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Interference and zero-bias anomaly in tunneling between Luttinger-liquid wires
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We present theoretical calculations and experimental measurements which reveal the Luttinger-liquid~LL !
nature of elementary excitations in a system consisting of two quantum wires connected by a long narrow
tunnel junction at the edge of a GaAs/AlGaAs bilayer heterostructure. The boundaries of the wires are impor-
tant and lead to a characteristic interference pattern in measurements on short junctions. We show that the
experimentally observed modulation of the conductance oscillation amplitude as a function of the voltage bias
can be accounted for by spin-charge separation of the elementary excitations in the interacting wires. Further-
more, boundaries affect the LL exponents of the voltage and temperature dependence of the tunneling con-
ductance at low energies. We show that the measured temperature dependence of the conductance zero-bias dip
as well as the voltage modulation of the conductance oscillation pattern can be used to extract the electron
interaction parameters in the wires.
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I. INTRODUCTION

Quasi-one-dimensional~1D! structures with gapless elec
tronic excitations, such as carbon nanotubes, quantum
edge states, and confined states at the edge of a quan
well heterostructure~i.e., quantum wires!, possess unique
properties which cannot be described by Landau’s Fer
liquid theory. Even small electron-electron interactions in
1D confinement make inadequate the picture based on
existence of long-lived fermionic quasiparticles which can
mapped onto single-particle states in a free-electron ga
powerful framework for understanding universal propert
of 1D electron systems was put forward by the formulat
of Luttinger-liquid ~LL ! theory.1 ~For a review see Ref. 2.!
The spectral density,A(k,v), of the one-electron Gree
function in a Luttinger liquid is fundamentally different from
that of a Fermi liquid: While the latter has one quasiparti
peak, the former has two singular peaks corresponding to
charge- and spin-density excitation modes.3,4

Tunnel-coupled quantum wires of high quality created
a cleaved edge of GaAs/AlGaAs double-quantum-well h
erostructures appear to be an exceptional tool for prob
spectral characteristics of a 1D system.5–7 It is achieved5 by
measuring the differential conductanceG(V,B) as a func-
tion of the voltage bias between the wires,V, and magnetic
field oriented perpendicular to the plane of the cleaved ed
B, allowing for simultaneous control of the energy and m
mentum of the tunneling electrons. In a recent paper8 we
demonstrated that the picture of noninteracting electrons
be used with great success to explain some of the most
nounced features of the conductance interference pa
arising from the finite size of the tunneling region. Takin
electron-electron interactions into account was shown to
plain experimentally observed long-period oscillation mod
lations in theV direction, which can be understood as
moiré pattern arising from spin-charge separation of el
tronic excitations. In this paper we use LL formalism to fu
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ther investigate an interplay between electron correlati
and the finite length of the tunnel junction, which allows
to understand peculiarities of the oscillations and the ze
bias anomaly in the measured tunneling conducta
G(V,B).

II. EXPERIMENTAL METHOD

In this section we describe the means by which we m
sure the tunneling conductance through a single isola
junction between two parallel wires.

A. Fabrication of the samples

The two parallel 1D wires are fabricated by cleaved-ed
overgrowth~CEO!, see Fig. 1 and Ref. 9. Initially, a GaAs
AlGaAs heterostructure with two closely situated paral
quantum wells is grown. The upper quantum well is 20-n
wide, the lower one is 30-nm wide, and they are separated
a 6-nm AlGaAs barrier about 300-meV high. We use
modulation doping sequence that renders only the up
quantum well occupied by a two-dimensional electron g
~2DEG! with a densityn'231011 cm22 and mobility m
'33106 cm2 V21 s21. After cleaving the sample in the
molecular-beam epitaxy growth chamber and growing a s
ond modulation doping sequence, two parallel quant
wires are formed in the quantum wells along the whole ed
of the sample. Both wires are tightly confined on three sid
by atomically smooth planes and on the fourth side by
triangular potential formed at the cleaved edge.

Spanning across the sample are several tungsten top
of width 2 mm that lie 2mm from each other~two of these
are depicted in Fig. 1!. The differential conductanceG of the
wires is measured through indium contacts to the 2D
straddling the top gates. While monitoringG with standard
lock-in techniques~we use an excitation of 10mV at 14 Hz!
at T50.25 K, we decrease the density of the electrons un
©2003 The American Physical Society12-1
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the gate by decreasing the voltage on it (Vg). At Vg5V2D ,
the 2DEG depletes andG drops sharply, because the ele
trons have to scatter into the wires in order to pass under
gate. ForV2D.Vg.VU the conductance drops stepwise ea
time a mode in the upper wire is depleted.10 In this voltage
range, the contribution of the lower wire toG is negligible
because it is separated from the upper quantum well b
tunnel barrier. WhenVg5VU , the upper wire depletes an
only the lower wire can carry electrons under the gate. T
last conduction channel finally depletes atVL andG is sup-
pressed to zero.

B. Measurement on an isolated tunnel junction

The measurements are performed in the configuration
picted in Fig. 1. The source is the 2DEG between two ga
G1 andG2 in Fig. 1, the voltages on which areV1,VL and
VL,V2,VU , respectively. The upper wire between the
gates is at electrochemical equilibrium with the source be
the 2DEG. This side of the circuit is separated by the tun
junction we wish to study from the drain. The drain is t
2DEG to the right ofG2 ~the semi-infinite 2DEG in Fig. 1!
and it is in equilibrium with the right, semi-infinite, uppe
wire and with the whole, semi-infinite, lower wire in Fig. 1
Thus, any voltage difference~V! induced between the sourc
and the drain drops on the narrow tunnel junction betw
the gates. This configuration gives us control over both
energy and the momentum of the tunneling electrons, as
plained below. An additional gate lying betweenG1 andG2
~not shown in Fig. 1! allows us to deplete the 2DEG in th
center of the source, thus reducing the screening of the in
actions in the wires by the 2DEG.

The energy of the electrons tunneling between the wire
given by eV, 2e being the electron charge. The tunnelin

FIG. 1. Illustration of the sample and the contacting schem
The sample is fabricated using the CEO method. The parallel
wires span along the whole cleaved edge~right facet in the sche-
matic!. The upper wire~UW! overlaps the two-dimensional electro
gas~2DEG!, while the lower wire~LW! is separated from them b
a thin AlGaAs barrier~AlGaAs is dark gray in the schematic; ele
tron liquids are light gray!. Contacts to the wires are made throu
the 2DEG. Several tungsten top gates can be biased to deplet
electrons under them: We show onlyG1, here biased to deplete th
2DEG and both wires, andG2, here biased to deplete only th
2DEG and the upper wire. The magnetic fieldB is perpendicular to
the plane defined by the wires. The depicted configuration allo
the study of the conductance of a tunnel junction between a sec
of lengthL of the upper wire and a semi-infinite lower wire.
12531
he
h

a

is

e-
s,

g
el

n
e
x-

r-

is

process occurs along the whole lengthL of the tunnel junc-
tion. Therefore, momentum is conserved to within an unc
tainty of order 2p/L!kF , wherekF is a typical Fermi wave
vector in the wires. We can shift the momentum of the tu
neling electrons with a magnetic field~B! perpendicular to
the plane defined by the wires. The value of the shift
\qB5eBd, whered is the center-to-center distance betwe
the wires.

III. DESCRIPTION OF THE EXPERIMENTAL RESULTS

In the experiment we measure the nonlinear differen
tunneling conductanceG(V,B) through a junction between
two parallel wires. The sample on which we report here c
tains four top gates allowing us to vary the length of t
junction L by choosing different combinations of gates. W
have studied in detail junctions withL52, 4, 6, and 10mm
as well as symmetric junctions (L5`). The results pre-
sented here are from junctions withL52, 6, and 10mm.
Many of the effects that we measure rely on the smallnes
1/L, while others ~which we address here in detail! are
present only whenL is finite.

A. Dispersions of elementary excitations in the wires

By mapping outG(V,B) we determine the dispersio
curves of the wires.5 These are given by the curves that a
traced by the main peaks as seen in Fig. 2. We can un
stand their gross features employing a noninteracting e
tron picture:5 The peaks result from tunneling between
Fermi point in one wire and a mode in the other wire. Sin
each occupied mode has two Fermi points, two copies of
dispersion show up in theG(V,B) scan. All in all, for each
pair of occupied modes in the two wires we expect to o
serve four dispersions, because there are four Fermi po
involved: 6kFu

i and 6kFl
j . ~Indices i and j label various

modes in the wires;u and l denote the upper and the lowe
wires.! In reality, we observe only some of the transition
For example, by carefully studying Fig. 2 one can distingu
dispersions of three modes in the upper wire and five in
lower one, but only the following transitions seem to have
sizable signal:uu1&↔u l 1&, uu3&↔u l 2&, and uu2&↔u l 3,4,5&,
where the order in the list is of decreasingB2

i , j ~see below!;
uu3& is the 2DEG occupying the upper quantum well.5 Such
selection rules are related to the shape of the wave funct
in the direction perpendicular to the cleaved edge. In ide
cal wires, one would expect only the transitionsuun&↔u l n& to
appear, due to the orthogonality between different modes
dissimilar wires, the selection rules are different and le
strict, so other transitions are observed.

