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Interference and zero-bias anomaly in tunneling between Luttinger-liquid wires
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We present theoretical calculations and experimental measurements which reveal the Luttingétliguid
nature of elementary excitations in a system consisting of two quantum wires connected by a long narrow
tunnel junction at the edge of a GaAs/AlGaAs bilayer heterostructure. The boundaries of the wires are impor-
tant and lead to a characteristic interference pattern in measurements on short junctions. We show that the
experimentally observed modulation of the conductance oscillation amplitude as a function of the voltage bias
can be accounted for by spin-charge separation of the elementary excitations in the interacting wires. Further-
more, boundaries affect the LL exponents of the voltage and temperature dependence of the tunneling con-
ductance at low energies. We show that the measured temperature dependence of the conductance zero-bias dip
as well as the voltage modulation of the conductance oscillation pattern can be used to extract the electron
interaction parameters in the wires.
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[. INTRODUCTION ther investigate an interplay between electron correlations
and the finite length of the tunnel junction, which allows us
Quasi-one-dimension&l D) structures with gapless elec- to understand peculiarities of the oscillations and the zero-
tronic excitations, such as carbon nanotubes, quantum Hadias anomaly in the measured tunneling conductance
edge states, and confined states at the edge of a quantufa(V.B).
well heterostructurgi.e., quantum wires possess unique
properties which cannot be described by _Landau_’s Fe_rml- Il EXPERIMENTAL METHOD
liquid theory. Even small electron-electron interactions in a
1D confinement make inadequate the picture based on the In this section we describe the means by which we mea-
existence of long-lived fermionic quasiparticles which can besure the tunneling conductance through a single isolated
mapped onto single-particle states in a free-electron gas. function between two parallel wires.
powerful framework for understanding universal properties
of 1D electron systems was put forward by the formulation
of Luttinger-liquid (LL) theory! (For a review see Ref. R.
The spectral densityA(k,w), of the one-electron Green The two parallel 1D wires are fabricated by cleaved-edge
function in a Luttinger liquid is fundamentally different from overgrowth(CEO), see Fig. 1 and Ref. 9. Initially, a GaAs/
that of a Fermi liquid: While the latter has one quasiparticleAlGaAs heterostructure with two closely situated parallel
peak, the former has two singular peaks corresponding to thguantum wells is grown. The upper quantum well is 20-nm
charge- and spin-density excitation modés. wide, the lower one is 30-nm wide, and they are separated by
Tunnel-coupled quantum wires of high quality created ata 6-nm AlGaAs barrier about 300-meV high. We use a
a cleaved edge of GaAs/AlGaAs double-quantum-well hetimodulation doping sequence that renders only the upper
erostructures appear to be an exceptional tool for probinguantum well occupied by a two-dimensional electron gas
spectral characteristics of a 1D systémlt is achieved by  (2DEG with a densityn~2x 10 cm~2 and mobility u
measuring the differential conductan€€V,B) as a func- ~3Xx10° cn?V~1s 1. After cleaving the sample in the
tion of the voltage bias between the wir&s,and magnetic molecular-beam epitaxy growth chamber and growing a sec-
field oriented perpendicular to the plane of the cleaved edgegnd modulation doping sequence, two parallel quantum
B, allowing for simultaneous control of the energy and mo-wires are formed in the quantum wells along the whole edge
mentum of the tunneling electrons. In a recent phpee  of the sample. Both wires are tightly confined on three sides
demonstrated that the picture of noninteracting electrons capy atomically smooth planes and on the fourth side by the
be used with great success to explain some of the most prériangular potential formed at the cleaved edge.
nounced features of the conductance interference pattern Spanning across the sample are several tungsten top gates
arising from the finite size of the tunneling region. Taking of width 2 wm that lie 2 um from each otheftwo of these
electron-electron interactions into account was shown to exare depicted in Fig.)1 The differential conductand® of the
plain experimentally observed long-period oscillation modu-wires is measured through indium contacts to the 2DEG
lations in theV direction, which can be understood as astraddling the top gates. While monitorig with standard
moire pattern arising from spin-charge separation of elecdock-in techniquegwe use an excitation of 12V at 14 H2)
tronic excitations. In this paper we use LL formalism to fur- at T=0.25 K, we decrease the density of the electrons under

A. Fabrication of the samples
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process occurs along the whole lengitiof the tunnel junc-
tion. Therefore, momentum is conserved to within an uncer-
tainty of order 2r/L<<kg, wherekg is a typical Fermi wave
vector in the wires. We can shift the momentum of the tun-
neling electrons with a magnetic fiel@®) perpendicular to
the plane defined by the wires. The value of the shift is
hgg=eBd whered is the center-to-center distance between
the wires.

IIl. DESCRIPTION OF THE EXPERIMENTAL RESULTS

FIG. 1. lllustration of the sample and the contacting scheme. [N the experiment we measure the nonlinear differential
The sample is fabricated using the CEO method. The parallel 18Unneling conductanc&(V,B) through a junction between
wires span along the whole cleaved edgght facet in the sche- two parallel wires. The sample on which we report here con-
matic). The upper wirdUW) overlaps the two-dimensional electron tains four top gates allowing us to vary the length of the
gas(2DEG), while the lower wire(LW) is separated from them by junction L by choosing different combinations of gates. We
a thin AlGaAs barrie(AlGaAs is dark gray in the schematic; elec- have studied in detail junctions with=2, 4, 6, and 1Qum
tron liquids are light gray Contacts to the wires are made through as well as symmetric junctionsLE&«). The results pre-
the 2DEG. Several tungsten top gates can be biased to deplete tented here are from junctions with=2, 6, and 10um.
electrons under them: We show orfly, here biased to deplete the Many of the effects that we measure rely on the smallness of

2DEG and both wires, ang,, here biased to deplete only the 1/ while others(which we address here in debaiare
2DEG and the upper wire. The magnetic fiélds perpendicular to  present only whelt is finite.

the plane defined by the wires. The depicted configuration allows
the study of the conductance of a tunnel junction between a section

of lengthL of the upper wire and a semi-infinite lower wire. A. Dispersions of elementary excitations in the wires

By mapping outG(V,B) we determine the dispersion
the gate by decreasing the voltage on\iy). At Vo=Vyop,  curves of the wireS.These are given by the curves that are
the 2DEG depletes an@ drops sharply, because the elec- traced by the main peaks as seen in Fig. 2. We can under-
trons have to scatter into the wires in order to pass under thstand their gross features employing a noninteracting elec-
gate. Fo,p>V,>V|, the conductance drops stepwise eachtron picture? The peaks result from tunneling between a
time a mode in the upper wire is deplet€dn this voltage  Fermi point in one wire and a mode in the other wire. Since
range, the contribution of the lower wire ® is negligible  each occupied mode has two Fermi points, two copies of the
because it is separated from the upper quantum well by dispersion show up in th&(V,B) scan. All in all, for each
tunnel barrier. WheV,=V, the upper wire depletes and pair of occupied modes in the two wires we expect to ob-
only the lower wire can carry electrons under the gate. Thiserve four dispersions, because there are four Fermi points
last conduction channel finally depletes\at andG is sup-  involved: +kk, and *kL. (Indicesi andj label various

pressed to zero. modes in the wiresy and| denote the upper and the lower
wires) In reality, we observe only some of the transitions:
B. Measurement on an isolated tunnel junction For example, by carefully studying Fig. 2 one can distinguish

The measurements are performed in the configuration djj_ispersions of three modes in the upper wire and five in the
picted in Fig. 1. The source is the 2DEG between two gate ower one, but only the following transitions seem to have a
G, andG, in Fig. 1, the voltages on which ak&,<V, and  Sizable signaljup—[ly), |us)=[l5), and [uz)—l549),
V <V,<V,, respectively. The upper wire between theseWher_e the order in the Ils_t is of decreasiBf’ (see below
gates is at electrochemical equilibrium with the source beingU3) iS the 2DEG occupying the upper quantum weBuch _
the 2DEG. This side of the circuit is separated by the tunnepelection rules are related to the shape of the wave functions
junction we wish to study from the drain. The drain is then thg direction perpendicular to the cIeavgd edge. In identi-
2DEG to the right ofg, (the semi-infinite 2DEG in Fig.)1  cal wires, one would expect only the transitigng) < |l to
and it is in equilibrium with the right, semi-infinite, upper @Ppear, due to the orthogonality between different modes. In
wire and with the whole, semi-infinite, lower wire in Fig. 1. d|§S|m|Iar wires, the_ _select|on rules are different and less
Thus, any voltage differena®) induced between the source StiCt, SO other transitions are observed. N
and the drain drops on the narrow tunnel junction between The dispersions allow us to extract the densities of elec-
the gates. This configuration gives us control over both thdrons in each moden, )= (2/m)kg,, , as follows. Tunneling
energy and the momentum of the tunneling electrons, as ex@mong each pair of occupied modes is enhanced Viedd
plained below. An additional gate lying betwegp andg, at two values of B>0, where the two curves in
(not shown in Fig. 1allows us to deplete the 2DEG in the G(V,B) cross. Inthe firstin the following referred to as the
center of the source, thus reducing the screening of the inteflower crossing point’), which occurs aB}’, the direction
actions in the wires by the 2DEG. in which the electrons propagate is conserved in the tunnel-
The energy of the electrons tunneling between the wires i§1g process. In the secoriceferred to as the “upper crossing
given by eV, —e being the electron charge. The tunneling point”), the Lorentz force exerted bB3' exactly compen-
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G [103x2e%h] dependence of all the other occupations in a wire. The dis-
persion that we use is that of noninteracting electrons in a

' finite quantum well, in the presence of an in-plane magnetic
=2 . = % = el field. Such a dispersion depends only on the width and depth
of the well and on the band mass of electrons in GaAs.

