repair of node 1, for

which each of the remaining nodes pass the first symbol that

they store. It can be seen that the first symbols stored in the
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Fig. 4. Example of the MISER code over . Here, denote the message symbols and the code symbols stored in each of the nodes are
shown. Exact repair of node 1 is also depicted.

three parity nodes 4, 5, and 6 have their interference compo-

nents (components 2 and 3) aligned and their desired compo-

nents (component 1) linearly independent.

The key properties of the MISER code will now be

established:

� that the code is an MDS code over alphabet and this

property enables data reconstruction and

� that the code has the ability to carry out exact repair of

the systematic nodes while achieving the cut-set bound on

repair bandwidth.

We begin by establishing the exact-repair property.

2) Exact Repair of Systematic Nodes: Our algorithm for sys-

tematic node repair is simple. As noted above, each node stores

symbols. These symbols are assumed to be ordered

so that we may speak of the first symbol stored by a node, etc.

To repair systematic node , , each of the remaining

nodes passes their respective th symbol.

Suppose in our example construction here, node 1 fails. Each

of the parity nodes then pass on their first symbol, or equiva-

lently, in terms of global kernels, the first column of their gen-

erator matrices for the repair of node 1. Thus, from nodes 4, 5,

and 6, the replacement node obtains

(21)

Note that in each of these vectors, the desired (first) com-

ponents are a scaled version of the respective columns of the

Cauchy matrix . The interference (second and third) compo-

nents are aligned along the vector . Thus, each interfer-

ence component is aligned along a single dimension. Systematic

nodes 2 and 3 then pass a single vector each that is designed to

cancel out this interference. Specifically, nodes 2 and 3 respec-

tively pass the vectors

(22)

The net result is that after interference cancellation has taken

place, replacement node 1 is left with access to the columns of

the matrix

Thus the desired component is a scaled Cauchy matrix . By

multiplying this matrix on the right by , one recovers

as desired.

Along similar lines, when nodes 2 or 3 fail, the parity nodes

pass the second or third columns of their generator matrices re-

spectively. The design of generator matrices for the parity nodes

is such that interference alignment holds during the repair of any

systematic node, hence enabling the exact repair of all the sys-

tematic nodes.

3) Data Reconstruction (MDS Property): For the reconstruc-

tion property to be satisfied, a data collector downloading sym-

bols stored in any three nodes should be able to recover all the
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Fig. 5. Matrix in the proof of Claim 1.

nine message symbols. That is, the matrix formed by

column-wise concatenation of any three nodal generator ma-

trices, should be nonsingular. We consider the different possible

sets of three nodes that the data collector can connect to, and

provide appropriate decoding algorithms to handle each case.

a) Three Systematic Nodes: When a data collector connects

to all three systematic nodes, it obtains all the message symbols

in uncoded form and hence reconstruction is trivially satisfied.

b) Two Systematic Nodes and One Parity Node: Suppose the

data collector connects to systematic nodes 2 and 3, and parity

node 4. It obtains all the symbols stored in nodes 2 and 3 in un-

coded form and proceeds to subtract their effect from the sym-

bols in node 4. It is thus left to decode the message symbols ,

that are encoded using matrix given by

(23)

This lower-triangular matrix is nonsingular since by definition,

all the entries in a Cauchy matrix are nonzero. The message

symbols can hence be recovered by inverting .

c) All Three Parity Nodes: We consider next the case when

a data collector connects to all three parity nodes. Let be the

matrix formed by the column-wise concatenation of the

generator matrices of these three nodes.

Claim 1: The data collector can recover all the message sym-

bols encoded using the matrix , formed by the column-wise

concatenation of the generator matrices of the three parity

nodes:

(24)

Proof: We permute the columns of to obtain a second

matrix in which the th columns of all the three

nodes are adjacent to each other as shown in Fig. 5.

Note that a permutation of the columns does not alter the in-

formation available to the data collector and hence is a permis-

sible operation. This rearrangement of coded symbols, while

not essential, simplifies the proof. We then post-multiply by a

block-diagonal matrix to obtain the matrix given by

(25)

(26)

To put things back in perspective, the data collector at this point,

has access to the coded symbols

associated with the three parity nodes. From the nature of the

matrix it is evident that message symbols , and are now

available to the data collector, and their effect can be subtracted

from the remaining symbols to obtain the matrix

(27)

As in , the matrix above can be verified to be

nonsingular and thus the remaining message symbols can also

be recovered by inverting .

d) One Systematic Node and Two Parity Nodes: Suppose the

data collector connects to systematic node 1 and parity nodes 4

and 5. All symbols of node 1, i.e., are available to the data
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collector. Thus, it needs to decode the message-vector compo-

nents and which are encoded using a matrix given by

(28)

Claim 2: The block-matrix above is nonsingular and in

this way, the message-vector components and can be re-

covered.

Proof: Once again, we begin by permuting the columns of

. For (in this order), we group the th columns of

the two parity nodes together to give the matrix

(29)

Let be the submatrix of the Cauchy matrix ,

given by

(30)

Since every submatrix of is nonsingular, so is . Keeping

in mind the fact that the data collector can perform any linear

operation on the columns of , we next multiply the last two

columns of by (while leaving the other four columns

unchanged) to obtain the matrix

(31)

The message symbols associated with the last two columns of

are now available to the data collector and their effect on the

rest of the encoded symbols can be subtracted out to get

(32)

Along the lines of the previous case, the matrix above can be

shown to be nonsingular. We note that this condition is equiv-

alent to the reconstruction in a MISER code with and a

data collector that attempts to recover the data by connecting to

the two parity nodes.

B. General MISER Code for ,

In this section, the construction of MISER code for the gen-

eral parameter set , is provided. Since the

MISER code is built to satisfy the cut-set bound, we have that

which implies that

(33)

This relation will play a key role in the design of generator ma-

trices for the parity nodes as this will permit each parity node

to reserve symbols associated with linearly independent

global kernels for the repair of the systematic nodes. In the ex-

ample just examined, we had . The construction of

theMISER code for the general parameter set ,

is very much along the lines of the construction of the example

code.

1) Design of Nodal Generator Matrices: The first nodes

are systematic and store the message symbols in uncoded form.

Thus the component generator matrices , of the

th systematic node, , are given by

if

if
(34)

Let be an matrix with entries drawn from

such that every submatrix of is of full rank. Since

, we have that is a square matrix.5 Let the columns of

be given by

(35)

where the th column is given by

... (36)

A Cauchy matrix is an example of such a matrix, and in our

construction, we will assume to be a Cauchy matrix.