The dispersions allow us to extract the densities of el
trons in each mode,nu( l )

i 5(2/p)kFu(l)
i , as follows. Tunneling

among each pair of occupied modes is enhanced nearV50
at two values of B.0, where the two curves in
G(V,B) cross. In the first~in the following referred to as the
‘‘lower crossing point’’!, which occurs atB1

i , j , the direction
in which the electrons propagate is conserved in the tun
ing process. In the second~referred to as the ‘‘upper crossin
point’’ !, the Lorentz force exerted byB2

i , j exactly compen-

.
D

the

s
on
2-2



o
e
s

he
th

ite
e
lt

de
th
o

n-
s

is
be
fie

dis-
n a
tic
pth

s of
ting
ies
ve-

-

is
can

the

on
m-
oon
ous

ha-
es,

of
ttern

ure
at
pro-
s. In
run-
bes
the
ling
see
ed

ross-
n

t
he

ls

iv
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sates for the momentum mismatch between oppositely m
ing electrons, and the direction of propagation of the tunn
ing electrons reverses. In wires with a vanishing cro
section, these crossing points occur at

uB1(2)
i , j u5

\

ed
ukFu

i 7kFl
j u. ~1!

In principle, Eq.~1! can be used to extract the densities of t
modes, regardless of electron-electron interactions in
wires6 or mesoscopic charging11 that can merely smear them
at a finite voltage bias. In realistic wires that have a fin
cross section, finding the densities is hampered by the w
magnetic-field dependence that they acquire. This difficu
is overcome by a simple fitting procedure that we have
veloped: We assume that all the modes in a wire have
same field dependence, a reasonable assumption for
tight-confining potential in the growth direction of the qua
tum wells. We then guess theB50 occupations of the mode
in each wire,nu

i (0) andnl
j (0), andcalculate their field de-

pendencies. If the resulting dispersions do not cross atB1(2)
i , j ,

we adjustnu
i (0) andnl

j (0) and repeat the procedure. This
done iteratively for all the crossing points that we see,
cause changing the occupation of one mode affects the

FIG. 2. Plot ofG(V,B) for a 10-mm junction. Higher values
of the conductance are depicted in lighter shades: The top bar g
the key.
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dependence of all the other occupations in a wire. The
persion that we use is that of noninteracting electrons i
finite quantum well, in the presence of an in-plane magne
field. Such a dispersion depends only on the width and de
of the well and on the band mass of electrons in GaAs.

In every case we have studied, we see clear deviation
the measured dispersions from the calculated noninterac
ones at a finite bias. In particular, we find that the velocit
of some excitations are enhanced relative to the Fermi
locities vFu(l) . The former are given by

vp5
1

d

]V

]B U
B

1(2)
i , j

~2!

~along the observed main peaks!, while the latter can be ob
tained by the calculated slope of the~noninteracting! disper-
sions at the Fermi points. This velocity enhancement
thought to correspond to the charge-density modes and
be accounted for by electron-electron interactions in
wires.6,5

The ability to determine the dispersion relations relies
the high quality of the junctions to sustain momentu
conserving tunneling. Momentum relaxation ensues as s
as invariance to translations is broken. The most obvi
mechanism by which this occurs is the finiteness ofL. We
find that we indeed observe its effects. The second mec
nism is the disorder inherent to all semiconductor devic
some effects of which seem also to be observed.

B. Oscillations

The most spectacular manifestation of the breaking
translational invariance is the appearance of a regular pa
of oscillations away from the dispersion curves. Figures 3~a!
and 4~a! are typical examples of the patterns that we meas
at low magnetic field. In this range of field, the lines th
correspond to the dispersion curves appear as the
nounced peaks that extend diagonally across the figure
addition to these we observe numerous secondary peaks
ning parallel to the main dispersion curves. These sidelo
always appear to the right of the wire dispersions, in
region that corresponds to momentum-conserving tunne
for an upper wire with a reduced density. As a result, we
a checkerboard pattern of oscillations in region I, a hatch
pattern in region II, and no regular pattern in region III@see
Figs. 3~a! and 4~a! for the definitions#.

The interference pattern also appears near the upper c
ing point at high magnetic field. A typical example is show
in Fig. 5.

The frequency of the oscillations depends onL. WhenL is
increased from 2mm, Fig. 3, to 6mm, Fig. 4, the frequency
in bias (DV) and in field (DB) increases by a factor of abou
3. The period is approximately related to the length of t
junction through the formula

DVL/vF5DBLd5f0 , ~3!

wheref052p\/e is the quantum of flux.
A close examination of the low-field oscillations revea

es
2-3
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FIG. 3. Nonlinear conductance oscillations at low field from a 2-mm junction. ~a! Oscillations as a function of bothB and V. ~A
smoothed background has been subtracted to emphasize the oscillations.! The brightest~and darkest! lines, corresponding to tunneling
between the lowest modes, break theV-B plain into regions I, II, and III. Additional positively-sloped bright and dark lines in II arise fr
other 1D channels in the wires and are disregarded in our theoretical analysis. Also present is a slow modulation of the streng
oscillations along the abscissa.~b! Absolute value of the peak of the Fourier transform ofS121/bG(V,S111/b) at fixedV in region II as a
function of V. ~See Sec. IV B 1 for the definition ofS, b, and other details.! Its slow modulation as a function ofV is easily discerned.
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an interesting behavior of their envelope. Notable is the s
pression ofG(V,B) near V50 which is independent o
field. Also visible are faint vertical gray stripes, where t
amplitude of the oscillations in theB direction is reduced.
The modulation of the oscillation amplitude, as a function
V, is shown in Figs. 3~b! and 4~b!. The oscillatory part ofG
12531
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thus depends onV on two major scales: The faster scale~0.5
mV for L52 mm) corresponds to the oscillations describ
by Eq. ~3!. The slower scale~2 mV for L52 mm) governs
the distance between the stripes of suppres
G(V,B) parallel to the field axis, including the zero-bia
suppression. Like the fast scale, the slow scale is roug
2-4
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INTERFERENCE AND ZERO-BIAS ANOMALY IN . . . PHYSICAL REVIEW B68, 125312 ~2003!
FIG. 4. Same as Fig. 3 but for a 6-mm junction. Note that the
oscillations are approximately three times faster than in Fig. 3
expected from Eq.~3!. For this junction, there are several addition
sidelobes present on the left of the principal peaks, unlike in
case of the shorter junction in Fig. 3.

FIG. 5. G(V,B) near the upper crossing point for a 6-mm junc-
tion. In this measurement, a central 2-mm gate midway betweenG1

andG2 is biased to deplete all upper-wire modes except the low
one. One can see a pattern of oscillations around the dispe
peaks.
12531
inversely proportional to the lithographic length of the tu
neling region.

C. A dip in the tunneling conductance

Prominent in all scans that have high enough resolution
V is a strong suppression of the conductance nearV50 at all
magnetic fields. The width of this conductance dip is of ord
of 0.1 mV, see Figs. 2 and 5. The size of the dip is ve
sensitive to temperature, as depicted in Fig. 6, and it ex
for T&1.0 K.

IV. THEORY AND DISCUSSION

The 1D modes in the upper quantum well are coupled
the 2DEG via an elastic 1D-2D scattering which ensure

s

e

st
on

FIG. 6. Zero-voltage dip of the tunneling conductanceG as a
function of temperature on a log-log scale. The circles show m
surements on a 6-mm junction atB52.5 T; the lines are a fit using
G}Ta for V50. The dashed line is the result fora5abulk(gl)
50.07 while the solid line is the result fora5aend(gl)50.35,
with gl50.59 ~andgu51! in Eqs.~49! and~50!, respectively; see
Sec. IV C 2 for a discussion. Insets:G(V) for T50.24 K andT
50.54 K ~the temperature dependence was generated from thV
50 point of such scans!. The curves were calculated with Eq.~51!
and using the above value ofgl extracted from the fit of the tem
perature dependence of the dip.@We obtainedFa(x) by convoluting
the derivative of the Fermi distribution in the 2D lead
@1/(4kBT)#sech2@eV/(2kBT)#, with the finite-temperature tunnel
ing density of states in the lower wire, see Eq.~5! in Ref. 12.# The
dashed lines correspond to theabulk value of the exponent while the
solid lines toaend.
2-5
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good electronic transfer between the extended and confi
states of the well.13 In addition to tunneling between th
confined states in the wires, if the extended states hav
appreciable weight at the edge, there will be a direct tra
tion from the 2DEG to the lower wire. With this in mind, w
separate the total current into two contributions, one due
tunneling between 1D bands and the other due to direct
neling from the 2DEG. As explained in Sec. III A, each
the wires carries several 1D modes. In our analysis and c
parison with the experiment, we will only consider the tra
sition between the lowest 1D bands of the wires~i.e., the
bands with the largest Fermi momentum!, uu1&↔u l 1&, and
the direct tunneling from the 2DEG,uu3&↔u l 2&, with both
having a strong signal, as seen in Fig. 2. In each wire, the
modes interact with each other, but since the bands have
different Fermi velocities, we treat them independently. T
is a reasonable approximation, as explained in Appendix

The geometry for our theoretical description is shown
Fig. 7. The potentialsUu(x) andUl(x) are felt by electrons
in the upper and lower quantum wires, respectively. T
electrons in the upper wire are confined to a region of fin
length by potential gates at both its ends~see the source
region in Fig. 1!. One of these gates (G1) causes the elec
trons in the lower wire to be reflected at one end, but
other (G2) allows them to pass freely under it. The effecti
tunneling region is determined by the length of the up
wire, which is approximately the regionuxu,L/2 in Fig. 7.
The magnetic field,B, gives a momentum boost\qB5eBd
along thex axis for the electrons tunneling from the upper
the lower wire.

