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Abstract—A Gaussian Interference Channel with an Infrastructure
Relay (ICIR) is investigated. The relay has finite-capacity links to
both sources and destinations that are orthogonal to each other and
to the underlying interference channel. A general achievable rate
region is presented by using the relay both to convey additional in-
formation from the sources (signal relaying) and to ease interference
cancelation (interference forwarding). Outer bounds to the capacity
region are also derived, and used to determine a number of regimes
of interest where either signal relaying only or both signal relaying
and interference forwarding are optimal.

I. INTRODUCTION

Consider two terminals of, say, a cellular system, communi-
cating at the same time and over the same bandwidth with the
corresponding receivers (base stations). The base stations cannot
cooperate for decoding and thus generally suffer from inter-cell
interference. Assume now that a fifth node is available in between
the two cells that has no data of its own to communicate, but
can assist the two ongoing transmissions towards the base sta-
tions. This scenario can be modelled as a (two-user) Interference
Channel (IC) assisted by a relay, that has been recently dealt
with in a number of works [8]-[12]. As shown in these references
(briefly reviewed below), the presence of a relay terminal may aid
reception at both receivers, not only via (useful) signal relaying, as
in a standard relay channel, but also, remarkably, via interference
forwarding (see also [13] for related discussion).

The IC aided by a relay has been first studied in [8], where
a Gaussian model is considered and an achievable rate region is
obtained via rate splitting into common and private messages at
the sources [2], decode-and-forward (DF) at the relay and joint
decoding at the destinations [2]. It is shown via numerical results
that the sum-rate in a symmetric IC is maximized when the relay
only forwards common messages, which need to be decoded at
both destinations. The discrete memoryless and Gaussian IC with
a relay is further investigated in [9] [10], in which simplified
channel models are considered where the relay only receives from
one source. DF-based strategies at the relays with joint decoding
at the destinations are proposed without rate splitting and shown to
exhaust the capacity region under some conditions. These works
emphasize the fact that forwarding the interference of even a
single source may improve the rates of both users. Related work
is also presented in [11] and [12], where the relay is assumed
to be aware a priori of the users’ messages (cognitive relay) and
sophisticated achievable strategies are investigated.
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Internet Center for Advanced Technology at Polytechnic Institute of NYU.
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Fig. 1. System Model

Previous work, as summarized above, assumed that the relay
operates over the same time and bandwidth of the IC, thus opening
up the possibility of deploying a large number of strategies,
such as coherent transmission, dirty paper coding, interference
cancellation, etc. As such, the analysis has turned out to be quite
prohibitive without resorting to simplified models or numerical
evaluations. In this paper, we focus on a more fundamental model
in which the operation of the relay is limited in a way to clearly
emphasize optimality of signal relaying versus interference for-
warding in different operating regimes. Specifically, we consider
the model in Figure I, in which, on top of a standard Gaussian
IC, a relay is connected to the sources and to the destination
via finite-capacity links. Such links are orthogonal to one another
and to the underlying IC. Besides the technical reason discussed
above, this model finds justifications in scenarios in which trans-
mission to and from the relay takes place via orthogonal wireless
interfaces (e.g., Wi-Fi cards). Since the introduction of the relay
here assumes the presence of such additional communication
infrastructure, we term this channel as IC with Infrastructure
Relay (IR), or in short ICIR. We first derive a general achievable
rate based on a four-way rate splitting strategy and then show
optimality of either signal relaying only or both signal relaying
and interference in a number of scenarios of interest.

The paper is organized as follows. In Sec. II, we provide the
system model. A general achievable rate region is given in Sec.
III. In Sec. IV, we derive outer bounds for the rate region of the
system and show that the outer bounds are tight for some channel
conditions. The paper is concluded in Sec. VI.