Definition 1 (Cauchy Matrix): An Cauchy matrix

over a finite field is a matrix whose th element

equals where is an injective

sequence, i.e., a sequence with no repeated elements.

Thus the minimum field size required for the construction of

a Cauchy matrix is . Hence if we choose to be a

Cauchy matrix,

(37)

Any finite field satisfying this condition will suffice for our con-

struction. Note that since , we have .

We introduce some additional notation at this point. Denote

the th column of the matrix as , i.e.,

(38)

5In Section V-D, we extend the construction to the even more general case of
arbitrary , , under the added requirement however, that the replace-
ment node connect to all of the remaining systematic nodes. In that section, we
will be dealing with a rectangular matrix .
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The code is designed assuming a regeneration algorithm

under which each of the parity nodes passes its th column

for repair of the th systematic node. With this in mind, for

, , , we choose

if

if
(39)

where is an element from such that and (in

the example provided in the previous section, was set

equal to 2). The latter condition is needed during the

reconstruction process, as was seen in the example. Note that

there always exists such a value as long as .

As in the example, the generator matrix is also designed

keeping in mind the need for interference alignment. This

property is utilized in the exact repair of systematic nodes, as

described below.

2) Exact Repair of Systematic Nodes: The repair process we

associate with the MISER code is simple. The repair of a failed

systematic node, say node , involves each of the remaining

nodes passing their th symbols (or equivalently, asso-

ciated global kernels) respectively. In the set of vectors passed

by the parity nodes, the th (desired) component is independent,

and the remaining (interference) components are aligned. The

interference components are cancelled using the vectors passed

by the remaining systematic nodes. Independence in the de-

sired component then allows for recovery of the desired mes-

sage symbols.

The next theorem describes the repair algorithm in greater

detail.

Theorem 2: In the MISER code, a failed systematic node can

be exactly repaired by downloading one symbol from each of

the remaining nodes.

Proof: Consider repair of the systematic node . Each of

the remaining nodes passes its th column, so that the

replacement node has access to the global kernels represented

by the columns shown below:

where denotes the th unit vector of length and denotes

a zero vector of length .

Observe that apart from the desired th component, every

other component is aligned along the vector . The goal is to

show that some linear combinations of the columns above

will give us a matrix whose th component equals the

identity matrix, and has zeros everywhere else. But this is clear

from the interference alignment structure just noted in conjunc-

tion with linear independence of the vectors in the desired

component:

(40)

Next, we discuss the data reconstruction property.

3) Data Reconstruction (MDS Property): For reconstruction

to be satisfied, a data collector downloading all symbols stored

in any arbitrary nodes should be able to recover the mes-

sage symbols. For this, we need the matrix formed by

the column-wise concatenation of any arbitrary collection of

nodal generator matrices to be nonsingular. The proof of this

property is along the lines of the proof in the example. For com-

pleteness, a proof is presented in the appendix.

Theorem 3: A data collector connecting to any nodes in the

MISER code can recover all the message symbols.

Proof: Please see the Appendix.

Remark 2: It is easily verified that both reconstruction and

repair properties continue to hold even when we choose the gen-

erator matrices of the parity nodes to be given by: for

, ,

if

if
(41)

where is an diagonal matrix

satisfying

1) ,

2) , .

The first condition suffices to ensure exact repair of systematic

nodes. The two conditions together ensure that the (MDS) re-

construction property holds as well.

C. The MISER Code for , and Shortening

of MSR Codes

In this section we show how the MISER code construction

for , can be extended to the more general

case , . From the cut-set bound (5), for this

parameter regime, we get

(42)

We begin by first showing how an incremental change in param-

eters is possible.

Theorem 4 (Shortening of MSR Codes): An , linear,

systematic, exact-repair MSR code can be derived from an

linear, systematic,

exact-repair MSR code . Furthermore if in code

, in code .

Proof: We begin by noting that

(43)

(44)

(45)
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Fig. 6. Shortening technique for MSR codes: construction of a MISER code from a MISER code.
Shortening the code with respect to node zero is equivalent to removing systematic node 0 as well as the top component of every nodal generator matrix. The
resulting MISER code has as its message symbols.

In essence, we use code shortening [24] to derive code from

code . Specification of code requires that given a collection

of message symbols, we identify the code symbols

stored in each of the nodes. We assume without loss of gener-

ality, that in code , the nodes are numbered 1 through , with

nodes 1 through representing the systematic nodes. We next

create an additional node numbered 0.

The encoding algorithm for code is based on the encoding

algorithm for code . Given a collection of message sym-

bols to be encoded by code , we augment this collection by an

additional message symbols all of which are set equal to zero.

The first set of message symbols will be stored in systematic

nodes 1 through and the string of zeros will be stored in

node 0. Nodes 0 through are then regarded as constituting a

set of systematic nodes for code . The remaining

parity nodes are filled using the encoding process as-

sociated with code using the message symbols stored in the

nodes numbered 0 through . Note that both codes and

share the same number of parity nodes.

To prove the data reconstruction property of , it suffices to

prove that all the message symbols can be recovered by con-

necting to an arbitrary set of nodes. Given a data collector

connecting to a particular set of nodes, we examine the cor-

responding scenario in code in which the data collector con-

nects to node 0 in addition to these nodes. By the assumed

MDS property of code , all the message symbols along with

the message symbols stored in node 0 can be decoded using

the data stored these nodes. However, since the sym-

bols stored in node 0 are all set equal to zero, they clearly play

no part in the data-reconstruction process. It follows that the

message symbols can be recovered using the data from the

nodes (leaving aside node 0), thereby establishing that code

possesses the required MDS data-reconstruction property.

A similar argument can be used to establish the repair prop-

erty of code as well. Finally, we have

Example: The code-shortening procedure presented in The-

orem 4 is illustrated by an example of MISER code shown in

Fig. 6. Here it is shown how a MISER code having code pa-

rameters , and

yields upon shortening

with respect to the message symbols in node 0, a MISER code

having code parameters , and

.

By iterating the procedure in the proof of Theorem 4 above

times we obtain:

Corollary 5 (Shortening of MSR Codes): An linear,

systematic, exact-repair MSR code can be constructed by

shortening a linear, system-

atic, exact-repair MSR code . Furthermore if in

code , in code .

Remark 3: It is shown in the sequel Section VI-B that every

linear, exact-repair MSR code can be made systematic. Thus,

Theorem 4 and Corollary 5 apply to any linear, exact-repair

MSR code (not necessarily systematic). In addition, note that the

theorem and the associated corollary hold for general values of

and are not restricted to the case of . Further-

more, a little thought will show that they apply to linear codes

that perform functional repair as well.

