
Interference Detection for Cable-Driven Parallel Robots (CDPRs)

Laurent Blanchet1 and Jean-Pierre Merlet2

Abstract— The main advantage of CDPRs is large
workspaces. However, multiple legs and large workspace are
both factors for interference. We consider a CDPR platform
within a 6D workspace, and as sources of interference the
collisions with the robot’s environment and self interference.
We present two algorithms and their interval analysis-based
applications to handle the different types of interference.
Finally, the efficiencies of the algorithms are presented.

Index Terms— Modeling and Design, Cable-Driven Parallel
Robots, leg interference, collision, robotics, Interval Analysis.

I. INTRODUCTION

In the last twenty years or so, a new class of parallel
robots, called Cable-Driven Parallel Robots (CDPRs), has
been the subject of several research projects [7], [4]. A CDPR
is composed of a mobile platform suspended by m cables
to a base; the set of parameters involved in the design and
their domains will be called the robot’s configuration. Cable
lengths control the pose of the platform, see figure 1. A
CDPR can be considered as a mechanical system of known
or encapsulated precision which must satisfy the set of
constraints of a given application. As well as practical errors
(real position of the cables exit points, of the attachment
points on the platform, control errors, real cables versus
model, ...), it must also account for numerical round-off
errors in the constraints calculation.

A1

A2

A5

A4

B1

B2
B4B5

ρ1

ρ2 ρ4

A3

B3

A6

B6

O x

zy

Q

Rb

Rm

xm

ym zm
Fig. 1. Schematic of a CDPR with its parametrization.

To account for these errors, interval arithmetic may be
used to certify performances, see [6] for a quick intro-
duction, survey results and an extensive bibliography about
this arithmetic. Instead of single values for parameters, a
range of all possible values for each parameter is used, and

This research has received partial funding from the European Commu-
nity’s Seventh Framework Program under grant agreement NMP2-SL-2011-
285404 (CABLEBOT).

1Laurent Blanchet is a Ph.D. student with Inria S-A Méditerranée, Team
Hephaistos, address below laurent.blanchet@inria.com

2Jean-Pierre Merlet is with Inria Sophia-Antipolis Méditerranée, Team
Hephaistos, 2004 route des Lucioles - BP 93, 06600 Sophia-Antipolis,
France jean-pierre.merlet@inria.com

constraint satisfaction may be guaranteed in spite of vari-
ations of the parameters. Indeed interval arithmetic allows
the qualification of the constraints for the interval values
of the parameters into three statuses: always valid (satisfied
for all values of the parameters range), always invalid (not
satisfied by any value of the parameters in their ranges) or
undetermined (in the parameters ranges, some values satisfy
the constraint, some other do not). This guarantee comes at
the price of computation time.

The main motivation for designing a CDPR is its extended
workspace. However, self-collisions and collisions in general
are the main drawbacks of dealing with large workspaces.
This paper addresses this issue, with the provision of a
“straight” cables hypothesis, meaning that the CDPR has no
deliberately crossing cables, and with the aim of avoiding
such interference. In the negative, Wischnitzer et al. devised
some strategies in [13].

In the following we call box B a n-vector of intervals. Such
a box is defined by the values of its boundaries. We will also
make use of 2B-consistency. A consistency technique ([8])
removes values from the bounds of the variables domains
which are not consistent with the constraint(s), thus without
losing solutions. The basic algorithm is a branch and prune
scheme as described by Van Hentenryck in [12], with branch-
ing occurring when a constraint is evaluated as undetermined
over the considered pose box, i.e. the 6-dimensional interval
vector representing the domain of definition of the robot
end-effector position and orientation. By ‘application’, we
denote the total user-specified workspace, including a list
of pose boxes and trajectories in specified coordinate and
angle systems, and associated sets of external wrenches. The
workspace is called WS in equations, while the sub-set of
pose with interference is called WSI . We will use the terms
‘object’ for a generic object represented by the facets of
its manifold, and ‘obstacle’ for fixed objects. Finally, �a
designate the domain of the variable a.