First, we develop a general formalism in Sec. IV A. W
then apply it to study the conductance interference patter
Sec. IV B and the zero-bias anomaly regime in Sec. IV C

A. General formalism

Let us first consider transport between two 1D bands
the wires. We use the following model Hamiltonian to stu
the intermode tunneling in the system:

H5 (
n5u,l

H0
n1 (

nn85u,l

H int
nn81H1D-2D1H tun. ~4!

FIG. 7. Schematic picture of the theoretical model. The up
wire is formed by a potential wellUu(x) created by gatesG1 andG2

~shown in Fig. 1! and the lower wire is semi-infinite with the lef
boundaryUl(x) at gateG1 . c(x) is an electron wave function in th
upper wire. The energy and momentum of the tunneling electr
are governed by the voltage biasV and magnetic fieldB.
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H0
n is the kinetic energy of the electrons@n5u( l ) labels the

upper ~lower! wire#, H int
nn @H int

ul # describes spin-independen
electron-electron interactions in~between! the wires,H1D-2D
is an effective Hamiltonian for the 1D-2D scattering of ele
trons in the top quantum well, andH tun is the tunneling
Hamiltonian:

H0
n5vFn (

s
E dx@CRsn

† ~2 i ]x!CRsn2CLsn
† ~2 i ]x!CLsn#,

~5!

H int
nn85

1

4p (
ss8

E dkṼnn8~k!@2rRsn~k!rLs8n8~2k!

1rRsn~k!rRs8n8~2k!1rLsn~k!rLs8n8~2k!#, ~6!

H tun5l(
s
E dxCsu

† Csle
2 iqBx1H.c., ~7!

wheres and s8 are spin indices,Csn is the spin-s electron
field operator,CRsn andCLsn are the field operators for th
right and left movers, respectively,Csn5eikFn xCRsn

1e2 ikFn xCLsn , rRsn(k)5*dxeikxCRsn
† CRsn is the density-

fluctuation operator for the spin-s right movers~and analo-
gously for the left movers!, andṼnn8(k)5*dxeikxVnn8(x) is
the Fourier transform of the two-particle interaction potent
Vnn8(x). Writing H int in terms of the interactions betwee
electrons of fixed chirality in Eq.~6! is possible after restrict-
ing electron correlations to small momentum-transfer scat
ing, e.g., if Ṽ(k)}exp(2rcuku) with 1/r c!kF . ~By making
this approximation we disregard backward and umkla
scattering processes, which are thought to be unimportan
our cleaved-wire structure, see, e.g., Ref. 6.!

The 1D-2D scattering randomizes the direction of the
electrons in the top quantum well with a mean free p
l 1D-2D'6 mm.13 In infinite wires, this weak scattering ca
be taken into account by rounding the 1D electron-gas sp
tral function by a Lorentzian of half widthG51/(2t1D-2D),
wheret1D-2D is the 1D-2D scattering time.

If there were no interactions between the wires, i.e.,Vul
[0, low-energy spin and charge excitations in each w
would propagate with velocitiesvsn5vFn and vcn

5vFn /gn , respectively. The parametersgn can be obtained
by bosonization as

gn5F11
2Ṽnn~0!

p\vFn
G21/2

,1, ~8!

in the case of repulsive interactions,Ṽnn(0).0. In the limit
of a free-electron gas,Ṽnn(0)50, gn51.

We treat tunneling between the wires to lowest order
perturbation theory. Mesoscopic charging effects, such
discussed in, e.g., Ref. 11, are disregarded in our analy
The current~for electrons of each spin! is given by

I 5eulu2E
2`

`

dxdx8E
2`

`

dteiqB(x2x8)eieVt/\C~x,x8;t !,

~9!

r

s
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INTERFERENCE AND ZERO-BIAS ANOMALY IN . . . PHYSICAL REVIEW B68, 125312 ~2003!
whereC(x,x8;t) is a two-point Green function,

C~x,x8;t !5^@C l
†Cu~x,t !,Cu

†C l~x8,0!#&. ~10!

In the limit of vanishing interactions between the wires,
reduces to

C~x,x8;t !5Gu
.~x,t;x8,0!Gl

,~x8,0;x,t !

2Gu
,~x,t;x8,0!Gl

.~x8,0;x,t ! ~11!

expressed in terms of the one-particle correlation functio

Gn
.~x,t;x8,t8!52 i ^Cn~x,t !Cn

†~x8,t8!&, ~12!

Gn
,~x,t;x8,t8!5 i ^Cn

†~x8,t8!Cn~x,t !&. ~13!

Note: Throughout this paper, as in the above equations,
correlation functions are defined for electrons with a fix
spin orientation and the spin index is therefore omitted. T
results of this section also hold for direct 2DEG-1D tunn
ing, if we defineCsu(x,t) as the field operator for the 2DEG
at the edge of the upper quantum well.

B. Interference pattern

As discussed in Sec. III B, the breaking of translation
invariance due to the finite size of the tunneling junction c
result in an oscillatory dependence of the conductanceG on
voltage biasV and magnetic fieldB. In this section we dis-
cuss in detail this behavior that arises due to interferenc
electrons tunneling through a finite-size window. We sh
that our theoretical framework can quantitatively explain
conductance oscillations observed near the crossing poi

In the following, we mainly focus on the analysis of ve
distinct interference patterns measured at low magnetic fi
~as in Figs. 3 and 4!. In Sec. IV B 3 we briefly comment on
the conductance near the upper crossing point at high fi
~as in Fig. 5!. It appears likely that while in the former re
gime the translational invariance is broken due to the fin
ness of the tunneling region only, in the latter case so
other mechanisms may also play an important role.

In the actual experiments, several 1D electron modes
occupied in the wires. Here we consider only tunneling
tween modes which have the lowest energy of transve
motion, and hence the largest Fermi momentum along
wire, namely,uu1& andu l 1&. These modes have densities th
differ by only a few percent~see Ref. 5!. We thus make a
simplifying approximationvFu5vFl5vF , which is justified
by the measured dispersion slopes.5

1. Asymmetry due to soft boundaries

In Ref. 8 we showed that the observed asymmetry of
secondary oscillation peaks on the two sides of the m
dispersion curves~see Figs. 3 and 4! can be explained within
a noninteracting electron picture and assuming a soft c
fining potentialUu(x) for the upper wire. Here we will em
ploy the model developed there to quantitatively study
form of Uu(x).
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Using the phenomenological tunneling Hamiltonian~7!,
we express the current through the junction at zero temp
ture as

I}sgn~V!(
m

uM ~n,qB ,V!u2 ~14!

in terms of the tunneling matrix element

M ~n,qB ,V!5E dxcn* ~x!e2 iqBxwkl
~x! ~15!

between the upper-wire statecn and the lower-wire statewkl
,

the energy of which is lower byeV. The summation in Eq.
~14! is over the integers @sgn(V)21#/2,m
,euVuL/(p\vF) denoting the offset of thecn index n5nF
1sgn(V)m with respect to the statecnF

just below the Fermi
energy of the upper wire~and linearizing the dispersions ne
the Fermi points, assumingeuVu is not too large!. The current
~14! can be expressed by a single sum because the stat
the confined upper wire are discrete, while the states in
lower wire wkl

(x)5e6 ikl x can be indexed by a continuous

wave vectorkl . @As in Ref. 8, it is assumed that the le
boundaryUl(x) of the lower wire lies outside the tunnelin
region.# Since the Zeeman energy in GaAs is small, we
nore the spin degrees of freedom.

We argued8 that for practical purposes of understandi
our measurements, the sum in Eq.~14! can be replaced by an
integral

I}E
0

eV

deuM ~EFu1e,qB ,V!u2, ~16!

labeling states in the upper wire by energye with respect to
the Fermi energyEFu. For the conductance obtained by di
ferentiating the current, this approximation will smear o
thed functions appearing when the chemical potential of
upper wire crosses each discrete energy level. Physic
such smearing can be caused by 1D-2D scattering and fi
temperature, but even at low temperatures and vanish
scattering the result obtained by integration@Eq. ~16!# will
not be far off from that found by summation@Eq. ~14!# since
the dominant contribution to the oscillation pattern near
lower crossing point comes from differentiating the su
mand in Eq.~14! @or correspondingly the integrand in Eq
~16!#, as explained below.