The next theorem follows from Corollary 5, and the code-

shortening method employed in the Theorem 4.

Theorem 6: The MISER code for , can be

obtained by shortening the MISER code for ,

, .

Proof: Follows from Theorem 4 and Corollary 5.

D. Extension to When the Set of Helper

Nodes Includes All Remaining Systematic Nodes

In this section, we present a simple extension of the MISER

code to the case when , under the additional

constraint however, that the set of helper nodes assisting a

failed systematic node includes the remaining system-

atic nodes. The theorem below, shows that the code provided in

Section V-B for , supports the case ,

as long as this additional requirement is met. From

here on, extension to the general case ,
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is straightforward via the code-shortening result in Theorem 4.

Note that unlike in the previous instance, the

Cauchy matrix used in the construction for is a rect-

angular matrix.

Theorem 7: For , , the code defined

by the nodal generator matrices in (34) and (39), achieves re-

construction and optimal, exact repair of systematic nodes, pro-

vided the replacement node connects to all the remaining sys-

tematic nodes.

Proof: Reconstruction: The reconstruction property fol-

lows directly from the reconstruction property in the case of the

original code.

1) Exact Repair of Systematic Nodes: The replacement node

connects to the remaining systematic nodes and an arbi-

trary parity nodes (since, meeting the cut-set bound requires

). Consider a distributed storage system having

only these nodes along with the failed node as its

nodes. Such a system has , and is identical

to the system described in Section V-B. Hence exact repair of

systematic nodes meeting the cut-set bound is guaranteed.

E. Analysis of the MISER Code

1) Field Size Requirement: The only constraint on the field

size comes due to the construction of the matrix

having all its submatrices of full rank. For our constructions,

is chosen to be a Cauchy matrix. Hence from (37) and the

fact that for an MSR code, any field of size

or higher suffices. For specific parameters, the

matrix can be handcrafted to yield smaller field sizes.

2) Complexity of Repair of Systematic Nodes: Each node

participating in the exact repair of systematic node , simply

passes its th symbol. This property not only alleviates the need

for any computations to be performed at these helper nodes,

but also minimises the total number of symbols that need to

be read. The latter feature of our code is practically appealing

since in certain applications of interest, the speed of repair may

be limited by the number of disk reads required at the helper

nodes.

The replacement node has to multiply the inverse of an

Cauchy matrix with an -length vector and then perform

subtractions for interference cancellation.

3) Complexity of Reconstruction: The complexity analysis is

provided for the case , , other cases follow on

the similar lines. A data collector connecting to the systematic

nodes can recover all the data without any additional processing.

A data collector connecting to some arbitrary nodes has to

(in the worst case) multiply the inverse of a Cauchy

matrix with vectors, and perform other operations having a

lower order of complexity.

F. Contiguous Reads for Repair

In many storage devices, data stored in contiguous locations

can be read faster than that stored noncontiguously. Recall that

under the MISER code (operating on one stripe of the data), the

repair of the th systematic node requires every other node to

pass its th symbol. Since repair is performed independently on

each stripe, if the data is stored stripe-wise, repair operations

would require noncontiguous reads at the helper nodes. In the

present section, we describe a scheme for interleaving the data,

that makes these reads contiguous. This scheme, while making

the repair process faster, retains the optimality of the code with

respect to its MDS property and the amount of data downloaded

during repair.

The message is assumed to be a block of size symbols

(for some integer ). This block is divided into stripes of

symbols each, and each stripe is encoded independently using

the MISER code. Each node stores the encoded symbols in

the following interleaved manner. The node first stores the

first symbols of each stripe, followed by the second symbols

of each stripe, and so on. More formally, denoting the th

symbol of stripe

of the node as , the symbols are stored in the node in the

order .

When the encoded data is stored in this fashion, the repair of

any failed systematic node requires reading only contiguous

data (within the block).

The interleaving scheme described above can also be used,

in a straightforward manner, to enable contiguous reads during

repair in other regenerating code constructions such as [9],

[17], [25]. Moreover, this also raises the interesting question

of whether one can design joint coding and data placement

algorithms that can optimize both the repair bandwidth and the

disk access time at the helper nodes.

G. Relation to Subsequent Work [14]

Two regenerating codes are equivalent if one code can be

transformed into the other via a nonsingular symbol remapping

(this definition is formalized in Section VI-B). The capabilities

of equivalent codes are thus identical.

The initial presentation of the MISER code in [10] (the name

“MISER”was coined only subsequently) provided the construc-

tion of the code, along with two (of three) parts of what may

be termed as a complete decoding algorithm, namely: (a) re-

construction by a data collector, and (b) exact repair of failed

systematic nodes. It was not known whether the third part of

decoding, i.e., repair of a failed parity node could be carried out

by the MISER code. Following the initial presentation of the

MISER code [10], in [14] the authors establish that the MISER

code can also perform exact repair of parity nodes and provide

explicit mechanisms for the same.6

VI. NECESSITY OF INTERFERENCE ALIGNMENT

AND NONEXISTENCE OF SCALAR, LINEAR,

EXACT-REPAIR MSR CODES FOR

In Section V, explicit, exact-repair MSR codes are con-

structed for the parameter regimes

performing reconstruction and exact repair of systematic nodes.

These constructions are based on the concept of interference

alignment. Furthermore, these codes have a desirable property

6In [14] a class of regenerating codes is presented that have the same pa-
rameters as the MISER code. This class of codes can however, be shown to be
equivalent to the MISER code (and hence to each other) under the equivalence
notion presented in Section VI-B.
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of having the smallest possible value for the parameter , i.e.,

.

As previously discussed in Section I-C, the problem of con-

structing exact-repair MSR codes is (in part) a non-multicast

network coding problem. In particular, for the case of , it

reduces to a scalar network coding problem. Upon increase in

the value of , the capacity of every data pipe is increased by a

factor of , thereby transforming it into a vector network coding

problem. Thus, corresponds to the absence of symbol

extension, which in general, reduces the complexity of system

implementation. Furthermore, as noted in Section I-A, an MSR

code for every larger integer value of , can be obtained by con-

catenating multiple copies of a code. For this reason, the

case of is of special interest and a large section of the lit-

erature in the field of regenerating codes ([8]–[16]) is devoted

to this case.