A versatile algorithm relying on intersection queries be-
tween indexed facets, mainly used for detecting interference
with external obstacles (layout of the factory for example) is
first described. This algorithm relies on the CGAL library,
see [1]. Following is a leg-leg interference algorithm based
on the work of Merlet et al. in [9]. The first one allows one
to handle all types of intersections with relatively simple
approaches, but provides rigorous answers only to non-
interference cases. The second algorithm is applied here only
on the leg/leg collision detection, and provides definitive
answers on non- or with-interference cases. The differences
between the last algorithm and the reference paper are the
extension to CDPRs, a slightly different approach of the
geometrical problematic and the 2B reduction presented in
III-B ii.) and assessed at the end of that section.

2014 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics (AIM)
July 8-11, 2014. Besançon, France

978-1-4799-5735-4/14/$31.00 ©2014 IEEE 1413

II. OBJECT INTERFERENCE

Preliminaries: Objects are represented as a list of facets
in an STL file. The only constraint on the objects is to respect
the STL specification of a closed manifold. The facets of
the obstacles are indexed into an Axis-Aligned Bounded
Box (AABB) tree, with origin shift and exact similitude
transformation. Intersection queries are handled by the 3D
Fast Intersection and Distance Computation algorithm [1].

The concept of swept space is used in thi paper. To
the knowledge of the author, Boyse in [2] was the first to
introduce it, in an interference algorithm detecting potential
interference between moving parts of a mechanism. The idea
is to consider the whole space described by a given entity
as a virtual part. Absence of time dependance provides for
fast algorithms but determining the swept space is often an
problem (see the survey [5]). In the current case, interval
analysis allows for fast, simple, but unfortunately overesti-
mated evaluation of the swept spaces.

We define necessary conditions for collision (border, pose
box of undetermined status), and sufficient conditions (in-
valid pose box). With the hypothesis that the list is exhaus-
tive, the negation of all conditions for the whole pose box
implies absence of collision (valid pose box).

Necessary conditions for collision: A bisection is
needed to reduce the evaluation overestimation if any of the
following interference is detected for part of the pose box:

• obstacle against platform (attachment point) swept space:
the obstacle intersects part of the platform swept space.
This intersection can also be evaluated through the attach-
ment point swept spaces. All swept spaces are obtained
through interval evaluation. Example figure 2.
• obstacle against cable sheaths: the obstacle intersects part

of a cable swept space. Cable swept spaces are 4 to 8 faces
polyhedra and will be called sheaths. Example on fig. 3.

Q

Fig. 2. Example of a mobile plat-
form interference with an object.

Ai

Bi

Fig. 3. Depiction of a cable sheath
and an interference with an object.

Sufficient conditions for collision: The pose box is
declared fully outside of valid workspace if any of the
following intersections is detected for part of the pose box:

• object against configuration space: the object intersects
part of the configuration space considered;
• object against centre of any cable sheath: if the object

intersects the segment from the centre of the anchoring
space to the centre of the swept space of the platform
attachment point of a given leg, it is considered not caused
by overestimation, thick line on figure 3;
• object against application space: the object intersects part

of the desired workspace, see figure 4.

Fig. 4. Example of an application
with a self-interfering definition.

Ai

Bj
Bi

Aj

Fig. 5. Depiction of the sheath-
sheath interference test; example of
an intersection (in red) of the sheaths.

III. CABLE/CABLE INTERFERENCE

Two poses X1, X2 of the application may satisfy all
constraints, but if getting from one to the other causes the
cables to cross, then X2 won’t be reached, at least not with
the straight cable control assumed throughout this section. If
a trajectory from X1 to X2 has cables colliding, then there
exists at least one pose XC ⊂ WSI with crossing cables.
Even if X1, X2 are not in the same pose box after bisections,
the algorithm will close in on XC and all poses of WSI .

If such scenario occurs then there is an intersection of
the interval-evaluated swept spaces. Such a scenario is also
equivalent to a small distance between the axes of the
two legs. The first implication is implemented as a first,
theoretically fast algorithm using swept spaces on the same
principle as the object/cable interference test above, and may
either qualify a pose box as interference-free or request a
split, as it is not possible to differentiate false-positive from
overestimation. The second equivalence is implemented as a
complete, reliable algorithm, looking for and at the shortest
distance(s) between two legs.
A. Swept space based algorithm.