In every case we have studied, we see clear deviations of
the measured dispersions from the calculated noninteracting
ones at a finite bias. In particular, we find that the velocities
of some excitations are enhanced relative to the Fermi ve-
locities vy . The former are given by

10V
Vo= 7B . (2
Biéz)

(along the observed main peakwhile the latter can be ob-
tained by the calculated slope of throninteracting disper-
sions at the Fermi points. This velocity enhancement is
thought to correspond to the charge-density modes and can
be accounted for by electron-electron interactions in the
wires8°

The ability to determine the dispersion relations relies on
the high quality of the junctions to sustain momentum-
conserving tunneling. Momentum relaxation ensues as soon
as invariance to translations is broken. The most obvious
mechanism by which this occurs is the finitenesd ofVe
find that we indeed observe its effects. The second mecha-
nism is the disorder inherent to all semiconductor devices,
some effects of which seem also to be observed.

B [Tesla]

V [mVolt]

B. Oscillations

FIG. 2. Plot of G(V,B) for a 10-um junction. Higher values Th t tacul ifestati f the breaki f
of the conductance are depicted in lighter shades: The top bar gives € .mos _spe(_: acu ?‘r manirestation o € breaking o
the key. translational invariance is the appearance of a regular pattern

of oscillations away from the dispersion curves. Figures 3

: : d 4a) are typical examples of the patterns that we measure
for the momentum mismatch between itely mov@" o - ) ;
sates for the momentu smatch between oppositely mo at low magnetic field. In this range of field, the lines that

ing electrons, and the direction of propagation of the tunnel-Correspond to the dispersion curves appear as the pro-
[ lect .I i ith ishi . .
Isnegcti?)r? CtL?ar;Z é?g;ﬁf; po?ntgvgiiu;lv :I:1t a vanishing CrOSSnounced peaks that extend diagonally across the figures. In
' addition to these we observe numerous secondary peaks run-
ning parallel to the main dispersion curves. These sidelobes
(1) always appear to the right of the wire dispersions, in the
region that corresponds to momentum-conserving tunneling
o - for an upper wire with a reduced density. As a result, we see
In principle, Eq.(1) can be used to extract the densities of they checkerboard pattern of oscillations in region I, a hatched
modes, regardless of electron-electron interactions in thgattern in region I, and no regular pattern in region[tee
wires® or mesoscopic chargifbthat can merely smear them Figs. 38 and 4a) for the definitiong.
at a finite voltage bias. In realistic wires that have a finite “The jnterference pattern also appears near the upper cross-
cross section, finding the densities is hampered by the wegq point at high magnetic field. A typical example is shown
magnetic-field dependence that they acquire. This difficulty, Fig. 5.
is overcome by a simple fitting procedure. that we have de- Tphe frequency of the oscillations dependsloihenL is
veloped: We assume that all the modes in a wire have thg, reased from 2um, Fig. 3, to 6um, Fig. 4, the frequency
same field dependence, a reasonable assumption for Opy pias (AV) and in field (A B) increases by a factor of about

tight-confining potential in the growth dir_ection of the quan- 3 Tpe period is approximately related to the length of the
tum wells. We then guess tlie=0 occupations of the modes j,nction through the formula

in each wire,n,(0) andn{(0), andcalculate their field de-

pendencies. If the resulting dispersions do not crog g, AVL/vg=ABLd= ¢, (3)

we adjustn;,(0) andn{(0) and repeat the procedure. This is

done iteratively for all the crossing points that we see, bewhere ¢o=27#/e is the quantum of flux.

cause changing the occupation of one mode affects the field A close examination of the low-field oscillations reveals

i, hoo .
Blfo) = gk KH.
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G [10°x2e?/h]
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(b) V [mVolt]

FIG. 3. Nonlinear conductance oscillations at low field from a2t junction. (a) Oscillations as a function of botB and V. (A
smoothed background has been subtracted to emphasize the oscillaffemsbrightest(and darkestlines, corresponding to tunneling
between the lowest modes, break ¥ plain into regions I, Il, and Ill. Additional positively-sloped bright and dark lines in Il arise from
other 1D channels in the wires and are disregarded in our theoretical analysis. Also present is a slow modulation of the strength of the
oscillations along the absciss#) Absolute value of the peak of the Fourier transformSbf Y2G(V,S'*Y#) at fixedV in region Il as a
function of V. (See Sec. IV B 1 for the definition @&, B, and other details.Its slow modulation as a function &f is easily discerned.

an interesting behavior of their envelope. Notable is the supthus depends oW on two major scales: The faster scéle5
pression ofG(V,B) near V=0 which is independent of mV for L=2 um) corresponds to the oscillations described
field. Also visible are faint vertical gray stripes, where theby Eq. (3). The slower scal¢2 mV for L=2 pxm) governs
amplitude of the oscillations in thB direction is reduced. the distance between the stripes of suppressed
The modulation of the oscillation amplitude, as a function ofG(V,B) parallel to the field axis, including the zero-bias
V, is shown in Figs. @) and 4b). The oscillatory part oG~ suppression. Like the fast scale, the slow scale is roughly
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FIG. 4. Same as Fig. 3 but for a @#m junction. Note that the L L [mV] L L
oscillations are approximately three times faster than in Fig. 3, as 0.24 0.4 0.8 1.6
expected from Eq.3). For this junction, there are several additional T [K]

sidelobes present on the left of the principal peaks, unlike in the

case of the shorter junction in Fig. 3.

G [102x2e2/n]

-1 -0.5 0 05 1
V [mVolt]

FIG. 5. G(V,B) near the upper crossing point for agam junc-
tion. In this measurement, a centrali@n gate midway betwee@;

FIG. 6. Zero-voltage dip of the tunneling conductar@es a
function of temperature on a log-log scale. The circles show mea-
surements on a g#m junction atB=2.5 T; the lines are a fit using
GxT¢ for V=0. The dashed line is the result fer= a,(Qg))
=0.07 while the solid line is the result foor= ae,{9;) =0.35,
with g,=0.59 (andg,=1) in Eqgs.(49) and(50), respectively; see
Sec. IV C 2 for a discussion. Inset&(V) for T=0.24 K andT
=0.54 K (the temperature dependence was generated fronV the
=0 point of such scansThe curves were calculated with E&.1)
and using the above value gf extracted from the fit of the tem-
perature dependence of the dij)/e obtained ,(x) by convoluting
the derivative of the Fermi distribution in the 2D leads,
[1/(4kgT)]sech[eV/(2kgT)], with the finite-temperature tunnel-
ing density of states in the lower wire, see E5).in Ref. 12] The
dashed lines correspond to thg, value of the exponent while the
solid lines toagng-

inversely proportional to the lithographic length of the tun-
neling region.

C. A dip in the tunneling conductance

Prominent in all scans that have high enough resolution in
V is a strong suppression of the conductance Nea0 at all
magnetic fields. The width of this conductance dip is of order
of 0.1 mV, see Figs. 2 and 5. The size of the dip is very
sensitive to temperature, as depicted in Fig. 6, and it exists
for T=<1.0 K.