We linearize the dispersions about the Fermi wave vec
kFn , so thatkl is given by (kl2kFl)vF5(e2eV)/\. The
wave vector inside the upper wire similarly depends on
ergy: (ku2kFu)vF5e/\. The matrix element square
uM (EFu1e,qB ,V)u2 can then be written as a sum of contr
butions due to tunneling between right movers and betw
left movers,

uM ~EFu1e,qB ,V!u25uM ~k1!u21uM ~k2!u2, ~17!

where k65ku2kl6qB5DkF1eV/(\vF)6qB and DkF
5kFu2kFl . The tunneling matrix element
2-7
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M ~k!5E dxeikxcu~x!e2 ikFux ~18!

is determined by the form of the bound-state wave funct
cu(x) at the Fermi level of the upper wire. We wrote th
right-hand side of Eq.~17! as an incoherent sum of the co
tributions of the two chiralities. This is an approximation w
make by disregarding additional interference arising due
the reflection of electrons in the lower wire under gateG1
~i.e., by the potentialUl in Fig. 7!. Taking the latter into
account does not considerably affect our results.

uM (k6)u2 do not depend on energye, and the current
~16! can, therefore, be written as8

I}V@ uM ~k1!u21uM ~k2!u2#. ~19!

The differential conductanceG5]I /]V corresponding to the
current I}VuM (V)u2 becomesG}uM (V)u21V]uM (V)u2/
]V. If, for example, the oscillatory component ofuM (V)u2

has the form sin(const3V), the amplitude of the second term
in the conductance will be 2pN times larger than the ampli
tude of the first term afterN periods of oscillation. The domi
nant contribution to the oscillatory component of the cond
tance near the lower crossing point is thus

G}V
]

]V
@ uM ~k1!u21uM ~k2!u2#. ~20!

If the upper-wire confining potentialUu is smooth enough
so that the states at the Fermi energy can be evaluated b
WKB approximation, the form ofM (k) @Eq. ~18!# can be
studied both numerically and analytically.8 In the region be-
tween the classical turning points,

cu~x!5
1

Aku~x!
eikFuxe2 is(x), ~21!

where ku(x)5kFu@12Uu(x)/EFu#
1/2 and s(x)5*0

xdx8@kFu

2ku(x8)#. In the stationary-phase approximation~SPA!,
M (k) is evaluated near positionsx6 (x1.x2) where
ku(x6)5kFu2k and the integrand in Eq.~18! has a station-
ary phase. In the case of a symmetric potential,Uu(x)
5Uu(2x), the SPA gives

M ~k!}
Q~k!

AUu8~x1!
cos@kx12s~x1!2p/4#, ~22!

whereQ(k) is the Heaviside step function, and the prime
Uu8 denotes the derivative. The SPA approximation~22! di-
verges for small values ofk and we have to resort to
numerical calculation of the integral in Eq.~18!.8 Figure 8
shows the calculateduM (k)u2.

We study the profile of confinementUu(x) by measuring
the periodDk of the uM (k)u2 oscillations as a function ofk.
In a square well of lengthL, this period is given by 2p/L. In
a soft confinement, the interference stems from the osc
tions of the electron wave function near the classical turn
points, so thatDk'2p/(x12x2). For a potential of the
form
12531
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Uu~x!5EFuU2x

L Ub

~23!

~whereb characterizes the ratio between the total length
the upper wire and the extent of its boundaries!,14 2x1/L
'(2k/kF)

1/b for k.0 assuming thatDkF!kF5(kFu1kFl)/2
~Ref. 8! (x252x1 for a symmetric potential! and the period
is therefore given byDk'(2p/L)(kF/2k)1/b. Experimen-
tally, we extractDk by measuring the distance between o
cillation zeros in region II of the interference shown in Fi
3. In order to reduce the statistical uncertainty, the cond
tance was averaged along lines of constantk1 , separately
for positive and negative bias. In terms of variableS
5\k1 /ed ~which reduces to magnetic fieldB at zero volt-
age and vanishingDkF),

DS'
2p\

edL S \kF

2edSD
1/b

. ~24!

This DS is compared with the data in Fig. 9 for sever

FIG. 8. uM (k)u2 obtained using wave functioncu for the 100th
WKB state in the potential well@Eq. ~23! with b58] of the upper
wire. The solid line is the numerical calculation, the dotted line
the SPA approximation@Eq. ~22!#, and the dashed line shows th
result for the square-well confinement, for comparison.

FIG. 9. Period of~faster! oscillations in region II of Fig. 3 as a
function of S5\k1 /(ed). Circles show measurements at positi
and negative bias and the curves are fits using Eq.~24! at several
values ofb. The best overall fit is reached atb'7.67 andL/L lith

'1.41, whereL lith52 mm.
2-8
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values ofb ~we extractkF'1.53108 m21 using measured
electron densities5!. At eachb shown in the figure, the dis
tanceL was found by the best~least-squares! fit of the curve
~24! to the measurements. The lithographic length for
junction wasL lith52 mm and the widthd531 nm. Such
fitting allows us to extract two quantities,L/L lith51.45
60.1 andb5862, characterizing the extent of the 1D co
finement and the sharpness of the potential-well bounda
respectively. It appears that the effective length of the up
wire @defined as the distance between the classical turn
points, see Eq.~23!# L is actually about a micron longer tha
the lithographic length. This conclusion is relatively insen
tive to the fitting procedure, sinceDS in Eq. ~24! approaches
2p\/(edL) for S*\kF /(2ed) if the exponent 1/b is small.
The difference betweenL andL lith can be due to significan
screening of the tungsten gates~which are positioned 0.5mm
above the junction! by the 2DEG in the upper quantum we
as viewed by the upper-wire electronic bands.

As a consistency check for the result of the fit in Fig.
we performed an analysis of the conductance oscillati
that takes into account the dependence onb. According to
theS21/b scaling of the oscillations’ period, see Eq.~24!, and
theS1/b21 falloff of their amplitude@which follows from Eq.
~22!, also see Ref. 8#, the functionS121/bG(V,S111/b) is
periodic in S111/b. Fourier analyzing it at a fixedV, and
settingb58, we obtained a main peak, the position of whi
depends very weakly onV, which corresponds to a length o
L52.8160.02mm, in agreement with the result of the fit. I
Fig. 3~b! we plot the absolute value of the main peak, whi
is seen to decay on a scale of a few mV. We discuss
decay in Sec. IV B 4. For comparison, we also Fourier a
lyzed the data in Fig. 4~a!. For that we found that one has t
use a larger value,b521.5, in order to obtain a relativel
voltage-independent position of the peak. This value ofb is
reasonable because it gives approximately the same bo
ary profile for a 6-mm ~upper! wire as b58 gives for a
2-mm wire.14 Again we obtained a reasonable lengthL
57.360.3 mm) that varied only weakly as a function ofV.
The height of the main peak in this case is shown in Fig. 4~b!
where it is seen to decay on a faster scale than for the sh
upper wire. The ratio of the scales is approximately the ra
of the upper-wire lengths.

2. Modulation due to spin-charge separation

In the following we describe how electron-electron inte
actions in the wires and between them affect the oscilla
pattern. We show our theoretical results forG(V,B) near the
lower crossing point of theuu1&↔u l 1& transition and com-
pare them to measurements on 2-mm and 6-mm junctions,
Figs. 3 and 4. In particular, we find that the difference in t
velocities of the charge- and spin-excitation modes in
double-wire system can account for the observedG(V,B)
suppression stripes running parallel to theB axis.

As a starting point, let us consider the case in which
interwire interactions are vanishingly small,Vul!Vll , and
the interactions in the two wires are the same,Vuu5Vll , so
that gl5gu5g, as defined in Eq.~8!. For positive voltages
V.0, the current~9! is then given by
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I 5eulu2E
2`

`

dxdx8E
2`

`

dteiqB(x2x8)

3eieVt/\Gu
.~x,t;x8,0!Gl

,~x8,0;x,t !. ~25!

At low magnetic field, the conductance has two main co
tributions, corresponding to the two edge-state chiraliti
The two contributions give bright conductance peaks a
sidelobes with opposite slopes, as described in Sec. IV B
Ref. 8. Let us discuss tunneling between the right mov
~the current due to tunneling between the left movers at fi
B equals the tunneling between the right movers at fie
2B). We assume that the electron density in each wire v
ies slowly on the length scale set by the respectivekF ~except
for unimportant regions very close to the boundaries!. The
zero-temperature Green functions entering Eq.~25!, in this
regime, can be written as3,4,15

Gu,l~x,t;x8,0!56
1

2p
Fu,l~x,x8!

1

~z2vFt6 i01!1/2

3
1

~z2vct6 i01!1/2F r c
2

z22~vct7 ir c!
2G 1/2g

,

~26!

wherevc5vF /g, g5(g1g2122)/4, z5x2x8, andr c is a
short-distance cutoff~i.e., 1/r c is a momentum-transfer cutof
in the electron-electron interactions!. Here, Gu is the G.