Like in the object versus cable test, leg’s swept spaces
(sheaths) are built around the anchoring region of a given leg
and the space swept by the other end of the leg considering
all poses of the platform of a given pose box. The sheaths are
then tested for intersection versus each one of the other legs
sheaths, see figure 5. As this algorithm loose the correlation
between the attachments on the platform, it is very fast when
there is no possibility of interference, but leads to numerous
splits and often undetermined exits in the rest of the cases.
B. Shortest distances based algorithm.

In [9], Merlet et al. describe three forms of an interval-
evaluation based leg/leg interference algorithm for parallel
robots. We describe here a new algorithm which can be
summed up in three to four steps with reference to the
schematic 6 and its parameterisation:

i.) Determination of the radius of the cylinder/sheath of
the legs by computing the maximum sagging value from
the catenary model.

ii.) Determination of sets of values of the model parame-
ters which might lead to the minimal distance between
two given legs over a box of poses.

iii.) Determination of the range of values of the potential
minimal distances for each of the sets of parameters
determined in the previous step.

iv.) In some cases, evaluation of the legs situation with
reference to each other.

1414

Presentation of the algorithm: Using the parameterisation
of figure 6, we can write the position vectors of points
Mi and Mj in the base frame as the generic equation
OM = OA + lAB. Using Chasles relation and distributive
property of the parameters, those vectors can be re-written as
equations (1), functions of the following known quantities:
• OAi, from the robot’s configuration.
• QBi|Rb

= RQBi, position of the attachment points in
the base frame, depending on the robot’s configuration
and platform orientation matrix within WSR ⊂ SO(3).
WSR ⊂ R3 is the current workspace orientation box, sub
box of the specified workspace (a.k.a. the application); it
spans the set WSR ⊂ SO(3) of matrices.
• OQ, end-effector position within WS ⊂ R3, current

workspace position box, sub box of the application.

∀OQ ∈ WS,∀R ∈WSR, ∃(li, lj) ∈ [0 ; 1]2 :

OMi =OAi + (QBi|Rb
−OAi) li + OQli (1a)

OMj =OAj + (QBj|Rb
−OAj) lj + OQlj (1b)

Bi

Ai Aj

Mj

Bj

ljli

2 · ri
dij

Mi

Fig. 6. Schematic of the two segments
representing two legs of a parallel robot and
parametrization for the minimum gap-based
interference test.

x2

z2z1

x1

θ

Ai

Bi

sag(s)

z A
B

xAB

Fig. 7. Schematic of a cable
with elasticity and sagging,
under the catenary model.

We derive equation (2) from the equations (1).
∀OQ ∈ WS,∀R ∈WSR, ∃(li, lj) ∈ [0 ; 1]2 :

MjMi = AjAi +
(
RQBi −OAi

)
li

−
(
RQBj −OAj

)
lj + OQ (li − lj) (2)

We will use the distance dij = ‖MjMi‖ to evaluate the
range of distances from leg i to leg j for given box(es)
of parameters p = (x, y, z, α, β, γ, li, lj). Moreover, a re-
arrangement of equation (2) will be used to do a useful
2B-consistency on the domain of either one of the last two
parameters, which is particularly effective for CDPRs. The
partial derivatives of dij will also be used in a local branch
and prune algorithm to find out those boxes.

Step i.) Computation of a maximum sagging value: In
the frame of the CableBot European project, we compared
a sagging simulation experimentation by Technalia [11]
with simulation results obtained using the catenary model
popularized by Irvine in [3]. This qualitative comparison is
presented figure 8.

The approach used in [9] is suited for parallel robots
with non-deformable legs, not CDPRs with sagging cables.
In regards to this qualitative comparison, we make the
hypothesis that the cable is encapsulated in a cylinder whose
radius is the maximum sagging value obtained from the
catenary model over the configuration space, the pose box

x
z

Fig. 8. Depiction of the qualitative comparison of Technalia’s sagging
experiments versus catenary model based simulation results.

and for the wrench box of the application. This hypothesis is
likely correct as long as the cable is taut. As Merlet shows in
[10], several poses lead to at least one slack cable, hence an
additional hypothesis: when the cable is slack, the tension,
reduced to the cable self-weight and the bending rigidity, is
supposedly negligible in front of a taut cable tension.