IV. THEORY AND DISCUSSION

andg, is biased to deplete all upper-wire modes except the lowest
one. One can see a pattern of oscillations around the dispersion The 1D modes in the upper quantum well are coupled to

peaks.

the 2DEG via an elastic 1D-2D scattering which ensures a
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H is the kinetic energy of the electrops=u(l) labels the
upper (lowen) wire], H;’f [H%'t] describes spin-independent
electron-electron interactions {between the wires,Hp.op
is an effective Hamiltonian for the 1D-2D scattering of elec-
trons in the top quantum well, and,,, is the tunneling

Hamiltonian:

Ho= UFVE J dX[\I’LSV( —i aX)\I’RSV_\II—[SV( —i10)V ],
FIG. 7. Schematic picture of the theoretical model. The upper s
wire is formed by a potential well ,(x) created by gate§; andg, ®)
(shown in Fig. 1 and the lower wire is semi-infinite with the left 1

boundaryU,(x) at gateg, . ¢(x) is an electron wave function in the w' _ T Xy _

upper wire. The energy and momentum of the tunneling electrons Him A z’ f dkVy,r (K)L2pra(K)pLsr s (—K)

are governed by the voltage bis¥sand magnetic field.

+ Pre(K) pry v (—K) + pLs(K)pLsr (—K) ], (6)
good electronic transfer between the extended and confined
states of the welt® In addition to tunneling between the Htun:)\E f dX‘I’;ru‘I’s|e_iqsx+ H.c., (7)
confined states in the wires, if the extended states have an s
appreciable weight at the edge, there will be a direct tranSi\'/vheres ands’ are spin indices¥ ., is the spins electron

tion from the 2DEG to the I_ower WIre. W'Fh th|s in mind, we field operator Wy, and¥ ., are the field operators for the
separate the total current into two contributions, one due t?ight and left movers, respectivelyWw — eikr X
1] sy Rsv

tunneling between 1D bands and the other due to direct tun-~__ix_ x - N T . .
neling from the 2DEG. As explained in Sec. Ill A, each of Te e pRS”(If()_ﬁdXé. \P.RF]V\PRS” Is the denS||ty-
the wires carries several 1D modes. In our analysis and Con{_uctuatlon operator for the spmTight moveri(and ana_o-
parison with the experiment, we will only consider the tran-gously for the left movess andV,, (k) = [dx€*V,,/(x) is
sition between the lowest 1D bands of the wifes., the the Fourier transform of the two-particle interaction potential
bands with the largest Fermi momentyrfu)«|l;), and  Vuw(X). Writing Hiy in terms of the interactions between
the direct tunneling from the 2DEGu3)«< |l,), with both electrons of fixed chirality in Eq6) is possible after restrict-
having a strong signal, as seen in Fig. 2. In each wire, the 119 electro_n~correlat|ons to sma_ll momentum-transfer _scatter—
modes interact with each other, but since the bands have ved: €.9., if V(k)=exp(=rk]) with 1/r.<ke. (By making
different Fermi velocities, we treat them independently. Thisthis approximation we disregard backward and umklapp
is a reasonable approximation, as explained in Appendix AScattering processes, which are thought to be unimportant in
The geometry for our theoretical description is shown inOUr cleaved-wire structure, see, e.g., Ref. 6.
Fig. 7. The potential&J ,(x) andU,(x) are felt by electrons The 1D72D scattering randomizes the direction of the 1D
in the upper and lower quantum wires, respectively. Theflectrons in the top quantum well with a mean free path
electrons in the upper wire are confined to a region of finitd 10-20~6 pm.=In infinite WIres, this weak scattering can
length by potential gates at both its eng®e the source be taken_lnto account by _roundlng the_lD electron-gas spec-
region in Fig. 1. One of these gategj() causes the elec- tral function by a Lorentzian of half width = 1/(271p.2p),
trons in the lower wire to be reflected at one end, but thevhererip.op is the 1D-2D scattering time.
other (G,) allows them to pass freely under it. The effective  If there were no interactions between the wires, Mgy,
tunneling region is determined by the length of the upper=0. low-energy spin and charge excitations in each wire
wire, which is approximately the regidm|<L/2 in Fig. 7. would propagate with velocitiesvs,=ve, and vy,

The magnetic fieldB, gives a momentum boo#tgz=eBd  =Vr, /9, , respectively. The parametegs can be obtained
along thex axis for the electrons tunneling from the upper to Py bosonization as
the lower wire. ~ 12

First, we develop a general formalism in Sec. IV A. We i P 2V,,(0) -1 ®
then apply it to study the conductance interference pattern in 9 Thug, ’

Sec. IV B and the zero-bias anomaly regime in Sec. IV C. _
in the case of repulsive interactions,,(0)>0. In the limit
of a free-electron ga§lw(0)=0, g,=1.
We treat tunneling between the wires to lowest order in
Let us first consider transport between two 1D bands irperturbation theory. Mesoscopic charging effects, such as
the wires. We use the following model Hamiltonian to studydiscussed in, e.g., Ref. 11, are disregarded in our analysis.
the intermode tunneling in the system: The current(for electrons of each spins given by

A. General formalism

) I=e|>\|2f dxdx’f dtelds(x—x)gleVUAc (y y/-t),
H= zul Ho+ > Hint +Hip2otHun- (4) - — @
v=u, vv'=u,l
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whereC(x,x’;t) is a two-point Green function, Using the phenomenological tunneling Hamiltonié),
we express the current through the junction at zero tempera-

COX )= ([P (x,t),¥]¥ (x",0)]). (100  ture as

In the limit of vanishing interactions between the wires, it )
reduces to loesgriV) 25 [M(n,gg V)| (14

C(x,x";t)=Gy (x,t;x",00G;"(x",0;x,t) in terms of the tunneling matrix element

-G (x,t;x",00G;" (x",0;x,1t) (11)
: : : . M(n,ds ,V)=J dxir (x)e™ 98y (X) (15
expressed in terms of the one-particle correlation functions !

between the upper-wire stafg and the lower-wire statey ,

the energy of which is lower bgV. The summation in Eq.
ek (14 is over the integers [sgn(V)—1]/2<m
G, (X, ) =W ,(X )W, (x,1)). (13 <e|V|L/(wfive) denoting the offset of thes, index n=ng

. . . +sgn(V)m with r t to the st just below the Fermi
Note: Throughout this paper, as in the above equations, the sgntv) espect to the stai,, Jus belo ere

correlation functions are defined for electrons with a fixed®"€rgy of the upper wirand linearizing the dispersions near
spin orientation and the spin index is therefore omitted. Thdhe Fermi points, assumirggV/| is not too largg. The current
results of this section also hold for direct 2DEG-1D tunnel-(14) can be expressed by a single sum because the states of

ing, if we define . (x,t) as the field operator for the 2DEG the confined upper \ivire are discrete, while the states in the
at the edge of the upper quantum well.

G (x,;x 1) =—i(¥ (x,)¥T(x',t")), (12)

lower wire (pkl(X)Ze*ik'X can be indexed by a continuous-

wave vectork;. [As in Ref. 8, it is assumed that the left

boundaryU,(x) of the lower wire lies outside the tunneling

region] Since the Zeeman energy in GaAs is small, we ig-
As discussed in Sec. Il B, the breaking of translationalnore the spin degrees of freedom.

invariance due to the finite size of the tunneling junction can  We arguefl that for practical purposes of understanding

result in an oscillatory dependence of the conductdB@®  our measurements, the sum in Etg) can be replaced by an

voltage biasv and magnetic field. In this section we dis- integral

cuss in detail this behavior that arises due to interference of

electrons tunneling through a finite-size window. We show eV

that our theoretical framework can quantitatively explain the |°<f de|M(Ep,t+€,0g,V)[?, (16)

conductance oscillations observed near the crossing points. 0

I th? following, we mainly focus on the analysis Of. very labeling states in the upper wire by energyith respect to
distinct interference patterns measured at low magnetlcfleldt';[,1e Fermi energfE,. For the conductance obtained by dif
. . . FU' =
(as in Figs. 3 and ¥ In Sec. IV B 3 we I_anefly comment on erentiating the current, this approximation will smear out
the conductance near the upper crossing point at high fiel e ¢ functions appearing when the chemical potential of the

e ao 1yt o PPET W Crosces each scree energy evl Physealy
9 : X ) such smearing can be caused by 1D-2D scattering and finite
ness of the tunneling region only, in the latter case som

X . ‘la’emperature, but even at low temperatures and vanishing
other mechanisms may also play an important role.