II. SYSTEM MODEL

We focus on the Gaussian ICIR, as shown in Fig. I. Each source
Si, i = 1, 2, wishes to send a message index Wi, uniformly drawn
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from the set [1, 2nRi ], to its destination Di, with the help of an IR
R. The sources S1 and S2 communicate simultaneously to their
respective destinations D1 and D2 via a Gaussian (“wireless”)
IC. Moreover, each source is also connected via a noiseless finite-
capacity link to a relay, which in turn has finite-capacity links to
each destination. All the four links are orthogonal to each other
and to the Gaussian IC. Moreover, the links from S1, S2 to the
relays have capacities C1R, C2R in bits/ channel use (of the IC),
respectively, and the links from the relay to the destinations D1,
D2 have capacity of CR1, CR2 [bits/channel use], respectively.
The signals received at time t = 1, ..., n on the Gaussian channel
by D1 and D2 are:

Y1,t = X1,t + a21X2,t + Z1,t (1a)
Y2,t = a12X1,t + X2,t + Z2,t, (1b)

respectively, where Xi,t ∈ R represents the (real) input sym-
bols of source Si, on which we enforce the power constraint
1/n

∑n
t=1 x2

i,t ≤ Pi for each codeword, and {Zi,t} is an inde-
pendent identically distributed (i.i.d.) Gaussian noise process with
unit power. Finally, we define as ViR ∈ [1, 2nCiR ] the messages
sent by source Si over the finite-capacity link to the IR R, and
VRi ∈ [1, 2nCRi ] as the messages sent by the IR to Di, for
i = 1, 2.

A (2nR1 , 2nR2 , n) code for the ICIR is defined by the encoding
function at the source Si, i = 1, 2:

fi: [1, 2nRi ] → Rn × [1, 2nCiR ], (2)

which maps a message Wi ∈ [1, 2nRi ] into a codeword Xn ∈ Rn

and a message to the IR ViR ∈ [1, 2nCiR ]; the encoding function
at the IR R

f ′ : [1, ...2nC1R ]×[1, ...2nC2R ] → [1, ...2nCR1 ]×[1, ...2nCR2 ] (3)

which maps the received messages (V1R, V2R) into messages
(VR1,VR2); and by the decoding function at the destination Di,
i = 1, 2,

gi : Rn × [1, ...2nCRi ] → [1, ...2nRi ], (4)

which maps the received signal over the IC, Y n, and from the
IR, VRi, into an estimated message Ŵi. Probability of error,
achievable rate region and capacity region are defined in standard
manner as given in, e.g., [5].

III. A GENERAL ACHIEVABLE REGION

In this section, we derive a general achievable rate region for
the ICIR. It is noted that, due to the different channel structure, it
is not possible to directly borrow techniques from previous work
on the IC with a relay of [8] [9] [11] [12]. As in [1] [2], in
the proposed strategy, we employ rate splitting into private and
common messages, where the private message of each source is to
be decoded only by the intended destination and the common is to
be decoded at both intended and interfered destinations. However,
private and common parts are further split into two messages as
follows. The private message is sent in part over the IC and in part
via the IR directly to the intended destination. As for the common
message, both parts are sent over the IC, but one of the two is
also sent over the IR to the interfered destination for interfer-
ence cancellation. More specifically, we have the following four-
way split of each message Wi, Wi = (WiR,Wip,Wic′ ,Wic′′),

i = 1, 2, where: (i) WiR ∈ [1, ...2nRiR ] is a private message
that is transmitted via the IR only, directly to Di. Notice the
since the IR has orthogonal channels to the IC, this message
is conveyed interference-free to Di; (ii) Wip ∈ [1, ...2nRip ] is
a private message that is transmitted over the IC, decoded at
Di and treated as noise at Dj , j 6= i; (iii) Wic′ ∈ [1, 2nRic′ ]
is a common message that is transmitted over the IC and IR.
Specifically, the IR conveys Wic′ to Dj only, j 6= i, to enable
interference cancellation; (iv) Wic′′ ∈ [1, ...2nRic′′ ] is a common
message that is transmitted over IC only and decoded at both
destinations.

Overall, it is noted that the IR conveys both messages in-
dependent of the transmission on the IC (WiR), which bring
additional information bits directly to the destinations and can
be seen as signal relaying, and messages that are correlated with
the transmission over the IC and enable interference cancellation
(Wic′), which can be seen as interference forwarding. Based on
the strategy outline above, we have the following achievable rate
region.