Since the longer the leg is, the more massive is the hanging
part of the cable, we first look for the couple (anchor space,
workspace box) which leads to the higher uncoiled length.

Taking the higher end of the cable as origin of a new
local frame R1 whose x1Oz1 plane contains the cable (see
figure 7), we integrate the catenary model equations (3) of the
normalized horizontal and vertical parametrized coordinates
of a cable (noted here x(s) and z(s)) using dL0s = L0ds
from their differentiated expressions (4). We note the weight
of the uncoiled length of the cable Pc0 = ρ0gL0 and the
difference of the z component of the force applied on the
cable at the platform attachment point, by the weight of
the cable portion left from abscissa s to lower point B,
∆Fz (s) = Fz + Pc0 (s− 1) = ∆Fz (0) + sPc0 .

x(s) =
FxsL0

EA0
+
|Fx|L0

Pc0

(
arcsinh

(
∆Fz (s)
Fx

)

− arcsinh

(
∆Fz (0)
Fx

))
(3a)

z(s) =
∆Fz (0) sL0

EA0
+
Pc0L0

EA0

s2

2

+
L0

Pc0

(√
F 2
x + (∆Fz (s))2 −

√
F 2
x + (∆Fz (0))2

)
(3b)

dx

ds
=

Fx

EA0
+

Fx√
F 2
x + (∆Fz (s))2

(4a)

dz

ds
=

∆Fz (s)
EA0

+
∆Fz (s)√

F 2
x + (∆Fz (s))2

(4b)

We use a second local frame R2, which is a rotation of
angle θ of the current one such that both attachment points
of the cable (noted A and B) are on the new z2 axis.
In this frame, the parametrized sagging function is simply
the opposite of the x2(s) parametrized coordinates, issuing
equation (5) and its derivative. Then, we solve (6) in order
to find the extrema of (5).

sag(s) = −
zABx(s)

√
xAB2 + zAB2

+
xABz(s)√
xAB2 + zAB2

(5)

1415

d (sag)
ds

= 0⇔ −zAB
dx

ds
+ xAB

dz

ds
= 0 (6)

However, (6) is equivalent to (7), whose first factor is
always strictly positive, whatever the value of s, ensuing the
equivalence (8).(√

F 2
x + ∆Fz (s)2 + EA0

)
(xAB∆Fz (s)− zABFx) = 0

(7)
d (sag)
ds

= 0⇔ smax sag =
zAB

xAB

Fx

Pc0
−

∆Fz (0)
Pc0

(8)

At this point, the Fx and Fz variables are any values of
their respective domains, while xAB , zAB , and Pc0 are single
values. As all equations are for a normalized parameter, we
can safely discard solutions not in the [0 ; 1] interval. Then
we take the biggest value from the evaluation of the sagging
function for all values of smax sag left.

Step ii.) Determination of the boxes of parameters of
potential minimum gap: We need to determine a set S of
boxes of parameters Bk such that one of them contains the
values of the eight parameters p = (x, y, z, α, β, γ, li, lj)
leading to the minimal gap between leg i and leg j. To
do that, we use a branch and prune algorithm to solve the
equations ∂dij

∂pi
= 0, for dij = ‖MjMi‖. With no loss of

generality, we can write that ∃d ∈ R,∃u ∈ [−1 ; 1]3 such
that MiMj = du.

We begin by a 2B reduction on the domain of either li or
lj . Let us choose parameter lj and proceed to the following
substitution: λ = lj − li. Then, from (2), we can derive (9).
∀OQ ∈ WS,∀R ∈WSR, ∃li ∈ [0 ; 1],∃λ ∈ [−1 ; 1],

∃d ∈ R,∃u ∈ [−1 ; 1]3 :
OQλ = AjAi +

(
RBjBi −AjAi

)
li

−
(
RQBj −OAj

)
λ− du (9)

Let us first encapsulate the distance vector for interference
poses. For some QI and RI a pose for which there is a leg/leg
interference, as the distance vector MiMj is the shortest
distance between the two legs, we have ‖MiMj‖ ≤ ri + rj .
Moreover, MiMj ∈ [−a2 ; a2]3, see figure 9. By choosing a
so that the cube (C) is the circumcube of the sphere (S),
we have a = ri + rj .

a

r
i +
r
j

(C)

(S)

Fig. 9. Schematic of the encapsula-
tion of the distance vector dij for a
leg/leg interfering pose.