In the actual experiments, several 1D electron modes a Scattering the result obtained by integratidty. (16)] will

occupied in the wires. Here we consider only tunnelin ber—ﬁOt be far off from that found by summatigia. (14)] since

P S y 9 P€3he dominant contribution to the oscillation pattern near the
tween modes which have the lowest energy of transvers
motion, and hence the largest Fermi momentum along th

wire, namely,u;) and|l;). These modes have densities that(lﬁ)] as explained below

d.n‘fer.by only a feyv pgrcen(see Ref. 5 W? th.us. mqke a We linearize the dispersions about the Fermi wave vectors

simplifying approximationu g, = vg=ve, which is justified ke, , so thatk, is given by (—ke)ve=(e—eV)/h. The

by the measured dispersion slopes. wave vector inside the upper wire similarly depends on en-

ergy: (ky—kr)ve=e€e/h. The matrix element squared

M (Eg,+ €,05,V)|? can then be written as a sum of contri-
In Ref. 8 we showed that the observed asymmetry of thdutions due to tunneling between right movers and between

secondary oscillation peaks on the two sides of the maieft movers,

dispersion curvetsee Figs. 3 and)4an be explained within

a noninteracting electron picture and assuming a soft con- IM(Ept+ €,05,V)|?=|M (k) |?+|M (k)% (17)

fining potentialU ,(x) for the upper wire. Here we will em-

ploy the model developed there to quantitatively study thevhere «.=k,—k *gg=Akr+eV/(Aivp)*qg and Akg

form of U,(x). =Kkg,—Kg . The tunneling matrix element

B. Interference pattern

fower crossing point comes from differentiating the sum-
fhand in Eq.(14) [or correspondingly the integrand in Eq.

1. Asymmetry due to soft boundaries

125312-7



TSERKOVNYAK, HALPERIN, AUSLAENDER, AND YACOBY PHYSICAL REVIEW B68, 125312 (2003

0.5 T T T T T T
M(K):J' dxé iy, (x)e ke (18) ,j —B=8 (aumeric) |
0.4 ! - B=8 (SPA) i
is determined by the form of the bound-state wave function _, 'l -= square well
Yu(x) at the Fermi level of the upper wire. We wrote the ‘é sl I:
right-hand side of Eq(17) as an incoherent sum of the con- s
tributions of the two chiralities. This is an approximation we ﬁ
make by disregarding additional interference arising due to & 02
the reflection of electrons in the lower wire under géte 2
(i.e., by the potentialJ, in Fig. 7). Taking the latter into 0.1
account does not considerably affect our results. -
|[M(k-)|? do not depend on energy, and the current 0 ke
(16) can, therefore, be written &s - 0 K]jm 10 15
Lo V[IM (k1) [2+[M (e )[?]. 19 FIG. 8. [M(«k)|? obtained using wave functiog, for the 100th

WKB state in the potential we[lEq. (23) with 3= 8] of the upper
wire. The solid line is the numerical calculation, the dotted line is
the SPA approximatiofiEq. (22)], and the dashed line shows the
result for the square-well confinement, for comparison.

The differential conductand®=dl/JV corresponding to the
current 1<V|M(V)|?> becomesG=|M(V)|2+Va|M (V)|
aV. If, for example, the oscillatory component (¥l (V) |?
has the form sin(constV), the amplitude of the second term

in the conductance will be 2N times larger than the ampli- o] B
tude of the first term aftel periods of oscillation. The domi- U,(X)=Eg, —‘ (23
nant contribution to the oscillatory component of the conduc- -
tance near the lower crossing point is thus (where B characterizes the ratio between the total length of
P the upperl/zvire and the extent of its boundariés2x™/L
v 2 2 ~(2k/kg)~"F for k>0 assuming tha ke<<kg= (Kg,+ Kkg)/2
GV r9V[| M) M e 20 (Ref. 8 (x~=—x" for a symmetric potentialand the period

is therefore given byAx~(27/L)(ke/2«)YF. Experimen-

If the upper-wire confining potential, is smooth enough  tally, we extractA x by measuring the distance between os-
so that the states at the Fermi energy can be evaluated by tBflation zeros in region Il of the interference shown in Fig.
WKB approximation, the form oM(«) [Eq. (18)] can be 3. |n order to reduce the statistical uncertainty, the conduc-
studied both numerically and analytlcaﬁlyﬂ the region be- tance was averaged a|0ng lines of constant, Separate|y
tween the classical turning points, for positive and negative bias. In terms of variabe

=h«k, /ed (which reduces to magnetic fieBl at zero volt-

D) = 1 elkrxa—1s() 21) age and vanishindkg),
\/ku(x) K ok hkF ys
where ky(x) =keJ 1—Uy(X)/E¢]"* and s(x)=J3dx’ [k, S~ edL | 2ed (24)

—ky(x")]. In the stationary-phase approximatidSPA),

M(x) is evaluated near positions® (x*>x~) where This AS is compared with the data in Fig. 9 for several

ky(x™)=Kkg,— x and the integrand in Eq18) has a station- Py pa— . , . , .
ary phase. In the case of a symmetric potentia],(x) \ ® V<0
— _ i \ O V>0
U,(—x), the SPA gives 1 o -- p=4, LA, =170
O (k) 0.08f\ — B=8, L/L,,=140 }
: N e B=12,LAL. =132
VISE: cog kx* —s(x*)—ml4], (22 N\ P M 2ntedL)

VU (xM)
where® (k) is the Heaviside step function, and the prime in
U,, denotes the derivative. The SPA approximati@a) di-
verges for small values ok and we have to resort to a
numerical calculation of the integral in E¢L8).8 Figure 8
shows the calculatefM («)|?. . . . . . .

We study the profile of confinemeht,(x) by measuring
the periodA « of the|M(«)|? oscillations as a function of.
In a square well of length, this period is given by Z/L. In FIG. 9. Period of(fastej oscillations in region Il of Fig. 3 as a
a soft confinement, the interference stems from the oscillafunction of S=#«, /(ed). Circles show measurements at positive
tions of the electron wave function near the classical turningind negative bias and the curves are fits using(E4). at several
points, so thatAk~2m/(x"—x"). For a potential of the values ofB. The best overall fit is reached At 7.67 andL/L,
form ~1.41, whereL ;=2 um.

AS [Tesla]

S [Tesla)
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values of 8 (we extractkp~1.5x10° m~! using measured
electron densiti€s. At each8 shown in the figure, the dis-
tancelL was found by the besteast-squaregdit of the curve ,
(24) to the measurements. The lithographic length for the X VUG (x,t;x",00G;(X,0;%,1). (25
junction wasL;;,=2 um and the widthd=31 nm. Such
fitting allows us to extract two quantitied,/L=1.45
+0.1 andB=8=+2, characterizing the extent of the 1D con- At low magnetic field, the conductance has two main con-
finement and the sharpness of the potential-well boundarie§ibutions, corresponding to the two edge-state chiralities.
respectively. It appears that the effective length of the uppefhe two contributions give bright conductance peaks and
wire [defined as the distance between the classical turningidelobes with opposite slopes, as described in Sec. IV B and
pointsy see Eq23)] Lis actua”y about a micron |onger than Ref. 8. Let us discuss tunneling between the right movers
the lithographic length. This conclusion is relatively insensi-(the current due to tunneling between the left movers at field
tive to the fitting procedure, sinckS in Eq. (24) approaches B equals the tunneling between the right movers at field
2mhi(edl) for S=#ike/(2ed) if the exponent 18 is small.  —B). We assume that the electron density in each wire var-
The difference betweeh andLy, can be due to significant i€s slowly on the length scale set by the respedtivéexcept
screening of the tungsten gateghich are positioned 0.xm  for unimportant regions very close to the boundaride
above the junctionby the 2DEG in the upper quantum well, Zero-temperature Green functions entering &%), in this
as viewed by the upper-wire electronic bands. regime, can be written 4§°

As a consistency check for the result of the fit in Fig. 9,
we performed an analysis of the conductance oscillations . L
that takes into account the dependenceBormccording to L ,
the S~ YA scaling of the oscillations’ period, see E@4), and ~ Cul(XEX".0)= 5@y, (x.X") (Z— et +i0")12
the SY#~1 falloff of their amplitude[which follows from Eq. P
(22), also see Ref. 8 the function S~ YAG(Vv,St*VA) is 1 r2 12y
periodic in S'*YA. Fourier analyzing it at a fixed/, and o an
settingB= 8, we obtained a main peak, the position of which (z=vct*i07)
depends very weakly o, which corresponds to a length of (26)
L=2.81+0.02 um, in agreement with the result of the fit. In
Fig. 3(b) we plot the absolute value of the main peak, which _ _ 1 _ , ,
is seen to decay on a scale of a few mV. We discuss thi¥Nerévc=ve/g, y=(g+g"—2)/4, z=x—x', andr is a
decay in Sec. IV B 4. For comparison, we also Fourier anaShort-distance cutofi.e., 1f . is a momentum-transfer Cu>t°ﬁ
lyzed the data in Fig. @). For that we found that one has to 1N the electron-electron interactionsHere, G, is the G~
Use a larger valueB=21.5, in order to obtain a relatively Creen function(12) for the upper wire ands, is the G
voltage-independent position of the peak. This valugag ~ Creen function(13) for the Iozver wire. The functionb, is
reasonable because it gives approximately the same boun@€fined by®.,(x,x")=,(x) ¢, (x), in terms of the WKB
ary profile for a 6um (uppe) wire as 3=8 gives for a Wave functlons zpv_(x).for rlgh.t-rnovmg el_ectrons at the
2-um wire!* Again we obtained a reasonable length ( Fermi energy in wirev in aponflnlng pqtentlaU ,(X) which
—7.3+0.3 um) that varied only weakly as a function bf must_ be chosen self-consistently to give the corr_ect electron
The height of the main peak in this case is shown in Fig) 4 density. Here we assume thag(x) andU,(x) are given by
where it is seen to decay on a faster scale than for the short&@S: (21) and (23), while y(x) =e'*#.