Green function~12! for the upper wire andGl is the G,

Green function~13! for the lower wire. The functionFn is
defined byFn(x,x8)5cn(x)cn* (x8), in terms of the WKB
wave functionscn(x) for right-moving electrons at the
Fermi energy in wiren in a confining potentialUn(x) which
must be chosen self-consistently to give the correct elec
density. Here we assume thatcu(x) andUu(x) are given by
Eqs.~21! and ~23!, while c l(x)5eikFlx.

Several additional approximations are implied by usi
Eq. ~26! to calculate the tunneling current~25!: ~i! The weak
1D-2D scattering is neglected,~ii ! The voltage is small
enough so that one can linearize the noninteracting elec
dispersions about the Fermi points and use LL theory~i.e.,
we disregard the curvature!, and ~iii ! t!vcL, so that the
discreteness of the energy levels of the upper wire due
electron confinement within a well of lengthL and their re-
flection at the boundaries does not considerably modify
LL Green function for an infinite wire@the confinement,
however, is manifested in the form of the wave functi
cu(x); effects due to the discreteness are discussed in
IV B 1 in the regime of noninteracting electrons, and th
are believed to be small#. The last approximation break
down for very low voltages~and, correspondingly, long
times! in the regime of the zero-bias anomaly, which
treated separately in Sec. IV C 1.

Substituting Green functions~26! into integral ~25!, we
obtain for the tunneling current
2-9
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I}E
2`

`

dxdx8ei (qB2kFl)(x2x8)cu~x!cu* ~x8!h~x2x8!,

~27!

using the definition

h~z!52E
2`

`

dt
eieVt/\

~z2vFt1 i01!~z2vct1 i01!

3S r c

z2vct1 ir c
D gS r c

z1vct2 ir c
D g

. ~28!

The integrand in Eq.~28! has a simple analytic form: It ha
two first-order poles att5z/(vF1 i01) and t5z/(vc1 i01)
and two branch cuts starting with singularities att5(6z
1 ir c)/vc . The contour of integration can be deformed lea
ing two nonvanishing contributions:h(z)5h1(z)1h2(z).
The first contribution,h1(z), is due to integration around th
poles,

h1~z!5
2p ieieVz/(\vc)

~vc2vF!~z1 i01!
S r c

2

r c
212izrc

D g

2
2p ieieVz/(\vF)

~vc2vF!~z1 i01!

3H r c
2

r c
21z2@12~vc /vF!2#12izrcvc /vF

J g

,

~29!

and the second contribution,h2(z), is due to integration
around the branch cuts. Forz.0, for example,

h2~z!52isin~gp!e2eVrc /(\vc)

3H E
z/vc

`

2E
2`

2z/vcJ dtF r c
2

~vct !
22z2G g

3
eieVt/\

~z2vct2 ir c!~z2vFt2 ir cvF /vc!
. ~30!

In our system we expect that5 g'0.7, so thatg'0.03!1.
Therefore, sincer c;30 nm ~the width of the wires! and z
,L'2 – 6 mm, the terms of the form (•••)g in Eq. ~29! can
be safely ignored~except for the regime of extremely low
voltages, which is discussed in Sec. IV C 1!. Furthermore,
h2(z)!h1(z), so that we arrive at an approximation

h~z!'22p i
eieVz/(\vF)2eieVz/(\vc)

~vc2vF!~z1 i01!
. ~31!

Substituting this into Eq.~27!, we can now evaluate the cu
rent. One notices that after making the approximation~31!,
the current ~27! becomes the same as if there were
electron-electron interactions but different Fermi velocit
in the two wires, given byvF and vc . Using Eqs.~27! and
~31!, we, finally, get for the conductanceG5]I /]V:
12531
-

s

G~V,B!}
1

vc2vF
F 1

vF
uM ~kF!u22

1

vc
uM ~kc!u2G , ~32!

where kF,c5qB1DkF1eV/(\vF,c) and M (k) is given by
Eq. ~18!.

If the excitation velocities in the wires are nearly th
same,vF'vc5v, we can approximate the conductance~32!
by

G}
]

]h
huM ~h,V!u25uM ~k!u21V

]

]V
uM ~k!u2, ~33!

where M (h,V)5M (qB1DkF1hV) and h5e/(\v). This
reproduces Eq.~19!. One can refine the form of the secon
term on the right-hand side of Eq.~33! ~which can be much
larger than the first term, see Sec. IV B 1!, using approxima-
tion ~22!, when the difference between velocitiesvF andvc
becomes appreciable~which is the case forg'0.7):

G̃}
Q~k!

Uu8~x1!
•

sin@eVx1~1/vF21/vc!/\#

1/vF21/vc

3cos 2@kx12s~x1!#. ~34!

Here, k and x1 are defined using velocityv52(1/vF

11/vc)
21, and G̃ stands for the second contribution to th

conductance in Eq.~33!. At low bias,G̃→0 linearly inV and
the termG}uM (k)u2 governs the conductance. This cont
bution is further suppressed asVa ~at zero temperature! in
the zero-bias anomaly regime discussed in Sec. IV C 1.

We can generalize the preceding discussion of this sec
to include interactions between the wires, i.e.,VulÞ0. Since
the quantum wires are closely spaced, the interwire inte
tions can be sizable. Furthermore, because the Fermi ve
ties in modesuu1& and u l 1& are similar, the excitations in the
coupled wires can propagate with velocities quite differe
from those in the isolated wires. When we takeVul into
account, the dominant part of the Green function~10! be-
comes~assuming weak interactions, in the spirit of the pr
ceding discussion! ~Ref. 7!

C~x,x8;t1 i01!}2
FuF l* ~x,x8!

~z2vFut !
1/2~z2vFlt !

1/2

3
1

~z2vc2t !(1/2)1ur~z2vc1t !(1/2)2ur
,

~35!

where

vc6'
vcu1vcl

2
6

Ṽul~0!

p\
A11r 2. ~36!

Here, r 5p(vcu2vcl)/2Ṽul(0) and u r51/(2A11r 2) is fi-
nite for nonvanishing interactions between the wires, andvcn
are the charge-excitation velocities in the isolated wir
@Note that there appears to be a sign error in Ref. 7 in
2-10
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expression for the velocitiesvc6 in the physical case of re
pulsive interactionsṼul(0).0.#

For a symmetric double-wire system,vFu5vFl5vF , Vuu
[Vll , andvcu5vcl , so thatr 50 andu r51/2. ~In this case,
vc1 and vc2 become the velocities of the symmetric a
antisymmetric charge excitations, respectively.! The Green
function then reduces to C}2FuF l* (z2vFt)

21(z
2vc2t)21 and we reproduce our main result of this sectio
Eq. ~32!, after replacingvc with the antisymmetric charge
excitation velocityvc2 . This is natural since tunneling in
symmetric biwire can only excite the antisymmetric mod
at low magnetic fields.

In addition to the structure studied in Sec. IV B 1 for th
system of noninteracting electrons, we now show that
electron-electron interactions in the wires lead to a modu
tion of the conductance oscillations along the voltage ax8

This modulation suppresses the contributionG̃ @Eq. ~34!# to
zero in stripes parallel to the field axis. The distance betw
them is

DVmod5
p\vc2vF

ex1~vc22vF!
. ~37!

The ratio betweenDVmod and the period

DV5
2p\vc2vF

ex1~vc21vF!
~38!

due to the wave-function oscillations near the turning poi
@compare to Eq.~3!#

DVmod

DV
5

1

2

vc21vF

vc22vF
5

1

2

11g2

12g2
~39!

can be used as an independent measure of the intera
parameterg25vF /vc2 . From Figs. 3~a! and 4~a!, we find
that

g250.6760.07, ~40!

similarly to the value forgl obtained by the zero-bia
anomaly in Sec. IV C 2. Also, from Eq.~34! it follows that
the oscillation pattern@of the principal termG̃(V,B)] gains a
p-phase shift across each suppression strip. Such p
shifts can also be seen in experimental Figs. 3~a! and 4~a!.

Finally, we compare the interference pattern predicted
our theory, Eq.~32!, with the experiment, Figs. 3~a! and 4~a!.
G(V,B) calculated using a smooth confining potential@Eq.
~23! with b58] for the upper wire is shown in Fig. 10
Many pronounced features observed experimentally—
asymmetry of the sidelobes, a slow falloff of the oscillati
amplitude and period away from the principal peaks, an
terference modulation along theV axis, andp-phase shifts at
the oscillation suppression stripes running parallel to
field axis—are reproduced by the theory.

In Fig. 11, we repeat the calculation usingb522, which
defines potential~23! with a similar boundary profile near th
turning points of a three-times longer wire.14 ~Here by length
we mean the distance between the classical turning po
12531
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which, as explained in Sec. IV B 1, can be somewhat diff
ent from the lithographic length.! Again an agreement be
tween the predicted~Fig. 11! and measured~Fig. 4! oscilla-
tion patterns is apparent. In Fig. 11 a few weak sidelobes
appear to the left of the main dispersion peaks, unlike in F
10 where they appear strictly to the right. In addition, t
interference modulation in the voltage direction has shar
features in Fig. 11. These trends are expected for longer ju
tions as the boundaries become steeper on the scale s
the total length.