Theorem 1: The convex hull of the union of all rates (R1, R2)
with Ri = Ric′ + Ric′′ + Rip + RiR, i = 1, 2, that satisfy the
inequalities

∑

j∈S1

Rj ≤ 1
2

log

(∑
j∈S1

k2
j1Pj

N1

)
(5)

∑

j∈S2

Rj ≤ 1
2

log

(∑
j∈S2

k2
j2Pj

N2

)
(6)

R1c′ + R1R ≤ C1R (7)
R2c′ + R2R ≤ C2R (8)
R2c′ + R1R ≤ CR1 (9)
R1c′ + R2R ≤ CR2, (10)

provides an achievable rate region for the Gaussian ICIR, where
conditions (5)-(6) must hold for all subsets S1 ⊆ T1 =
{1c, 1p, 2c′′} and S2 ⊆ T2 = {2c, 2p, 1c′′}, except S1 = {2c′′}
and S2 = {1c′′}; and we define Ric = Ric′ + Ric′′ , N1 =
a2
21P2p + 1, N2 = a2

12P1p + 1, and the parameters kj1 = 1,
kj2 = a12 if j ∈ {1c, 1p}, and kj1 = a21, kj2 = 1 if
j ∈ {2c, 2p}. Moreover, we use the convention Pjc′′ = Pjc,
j = 1, 2, and the power allocations must satisfy the power
constraints P1c + P1p ≤ P1 and P2c + P2p ≤ P1.

Proof: Codeword Generation and Encoding: The sources
divide their messages as W1 = (W

′
1c,W

′′
1c,W1p,W1R), and

W2 = (W
′
2c,W

′′
2c,W2p,W2R) as explained above. Messages Wip

and (Wic′ ,Wic′′) are encoded into codewords Xn
ip and Xn

ic with
rates Rip, Ric′ + Ric′′ for i = 1, 2, respectively, and sent over
the IC in n channel uses. Such codewords are generated i.i.d.
from Gaussian distributions with zero-mean and powers Pip, Pic,
respectively. Overall, we have the transmitted codewords:

Xn
1 (W1) = Xn

1p(W1p) + Xn
1c(W1c′ , W1c′′) (11a)

Xn
2 (W2) = Xn

2p(W2p) + Xn
2c(W2c′ , W2c′′). (11b)

Message WiR is transmitted to Di via the IR only, through
the messages ViR and VRi. Moreover, to facilitate interference
cancellation, source Si transmits message W

′
ic to the interfered

destination Dj , j 6= i, via the IR in the messages ViR and VRj .
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Thus, the messages sent over the links are given by:

V1R = (W1c′ ,W1R), V2R = (W2c′ ,W2R) (12)
VR1 = (W2c′ ,W1R), VR2 = (W1c′ ,W2R). (13)

Decoding: The destination Di immediately recovers VRi from
the incoming noiseless link. The signals received on the IC are
given by (1) with (11). Moreover, destination D1 knows W2c′

and thus sees an equivalent codebook Xn
2c(W2c′ ,W2c′′) with

only 2nR2c′′ codewords (and power Pic). Similarly, D2 sees an
equivalent codebook Xn

1c(W1c′ ,W1c′′) with rate R1c′′ . Decoding
of the messages (W1c′ ,W1c′′ ,W1p,W2c′′) at destination D1 (and
(W2c′ ,W2c′′ ,W2p,W1c′′) at destination D2) is then performed
jointly as over a multiple access channel with three sources of
rates R1c = R1c′+R1c′′ , R1p and R2c′′ (and R2c = R2c′+R2c′′ ,
R2p and R1c′′ for D2), by treating the private messages as noise,
thus with equivalent noise power Ni = a2

jiPjp +1 for i, j = 1, 2,
i 6= j. It is finally noted that, as explained in [14], error events
corresponding to erroneous decoding of only message W2c′′ at
destination D1 and W1c′′ at destination D2 do not contribute to
the probability of error and thus can be neglected. ¤

IV. OUTER BOUNDS AND CAPACITY RESULTS

In this section, we first present a general outer bound to
the capacity region of an ICIR in terms of multi-letter mutual
informations (Theorem 2). This bound is then specialized to a
number of special cases of interest, allowing the identification of
the capacity region of ICIR for such scenarios (Theorems 3-5).