upper wire. The ratio of the scales is approximately the ratio  Several additional approximations are implied by using
of the upper-wire lengths. Eq. (26) to calculate the tunneling curre(@5): (i) The weak

1D-2D scattering is neglectedji) The voltage is small
enough so that one can linearize the noninteracting electron
dispersions about the Fermi points and use LL theasy,

In the following we describe how electron-electron inter-we disregard the curvatureand (iii) t<v.L, so that the
actions in the wires and between them affect the oscillationiiscreteness of the energy levels of the upper wire due to
pattern. We show our theoretical results @¢V,B) near the electron confinement within a well of lengthand their re-
lower crossing point of théu;)«|l;) transition and com- flection at the boundaries does not considerably modify the
pare them to measurements onu2a and 6.um junctions, LL Green function for an infinite wirgthe confinement,
Figs. 3 and 4. In particular, we find that the difference in thehowever, is manifested in the form of the wave function
velocities of the charge- and spin-excitation modes in they,(x); effects due to the discreteness are discussed in Sec.
double-wire system can account for the obser@d/,B) IV B 1 in the regime of noninteracting electrons, and they
suppression stripes running parallel to Biexis. are believed to be smallThe last approximation breaks

As a starting point, let us consider the case in which thelown for very low voltages(and, correspondingly, long
interwire interactions are vanishingly small, <V, and times in the regime of the zero-bias anomaly, which is
the interactions in the two wires are the saiMg,=V, , so treated separately in Sec. IV C 1.
thatg,=g,=g, as defined in Eq(8). For positive voltages Substituting Green function&6) into integral (25), we
V>0, the current9) is then given by obtain for the tunneling current

I=e|)\|2f dxdx’f dte9sC—x")

22— (vtFiry)?

2. Modulation due to spin-charge separation
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'“f_ dxdx €@ K0 XDy (x) g (' h(x—X"),

(27)
using the definition
- eieV’r/ﬁ
hz=—f dt
(2) —o  (z—vpt+i0")(z—vt+i0")
le Y le Y
><(z—uct+irC Zt+ut—ire (28)

The integrand in Eq(28) has a simple analytic form: It has

two first-order poles at=2z/(vg+i0*) andt=2z/(v.+i0")
and two branch cuts starting with singularitiestat(+z

PHYSICAL REVIEW B68, 125312 (2003

1 1
G(V,B)x U—F||\/|(KF)|2—v—c|'\/|(l<c)|2 ., (32

Uc— UE
where kg=0g+Aket+eVi(hivg) and M(k) is given by
Eqg. (19).

If the excitation velocities in the wires are nearly the
samepyg~v.=v, We can approximate the conductaride)
by

G L M= M) 2V M2 (39
gq MV Y, :

where M (%,V)=M(gg+ Akg+ V) and p=e/(hv). This
reproduces Eq(19). One can refine the form of the second
term on the right-hand side of E(B3) (which can be much

+ir)/v.. The contour of integration can be deformed leav-larger than the first term, see Sec. IV B (ising approxima-

ing two nonvanishing contributionsh(z) =h4(z) +hy(2).

The first contributionh,(z), is due to integration around the

poles,

ZwieieVﬂ(ﬁUC)

(ve—vp)(z+i07)

hy(2)=

2\
r2+2izr,
ZﬂieieVﬂ(ﬁvF)

(ve—vp)(z+i0™)

2 Y
rC
X1 _ ,
[rc—i-22[1—(UC/UF)2]+2lervc/vFJ
(29)

and the second contributiom,(z), is due to integration
around the branch cuts. Far-0, for example,

ho(z)=2isin( ym)e Vic/(hve)

o —zlve rg v
|- e ——
zlvg —© (Uct)z—ZZ

ieVt/h

X

e
X - - .
(z—vt—irg)(z—vet—irwelve)

(30

In our system we expect tRaj~0.7, so thaty~0.03<1.
Therefore, since .~30 nm (the width of the wires and z
<L~2-6 um, the terms of the form-(- -)” in Eq. (29) can

be safely ignoredexcept for the regime of extremely low

voltages, which is discussed in Sec. IV € Furthermore,
h,(z)<h,(2), so that we arrive at an approximation

eleVa(hvp) _ gieVa(hve)
h(z)~—2mi

31
(ve—vp)(z+i0™) 3D

Substituting this into Eq(27), we can now evaluate the cur-

rent. One notices that after making the approximati®b),

tion (22), when the difference between velocities andv .
becomes appreciablgvhich is the case fog~0.7):

& O(k) siNeVX (Lvg—1hb,)lh]
oC .
Ul (x") =1l

xcosq kx™—s(x")]. (34

Here, x and x* are defined using velocity =2(1¢
+1/e) "%, andG stands for the second contribution to the

conductance in E¢33). At low bias,G—0 linearly inV and
the termG=|M («)|? governs the conductance. This contri-
bution is further suppressed & (at zero temperatuyen
the zero-bias anomaly regime discussed in Sec. IV C 1.

We can generalize the preceding discussion of this section
to include interactions between the wires, i\,,# 0. Since
the quantum wires are closely spaced, the interwire interac-
tions can be sizable. Furthermore, because the Fermi veloci-
ties in modegu,) and|l,) are similar, the excitations in the
coupled wires can propagate with velocities quite different
from those in the isolated wires. When we talg, into
account, the dominant part of the Green functi@g) be-
comes(assuming weak interactions, in the spirit of the pre-
ceding discussion(Ref. 7)

d D (x,x")

C(x,X";t+i0)oc—
( (z—ve) YAz~ veit) 2

1
(Z_Uc_t)(1/2)+0r(z_vc+t)(l/2)—a9r’
(35
where
Ueytv V(0
Veu~ cu2 cl ul( ) 1+r2. (36)

h

the current(27) becomes the same as if there were noHere, r= (v —v¢)/2Vy(0) and 6,=1/(2\1+r?) is fi-
electron-electron interactions but different Fermi velocitiesnite for nonvanishing interactions between the wires, and

in the two wires, given by andv.. Using Egs.(27) and
(31), we, finally, get for the conductandg=dl/dV:

are the charge-excitation velocities in the isolated wires.
[Note that there appears to be a sign error in Ref. 7 in the
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expression for the velocities... in the physical case of re- 20

pulsive interactiond/(0)>0.]

For a symmetric double-wire systemgz,=vg=vg, Vyy
=V, andv,=v¢, so thatr =0 andé, = 1/2. (In this case,
ve+ anduv._ become the velocities of the symmetric and
antisymmetric charge excitations, respectivelfhe Green
function then reduces to Cx—® df(z—vet) Yz
—v._t)" 1 and we reproduce our main result of this section,
Eq. (32), after replacingy. with the antisymmetric charge-
excitation velocityv._ . This is natural since tunneling in a
symmetric biwire can only excite the antisymmetric modes
at low magnetic fields.

In addition to the structure studied in Sec. IV B 1 for the
system of noninteracting electrons, we now show that the
electron-electron interactions in the wires lead to a modula-
tion of the conductance oscillations along the voltage &xis. o
This modulation suppresses the contribut®riEq. (34)] to eVL/2mhv,)
zero in stripes parallel to the field axis. The distance between
them is

15

10

9sL/(2 7)

FIG. 10. The differential conductance interference pattern
near the lower crossing point calculated by E8p) for tunneling
between right mover&and similarly for left moversusing a smooth

AVmodzM- (37) confining potential for the upper wire, Eq23). v, =1.4v¢,
ex (ve_ —vp) Akg=4m/L, and B=8. We used the numerically four|d(«)|?,
. . also shown in Fig. 8. The figure must be compared to experimental
The ratio betweer\ V,,,q and the period Fig. 3.
27hve_vE which, as explained in Sec. IV B 1, can be somewhat differ-
AV= —— (38 ent from the lithographic lengthAgain an agreement be-

T oAyt
ex’ (ve-+ue) tween the predictedFig. 11) and measuredFig. 4) oscilla-

due to the wave-function oscillations near the turning pointdion patterns is apparent. In Fig. 11 a few weak sidelobes also

[compare to Eq(3)] appear to the left of the main dispersion peaks, unlike in Fig.
10 where they appear strictly to the right. In addition, the

AViod louetvg 11+49g- interference modulation in the voltage direction has sharper

AV  2uv. —vr 21-g_ (39 features in Fig. 11. These trends are expected for longer junc-

tions as the boundaries become steeper on the scale set by
can be used as an independent measure of the interacti@ife total length.
parametery_=vg/v._ . From Figs. 8) and 4a), we find
that

20

g_=0.67+0.07, (40)

similarly to the value forg, obtained by the zero-bias 15
anomaly in Sec. IV C 2. Also, from Ed34) it follows that

the oscillation patterfof the principal ternG(V,B)] gains a
m-phase shift across each suppression strip. Such phase
shifts can also be seen in experimental Figs) and 4a).