FIG. 10. The differential conductance interference patt
near the lower crossing point calculated by Eq.~32! for tunneling
between right movers~and similarly for left movers! using a smooth
confining potential for the upper wire, Eq.~23!. vc251.4vF ,
DkF54p/L, and b58. We used the numerically founduM (k)u2,
also shown in Fig. 8. The figure must be compared to experime
Fig. 3.

FIG. 11. Same as Fig. 10 but withDkF510p/L and b522,
describing a longer junction with a similar boundary profil
uM (k)u2 was correspondingly recomputed~now putting 300 elec-
trons per spin in the upper wire!. The figure must be compared t
experimental Fig. 4.
2-11
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Tunneling between 1D channels with different Fermi v
locities can also yield an interference modulation similar
that described in this section even when the electron-elec
interactions are vanishingly small.17 It is thus important to
emphasize that we suggest the spin-charge separation pi
to explain this modulation relying on the experimental res
~see Ref. 5! that the densities of modesuu1&, u l 1& and, there-
fore, the corresponding Fermi velocities are nearly identi

Using Eq.~35! we also studied various possible scenar
in which the interactions in the two wires differ. For e
ample, in a situation in which the upper wire is perfec
screened, so thatVuu ,Vul[0, there are still two velocities
present in the system,vF andvcl , but the interference patter
is qualitatively very different from that shown in Fig. 10 an
observed experimentally@see Figs. 3 and 4#. Since a consid-
erable weight of the charge-excitation contribution to t
tunneling strength is shifted to velocityvF ~which is now
also the charge-excitation velocity in the upper wire!, the
oscillation pattern does not exhibit the pronounced vert
suppression stripes, but rather a much weaker modula
The same conclusion also holds for intermediate regime
relative screening in the two wires, when the system is
symmetric and the two charge-excitation velocities sign
cantly differ. The pronounced suppression stripes are, th
fore, present only if most of the charge-excitation tunnel
weight is peaked at a single velocityvc2 ~which is guaran-
teed only when the system is nearly symmetric!.

Taking into account 1D-2D scattering in the upper qua
tum wire will smear out the oscillation pattern by its conv
lution with a Lorentzian in theB direction, similarly to Eq.
~52! below. The corresponding effect is, however, small b
cause of the high quality of our wires, which have a lo
scattering length,13 l 1D-2D'6 mm.

3. Upper crossing point

In practice, since the fields necessary to reach the up
crossing point are quite large~e.g., 7 T for theuu1&↔u l 1&
transition!, even atomic-scale disorder in the junction c
lead to a significant variationdqB of the momentum transfe
along the tunneling region. In particular,dqB5eBdd can be
comparable with 2p/L, the reciprocal wave vector of th
upper wire. This can significantly broaden the principal d
persion peaks. Furthermore, Zeeman splitting becomes a
a percent of the Fermi energy at these high fields and res
in somewhat different dispersions for different spin mod
Away from the main peaks, however, we still expect to s
sidelobes due to stationary phases at the ends of the junc
similarly to the regime of low magnetic fields discuss
above~with possibly a faster decoherence in theV direction
than just due to the dispersion curvature studied in S
IV B 4!. Such oscillations@with about the period~3!# are
indeed observed experimentally, as can be seen in Fig
Because of the mentioned complications, we, neverthel
do not pursue a detailed analysis of the conductance nea
upper crossing point in this paper.

4. Dephasing of the oscillations

It is evident from Figs. 3~a! and 4~a! that the interference
decays asuVu is increased. A more quantitative analysis
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this decay is shown in Figs. 3~b! and 4~b!, where the ampli-
tude of the oscillations is plotted as a function of voltage
is clear that the measured modulation has a fast-deca
envelope, which cannot be explained by the analysis of S
IV B 2. @See, for example, Eq.~34! which predicts that the
modulation is roughly periodic.#

One scenario for the dephasing occurs even in the cas
noninteractingelectrons considered in Sec. IV B 1, at whic
time we take the finite curvature of the single-particle disp
sions into account. Let us return to the form of the curren
Eq. ~16!:

I}E
0

eV

de@ uM ~k1!u21uM ~k2!u2#. ~41!

Correcting our previous results to take into account the n
linear dispersion near the Fermi points, we now writek6

5@kFu
2 12me/\2#1/22@kFl

2 12m(e2eV)/\2#1/26qB . @Using
Eq. ~41! we still imply low enough biasV, so that the den-
sities of states in the wires are relatively constant on
energy scale ofeuVu.# Expanding this expression to lowe
order in curvature, we further obtain

k65DkF1
eV

\vF
6qB1

eV~eV22e!

2\2vF
2kF

. ~42!

@Eq. ~19! can be recovered by neglecting the last te
above.# The current~41! then becomes

I}E
2eV/2

eV/2

deUM S DkF1
eV

\vF
1qB2

eeV

\2vF
2kF

D U2

1~qB→2qB!. ~43!

It is easy to see now that the contribution to the cond
tance obtained by differentiating the integrand in Eq.~43!
will be suppressed when the argumentk of the tunneling
matrix amplitudeM (k) changes by the full period of oscil
lationsDk upon energye variation between the integratio
limits 6eVsup/2. We thus arrive at the condition for the su
pression voltageVsup:

Dk5
~eVsup!

2

\2vF
2kF

. ~44!

ApproximatingDk'2p/L and translating it into the oscil
lation period in the bias directioneDV5\vFDk, one finally
obtains

Vsup

DV
5ALkF

2p
. ~45!

Using density 100mm21 for the lowest bands in the wires,5

we find Vsup/DV'7 ('12) for the 2-mm (6-mm) junc-
tion. An implicit assumption in the derivation is that we a
still close enough to the Fermi level so that higher-ord
corrections should not modify the result significantly@in par-
ticular, for the calculation of the matrix element~18! it is still
reasonable to use the wave functioncu(x) at the Fermi en-
ergy#.
2-12
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INTERFERENCE AND ZERO-BIAS ANOMALY IN . . . PHYSICAL REVIEW B68, 125312 ~2003!
The result of the numerical calculation using Eq.~43! and
the matrix elementM (k) plotted in Fig. 8~using parameters
characteristic for the 2-mm sample! is shown in Fig. 12.
Notice that when the voltage exceedsVsup'7DV, so that the
pattern starts dephasing due to the finite curvature, a bea
pattern appears. It differs from the data in several import
aspects: First of all, the lines of suppressedG(V,B) are not
equidistant. In addition,Vsup, corresponding to the first sup
pression stripe~on either the positive- or negative-voltag
sides!, is about twice larger than the period we observe
Fig. 3~b! and four times larger than that in Fig. 4~b!, which in
both cases is given by about 3DV. This suggests that th
source of the beating in the experimental data is not
curvature of the dispersions, but rather the spin-charge s
ration mechanism discussed in Sec. IV B 2.

Another important difference between Eq.~41! and the
experiment is that the decay of the oscillations is much str
ger in the latter. It might therefore be necessary to cons
both the curvature and electron interactions in order to
derstand the fast decay of the conductance oscillation am
tude with increasing voltage. Taking into account the cur
ture while bosonizing excitations of theinteracting
electrons1,2 leads to higher-order terms in the Hamiltonia
Physically this corresponds to interactions between bos
excitations which therefore acquire a finite lifetime. The s
gularities of the spectral densities will correspondingly
rounded, in turn smearing the conductance interference
tern. Further complications may arise from the electron ba
scattering which was entirely disregarded: While the lo
energy properties of the system are not affected by
backscattering~apart from rescaling of certain paramete!
since it renormalizes downward in the case of repulsive
teractions, the story at a finite energy could be different. T
reason for this is a slow~logarithmic! renormalization flow
of the backscattering strength. If a significant backscatte
is present in the original Hamiltonian, it could therefore s
be considerable at a finite energy. A detailed study of th
effects, however, lies beyond this paper’s scope.

FIG. 12. The differential conductance interference pattern n
the lower crossing point calculated by Eq.~43!, within the nonin-
teracting electron picture, using the matrix elementM (k) shown in
Fig. 8 ~for b58). See text for further details.
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C. Zero-bias anomaly

1. Crossing points

It is enlightening to further study tunneling between 1
channels at low bias when the magnetic field is tuned
match two Fermi points of the wires~see Sec. III A!. The
zero-bias properties are similar near the two crossing po
and, for definiteness, we choose to discuss the upper cr
ing, in which the magnetic wave vectorqB is close tokFu
1kFl and the field changes the chirality of the tunneling ele
trons: The tunneling is among the left movers of the up
wire and the right movers of the lower wire. For th
uu1&↔u l 1& transition, this point is located atB'7 T, see
Fig. 2. The results are straightforward to apply to the regi
of the lower crossing point, as well.

For clarity, we start by making a series of simplifyin
assumptions which will be dropped in subsequent gene
zations: First, we set the upper-wire and interwire inter
tions,Vuu andVul , to zero. Physically, this corresponds to
regime in which the Coulomb interactions in the upper w
are perfectly screened by the 2DEG. Secondly, we furt
simplify the model by assuming a square-well confinem
for the electronic states in the upper quantum wire and
infinitely steep reflecting left boundary for the electrons
the lower wire, i.e.,Uu(x) @Ul(x)# is constant foruxu,L/2
@x.2L/2# and infinite otherwise. As we showed in the pr
vious sections, both of the above assumptions are not v
realistic for the purpose of studying the interference patte
In the zero-bias anomaly regime, however, they can b
good starting point, at least, for pedagogical reasons.