ε

d
(p
la
n
e,
M
i)

dij

ri

α

rj
A

B

D

EC

α

Fig. 10. Schematic of the “cap”
situation in case one leg is right
above - or below - the other, and
parametrization.

Now, for the derivation of the equations for the 2B
reduction, using (9) we build the set WSI (λ), equation (10),
which represents a linear combination of the set of positions
for which there are leg/leg interference(s) for a given value of
the parameter λ, and the box H (λ), equation (11), a known
box depending on parameter λ, and superset of WSI (λ).
WSI (λ) =

{
λQI ∈ λ.WS

∣∣ ∃li ∈ [0 ; 1],∃R ∈WSR,

∃d < ri + rj ,∃u ∈ [−1 ; 1]3,OQIλ = AjAi+(
RBjBi −AjAi

)
li −

(
RQBj −OAj

)
λ− du

}
(10)

H (λ) =
{
AjAi +

(
RBjBi −AjAi

)
li

−
(
RQBj −OAj

)
λ− du

∣∣ ∀li ∈ [0 ; 1],

∀R ∈WSR, ∀d < ri + rj ,∀u ∈ [−1 ; 1]3
}

(11)

This inclusion is equivalent, ∀λ ∈ [−1 ; 1], to the two
inequalities (12).

Inf (H (λ)) ≤ Inf (WSI (λ)) (12a)
Sup (WSI (λ)) ≤ Sup (H (λ)) (12b)

Moreover, the definition (10) implies the inequalities (13).
Inf (WSI (λ)) ≤ Sup (�OQλ) (13a)

Inf (�OQλ) ≤ Sup (WSI (λ)) (13b)

Combining (12) and (13) leads to (14).
∀λ ∈ [−1 ; 1], Inf (H (λ)) ≤ Sup (�OQλ)
∀λ ∈ [−1 ; 1], Inf (�OQλ) ≤ Sup (H (λ)) (14)

It is important to notice in the inequalities (14) that the
parameter λ is a single real number, not a set. This fact,
combined with the linearity of the two interval operators
Inf (X) and Sup (X), justifies the distributivity used to
obtain inequalities (15). The two inequalities (14) are ac-
tually 6 inequalities, as they apply on all three translational
dimensions. Using the notation e to represent a generic eigen
vector of the box WS , inequalities (15) follow.
∀λ ∈ [−1 ; 1],∀e ∈ WS,

Inf (H (λ) .e) ≤ Sup (�OQ.e)λ (15a)
Inf (�OQ.e)λ ≤ Sup (H (λ) .e) (15b)

Finally, with H = {H (λ) | ∀λ ∈ [−1; 1]}, for all λ ∈
[−1 ; 1], and with e such that 0 6∈ �OQ.e, (15) brings (16).

Inf (H.e)
Sup (�OQ.e)︸ ︷︷ ︸

λmin

≤ λ ≤
Sup (H.e)

Inf (�OQ.e)︸ ︷︷ ︸
λmax

(16)

The interest of this framing of the λ parameter lies in
the fact that for a CDPR, we will often have big values
for the interval �OQ.z = WS|3 in order to mitigate the
tension in the cables through their inclinations with reference
to the vertical, ensuing small values over H.z in front of the
values of �OQ.z. It is even more interesting for almost
planar configurations, which induces small values over the
interval H.z. For the case defined in section IV, the size of
the resulting λ domain was ranging from 2.52% to 16.34%
of the initial domain size; the contraction resulted in no valid
domain, eg no interference, for 7.14% of the search tree for
a small workspace (SB) and 42.24% for a big one (BB).

The leg/leg interference algorithm continues with the
branch and prune algorithm fig. 11 for each of the variables.

1416

1) 2B on λ. If λmax < λmin, then EXIT, no interference
for this pose box with the current configuration box.

2) initialize global variables: i = 8, S = {�}
3) initialize local variables: n = 1, W
4) While n < nmax, do:

a) W := eval

(
�
∂dij

∂pi

)
b) if 0 ∈W . . .