Finally, we compare the interference pattern predicted by
our theory, Eq(32), with the experiment, Figs.(8) and 4a).
G(V,B) calculated using a smooth confining potenfi&d. 5
(23) with B=8] for the upper wire is shown in Fig. 10.
Many pronounced features observed experimentally—the
asymmetry of the sidelobes, a slow falloff of the oscillation
amplitude and period away from the principal peaks, an in-
terference modulation along theaxis, andr-phase shifts at
the oscillation suppression stripes running parallel to the
field axis—are reproduced by the theory. FIG. 11. Same as Fig. 10 but withke=107/L and =22,

In Fig. 11, we repeat the calculation usiBg=22, which  describing a longer junction with a similar boundary profile.
defines potential23) with a similar boundary profile near the |M(«)|? was correspondingly recomputédow putting 300 elec-
turning points of a three-times longer wite(Here by length  trons per spin in the upper wireThe figure must be compared to
we mean the distance between the classical turning pointexperimental Fig. 4.

10

9sL/(2 7)

o}

eVL/Q27 fiv)
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Tunneling between 1D channels with different Fermi ve-this decay is shown in Figs(l3 and 4b), where the ampli-
locities can also yield an interference modulation similar totude of the oscillations is plotted as a function of voltage. It
that described in this section even when the electron-electrois clear that the measured modulation has a fast-decaying
interactions are vanishingly small.lt is thus important to  envelope, which cannot be explained by the analysis of Sec.
emphasize that we suggest the spin-charge separation pictuiéB 2. [See, for example, Eq34) which predicts that the
to explain this modulation relying on the experimental resultmodulation is roughly periodig.

(see Ref. bthat the densities of modés, ), |11) and, there- One scenario for the dephasing occurs even in the case of
fore, the corresponding Fermi velocities are nearly identicalnoninteractingelectrons considered in Sec. IV B 1, at which

Using Eq.(35) we also studied various possible scenariostime we take the finite curvature of the single-particle disper-
in which the interactions in the two wires differ. For ex- sions into account. Let us return to the form of the current in
ample, in a situation in which the upper wire is perfectly Eq. (16):
screened, so that,,,V,=0, there are still two velocities oy
present in the systerng andov,, but the interference pattern 2 2
is qualitatively very differentcfrom that shown in Fig. 10 and o Jo de[IM(x )P+ M- 4
observed experimentallgee Figs. 3 and]4Since a consid-
erable weight of the charge-excitation contribution to the
tunneling strength is shifted to velocity: (which is now .
also thegchargg-excitation velocity int:;/ﬁe upper Wwirthe :[k§u+2m5/ﬁ,z]_ﬂ2_[kél+2m(6_ev?/ﬁ2]llziq5' [Using
oscillation pattern does not exhibit the pronounced verticaFd- (41) we still imply low enough bias/, so that the den-
suppression stripes, but rather a much weaker modulatiosities of states in the wires are rglanvely C(_)nstant on the
The same conclusion also holds for intermediate regimes ginergy scale o&|V|.] Expanding this expression to lowest
relative screening in the two wires, when the system is noPrder in curvature, we further obtain
symmetric and the two charge-excitation velocities signifi-
cantly differ. The pronounced suppression stripes are, there- K. =Aket e_Vi ot eV(ev—2e) (42)
fore, present only if most of the charge-excitation tunneling - fhivg zﬁzvﬁkF
weight is peaked at a single velocity  (which is guaran-
teed only when the system is nearly symmetric

Taking into account 1D-2D scattering in the upper quan

Correcting our previous results to take into account the non-
linear dispersion near the Fermi points, we now wiite

[Eq. (19 can be recovered by neglecting the last term
above] The current(41) then becomes

tum wire will smear out the oscillation pattern by its convo- Vo oV oV
lution with a Lorentzian in thed direction, similarly to Eg. |OCJ' de|M| Aket—— +0g— ——
(52 below. The corresponding effect is, however, small be- o\ hive ﬁZUEkF
cause of the high quality of our wires, which have a long
scattering length® | ;p.op~6 um. +(dg— —0ds)- (43)
3. Upper crossing point It is easy to see now that the contribution to the conduc-

tance obtained by differentiating the integrand in E4R)
il be suppressed when the argumentof the tunneling
matrix amplitudeM («) changes by the full period of oscil-
lations A k upon energye variation between the integration
limits =eVs,42. We thus arrive at the condition for the sup-
pression voltage/q,:

In practice, since the fields necessary to reach the upp
crossing point are quite large.g., 7 T for the|uy)«|l4)
transitior), even atomic-scale disorder in the junction can
lead to a significant variatioAqg of the momentum transfer
along the tunneling region. In particulaigg=eBé&d can be
comparable with Z/L, the reciprocal wave vector of the
upper wire. This can significantly broaden the principal dis- (evsup)z
persion peaks. Furthermore, Zeeman splitting becomes about Ax= o
a percent of the Fermi energy at these high fields and results hvEke
in somewhat different dispersions for different spin modes opproximating A k~2 /L and translating it into the oscil-

Away from the main peaks, however, we still expect to Seqation period in the bias directioBAV=7%v A, one finally
sidelobes due to stationary phases at the ends of the junctiogptains

similarly to the regime of low magnetic fields discussed
above(with possibly a faster decoherence in Melirection Veup Lkg
than just due to the dispersion curvature studied in Sec. Aav - N2,
IV B 4). Such oscillationdwith about the period3)] are
indeed observed experimentally, as can be seen in Fig. Bsing density 10Qum™~* for the lowest bands in the wirés,
Because of the mentioned complications, we, neverthelessye find Vg, /JAV~7 (~12) for the 2um (6-um) junc-
do not pursue a detailed analysis of the conductance near thien. An implicit assumption in the derivation is that we are
upper crossing point in this paper. still close enough to the Fermi level so that higher-order
corrections should not modify the result significarily par-
ticular, for the calculation of the matrix elemegiB) it is still

It is evident from Figs. &) and 4a) that the interference reasonable to use the wave functigp(x) at the Fermi en-
decays agV| is increased. A more quantitative analysis of ergy].

(44)

(45)

4. Dephasing of the oscillations
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20 [] C. Zero-bias anomaly

1. Crossing points

It is enlightening to further study tunneling between 1D
channels at low bias when the magnetic field is tuned to
match two Fermi points of the wiresee Sec. Il A. The
zero-bias properties are similar near the two crossing points
and, for definiteness, we choose to discuss the upper cross-
ing, in which the magnetic wave vectgg is close tokg,

+ kg and the field changes the chirality of the tunneling elec-
trons: The tunneling is among the left movers of the upper
wire and the right movers of the lower wire. For the
|u;)«|l;) transition, this point is located #~7 T, see
Fig. 2. The results are straightforward to apply to the regime
stso s e 0 > 1o 1 of the lower crossing point, as well.