Theorem 2 (General outer bound): For an ICIR, the capacity
region CICIR is contained within the set of rates (R1, R2)
satisfying

R1 ≤ 1
n

I(Xn
1 ; Y n

1 ) + min(CR1, C1R + C2R) (14)

R1 ≤ 1
n

I(Xn
1 ; Y n

1 |Xn
2 ) + min(C1R, CR1) (15)

R2 ≤ 1
n

I(Xn
2 ; Y n

2 ) + min(CR2, C1R + C2R) (16)

R2 ≤ 1
n

I(Xn
2 ; Y n

2 |Xn
1 ) + min(C2R, CR2), (17)

for some multi-letter input distribution p(xn
1 )p(xn

2 ) that satisfy the
power constraints 1/n

∑n
t=1 x2

i,t ≤ Pi, i = 1, 2.
Proof: We start with the bound (14), then (16) follows similarly.

We have

nR1 = H(W1) (18)
= I(W1; Y n

1 , VR1) + H(W1|Y n
1 , VR1) (19)

≤ I(W1; Y n
1 , VR1) + nεn (20)

= I(W1; Y n
1 ) + I(W1; VR1|Y n

1 ) + nεn (21)
≤ I(Xn

1 ; Y n
1 ) + H(VR1) + nεn (22)

where (20) is from Fano’s inequality, (22) is from W1 →
Xn

1 → Y n
1 and from the fact that conditioning decreases entropy:

I(W1; VR1|Y n
1 ) ≤ H(VR1|Y n

1 ) ≤ H(VR1). Now, we have
H(VR1) ≤ nCR1 by definition, and H(VR1) ≤ H(V1R, V2R) ≤
H(V1R) + H(V2R) = nC1R + nC2R, since VR1 is a func-
tion of (V1R, V2R). Therefore, we have nR1 ≤ I(Xn

1 ; Y n
1 ) +

nmin{CR1, C1R +C2R}, which gives (14). Similarly, we obtain,

nR2 ≤ I(Xn
2 ; Y n

2 )+nmin{CR2, C1R +C2R}, which is the outer
bound in (16). For the remaining bounds, consider the following

nR1 = H(W1) (23)
= H(W1|W2) (24)
= I(W1; Y n

1 , VR1|W2) + H(W1|Y n
1 , VR1,W2) (25)

≤ I(W1; Y n
1 , VR1|W2) + nεn (26)

= I(W1; Y n
1 |W2) + I(W1; VR1|Y n

1 , W2) + nεn (27)
≤ I(Xn

1 ; Y n
1 |Xn

2 ) + H(VR1|Y n
1 ,W2)

− H(VR1|Y n
1 ,W1,W2) + nεn (28)

≤ I(Xn
1 ; Y n

1 |Xn
2 ) + H(VR1|W2) + nεn (29)

= I(Xn
1 ; Y n

1 |Xn
2 ) + H(VR1|V2R) + nεn (30)

where (24) is from independence of W1 and W2, (26) is from
Fano’s inequality, H(W1|Y n

1 , VR1) ≤ nεn and conditioning
decreases entropy, (28) is from Wi → Xn

i → Y n
i , i = 1, 2,

(29) is from conditioning decreases entropy, and (30) is due to
the fact that V2R is a function of W2 and VR1 is a function of
V2R. Moreover, we have,

H(VR1|V2R) ≤ H(V1R) ≤ nC1R (31)
H(VR1|V2R) ≤ H(VR1) ≤ nCR1, (32)

where (31) is from the fact that VR1 is a function of (V1R, V2R).
Thus, the upper bound on nR1 becomes nR1 ≤ I(Xn

1 ; Y n
1 |Xn

2 )+
nmin{C1R, CR1}, giving the bound (15). Bound (17) is proved
similarly. ¤

The next result shows that, for the infrastructure relay if the
links to the destinations form the bottleneck, i.e., CR1 ≤ C1R and
CR2 ≤ C2R, transmission of independent (rather than correlated)
messages via the IR achieves capacity. In other words, in this
regime signal relaying only is optimal. The theorem below is
expressed in terms of the capacity region CIC of a regular IC,
which is generally unknown in single-letter formulation apart from
special cases.