(b.i) but no (or not enough) variations on W, change
�pi := Mid (�pi)

(b.ii) and both Diam (W) > min allowed for ∂dij

∂pi

and Diam (�pi) > minimum allowed for param-
eter pi, split �pi, store lower half in to-do list L,
and change �pi := [Mid (�pi) ; Sup (�pi)]

(b.iii) but either W or �pi is not big enough, store
�pi in list S, and if to-do list is not empty change
�pi := L (last), else exit (to sub-step 5).

c) if 0 6∈W . . .
(c.i) and first evaluation, hence i == 1, then dij is

monotonous with respect to parameter pi. If the
evaluation W is negative, dij (pi) is decreasing;
change �pi := Sup (�pi). If the evaluation W
is positive, dij (pi) is increasing; change �pi :=
Inf (�pi). Exit (to sub-step 5).

(c.ii) and to-do list L is not empty, discarding current
�pi and change �pi := L (last)

(c.iii) and to-do list L is empty, check if there was at
least one contribution of this variable domain to
the list S and exit (to sub-step 5), else overesti-
mation of the derivative: go to (c.i).

d) n = n+ 1, go to 4
5) if i == 7 (thus current parameter is li), �li =
(�li ∩� (lj − λ)). If �li = {�}, EXIT, no interference
for this pose box with the current configuration box.

6) if i > 1, decrement i for next variable, go to 3

Fig. 11. Branch and prune solving algorithm for all parameters of the
leg/leg interference tests.

Step iii.) Computation of all potential minimal distances
between the legs i and j: Once determined all boxes of
potential interference S = {Bk | ∀k ∈ J0 ; rK}, the algorithm
evaluate the distance interval dij between the legs i and j
for parameters in Bk, and compare it to the radii of the legs,
see figure 12. Those are intervals; there is no interference
if all distances from all the boxes (the lowest values of dij
for all Bk) test above the sum of the two radii; and there is
interference if all distances from one of the boxes (the highest
value of dij for any Bk) test below the i-th leg radius. If all
distances are above the i-th leg radius, but not above the sum
of the two radii, there are several possibilities, see Step iv.).

Step iv.) evaluation of the legs situation with reference to
the other leg: If all distances are above the i-th leg radius,
but not above the sum of the radii, it could be that the legs
actually are interfering, the respective cylinders just crossing,
but not as far as crossing each other’s axes, or it could be
that leg i is right above or below leg j, with no intersection.

To differentiate those two situations we begin by testing on
the first possibility, see algorithm figure 13. From the vector

7) for all boxes in S, eval (dij (x, y, z, α, β, γ, li, lj)).
a) if it exists at least one box Bk in list S such that
Sup (dij (Bk)) ≤ ri, EXIT, there is a leg/leg interference
in this pose box with the current configuration box.

b) if it exists at least one box Bk in list S such that
ri + rj ∈ dij (Bk), EXIT, need bisection of pose box.

c) if all boxes Bk in list S satisfy Inf (dij (Bk)) > ri+rj ,
EXIT, no interference for this pose box with the current
configuration box.

d) else (if ri < Sup (dij (Bk)) ≤ ri + rj) there might be
interference, if leg j is not right above or below leg i.
Calling Step iv.).

Fig. 12. For all sets of potential leg/leg interference, computation of
leg/leg distance and test for interference.

AjBj of leg j, we build the generic cartesian equation of
a perpendicular plane (or actually, a set of planes, as the
normal vector of the plane is a box). Then, we check if the
box of the potential positions of Mi contains a point that
could be on the planes at either one the leg’s end points. If
so, we need a bisection to reduce overestimation and clear up
the situation. Otherwise, checking the signs of the distances
between Mi and the planes at each end points of the leg j
allows to determine either if:
• Mi is in-between the cylinder caps planes, hence the two

legs are on the same level, and their cylinders interfere;
• Mi is outside of the space delimited by the planes in which

case we need to check that the angle α between the two
legs is perpendicular enough for the legs not to interfere.