In the present section, we show that for , there exist

no linear, exact-repair MSR codes achieving the cut-set bound

on the repair bandwidth in the absence of symbol extension. In

fact, we show that the cut-set bound cannot be achieved even

if exact repair of only the systematic nodes is desired. We first

assume the existence of such a linear, exact-repair MSR code

satisfying:

(46)

and

(47)

Subsequently, we derive properties that this code must neces-

sarily satisfy. Many of these properties hold for a larger regime

of parameters and are therefore of independent interest. In par-

ticular, we prove that interference alignment, in the form de-

scribed in Section IV, is necessary. We will show that when

the system becomes over-constrained, leading to a

contradiction.

Remark 4: In recent work, subsequent to the original sub-

mission of this paper, it is shown in [19], [20] that the MSR

point under exact repair can be achieved asymptotically for all

via an infinite symbol extension, i.e., in the limit as

. This is established by presenting a scheme under which

, where denotes the repair bandwidth. Note

that in the asymptotic setup, the parameters and also tend

to infinity as they are multiples of .

A. Additional Notation

We introduce some additional notation for the vectors

passed by the helper nodes to the replacement node. For ,

, a set of nodes with and ,

let , denote the vector passed by node for repair of

node , where is the set of nodes assisting in the repair. In

keeping with our component notation, we will use to

denote the th component, , of this vector.

Recall that a set of vectors are aligned when the

vector-space spanned by them has a dimension no more

than one. Given a matrix , we denote its column-space by

and its (right) null space by . Clearly,

.

B. Equivalent Codes

Two codes and are equivalent if can be represented in

terms of by

i) a change of basis of the vector space generated by the

message symbols (i.e., a remapping of the message sym-

bols), and

ii) a change of basis of the column-spaces of the nodal gen-

erator matrices (i.e., a remapping of the symbols stored

within a node).

A more rigorous definition is as follows.

Definition 2 (Equivalent Codes): Two Codes and are

equivalent if

(48)

(49)

, , , all sets of helper nodes (with

and ), for some nonsingular matrix ,

and some nonsingular matrices .

Since the only operator required to transform a code to its

equivalent is a symbol remapping, two equivalent codes are

identical with respect to data reconstruction and repair band-

width. Hence, in the sequel, we will not distinguish between

two equivalent codes and the notion of code equivalence will

play an important role in the present section. Here, properties of

a code that is equivalent to a given code are first derived and the

equivalence then guarantees that these properties hold for the

given code as well. The next theorem uses the notion of equiva-

lent codes to show that every linear exact-repair MSR code can

be made systematic.

Theorem 8: Every linear, exact-repair MSR code can be

made systematic via a nonsingular linear transformation of the

rows of the generator matrix, which simply corresponds to a

re-mapping of the message symbols. Furthermore, the choice

of the nodes that are to be made systematic can be arbitrary.

Proof: Let the generator matrix of the given linear, exact-

repair MSR code be . We will derive an equivalent code

that has its first nodes in systematic form. The reconstruction

(MDS property) of code implies that the submatrix

of ,

is nonsingular. Define an equivalent code having its generator

matrix as:

(50)

Clearly, the left-most columns of form a iden-

tity matrix, thus making the equivalent code systematic. As

the repair is exact, the code will retain the systematic form fol-

lowing any number of failures and repairs.

The transformation in (50) can involve any arbitrary set of

nodes in , thus proving the second part of the theorem.

The theorem above permits us to restrict our attention to the

class of systematic codes, and assume the first nodes (i.e.,
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Fig. 7. Generator matrix of the entire code. First (block) columns are as-
sociated with the systematic nodes 1 to and the next (block) columns to the
parity nodes to . Empty blocks denote zero matrices.

nodes ) to be systematic. Recall that, for systematic

node ,

if

if
(51)

Thus, systematic node stores the symbols in .

C. Approach

An exact-repair MSR code should be capable of performing

exact repair of any failed node by connecting to any arbitrary

subset of of the remaining nodes, while meeting the

cut-set bound on repair bandwidth. This requires a number of

repair scenarios to be satisfied. Our proof of nonexistence con-

siders a less restrictive setting, in which exact repair of only the

systematic nodes is to be satisfied. Further, we consider only

the situation where a failed systematic node is to be repaired by

downloading data from a specific set of nodes, comprised of

the remaining systematic nodes, and some collection of

parity nodes. Thus, for the remainder of this section, we will

restrict our attention to a subset of the nodes in the distributed

storage network, of size nodes, namely, the set of sys-

tematic nodes and the first parity nodes. Without loss of gen-

erality, within this subset, we will assume that nodes 1 through

are the systematic nodes and that nodes through

are the parity nodes. Then with this notation, upon failure of

systematic node , , the replacement node is assumed

to connect to nodes . It follows that in the

notation introduced earlier in the paper, fixing the re-

placement node also fixes the set of helper nodes . Thus, in

the rest of the paper, we drop the subscript from this notation.

The generator matrix of the entire code can be written in a

block-matrix form as shown in Fig. 7. In the figure, each (block)

column represents a node and each (block) row, a component.

The first and the remaining columns contain respectively,

the generator matrices of the systematic nodes and the parity

nodes.

We now outline the steps involved in proving the nonexis-

tence result. Along the way, we will uncover some interesting

and insightful properties possessed by linear, exact-repair MSR

codes.

1) We begin by establishing that in order to satisfy the data re-

construction property, each component in the parity-node

section of the generator matrix (see Fig. 7) must be non-

singular.

Fig. 8. Block matrix accessed by a data collector connecting to systematic
nodes 2 through and parity node . Empty blocks denote zero matrices.

2) Next, we show that the vectors passed by the parity nodes

for the repair of any systematic node must necessarily sat-

isfy two properties:

� alignment of the interference components, and

� linear independence of the desired component.

3) We then prove that in the collection of vectors passed by

a parity node for the respective repair of the systematic

nodes, every -sized subset must be linearly independent.

This is a key step that links the vectors stored in a node to

those passed by it, and enables us to replace the columns

of the generator matrix of a parity node with the vectors it

passes to aid in the repair of some subset of systematic

nodes. We will assume that these systematic nodes are

in fact, nodes 1 through .

4) Finally, we will show that the necessity of satisfying mul-

tiple interference-alignment conditions simultaneously,

turns out to be over-constraining, forcing alignment in the

desired components as well. This leads to a contradiction,

thereby proving the nonexistence result.

D. Deduced Properties

Property 1 (Nonsingularity of the Component Submatrices):

Each of the components

is nonsingular.

Proof: Consider a data collector connecting to systematic

nodes 2 to and parity node . The data collector has thus

access to the block matrix shown in Fig. 8.

For the data collector to recover all the data, this block ma-

trix must be nonsingular, forcing to be nonsingular. A

similar argument shows that the same must hold in the case of

each of the other components.