Theorem 3 (Multi-letter capacity region for CR1 ≤ C1R and
CR2 ≤ C2R): For an ICIR with CR1 ≤ C1R and CR2 ≤ C2R,
the capacity region CICIR is given by the capacity region CIC of
the IC, enhanced by (CR1, CR2) along the individual rates as

CICIR = {(R1, R2): (R1 −R′1, R2 −R′2) ∈ CIC},
for R′1 ≤ CR1, R′2 ≤ CR2. Equivalently, the capacity region
CICIR is given by the union over the sets of rates (R1, R2) that
satisfy

R1 ≤ 1
n

I(Xn
1 ; Y n

1 ) + CR1 (33)

R2 ≤ 1
n

I(Xn
2 ; Y n

2 ) + CR2, (34)

for some input distributions p(xn
1 )p(xn

2 ) that satisfy the power
constraints.

Proof: The converse follows immediately from (14) and (16)
with the conditions CRi ≤ CiR, i = 1, 2. Achievability follows by
sending independent messages, say (W1R,W2R) in the notation
of Theorem 1, of rates CR1 and CR2 from sources S1 and S2,
respectively, via the IR, and then using the Gaussian IC as a
regular IC, stripped of the infrastructure links. For the latter
channel, it is in fact known that the capacity region is given by
the multi-letter expressions Ri ≤ 1

nI(Xn
i ;Y n

i ), i = 1, 2.¤
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Remark 1: Due to Theorem 3, in any scenario where a single-
letter capacity region is known for the regular IC, the capacity
result immediately carries over to the ICIR with CR1 ≤ C1R and
CR2 ≤ C2R. Therefore, for instance, we can obtain a single-letter
capacity region expression for an ICIR in the strong interference
regime (a21 ≥ 1 and a12 ≥ 1) [2] [3] or noisy interference regime
[16] [17] [18], as long as CR1 ≤ C1R and CR2 ≤ C2R.

Remark 2: Both Theorem 2 and 3 apply also to a general
discrete memoryless ICIR (with the caveat of eliminating the
power constraint).

While Theorem 3 provides a general capacity result for the case
where the IR-to-destination links set the performance bottleneck,
i.e., CR1 ≤ C1R and CR2 ≤ C2R, we next investigate the capacity
region for the complementary scenario in which such condition is
not satisfied. We focus specifically on the case characterized by
CR1 ≤ C1R and C2R ≤ CR2, where the extension to the dual
scenario C1R ≤ CR1 and CR2 ≤ C2R will be straightforward (and
not explicitly stated) by appropriately switching indices. Under the
assumption at hand, the following rate

Rex12 = min {C1R − CR1, CR2 − C2R, }
plays a key role. This can be interpreted as the excess rate from
S1 to D2 on the IR links, once user 1 and user 2 have allocated the
maximum possible rate on the IR links for signal relaying, namely
R1R = min{CR1, C1R} = CR1 and R2R = min{CR2, C2R} =
C2R.

Theorem 4: In a Gaussian ICIR with
channel conditions a21 ≥ 1 and Rex12 ≥
max

{
0, 1

2 log(1 + P1 + a2
21P2)− 1

2 log(1 + a2
12P1 + P2)

}
,

the following gives the capacity region,

R1 ≤ 1
2

log (1 + P1) + CR1 (35)

R2 ≤ 1
2

log (1 + P2) + C2R (36)

R1 + R2 ≤ 1
2

log
(
1 + P1 + a2

21P2

)
+ CR1 + C2R. (37)

Proof: The converse follows from Theorem 2. Namely, the upper
bounds on individual rates (35) and (36) are a consequence of (15)
and (17), while the upper bound on the sum rate (37) follows by
summing (14) and (17) and accounting for the condition a21 ≥ 1
as

R1 + R2 ≤ 1
n

I(Xn
1 ; Y n

1 ) +
1
n

I(Xn
2 ; Y n

2 |Xn
1 )

+ min(CR1, C1R + C2R) + min(C2R, CR2) (38)

=
1
n

I(Xn
1 ; Y n

1 ) +
1
n

I(Xn
2 ; Y n

2 |Xn
1 )

+ CR1 + C2R (39)

=
1
n

h(Xn
1 + a21X

n
2 + Zn

1 )− 1
n

h(a21X
n
2 + Zn

1 )

+
1
n

h(Xn
2 + Zn

2 )− h(Zn
2 ) + CR1 + C2R (40)

≤ 1
2

log(1 + P1 + a2
21P2) + CR1 + C2R (41)

where (38) is due to the conditions CR1 ≤ C1R and C2R ≤ CR2,
(41) is from the worst-case noise result [6], i.e., h(Xn

2 + Zn
2 )−

h(a21X
n
2 + Zn

1 ) ≤ n log(1) for a21 ≥ 1, and the first entropy is
maximized by i.i.d. Gaussian inputs.