Electron states participating in tunneling near the cross
points@Eq. ~1!# lie close to the Fermi levels in both wires.
is therefore possible to calculate the correlation functio
analytically using LL theory, after the dispersion relations
the wires are linearized. At the upper crossing point, we o
need to retain Green functions of the left movers of the up
wire and the right movers of the lower wire. At zero tem
perature these are given by

Gu
.~x,t1 i01;x8,0!52

1

4L

e2 ikFuze2Guzu/vF

sin
p

2L
~z1vFt !

5
L→`

2
1

2p

e2 ikFuze2Guzu/vF

z1vFt
~46!

for uxu, ux8u,L/2, andGu
. vanishing otherwise, and

Gl
,~x8,0;x,t1 i01!52

1

2p

e2 ikFlz

~z2vFt !
1/2

1

~z2vclt !
1/2

3F r c
2

z22~vclt2 ir c!
2G (gl1gl

21
22)/8

3F z822z2

z822~vclt !
2
G (gl2gl

21)/8

, ~47!

ar
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TSERKOVNYAK, HALPERIN, AUSLAENDER, AND YACOBY PHYSICAL REVIEW B68, 125312 ~2003!
for x,x8.2L/2, and vanishing otherwise, wherez5x2x8,
z85x1x81L, andr c is a small-distance cutoff. As specifie
above, Eq.~46! @Eq. ~47!# contains only the component fo
the left ~right! movers in the upper~lower! wire; we have
thus omitted terms proportional toeikFz, eikFz8, ande2 ikFz8

which do not contribute constructively to tunneling near t
upper crossing point. The last factor in the expression forGl

,

is due to the closed boundary atx52L/2.16,18,19

For sufficiently large voltages,eV@2\vF /(glL), the tun-
neling electrons do not feel the junction boundaries on
time scale set by the voltage. In particular, the left bound
of the lower wire does not affect the dynamics and, eff
tively, electrons directly tunnel into the bulk of the lowe
wire: The last term in Eq.~47! is close to unity and can
therefore, be omitted. Terms of the form 1/(z6vt)q entering
Eqs. ~46! and ~47! are dominated by the long-t behavior in
the integral@Eq. ~25!; the voltage is assumed to be positiv#
if eV!\max(vq,G), whereq5qB2(kFu1kFl). The conduc-
tance is then suppressed as a power law

G~V!}Va ~48!

with the exponentabulk5(gl1gl
2122)/4. This result is easy

to generalize for the case of unscreened interactions in
upper wire:

abulk5 (
n5u,l

gn1gn
2122

4
. ~49!

If the interwire interactionsVul are also significant, the el
ementary excitation modes in the wires become coupled
abulk has a more complicated form than that in Eq.~49!.6

Interference oscillations discussed in Sec. IV B can modu
the power-law current suppression~48!, setting an upper
voltage bound,eV,eDV'2p\vF /L, for the validity of Eq.
~48!. It would therefore be hard to observe the exact pow
law voltage dependence~48! with the exponent~49! in the
regime wheneV@2\vF /(glL) ~see, however, Sec. IV C 2!.

If eV!2\vF /(glL), electrons effectively tunnel into th
end of the lower wire and the current suppression is g
erned by processes in the lower wire outside the tunne
region. In particular, details of the interactions in the fin
upper wire do not play a role. The last term in Eq.~47! now
also contributes to the exponent of the long-t asymptotic, and
a in Eq. ~48! is given by

aend5
gl

2121

2
. ~50!

The upper wire, in this case, can be viewed as a point con
and the tunneling exponent is determined entirely by
properties of the lower wire outside the tunneling region.

At a finite temperature, the time scale relevant for t
discussion above is set by max(eV,kBT). The power law~48!
should now be replaced with

G~V,T!}TaFaS eV

kBTD , ~51!
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where Fa(x) is a known scaling function with propertie
Fa(0)5const andFa(x)}xa in the limit of x@1.12 At low
temperatures the conductance yields a low-bias dip exte
ing to voltageseV;kBT with G(V50)}Ta.

In Sec. IV B we showed that the conductanceG(V,B)
exhibits a characteristic interference pattern due to wa
function oscillations near the gates confining the tunnel
region. We can easily read out the profile of this pattern
the current~25! using the correlation functions~46! and~47!
in the low-energy regime considered in this section~namely,
t@z):

G~B!}E
2`

`

dk
G/vF

k21~G/vF!2
uM ~k2q!u2, ~52!

whereM (k) is the tunneling matrix element, Eq.~18!.
The discussion in this section also holds for the low

crossing point, at which the electrons do not change th
chirality upon tunneling. To directly apply the above resu
to this regime~for definiteness, assuming we now consid
the transition between the right-moving electrons!, we only
need to redefine the distance from the crossing point in
field direction: q5qB1kFu2kFl ~and analogously for the
transition between the left movers!.

2. Direct tunneling from the 2DEG

It is straightforward to generalize the main results of t
preceding section to the regime of direct tunneling from
2DEG. Equation~25! stays valid in this case, but nowGu

. is
the Green function for the 2DEG near the edge of the up
quantum well. We calculate this correlation function and d
cuss its limiting behavior at low energies in Appendix B. T
2DEG density of states is finite at the Fermi energy a
therefore, the long-t behavior of the one-particle Green fun
tion is G.(t)}1/t. If max(eV,kBT)!\vFkF,2D, where\kF,2D
is the 2DEG Fermi momentum andvF is the lower of the
Fermi velocities of the 1D band and the 2DEG, the tempe
ture and voltage dependence of the differential conducta
are governed by the exponents~49!, with gu51, or Eq.~50!,
depending on the relation between max(eV,kBT) and
2\vF /(glL). Because in this regime we tunnel directly fro
the 2DEG, interactions in the 1D modes of the upper qu
tum well do not play a role, and bothabulk and aend are
determined only by the interaction constantgl of the lower
wire. While the field dependence of the conductance for
direct 2DEG—lower-wire tunneling is different from Eq
~52! ~in particular, the conductance does not exhibit a stro
oscillation pattern!—the low-energy properties stay simila
to the case of the 1D-1D tunneling. In spite of a complica
dependence ofG(V,B) on magnetic field, the zero-bia
anomaly is pronounced in the data for tunneling either
tween different 1D bands or between the 2DEG and the
bands.

As described in Sec. III C, we measured the zero-volta
conductance dip at temperatures 0.2,T,2 K on a junction
of lengthL56 mm atB52.5 T. It can be seen in Fig. 2 tha
at this magnetic field, the conductance is dominated by di
tunneling from the 2DEG,uu3&↔u l 2&. Since \vFkF,2D/kB
2-14
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;100 K@T, the temperature dependence of the zero-b
dip can be used to extract the value of the interaction c
stant gl for the bandu l 2&. The data points and the~best!
theoretical fitting curves are shown in Fig. 6; we find

gl50.5960.03. ~53!

The transition point between the two lines in the plot is co
sistent with an estimate 2\vF /(glLkB)'0.5 K for the sec-
ond 1D mode of the lower wire,u l 2&.

As a consistency check, we plot in the insets to Fig
curves calculated using Eq.~51! ~taking bothaend andabulk
for the exponent!. gl and the overall proportionality con
stants were independently obtained from the power-law t
perature dependence of the bottom of the dip, i.e.,G(V
50,T), so that at this point we do not have any remaini
fitting parameters. The results show reasonable agreem
with the data: When max(eV,kBT).2\vF /(glL) the data is
consistent with a5abulk while when max(eV,kBT)
,2\vF /(glL) it is more consistent witha5aend. Thus, in
particular, there is a crossover betweenaend andabulk in the
data for G(V) at T50.24 K. For voltagesV;1 meV that
are comparable to the Fermi energies of the modes par
pating in tunneling, the power-law behavior~51! is replaced
by a more complex structure modulated by the dispersion
the wires and the upper well, see Fig. 2.

V. CONCLUSIONS

We have presented a detailed experimental and theore
investigation of tunneling between two interacting quant
wires of exceptional quality fabricated at the cleaved edge
a GaAs/AlGaAs heterostructure. The study focused on
vealing electron-electron interaction effects on the cond
tance interference pattern arising from the finite size of
tunneling region and the conductance suppression at
voltage.

In the analysis of the data the finiteness of the junct
plays a central role. Breaking translational invariance,
boundaries give rise to secondary dispersion peaks in
dependence of the conductance on voltage bias and mag
field. Smooth gate potentials result in a strongly asymme
interference profile, while the Coulomb repulsion in t
wires leads to spin-charge separation which, in turn, mo
lates the conductance oscillation amplitude as a function
voltage bias.