eVL/Qnhiv.) For clarity, we start by making a series of simplifying

FIG. 12. The differential conductance interference pattern neaﬁss.umptlolns which will be dfoppe‘?‘ in Sub_seque_nt Qe”efa"'
the lower crossing point calculated by Ed3), within the nonin- zations: First, we set the upper-wire and interwire interac-

teracting electron picture, using the matrix elemigr{tc) shown in ~ tions,V,, andV,,, to zero. Physically, this corresponds to a
Fig. 8 (for 3=8). See text for further details. regime in which the Coulomb interactions in the upper wire

are perfectly screened by the 2DEG. Secondly, we further

The result of the numerical calculation using E4@) and ~ SimPplify the model by assuming a square-well confinement
the matrix elemenM () plotted in Fig. 8(using parameters for the electronic states in the upper quantum wire and an
characteristic for the 2sm samplé is shown in Fig. 12. infinitely steep reflecting left boundary for the electrons in
Notice that when the voltage exceeds,~7AV, so that the the lower wire, i.e.U,(x) [U|(x)] is constant forix|<L/2
pattern starts dephasing due to the finite curvature, a beatidg~ ~L/2] and infinite otherwise. As we showed in the pre-
pattern appears. It differs from the data in several importan{!0US Sections, both of the above assumptions are not very
aspects: First of all, the lines of suppres&@(V,B) are not realistic for the purpose of studying the interference pattern.
equidistant. In addition,,, corresponding to the first sup- N the zero-bias anomaly regime, however, they can be a
pression stripeon either the positive- or negative-voltage 9000 starting point, at least, for pedagogical reasons.
sides, is about twice larger than the period we observe in Electron states participating in tunneling near the crossing
Fig. 3(b) and four times larger than that in Figbd, which in points[Eq. (1)] lie close to the Fermi levels in both wires. It
both cases is given by abou\¥. This suggests that the is therefore possible to calculate the correlation functions

source of the beating in the experimental data is not th@nalytically using LL theory, after the dispersion relations in

curvature of the dispersions, but rather the spin-charge sep1€ Wires are linearized. At the upper crossing point, we only

ration mechanism discussed in Sec. IV B 2. need to retain Green functions of the left movers of the upper
Another important difference between E@1) and the wire and the right movers of the lower wire. At zero tem-

experiment is that the decay of the oscillations is much stronP€rature these are given by

ger in the latter. It might therefore be necessary to consider 1 e ke Tldlve

both the curvature and electron interactions in order to un- G, (x,t+i0";x",00=— il
aa
in—(z+
Si 51 (ztuvgt)

15

10

qsL/(2 )

derstand the fast decay of the conductance oscillation ampli-
tude with increasing voltage. Taking into account the curva-
ture while bosonizing excitations of thdnteracting

electrond? leads to higher-order terms in the Hamiltonian. _
Physically this corresponds to interactions between bosonic Loe 1 e ikrzgTlzllve

excitations which therefore acquire a finite lifetime. The sin- - T on  Ztugt (46)
gularities of the spectral densities will correspondingly be , - o )

rounded, in turn smearing the conductance interference pato! [X|, [x'|<L/2, andG; vanishing otherwise, and
tern. Further complications may arise from the electron back- “ikez 1
scattering which was entirely disregarded: While the low- G (X', 0x,t+i0%)=— — e

energy properties of the system are not affected by the B 27 (z—vet) 2 (z—vgt) Y2
backscatteringapart from rescaling of certain paramejers .

since it renormalizes downward in the case of repulsive in- [ r2 (G+g "-2)/8
teractions, the story at a finite energy could be different. The XNV

reason for this is a slowlogarithmid renormalization flow [ 27— (vet—ire)

of the backscattering strength. If a significant backscattering - (a-g Y8

is present in the original Hamiltonian, it could therefore still 7242

be considerable at a finite energy. A detailed study of these X| ——— \ (47
effects, however, lies beyond this paper’s scope. i z'2—(vclt)2
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for x,x’>—L/2, and vanishing otherwise, where=x—x", where F ,(x) is a known scaling function with properties
Z'=x+x'+L, andr, is a small-distance cutoff. As specified F,(0)=const andF ,(x)=x® in the limit of x>1.1% At low
above, Eq.46) [Eq. (47)] contains only the component for temperatures the conductance yields a low-bias dip extend-
the left (right) movers in the uppetlower) wire; we have ing to voltageseV~kgT with G(V=0)eT“.
thus omitted terms proportional Eﬁ'kFZ, eisz’, and e*isz’ In Sec. IV B we showed that the conductanGéV,B)
which do not contribute constructively to tunneling near theexhibits a characteristic interference pattern due to wave-
upper crossing point. The last factor in the expressioigfor ~ function oscillations near the gates confining the tunneling
is due to the closed boundary et — L/2.16:18.19 region. We can easily read out the profile of this pattern for
For sufficiently large voltageg V> 27ive/(giL), the tun- f[he current(25) using t_he correl_ation fu_nctipr(siG) and(47)
neling electrons do not feel the junction boundaries on thd" the low-energy regime considered in this sectipamely,
time scale set by the voltage. In particular, the left boundar9>z):
of the lower wire does not affect the dynamics and, effec-
tively, electrons directly tunnel into the bulk of the lower o I'vg
wire: The last term in Eq(47) is close to unity and can, G(B)“ﬁ d m
therefore, be omitted. Terms of the form 24vt)? entering vF
Egs. (46) and (47) are dominated by the longbehavior in  \hereM(x) is the tunneling matrix element, E(L8).
the integral[Eq. (25); the voltage is assumed to be posifive  The discussion in this section also holds for the lower
if eV<fimax@q,I'), whereq=qg— (Kry*kg). The conduc-  crossing point, at which the electrons do not change their

IM(k=0)|?, (52

tance is then suppressed as a power law chirality upon tunneling. To directly apply the above results
to this regime(for definiteness, assuming we now consider
G(V)xV*® (48)  the transition between the right-moving electrgnse only

. 1 , i need to redefine the distance from the crossing point in the
with the exponentv,=(g+9, ~—2)/4. Thisresultis €asy fie|q direction: q=qg+ ke, kg (and analogously for the

to generalize for the case of unscreened interactions in thgsnsition between the left movers

upper wire:

2. Direct tunneling from the 2DEG

9,79, -2
Aphulk— 2 - -

2 (49 It is straightforward to generalize the main results of the
=u,l

preceding section to the regime of direct tunneling from the
. o . S 2DEG. Equation(25) stays valid in this case, but no&, is
If the interwire interactiond/,, are also significant, the el- the Green function for the 2DEG near the edge of the upper

ementary excitation modes in the wires become coupled and . : : '
. . 6  quantum well. We calculate this correlation function and dis-
apuk has a more complicated form than that in E49).

Interference oscillations discussed in Sec. IV B can modulatcusS its limiting behavior at low energies in Appendix B. The
) o DEG density of states is finite at the Fermi energy and,
the power-law current suppressiqd8), setting an upper

voltage boundeV<eAV~2mfiv /L, for the validity of Eq. therefore, the long-behavior of the one-particle Green func-

Lo -
(48). It would therefore be hard to observe the exact power;[Ion is G (1)< 11t. If max(eVkgT)<fiveke op, Wherefike oo

) . is the 2DEG Fermi momentum ang: is the lower of the
lrigir\rgzlt\?v%irge\/pj ggincffﬁ_\)N'(tsheéhehg;(vg(\)lgfn;igc) 'R/tgez Fermi velocities of the 1D band and the 2DEG, the tempera-
> F | ’ ’ . i i

If eV<2/ive/(g L), electrons effectively tunnel into the ture and voltage dependence of the differential conductance

end of the lower wire and the current suppression is govf”1re governed by the exponeritd), with g, =1, or Eq.(50),

erned by processes in the lower wire outside the tunnelindeIoendlrlg on the relation between meMksl) and

region. In particular, details of the interactions in the finite%hzvgggg‘)'in?:&il:;i;ni:\h;f]eref][')mric\;\(’fe;ugfn fr:edtec“e{ frﬁr;n_
upper wire do not play a role. The last term in E47) now ' pperq

also contributes to the exponent of the langsymptotic, and tdueTerVrvn?!e%OOE?t S Ia%;]ea i:,?;;\gir:)dn ?:%tr?sbtmk :)rlldtf?ee'igv?lreer
a in Eq. (48) is given by y by Sl

wire. While the field dependence of the conductance for the
direct 2DEG—Iower-wire tunneling is different from Eg.
(50) (52) (in particular, the conductance does not exhibit a strong
oscillation patterjp—the low-energy properties stay similar
to the case of the 1D-1D tunneling. In spite of a complicated

The upper Wire,_ in this case, can be vieV\_/ed asa point Conta?fependence of5(V,B) on magnetic field, the zero-bias
and the tunneling exponent is determined entirely by theynomaly is pronounced in the data for tunneling either be-

properties of the lower wire outside the tunneling region. yyeen different 1D bands or between the 2DEG and the 1D
At a finite temperature, the time scale relevant for they54s.

discussion above is set by maX{kgT). The power law(48) As described in Sec. lll C, we measured the zero-voltage
should now be replaced with conductance dip at temperatures<QP<2 K on a junction
v of lengthL=6 um atB=2.5 T. It can be seen in Fig. 2 that
o | BV at this magnetic field, the conductance is dominated by direct
GV, T)=T F“(kBT)’ D tunneling from the 2DEG|us)«|l,). Since fiv ke op/Kg

g -1
Fend— "~ o -
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~100 K>T, the temperature dependence of the zero-biagxcitation mode in the lowest bands;) and |l;) of the
dip can be used to extract the value of the interaction conbiwire to be 0.67-0.07.