For achievability, we use the general result of Theorem 1, where
the sources here transmit common messages (W1c′′ ,W2c′′) over
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Fig. 2. Maximum achievable sum-rate (from Theorem 1) for various IR link
capacities: C1R = CR1 = C2R = CR2 = 0 corresponds to the maximum sum-
rate with no relay, C1R = C2R = 2, CR1 = CR2 = 1 satisfies the conditions
in Theorem 3, and C1R = CR2 = 3, C2R = CR1 = 2, satisfies the conditions
in Theorem 4.

the IC which are decoded at both destinations. In addition, S1

transmits also the message W1c′ to be decoded at D1. The other
rates are set to R2c′ = R1p = R2p = 0. The IR is used to
transmit independent messages W1R,W2R with rates R1R = CR1

and R2R = C2R, but also message W1c′ of rate R1c′ to D2 in
order to facilitate interference cancellation. From Theorem 1, and
applying Fourier-Motzkin elimination, we obtain the following
achievable region

R1 ≤ 1
2

log(1 + P1) + CR1 (42)

R2 ≤ 1
2

log(1 + P2) + C2R (43)

R1 + R2 ≤ 1
2

log(1 + P1 + a2
21P2) + CR1 + C2R (44)

R1 + R2 ≤ 1
2

log(1 + a2
12P1 + P2) + Rex12

+ CR1 + C2R, (45)

so that for Rex12 ≥ max{0, 1
2 log(1 + P1 + a2

21P2) − 1
2 log(1 +

a2
12P1 + P2)}, the claim is proved.¤
Remark 3: The assumptions in Theorem 4 encompass two

different situations. In the first, we have the channel conditions
(1−a2

12)P1 +(a2
21−1)P2 ≤ 0, so that the sum-rate bound (44) to

receiver D1 forms the performance bottleneck in terms of sum-
rate irrespective of a positive excess rate Rex12 (which increases
the sum-rate at D2 as per (45)). Therefore, it can be seen that
the capacity region of Theorem 4 is attained without performing
interference forwarding, R1c′ = 0. In the second case, we have
(1 − a2

12)P1 + (a2
21 − 1)P2 > 0, so that, conversely, the sum-

rate bound (45) at D2 may be more restrictive than (44). In this
scenario, it can be seen that it is optimal to exploit the excess rate
Rex12 to perform interference forwarding from S1 to D2 with rate
equal to R1c′ = log(1 + P1 + a2

21P2)− log(1 + a2
12P1 + P2).

Theorem 4 assumes that the excess rate satisfies a given
lower bound. The next result considers a scenario where the
complementary upper bound is assumed.
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Theorem 5: In a Gaussian ICIR with the conditions a12 ≥ 1,
0 ≤ Rex12 = CR2 − C2R ≤ 1

2 log(1 + P1 + a2
21P2) − 1

2 log(1 +
a2
12P1 + P2), the following conditions gives the capacity region

R1 ≤ 1
2

log (1 + P1) + CR1 (46)

R2 ≤ 1
2

log (1 + P2) + C2R (47)

R1 + R2 ≤ 1
2

log
(
1 + a2

12P1 + P2

)
+ CR1 + CR2. (48)

Proof: The converse is again a consequence of Theorem 2. Specif-
ically, the single rate bounds (46) and (47) follow immediately
from (15) and (17), while the bound on the sum-rate (48) is
obtained from the summation of (15) and (16) and exploiting the
condition a12 ≥ 1 as

R1 + R2 ≤ 1
n

I(Xn
2 ; Y n

2 ) +
1
n

I(Xn
1 ; Y n

1 |Xn
2 )

+ min(C1R, CR1) + min(CR2, C1R + C2R) (49)

=
1
n

I(Xn
2 ; Y n

2 ) +
1
n

I(Xn
1 ; Y n

1 |Xn
2 )

+ CR1 + CR2 (50)