Corollary 9: Let be a matrix

each of whose columns is a linear combination of the

columns of for some , and having

components of size . Thus

Then for every , it must be that

(52)

Proof: Clearly,

(53)
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Fig. 9. Matrix depicting the (global-kernel) vectors to be recovered by replacement node 1 (represented by the matrix ), alongside the vectors passed by
the helper nodes (represented by ). Empty blocks denote zero matrices.

Let , for some matrix A. Then

(54)

For a vector ,

(55)

However, since is of full rank (Property 1) it follows that

(56)

(57)

(58)

The corollary says, in essence, that any linear dependence re-

lation that holds amongst the columns of any of the components

, also extends to the columns of the entire matrix itself.

We next establish properties that are mandated by the repair

capabilities of exact regenerating codes. Consider the situation

where a failed systematic node, say node , , is

repaired using one vector (as ) from each of the remaining

nodes.

Definition 3: When considering repair of systematic node ,

, the th component of each of the vectors passed

by the parity nodes will

be termed as desired components. The remaining components

, for every

will be termed as interference components.

The next property highlights the necessity of interference

alignment in any exact-repair MSR code. Clearly, the vectors

passed by the remaining systematic nodes have th

component equal to , and thus the onus of recovering the

“desired” th component of replacement node falls on the

parity nodes. However, the vectors passed by the parity nodes

have nonzero “interference” components that can be nulled

out only by the vectors passed by the systematic nodes. This

forces an alignment in these interference components, and this

is shown more formally below.

Property 2 (Necessity of Interference Alignment): In the vec-

tors passed by the parity nodes

for the repair of any systematic node (say, node ), for every

the interference components

must necessarily be aligned, and the

desired components must nec-

essarily be linearly independent.

Proof: We assume without loss of generality that ,

i.e., we consider repair of systematic node 1. The matrix de-

picted in Fig. 9 consists of the vectors needed to be recovered

in the replacement node , alongside the vectors passed by

the helper nodes . This matrix may be decom-

posed into three submatrices, namely: a matrix ,

comprising the columns to be recovered at the replacement

node; a matrix , comprising the vectors

passed by the remaining systematic nodes; and a matrix

, comprising the vectors passed by the parity nodes.

The vectors appearing in the first

row of the matrix constitute the desired component; for every

, the set of vectors ,

constitute interference components. Exact repair of node 1 is

equivalent to the recovery of from the columns of and

through a linear transformation, and hence it must be that

(59)

where the “ ” operator denotes concatenation.When we restrict

attention to the first components of the matrices, we see that we

must have

(60)

thereby forcing the desired components

to be linearly indepen-

dent. Further, from(59) it follows that

(61)

Clearly, , and from Fig. 9 it can be inferred that

(62)

Moreover, as the first component in is of rank (from (60)),

(63)

(64)
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Fig. 10. Table indicating the vectors passed by the parity nodes to repair the
first systematic nodes.

It follows from (61) and (64), that

(65)

and this forces, for ,

(66)

Thus, the interference components in are forced to be

aligned.

Remark 5: Properties 1 and 2 also hold for all , in which

case, each of the helper parity nodes pass a -dimensional

subspace, and each interference component needs to be confined

to a -dimensional subspace. Furthermore, the two properties

also hold for all exact-repair MSR codes (not neces-

sarily systematic), when of the helper nodes along with

the replacement node are viewed as systematic.

The next property links the vectors stored in a parity node to

the vectors it passes to aid in the repair of any set of systematic

nodes.

Property 3: For , the vectors passed by a parity

node to repair any arbitrary set of systematic nodes are lin-

early independent, i.e., for , it must be

that every subset of size drawn from the set of vectors

is linearly independent. (Thus the matrix

may be viewed as the generator matrix of a -MDS code.)

Proof: Consider Fig. 10 which depicts the vectors passed

by parity nodes to repair systematic nodes

. From Property 2 one can infer that in column

, the th (desired) components of the vectors are

independent, and the th (interference) components for all

are aligned. In particular, for all

, the th components of each column are aligned. Note

that as we have , which guarantees that the

set is nonempty, and hence the presence of an

th component.

We will prove Property 3 by contradiction. Suppose, for ex-

ample, we were to have

(67)

which is an example situation under which the vectors passed

by parity node for the respective repair of the first sys-

tematic nodes would fail to be linearly independent. Restricting

our attention to component , we get

(68)

Now, recall that the components of each column are

aligned. Hence from (68), in all other parity nodes, it must be

that

(69)

Noting that a vector passed by a helper node lies in the column-

space of its generator matrix, we now invoke Corollary 9:

(70)

This, along with (68) and (69), implies

(71)

Thus the dependence in the vectors passed by one parity node

carries over to every other parity node.

In particular, we have

(72)

However, from Property 2, we know that the vectors passed to

systematic nodes 2 to have their first components aligned, i.e.,

(73)

Aggregating all instantiations (w.r.t. ) of (72), the desired

component is confined to:

(74)

where the last inequality follows from (73). This contradicts the

assertion of Property 2 with respect to the desired component:

(75)

Remark 6: It turns out that an attempted proof of the analogue

of this theorem for the case , fails to hold.
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The connection between the vectors passed by a parity node

and those stored by it, resulting out of Property 3, is presented

in the following corollary.

Corollary 10: If there exists a linear, exact-repair MSR code

for , then there exists an equivalent linear, exact-

repair MSR code, where, for each parity node, the columns of

the generator matrix are respectively the vectors passed for the

repair of the first systematic nodes.

Proof: Since a node can pass only a function of

what it stores, the vectors passed by a parity node

, for repair of the systematic nodes must

belong to the column-space of its generator matrix, i.e.,

(76)

Further, Property 3 asserts that the vectors it passes for repair of

the first systematic nodes are linearly independent, i.e.,

(77)

It follows from (76) and (77) that the generator ma-

trix is a nonsingular transformation of the matrix

. The two codes with generator matrices

given by the two representations are hence equivalent.

In the equivalent code, each row of Fig. 10 corresponds to the

generator matrix of the associated parity node, i.e.,

(78)

Since the capabilities of a code are identical to an equivalent

code, we will restrict our attention to this generator matrix for

the remainder of this section.

It follows from the discussion above that in the equivalent

code, for , each parity node passes its th symbol for

repair of the th systematic node. Coupled with the necessity

of interference alignment (Property 2), this implies that for any

and , the th component of the

th column of the respective generator matrices of any two parity

nodes are scalar multiples of each other. This is formalized in

the following property.