stantg, for the band|l,). The data points and thébes) While g_ and g, have similar numerical values, these
theoretical fitting curves are shown in Fig. 6; we find guantities should be contrastegl: is the interaction param-
eter (8) of the channelll,) in the lower wire, which is
9,=0.58+0.03. (53 screened by other 1D states in the wires as well as the 2DEG

The transition point between the two lines in the plot is con-Of the upper quantum welg_, on the other hand, is a pa-
sistent with an estimatefid-/(g,Lkg) ~0.5 K for the sec- rameter characterizing th@ntisymmetri¢ charge modg in
ond 1D mode of the lower wird],). the coupleduy) and|l;) channels of the two wires, which is
As a consistency check, we plot in the insets to Fig. e'elatively weakly screened by the 2DEG since the latter has a
curves calculated using E¢b1) (taking bothaeng and apy, smaller Fermi v.elocn}(beéng,.nevertheles's, still larger than
for the exponent g, and the overall proportionality con- the Fermivelocity ofl2)).” This can explain whyg  andg,
stants were independently obtained from the power-law tem@r€ comparable whilfl ;) has about half the Fermi velocity
perature dependence of the bottom of the dip, i&(V of |uy) and|l_1>. [The interwire interaction would only en-
=0,T), so that at this point we do not have any remainingh@nce the mismatch as it reduags. , see Eq(36).]
fiting parameters. The results show reasonable agreement Similar values for the interaction parameggin the range
with the data: When mae(V,kgT)>2%v:/(giL) the data is between 0.66 and 0.82, were found in Ref. 20 for single
consistent with @=ayp,, while when maxeV,kgT) cleaved-edge quantum wires by measuring the temperature
<2hvel(giL) it is more consistent withr= agng. Thus, in dependence of the linewidth of resonant tunneling through a
particular, there is a crossover between,yand ey, in the localized impurity state. Spectral properties of the same
data forG(V) at T=0.24 K. For voltages/~1 meV that double-wire structure as reported here were investigated in

are comparable to the Fermi energies of the modes particRef- 5; also indicating comparable valuesgfabout 0.75,
pating in tunneling, the power-law behavi@l) is replaced for various intermode transitions. An |_nteract|on_parameter
by a more complex structure modulated by the dispersions i~ 0-4 was found for GaAs quantum-wire stacks in resonant
the wires and the upper well, see Fig. 2. Raman-scattering experimeritsthe smaller value ofj there

' can be attributed to much lower electron densities and no
V. CONCLUSIONS screening by the 2DEG, as in our measurements.

We have presented a detailed experimental and theoretical
investigation of tunneling between two interacting quantum ACKNOWLEDGEMENT
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In the analysis of the data the finiteness of the junction
plays a central role. Breaking translational invariance, theaAppENDIX A: INDEPENDENT-MODE APPROXIMATION
boundaries give rise to secondary dispersion peaks in the ] ) . )
dependence of the conductance on voltage bias and magnetic In our analysis we treat different 1D bands in the wires as
field. Smooth gate potentials result in a strongly asymmetridndependent and disregard interband interactions. While this
interference profile, while the Coulomb repulsion in theiS @ convenient approximation for theoretical investigations
wires leads to spin-charge separation which, in turn, moduthat has been often assumed in previous wdrk# needs to
lates the conductance oscillation amplitude as a function o€ further justified. Tunneling into multimode 1D wires was
voltage bias. considered in Ref. 22. It was shown that low-energy tunnel-
Interplay between the electron correlations in the wiredng into the edge of a semi-infinite wire witN bands is
and the finiteness of the junction length also results in differgoverned by the tunneling density of states exponents
ent regimes of the zero-bias anomaly. At the lowest voltagessuch that the differential conductancat zero temperature
the upper wire is effectively a point-contact source for inject-and low voltageV) is given byGx={L, [t;|2V*, wheret; is
ing electrons into the semi-infinite lower wire. On the otherthe tunneling amplitude for thigh mode. In the independent-
hand, at higher voltages, electrons effectively tunnel betweefode approximation with interactions described by Hamil-
the bulks of the two wires along the length of the junction. tonian(6) for each mode, these exponents are given by Eq.
Using the temperature dependence of the zero-bias digd0) with the parameteg describing interactions in each
we found the value of the interaction paramedgr vg /v mode. On the other hand, in a more realistic picture one
for band|l,) in the lower wire to be 0.580.03. From the deals with an interaction Hamiltonian
ratio between the slowdue to spin-charge separatjoand
fast (due to upper-wire confinemenscales of the conduc- v. N .
tance oscillations, we als'o extracted thel|nteract|o.n parameter Him:_o E f dxp;(x)p;(X), (A1)
g_=vglv._ corresponding to the antisymmetric charge- 2 i1 Jo
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which takes into account the interband coupling. H&gis  mate the Green function of the top quantum well by the edge
the zero-momentum Fourier component of the interactiorGreen function of a 2D electron gas occupying a half plane
potentialV(x) =V,d(x) andp; is the electron density in the y>0 with x extended from— to . We assume the poten-
ith band. The exact form of the potential is not importanttial is V(x,y)=0 for y>0 andV(x,y) =« for y<0. There-
since we are only interested in the long-wavelength quanturfore, we find
fluctuations>

The exponents are given Bya;=(Z|\,y3s /v;)—1, .
where v; is the Fermi velocity of the noninteracting 1D : ~> v e = | ip(x—x")
electron gas at the density of théh mode,s; is the velo- IG7(xy,tx"y".0) 7T2focdpé
city of the Ith soundlike excitation in the presence of the
potential V(x), and vy; characterizes coupling between the
ith andlth noninteracting modes after the interaction poten-
tial V(x) is switched on. In the case of a single transverse
mode with spin degeneracyN=2, y:=1/2, and s,
=vpV1+2Vy/(mhvg), S;=vg are the charge- and spin- 0 5 o 2 ) -
excitation velocities, respectively. For a genekalthe ve- ~Where e=A°(p°+k“—kg)/(2m) is the energy andkg is

* fwd ksin(ky)sin(ky’ )@ (e)e '€V
0

(B1)

locities s, are given by roots of the equation the Fermi wave vector of the 2DE®(¢) is the Heaviside
step function. When we calculate the tunneling current,
N v h andy’ run from 0 to ¢, the width of the tunnel junction
> S FRv (A2)  (i.e., the extent of the 1D mode of the lower wire in the
S 0 direction perpendicular to the cleaved edgéle set §,y’)
and the coefficienty; are given by —¢&/2 and approximate sik§/2)~ké&/2 assumingke<<1/¢.

In the frequency domain, the Green functi€®® (z,w)
v; N Ui =[7 .dte“'G”(zt), with z=x—x’, then becomes
(sP=vD)?[ 1 (sP-v)?

2 o0 o0
In our systent,the Fermi velocities of the highest occupied iG™(z,0)= § J' dpépzf dkiRs(e— )0 (w)
bands are very differente.g., the highest transverse mode ' 27h | 0 '
has twice the velocity of the next lower-lying modé-ur- (B2)
thermore, since the interactidfy< max(iv;) is not too large,
the correction to the exponents due to the interband cou- | the limit of small positive frequencies it reduces to
pling is expected to be relatively small. One can accommo-
date for this correction by slightly renormalizing the interac-

tion constants g, viewing it as a mutual interband 2 [k .
g g iG>(z,w—>0+)=m2§—hJ " dpeP?\kZ—p?
,kF

i (A3)

screening?
Also, it is safe to disregard intermode transitions since
they are determined by the Fourier components of the inter- ,J1(Kr2)
action with a large wave vectér~kg, which are small for a =m(¢ke) Tk,:z (B3)
smooth long-range potenti&dl. The weak backscattering
within each spin-degenerate mode can be further renormal-

ized downward at low energies in the physical case of repu|\_/vhereJl is the first-order Bessel function of the first kind. In
sive interactiong? particular, sincel;(x)«x whenx— 0, the density of states is

finite at the Fermi energy an@~ (t)« 1/t ast—oe. Further-
more, from the low-energy form of the 2DEG Green function
[Eqg. (B3)] it follows that the relevant range afin integral

In order to describe the¥ andB dependencies of the con- (9) is 1kg rather than 1/maxyI'/vg), as in the case of the
ductance for direct 2DEG-lower-wire tunneling, we approxi- 1D-1D tunneling.

APPENDIX B: DIRECT TUNNELING FROM THE 2DEG
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