=
1
n

h(a12X
n
1 + Xn

2 + Zn
2 )− 1

n
h(a12X

n
1 + Zn

2 )

+
1
n

h(Xn
1 + Zn

1 )− h(Zn
1 ) + CR1 + CR2 (51)

≤ 1
2

log(a2
12P1 + P2 + 1) + CR1 + CR2, (52)

where (49) is due to the conditions CR1 ≤ C1R and CR2+CR1 ≤
C1R + C2R, (52) is from the worst-case noise result [6], i.e.,
h(Xn

1 +Zn
1 )−h(a12X

n
1 +Zn

2 ) ≤ n 1
2 log(1) for a12 ≥ 1, and the

fact that first entropy is maximized by i.i.d. Gaussian inputs.
For the achievability, consider the achievable rate region given

in Theorem 4 (42)-(45). Clearly, when the conditions in Theorem
5 which can also be written as CR2 − C2R ≥ C1R − CR1 and
Rex12 ≤ 1

2 log(1 + P1 + a2
21P2) − 1

2 log(1 + a2
12P1 + P2) are

satisfied, (52) is achievable, hence gives the sum capacity. ¤
Remark 4: Similarly to the second case described in Remark

3, under the assumptions of Theorem 5, interference forwarding is
useful in increasing the capacity region. However, unlike Theorem
4, here the excess rate is not large enough to make the sum-rate
constraint (44) at D1 the performance bottleneck with respect to
(45). In fact, under the assumptions of Theorem 5, the sum-rate
bound (45) for D2 is always more restrictive than (44) for D1 in
terms of the sum-rate, given the constraint Rex12 ≤ log(1+P1 +
a2
21P2)− log(1 + a2

12P1 + P2). The capacity region of Theorem
5 is attained by setting R1c′ = Rex12 = CR2 − C2R.

Remark 5: The assumptions in Theorem 5 imply the strong
interference conditions a12 ≥ 1 and a21 ≥ 1. In contrast,
the assumptions of Theorem 4 in general do not imply strong
interference. This is, however, the case if we further assume the
condition (1 − a2

12)P1 + (a2
21 − 1)P2 ≤ 0 (as in the first case

discussed in Remark 3).
V. NUMERICAL RESULTS

In Fig. 2, we show the maximum achievable sum-rate of The-
orem 1 for different configurations of the IR link capacities and
with P1 = P2 = 10 and a21 = a12 = a. Power allocations at the
sources are optimized numerically. For comparison, we show the
case C1R = C2R = CR1 = CR2 = 0. Moreover, we first consider
a scenario where IR-to-destination links have smaller capacities
than the source-to-IR links, C1R = C2R = 2, CR1 = CR2 = 1,

thus falling within the assumptions of Theorem 3. It can be seen
that the sum-rate increases by CR1 + CR2 = 2 for all values
of a. Moreover, from Theorem 3, it is known that in the noisy
[17]

(
a(1 + 10a2) ≤ 0.5, i.e, a ≤ 0.28

)
and strong (a ≥ 1) [2]

[3] interference regimes, the sum-rate shown in the figure is
actually the sum-capacity. Finally, we consider a situation with
C1R = CR2 = 3, C2R = CR1 = 2, which falls under the
conditions of Theorem 4 for a ≥ 1. As stated in the Theorem,
for a ≥ 1, the sum-rate shown in the sum-capacity and is
CR1 +C2R = 4 bits/channel use larger than the reference case of
zero IR capacities.

VI. CONCLUSION
Relaying in an interference-limited system is investigated by

focusing on a model in which orthogonal and finite capacity links
exist between terminals and a dedicated relay. It is shown that
for different conditions on the underlying Gaussian IC and on the
links to/ from the relay, signal relaying only or both signal relying
and interference forwarding by the relay is optimal. It is noted that
such conclusions do not necessarily hinge on the availability of
a single-letter capacity region for the Gaussian IC (see Theorem
3), but the latter is often instrumental to the proofs (see Theorem
4 and 5). Along these lines, extensions of these results to other
scenarios where the capacity region the Gaussian IC is known
[15]-[17] will be considered in future work. Also interesting is
to impose further constraints on the links to and from the relay,
such as broadcasting or multiple access interference.
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