Interplay between the electron correlations in the wi
and the finiteness of the junction length also results in diff
ent regimes of the zero-bias anomaly. At the lowest voltag
the upper wire is effectively a point-contact source for inje
ing electrons into the semi-infinite lower wire. On the oth
hand, at higher voltages, electrons effectively tunnel betw
the bulks of the two wires along the length of the junctio

Using the temperature dependence of the zero-bias
we found the value of the interaction parametergl5vFl /vcl
for band u l 2& in the lower wire to be 0.5960.03. From the
ratio between the slow~due to spin-charge separation! and
fast ~due to upper-wire confinement! scales of the conduc
tance oscillations, we also extracted the interaction param
g25vF /vc2 corresponding to the antisymmetric charg
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excitation mode in the lowest bandsuu1& and u l 1& of the
biwire to be 0.6760.07.

While g2 and gl have similar numerical values, thes
quantities should be contrasted:gl is the interaction param
eter ~8! of the channelu l 2& in the lower wire, which is
screened by other 1D states in the wires as well as the 2D
of the upper quantum well.g2 , on the other hand, is a pa
rameter characterizing the~antisymmetric! charge mode in
the coupleduu1& andu l 1& channels of the two wires, which i
relatively weakly screened by the 2DEG since the latter ha
smaller Fermi velocity~being, nevertheless, still larger tha
the Fermi velocity ofu l 2&).

5 This can explain whyg2 andgl
are comparable whileu l 2& has about half the Fermi velocit
of uu1& and u l 1&. @The interwire interaction would only en
hance the mismatch as it reducesvc2 , see Eq.~36!.#

Similar values for the interaction parameterg, in the range
between 0.66 and 0.82, were found in Ref. 20 for sin
cleaved-edge quantum wires by measuring the tempera
dependence of the linewidth of resonant tunneling throug
localized impurity state. Spectral properties of the sa
double-wire structure as reported here were investigate
Ref. 5, also indicating comparable values ofg, about 0.75,
for various intermode transitions. An interaction parame
g'0.4 was found for GaAs quantum-wire stacks in reson
Raman-scattering experiments;21 the smaller value ofg there
can be attributed to much lower electron densities and
screening by the 2DEG, as in our measurements.

ACKNOWLEDGEMENT

We have enjoyed illuminating discussions with Y. Ore
and A. Stern. This work was supported in part by the U
Israel BSF, NSF Grant No. DMR 02-33773, and by a
search grant from the Fusfeld Research Fund. O.M.A. is s
ported by a grant from the Israeli Ministry of Science.

APPENDIX A: INDEPENDENT-MODE APPROXIMATION

In our analysis we treat different 1D bands in the wires
independent and disregard interband interactions. While
is a convenient approximation for theoretical investigatio
that has been often assumed in previous works,5–8 it needs to
be further justified. Tunneling into multimode 1D wires wa
considered in Ref. 22. It was shown that low-energy tunn
ing into the edge of a semi-infinite wire withN bands is
governed by the tunneling density of states exponentsa i
such that the differential conductance~at zero temperature
and low voltageV! is given byG}( i 51

N ut i u2Va i, wheret i is
the tunneling amplitude for theith mode. In the independent
mode approximation with interactions described by Ham
tonian ~6! for each mode, these exponents are given by
~50! with the parameterg describing interactions in eac
mode. On the other hand, in a more realistic picture o
deals with an interaction Hamiltonian

H int5
V0

2 (
i , j 51

N E
0

`

dxr i~x!r j~x!, ~A1!
2-15
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TSERKOVNYAK, HALPERIN, AUSLAENDER, AND YACOBY PHYSICAL REVIEW B68, 125312 ~2003!
which takes into account the interband coupling. Here,V0 is
the zero-momentum Fourier component of the interact
potentialV(x)5V0d(x) andr i is the electron density in the
i th band. The exact form of the potential is not importa
since we are only interested in the long-wavelength quan
fluctuations.22

The exponents are given by22 a i5(( l 51
N g i l

2sl /v i)21,
where v i is the Fermi velocity of the noninteracting 1
electron gas at the density of thei th mode,sl is the velo-
city of the l th soundlike excitation in the presence of t
potentialV(x), and g i l characterizes coupling between th
i th andl th noninteracting modes after the interaction pote
tial V(x) is switched on. In the case of a single transve
mode with spin degeneracy,N52, g i l

2 51/2, and s1

5vFA112V0 /(p\vF), s25vF are the charge- and spin
excitation velocities, respectively. For a generalN, the ve-
locities sl are given by roots of the equation

(
i 51

N
v i

sl
22v i

2
5

p\

V0
~A2!

and the coefficientsg i l are given by

g i l
2 5

v i

~sl
22v i

2!2 F (j 51

N
v j

~sl
22v j

2!2G21

. ~A3!

In our system,5 the Fermi velocities of the highest occupie
bands are very different~e.g., the highest transverse mo
has twice the velocity of the next lower-lying mode!. Fur-
thermore, since the interactionV0&max(\vi) is not too large,
the correction to the exponentsa i due to the interband cou
pling is expected to be relatively small. One can accomm
date for this correction by slightly renormalizing the intera
tion constants g, viewing it as a mutual interband
screening.22

Also, it is safe to disregard intermode transitions sin
they are determined by the Fourier components of the in
action with a large wave vectork;kF , which are small for a
smooth long-range potential.22 The weak backscatterin
within each spin-degenerate mode can be further renorm
ized downward at low energies in the physical case of rep
sive interactions.15

APPENDIX B: DIRECT TUNNELING FROM THE 2DEG

In order to describe theV andB dependencies of the con
ductance for direct 2DEG-lower-wire tunneling, we appro
.
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mate the Green function of the top quantum well by the ed
Green function of a 2D electron gas occupying a half pla
y.0 with x extended from2` to `. We assume the poten
tial is V(x,y)50 for y.0 andV(x,y)5` for y,0. There-
fore, we find

iG.~x,y,t;x8,y8,0!5
1

p2E2`

`

dpeip(x2x8)

3E
0

`

dksin~ky!sin~ky8!Q~e!e2 i et/\,

~B1!

where e5\2(p21k22kF
2)/(2m) is the energy andkF

2 is
the Fermi wave vector of the 2DEG.Q(e) is the Heaviside
step function. When we calculate the tunneling currenty
and y8 run from 0 to j, the width of the tunnel junction
~i.e., the extent of the 1D mode of the lower wire in th
direction perpendicular to the cleaved edge!. We set (y,y8)
→j/2 and approximate sin(kj/2)'kj/2 assumingkF,1/j.
In the frequency domain, the Green functionG.(z,v)
5*2`

` dteivtG.(z,t), with z5x2x8, then becomes

iG.~z,v!5
j2

2p\E2`

`

dpeipzE
0

`

dkk2d~e2v!Q~v!.

~B2!

In the limit of small positive frequencies it reduces to

iG.~z,v→01!5m
j2

2p\E2kF

kF
dpeipzAkF

22p2

5m~jkF!2
J1~kFz!

2\kFz
, ~B3!

whereJ1 is the first-order Bessel function of the first kind. I
particular, sinceJ1(x)}x whenx→0, the density of states is
finite at the Fermi energy andG.(t)}1/t as t→`. Further-
more, from the low-energy form of the 2DEG Green functi
@Eq. ~B3!# it follows that the relevant range ofz in integral
~9! is 1/kF rather than 1/max(q,G/vF), as in the case of the
1D-1D tunneling.
y,

.
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7U. Zülicke and M. Governale, Phys. Rev. B65, 205304~2002!.
8Y. Tserkovnyak, B.I. Halperin, O.M. Auslaender, and A. Yacob

Phys. Rev. Lett.89, 136805~2002!.
9A. Yacoby, H.L. Stormer, K.W. Baldwin, L.N. Pfeiffer, and K.W

West, Solid State Commun.101, 77 ~1997!; L.N. Pfeiffer, A.
Yacoby, H.L. Stormer, K.W. Baldwin, J. Hasen, A. Pinczuk, W
Wegscheider, and K.W. West, Microelectron. J.28, 817 ~1997!.
2-16



.

L.

.

.

.

r,

INTERFERENCE AND ZERO-BIAS ANOMALY IN . . . PHYSICAL REVIEW B68, 125312 ~2003!
10A. Yacoby, H.L. Stormer, N.S. Wingreen, L.N. Pfeiffer, K.W
Baldwin, and K.W. West, Phys. Rev. Lett.77, 4612~1996!.

11D. Boese, M. Governale, A. Rosch, and U. Zu¨licke, Phys. Rev. B
64, 085315~2001!.

12M. Bockrath, D.H. Cobden, J. Lu, A.G. Rinzler, R.E. Smalley,
Balents, and P.L. McEuen, Nature~London! 397, 598 ~1999!.

13R. de Picciotto, H.L. Stormer, A. Yacoby, L.N. Pfeiffer, K.W
Baldwin, and K.W. West, Phys. Rev. Lett.85, 1730~2000!.

14If we assumeb5L/ l in Eq. ~23!, wherel is a fixed length, then
for largeL, Uu(x) takes the form which is independent ofL at
the boundaries:Uu(x)'EFuexp@22(L/22uxu)/ l #. Note: a was
used in Ref. 8 instead ofb in Eq. ~23!; in this papera denotes
the LL exponent, see, e.g., Eq.~48!.
12531
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