Property 4 (Code Structure—What Is Stored): For

, any component ranging from to across the generator

matrices of the parity nodes differ only by the presence of a

multiplicative diagonal matrix on the right, i.e.,

...
. . .

...

(79)

where the matrices of the form are diagonal ma-

trices (and where, for instance, we can choose ,

in which case ).

Proof: Consider the first column in Fig. 10, comprising the

vectors passed by the parity nodes to repair node 1. Prop-

erty 2 tells us that in these vectors, the components ranging

from to constitute interference, and are hence aligned.

Clearly, the same statement holds for every column in Fig. 10.

Since the generator matrices of the parity nodes are as in (78),

the result follows.

For the repair of a systematic node, a parity node passes a

vector from the column-space of its generator matrix, i.e., the

vector passed by parity node for repair of failed sys-

tematic node can be written in the form:

(80)

for some -length vector .

In the equivalent code obtained in (78), a parity node simply

stores the vectors it passes to repair the first systematic

nodes. On the other hand, the vector passed to systematic node

, , is a linear combination of these vectors. The

next property employs Property 3 to show that every coefficient

in this linear combination is nonzero.

Property 5 (Code Structure—What is Passed): For

, and a helper parity node assisting a failed systematic node

(a) For , , and

(b) For , every element of is

nonzero.

Proof: Part (a) is a simple consequence of the structure

of the generator matrix of the code. We will prove part (b) by

contradiction. Suppose , for some .

Then is a linear combination of only the first

columns of . This implies,

(81)

This clearly violates Property 3, thus leading to a contradiction.

E. Proof of Nonexistence

We now present the main theorem of this section, namely,

the nonachievability proof. This proof is based on the necessity

of alignment of the interference components, and independence

of the desired components in the vectors passed for repair of a

failed node. The proof, in essence, shows that the conditions of

interference alignment necessary for exact repair of systematic

nodes, coupled with the MDS property of the code, over-con-

strain the system, and lead to alignment in the desired compo-

nents as well.

We begin with a toy example that will serve to illustrate the

proof technique. Consider the case when

, which falls under the parameter range of interest as

. It follows from (5) that .

Consider the vectors passed by the parity nodes 6 and 7 for the

repair of the systematic nodes 3 and 4. From Property 2, the

vectors passed by nodes 6 and 7 for the repair of node 3 must

be aligned along components 4 and 5 [Fig. 11(a)]. Also from

Property 2, the vectors passed by nodes 6 and 7 for the repair
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Fig. 11. Toy-example, with parameters , to illustrate the proof of nonexistence.

of node 4 must be aligned along component 5 [Fig. 11(b)]. It is

shown that the structure of the code established in Properties 4

and 5 along with the above alignment conditions forces align-

ment in component 4 (desired component) during repair of node

4 [Fig. 11(c)]. This is in contradiction to the assertion of Prop-

erty 2 with respect to the requirement of linear independence of

the desired components.

Theorem 11: Linear, exact-repair MSR codes achieving the

cut-set bound on the repair bandwidth do not exist for

in the absence of symbol extension (i.e., when ).

Proof: Recall that achieving the cut-set bound on the repair

bandwidth in the absence of symbol extension gives

. For the parameter regime under consideration,

we get . Furthermore, since , we have

(as ).7 Hence the system contains at least

systematic nodes and at least two parity nodes.

We use Property 4 to express the generator matrix of any

parity node, say node , in the form:

...

...

In this proof, we will use the notation to indicate

that the matrices and are scalar multiples of each other,

i.e., for some nonzero scalar and write to

indicate that matrices and are not scalar multiples of each

other.

We will restrict our attention to components and

. First, consider repair of systematic node . By the

interference alignment property, Property 2

(82)

(83)

(84)

(85)

7As discussed previously in Section I, corresponds to a trivial scalar
MDS code; hence, we omit this case from consideration.

where, (85) uses the nonsingularity of (which is a conse-

quence of Property 1).

We will use the notation to denote an diagonal

matrix, with the elements on its diagonal as the respective ele-

ments in . Observing that the matrices are diagonal

matrices, we rewrite (85) as

(86)

Similarly, alignment conditions on the th component

in the vectors passed for repair of systematic node give

(87)

and those on the th component in the vectors passed for

repair of systematic node give

(88)

Taking a product of the respective terms on the left and right

sides of (86), (87), and (88), we get

(89)

Observe that in (89), the matrices and are nonsin-

gular, diagonal matrices. As a consequence, the matrices in (89)

can be rearranged to yield:

(90)

By the nonsingularity of the matrices involved, this leads to:

(91)

This is clearly in contradiction to Property 2, which mandates

linear independence of the desired components in vectors

passed for repair of systematic node :

(92)

(93)
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VII. EXPLICIT MSR CODES FOR

In this section, we give an explicit construction of a high-rate

MSR code for the parameter set , capable of

repairing any failed node with a repair bandwidth equal to that

given by the cut-set bound. This parameter set is relevant since

(a) the total number of nodes in the system can be arbitrary

(and is not constrained to be equal to ), making the

code pertinent for real-world distributed storage systems

where it is natural that the number of nodes may go up or

down: in due course of time, new nodes may be added to

the system, or multiple nodes may fail or exit the system.

For example, in peer-to-peer systems, individual nodes

are free to enter and leave at will.,

(b) is the smallest value of the parameter that offers

a reduction in repair bandwidth, making the code suitable

for networks with low connectivity.

The code is constructed for , i.e., the code does not

employ any symbol extension. All subsequent discussion in this

section will implicitly assume .

For most values of the parameters , falls

under regime, where we have shown (Section VI)

that exact repair is not possible. This mandates the repair to be

functional in nature. Recall (from Section I-B-I) that under func-

tional repair, a failed node is replaced by a new node such that

following replacement, the resulting system continues to pos-

sess the data-reconstruction and optimal repair properties. Thus,

following replacement, only the nodal generator matrix of the

failed node undergoes a change without any loss of data or any

compromise in the optimality of the system. This means that,

the end-users can continue to connect to any nodes to recover

the entire data, and failed nodes can be repaired by connecting

to any nodes, and downloading the minimum amount of data

[meeting the bound in (15)]. The code presented here performs

a special type of functional repair, which we term as “approxi-

mately-exact” repair, where a part of the data stored in the nodes

is exactly repaired and the other part is functionally repaired.