From the parametrization figure 10, and considering succes-
sively triangles BAC and DAE, we find the two relations
(17) on α, from which ensues (18).

cos (α) =
dij − ε− ri

rj
; sin (α) =

d(plane,Mi)
dij

(17)

dij − ε = ri + rj cos

(
arcsin

(
d(plane,Mi)

dij

))
(18)

We derive the two conditions (20) from equation (18) and
ask for a bisection if neither conditions are met. For D1 =
�dij∩ [0 ; ri+rj], D2 = d (plane,Mi), we get the distances
D3 as (19) and the tests as equations (20).

D3 = ri + rj

√√√√1−

(
D2

D1

)2

(19)

No intersection if: Inf (D1) > Sup (D3)
Intersection if: Sup (D1) ≤ Inf (D3) (20)

The whole algorithm (from 1) to 8) is applied to each
distinct pair of legs. Hence, for m the number of legs of the

robot, it is run
(
m
2

)
=
m (m− 1)

2
times at each box.

IV. COMPUTATION TIME

Computation times were obtained using the C library
’Time’ for a single core of an Intel R©Xeon R©CPU E5520
at 2.27GHz. The robot considered is a 6-legged suspended
CDPR with planar configuration and cubic platform with
uncertainties on cable exit points and platform attachment
points. The nominal positions of the cable exit points

1417

8) if for any box Bk in S, dij evaluate such that
Sup (dij) ∈]ri ; ri+rj] and all other boxes Bl of S either
evaluate to the same case, or satisfy Inf (dij (Bl)) > ri+rj
(test of non-interference 7c), then do:
a) build planes at Aj and Bj , evaluate for boxes Mi in
each Bk of S,

b) if any contains 0, EXIT, need bisection of pose box.
c) if the projection of Mi on plane at Bj is negative,
and the projection of Mi on plane at Aj is positive,
then EXIT, there is a leg/leg interference in this pose
box with the current configuration box.

d) if not, cap situation: for D3 defined by (19),
(d.i) if Inf (�dij) > Sup (D3), then EXIT, no

interference for this pose box with the current
configuration box.

(d.ii) if Sup (�dij) ≤ Inf (D3), then EXIT, there is
a leg/leg interference in this pose box with the
current configuration box.

(d.iii) else, EXIT, need bisection of pose box.

Fig. 13. Last part of the leg/leg interference algorithm, in case of potential
crossing of leg’s cylinders or one above/below the other.

form a 20m × 15m rectangle, the platform has 1m long
edges. The application is either a cartesian workspace of
6m × 1.5m × 6m × 17 deg×22 deg×12 deg centred on
(0,−1.25, 21, 7.5, 0, 5) for the big box case (BB); or a
cartesian workspace of 10mm on translations and 2 deg on
rotations centred on (−5, 5, 15,−10, 20, 0) for the small box
case (SB). A given obstacle (8.8 MiB STL file comprising
33087 facets) is placed at several positions to get close-
to- and collision configurations. The former is achieved by
pulling away the obstacle of a collision configuration. Except
for the obstacle tree building and overhead times, all other
measurements were done on a loop of 106 occurrences of
the evaluation and the statistics are obtained for 103 runs or
more. We use the following notations for tables I, II and III:
• OBT: OBstacle Tree computation time. The obstacle col-

lision algorithms use a tree of traits to search for intersec-
tion. As the object is fixed, the tree of the obstacle(s) is
computed once and for all before the analysis.
• OH: OverHead computation time, mainly the OBT.
• STB: Sheaths Tree Building computation time: the object

collision algorithm has the object features tree, but need a
leg sheaths tree, which must be rebuilt for all legs, at each
pose-box. Also used for LLCS. The times are per leg.
• OC: Object Collision computation time: all five or six

tests, for all 6 legs are embedded in this time.
• LLCS: Leg/Leg Collision computation time, Sheaths-

based algorithm, for all 6(6− 1)/2 = 15 tests.
• LLCG: Leg/Leg Collision computation time, minimum

Gap-based algorithm, for all 6(6− 1)/2 = 15 tests.
Finally, the performance of the collision algorithms is as-
sessed by the rate of undetermined-validity boxes, hence
needing a bisection and re-evaluation (the lower the better).