When repair is not exact, a nodal generator matrix is liable

to change after a repair process. Thus, for the code construction

presented in this section, we drop the global kernel viewpoint

and refer directly to the symbols stored or passed. As a build

up to the code construction, we first inspect the trivial case of

. In this case, the cut-set lower bound on repair bandwidth

is given by

(94)

Thus the parameter regime mandates the repair band-

width to be no less than the message size , and has the re-

maining parameters satisfying

(95)

An MSR code for these parameters is necessarily an

scalar MDS code. Thus, in this code, node stores the symbol

(96)

where is a -length vector containing all the message symbols,

and is a set of -length vectors such that any arbitrary

of the vectors are linearly independent. Upon failure of a node,

the replacement node can connect to any arbitrary nodes

and download one symbol each, thereby recovering the entire

message from which the desired symbol can be extracted.

When , the cut-set bound (5) gives

(97)

Let the message symbols be the elements of the -dimen-

sional column vector

where and are -length column vectors. In the case of

, a code analogous to the code would have

node storing the two symbols:

(98)

Maintaining the code as in (98), after one or more node repairs,

necessitates exact repair of any failed node. Since in this regime,

exact repair is not possible for most values of the parameters, we

allow an auxiliary component in our code, as described below.

Under our construction, the symbols stored in the nodes are

initialized as in (98). On repair of a failed node, the code allows

for an auxiliary component in the second symbol. Thus, under

this code, the two symbols stored in node , , are

(99)

where is a -length vector corresponding to the auxiliary

component. Further, the value of is allowed to alter every

time node undergoes repair. Hence we term this repair process

as approximately-exact repair. For a better understanding, the

system can be viewed as analogous to a -channel; this is de-

picted in Fig. 12, where the evolution of a node through succes-

sive repair operations is shown. In the latter half of this section,

we shall see that the reconstruction and repair properties of the

code hold irrespective of the values of the set of vectors .

It is for this reason that in spite of the repair not being exact, the

code always retains the reconstruction and repair properties.

We now proceed to a formal description of the code

construction.

A. Code Construction

Let be a set of -length vectors such that any arbitrary

of the vectors are linearly independent. Further, let

be a set of -length vectors initialized to arbitrary values. Unlike

, the vectors do not play a role either in reconstruction

or in repair. In our code, node stores the two

symbols:

(100)

Upon failure of a node, the exact component, as the name

suggests, is exactly repaired. However, the auxiliary component

may undergo a change. The net effect is what we term as approx-

imately-exact repair.
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Fig. 12. Evolution of a node through multiple repairs in the MSR code.

Fig. 13. Sample MSR code for the parameters , , over . Also depicted is the repair of node 8,
assisted by helper nodes 1 to 6.

The code is defined over the finite field of size . As dis-

cussed subsequently in Section VII-B2, any field finite field of

size suffices for this construction.

Example: Fig. 13 depicts a sample code construction over

for the parameters with

giving . Here,

...

...

The two theorems below show that the code described above

is an MSR code by establishing respectively,

the reconstruction and the repair properties of the code.

Theorem 12 (Reconstruction, i.e., MDS Property): In the

code presented, all the message symbols can be recovered

by a data collector connecting to any arbitrary nodes.

Proof: Due to symmetry we assume (without loss of gen-

erality) that the data collector connects to the first nodes. Then

the data collector obtains access to the symbols stored in the

first nodes:

(101)

By construction, the vectors are linearly indepen-

dent, allowing the data collector to recover the first message

vector . Next, the data collector subtracts the effect of from

the second term. Finally, in a manner analogous to the decoding

of , the data collector recovers the second message vector .

Theorem 13 (Node Repair): In the code presented, approxi-

mately exact repair of any failed node can be achieved by con-

necting to an arbitrary subset of of the remaining

nodes. Furthermore, the resulting code retains the data-

reconstruction and the node-repair properties.

Proof: Due to symmetry, it suffices to consider the case

where helper nodes assist in the repair of a failed

node , . The two symbols stored in node

prior to failure are
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However, since repair is guaranteed to be only approximately-

exact, it suffices for the replacement node to obtain

where is an arbitrary vector that need not be identical to .

The helper nodes pass one symbol each,

formed by a linear combination of the symbols stored in them.

More specifically, helper node , , under our

repair algorithm, passes the symbol

(102)

We introduce some notation at this point. For ,

let be a matrix comprising the vectors

as its rows respectively. Let be a second

matrix comprising the vectors as its rows

respectively. Further, let . In terms of

these matrices, the symbols obtained by the replacement

node can be written as the -length vector

(103)

The precise values of the scalars are derived below.

Recovery of the First Symbol: Let be the linear combina-

tion of the received symbols that the replacement node takes to

recover the first symbol that was stored in the failed node, i.e.,

we need

(104)

This requires elimination of , i.e., we need

(105)

To accomplish this, we first choose

(106)

and in order to satisfy (105), we set

(107)

Note that the matrix is nonsingular by construction.

Now as is eliminated, to obtain , we need

(108)

(109)

Choosing and substituting the value of from (107),

a few straightforward manipulations yield

(110)

Now, choosing

satisfies (110), thereby enabling the replacement node to ex-

actly recover the first symbol. The nonsingularity of the matrix

used here is justified as follows. Consider

(111)

Now, if any element of the vector is zero, it would

imply that a linear combination of rows of can

yield . However, this contradicts the linear independence

of every subset of vectors in .

Recovery of the Second Symbol: Since the scalars

have already been utilized in the exact recovery of the first

symbol, we are left with fewer degrees of freedom. This, in

turn, gives rise to the presence of an auxiliary term in the second

symbol.

Let be the linear combination of the received symbols that

the replacement node takes to obtain its second symbol

, i.e., we need

(112)

Since the vector is allowed to take any arbitrary value, the

condition in (112) is reduced to the requirement

(113)

To accomplish this, we first choose

(114)

where, in order to satisfy (113), we choose

(115)

This completes the description of approximately-exact repair of

the failed node .

Finally, since both data-reconstruction and node-repair algo-

rithms work irrespective of the values of the auxiliary compo-

nents, following the repair process the code retains the data-re-

construction and node-repair properties.

In the example provided in Fig. 13, node 8 is repaired by

downloading one symbol each from nodes 1 to 6. The linear

combination coefficients used by the helper nodes are:

The replacement node retains the exact part, and obtains a dif-

ferent auxiliary part, with

B. Analysis of the Code

1) Approximately-Exact Nature of Repair: The MSR code

presented in this section consists of an exact part which is ex-

actly repaired, along with an auxiliary part which is only func-

tionally repaired. Thus this code does not enjoy the complete
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convenience of exact-repair (see Section I-B-I), however, it con-

tinues to possess important features that are associated with

exact-repair, as described below.

The nonexact nature of repair does not lead to any loss of data

or any compromise in the optimality of the system in terms of

the download required for reconstruction and node repair.More-

over, the encoding vectors associated with the nodes

remain unchanged across any number of repairs. This specific

structure of the code that is maintained throughout8 permits the

design of efficient decoding algorithms exploiting this structure.

For instance, one can choose the set of vectors from a

Vandermonde or a Cauchy matrix, and employ the special prop-

erties of these matrices, such as fast matrix multiplication, for

efficient data reconstruction and node repair.

2) Field Size Requirement: The sole restriction on the size

of the finite field of the code arises from the construction of

the set of vectors such that every subset of vectors are

linearly independent. For instance, these vectors can be chosen

from the rows of an Vandermonde matrix or an

Cauchy matrix, in which case any finite field of size or

respectively will suffice.

VIII. CONCLUSIONS

This paper considers the problem of constructing MDS re-

generating codes achieving the cut-set bound on repair band-

width, and presents four major results. First, the construction

of an explicit code, termed the MISER code, that is capable of

performing data reconstruction as well as optimal exact repair

of the systematic nodes, is presented. The construction is based

on the concept of interference alignment. The repair algorithm

of theMISER code also minimizes the number of disk reads and

computations required at the helper nodes during repair of sys-

tematic nodes. Moreover, repair can be performed by reading

contiguous memory locations at the helper nodes by using a

simple interleaving scheme. A shortening technique for MSR

codes is also provided. Second, we show that interference align-

ment is, in fact, necessary to enable exact repair in anMSR code.

Thirdly, using the necessity of interference alignment as a step-

ping stone, several properties that every exact-repair MSR code

must possess, are derived. It is then shown that these proper-

ties over-constrain the system in the absence of symbol exten-

sion for , leading to the nonexistence of any linear,

exact-repair MSR code in this regime. Finally, an explicit MSR

code for , suited for networks with low connectivity, is

presented. This is the first explicit high-rate MDS regenerating

code in the literature. Furthermore, this code does not impose

any restriction on the total number of nodes in the system.

APPENDIX

PROOF OF THEOREM 3: RECONSTRUCTION

IN THE MISER CODE

Proof: The reconstruction property is equivalent to

showing that the matrix, obtained by columnwise

concatenation of the generator matrices of the nodes to

which the data collector connects, is nonsingular. We denote

this matrix by . The proof proceeds via a series

8Unlike a general functional repair code, where the coefficients of the replace-
ment node may be arbitrary.

of linear, elementary row and column transformations of ,

obtaining new matrices at each intermediate step,

and the nonsingularity of the matrix obtained at the end of this

process will establish the nonsingularity of .

Since we need to employ a substantial amount of notation

here, we will make the connection between any notation that we

introduce here with the notation employed in the example pre-

sented in Section V-A. This example provided the MISER code

construction for the case , with the scalar selection

; we will track the case of reconstruction (Section V-A-III,

case (d)) when the data collector connects to the first systematic

node (node 1), and the first two parity nodes (nodes 4 and 5).

Let be the parity nodes to which the data collector

connects. Let be the

systematic nodes to which the data collector connects, and

be the systematic nodes to

which it does not connect. In terms of this notation, the matrix

is

(116)

Clearly, the sets and are disjoint.

In the example, the notation corresponds to , ,

, , and .

Since the data collector can directly obtain the

symbols stored in the systematic nodes it connects to,

the corresponding components, i.e., components ,

are eliminated from . Now, reconstruction is possible if the

matrix is nonsingular, where is given by

...
...

. . .
... (117)

The matrix in the example corresponds to the matrix

here.

The remaining proof uses certain matrices having specific

structure. These matrices are defined in Table I, along with their

values in the case of the example.

Note first that , being a submatrix of the Cauchy matrix ,

is nonsingular. Further, note the following relations between the

matrices:

(118)

and

(119)

We begin by permuting the columns of . Group the th

columns of as the first columns of ,

followed by th columns of as the

next columns, and so on. Thus, column number of

moves to the position . Next, group the th

columns of and append this group to the

already permuted columns, followed by the th columns, and

so on. Thus, column number of moves to the position

. Let be the matrix obtained
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TABLE I
NOTATION: MATRICES USED IN THE PROOF OF THEOREM 3

after these permutations. The matrix in the example,

corresponds to the matrix here.

Next, we note that there are groups with columns each in

. The component-wise grouping of the rows in the parent ma-

trix induces a natural grouping in , with its rows grouped

into groups of rows each. Thus can be viewed as a block

matrix, with each block of size , and the dimension of

being blocks. Now, in terms of the matrices defined

in Table I, the matrix can be written as

...
...

. . .
...

...
. . .

...

(120)

Next, as the data collector can perform any linear operation on

the columns of , we multiply the last block-columns

(i.e., blocks of columns each) in by (while leaving

the other block-columns unchanged). Using (118), the resulting

matrix is

...
...

. . .
...

...
. . .

...

(121)

The matrix in the example, corresponds to the matrix

here.

Observe that in the block-columns ranging from to of

the matrix , every individual column has exactly one nonzero

element. The message symbols associated with these columns

of are now available to the data collector and their effect on

the rest of the encoded symbols can be subtracted out to get the

following matrix

...
...

. . .
...

(122)

The matrix here, is the matrix in the example.

This is equivalent to reconstruction in the MISER code with

the parameter equal to when a data collector is attempting

data recovery from the parity nodes. Hence, general decoding

algorithms for data collection from the parity nodes alone can

also be applied, as in the present case, where data collection is

done partially from systematic nodes and partially from parity

nodes. The decoding procedure for this case is provided below.

In the example detailed in case (c) of Section V-A-III, where

the data collector connects to all three parity nodes, is related to

this general case with , and . We will

track this case in the sequel.

The data collector multiplies each of the block-columns in

by . From (119), the resultant matrix is

...
...

...
. . .

...
(123)

The matrix in the example, corresponds to the matrix

here.

For , the th column in the th block-column con-

tains exactly one nonzero element (which is in the th row of

the th block-row). It is evident that message symbols corre-

sponding to these columns are now available to the data col-

lector, and their effect can be subtracted from the remaining

symbols. This intermediate matrix corresponds to the

matrix in the example. Next we rearrange the resulting ma-

trix by first placing the th column of the th block-column ad-

jacent to the th column of the th block-column and repeating

the same procedure for rows to get a ma-

trix as

...
...
...
. . .

...
...

(124)
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This is a block diagonal matrix which is nonsingular since

. Thus the remaining message symbols can be recovered by

decoding them in pairs.
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