V. CONCLUSIONS

While LLCS and OC use leg sheaths and all leg sheaths
must be built beforehand, the LLCS is performing well in
terms of computation time, under 10ms, as expected. The

OBT [s] OH [s] STB [µs]
range [0.33 ; 0.49] [0.33 ; 0.50] [18.42 ; 22.68]
mean 0.347 0.348 19.792

std dev 0.010 0.010 0.883

Table I. Static computation times. OBT=OBstacle Tree, OH=OverHead,
STB=Sheath Tree Build.

OC [ms] LLCS [ms] LLCG [ms]
range [0.26 ; 90.76] [7.55 ; 8.31] [0.94 ; 1.01]
mean 40.00 7.83 0.99

std dev 40.03 0.17 0.003
split rate 14.30% 0% 0%

Table II. Interference algorithm computation times for small boxes.
OC=Obstacle Collision, LLCS=Leg/Leg Collision - Swept space based,
LLCG=Leg/Leg Collision - min Gap based.

OC [ms] LLCS [ms] LLCG [ms]
range [0.02 ; 543.96] [0.66 ; 9.28] [0.74 ; 1.20]
mean 44.42 4.65 0.96

std dev 110.95 3.55 0.17
split rate 18.96% 50.1% 0%

Table III. Interference algorithm computation times for big boxes.

obstacle collision (OC) scheme suffer from the sheath-based
leg/object test in delicate cases. Summed computation times
of all tests in the OC save this one range in [0.02 ; 0.18]ms.
The sheath-based tests (LLCS and OC) suffer from the lack
of sure-intersection test, especially troublesome with the fail-
first strategy common to effective branching algorithms.

The LLCG is surprisingly effective, as it is both box-size
independent and very fast: sheath-free hence no additional
time, and less than 1.2ms even for delicate situations to state
on the interference of all legs with each other. Those algo-
rithms were developed for offline analysis of a pair {CDPR
configuration, application}, but the figures - consistent over
several cases - open the door for real-time applications.

REFERENCES

[1] Computational Geometry Algorithms Library. http://www.cgal.org.
[2] Boyse John W. Interference detection among solids and surfaces.

Commun. ACM, 22(1):3–9January 1979.
[3] Irvine Max. Cable Structures. Cambridge, MA: MIT Press, 1981.
[4] J.-P. Merlet, D. Danney . A portable, modular parallel wire crane for

rescue operations. 2010 IEEE International Conference on Robotics
and Automation (ICRA), pages 2834 – 2839May 2010.

[5] Jiménez P., Thomas F., and Torras C. 3d collision detection: a survey.
Computers & Graphics, 25(2):269 – 285, 2001.

[6] Kearfott R.Baker. Applications of Interval Computations, volume 3 of
Applied Optimization, chapter A Review of Techniques in the Verified
Solution of Constrained Global Optimization Problems, pages 23–59.
Springer US, 1996.

[7] Landsberger S.E. and Shanmugasundram A.P. Workspace of parallel
link crane. In IMACS/SICE Int. Symp. on Robotics, Mechatronics,
and Manufacturing Systems, pages 479–486, Kobe, September, 16-
20, 1992.

[8] Lhomme Olivier. Consistency techniques for numeric csps. pages
232–238, 1993.

[9] Merlet J. P and Daney D. Legs interference checking of parallel robots
over a given workspace or trajectory. In Robotics and Automation,
2006. ICRA 2006. Proceedings 2006 IEEE International Conference
on, pages 757–762May 2006.

[10] Merlet Jean-Pierre. The forward kinematics of cable-driven parallel
robots with sagging cables. Personnal communicationSeptember 2014.

[11] Micaël Michelin Baptiste Seguin, Jean-Baptiste Izard. [wp2.1] cable
characterization experiments. Research report, Technalia, for Cable-
BOT project, 2012.

[12] Van Hentenryck P., McAllester D., and Kapur D. Solving polynomial
systems using a branch and prune approach. SIAM Journal on
Numerical Analysis, 34(2):797–827, 1997.

[13] Wischnitzer Yonatan, Shvalb Nir, and Shoham Moshe. Wire-driven
parallel robot: Permitting collisions between wires. The International
Journal of Robotics Research, 27(9):1007–1026, 2008.

1418

