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ABSTRACT In fifth generation (5G) networks, the densification of small base stations in the coverage

region of macro base station (MBS) leads to significant inter-cell interference (ICI). Similarly, drones (a.k.a.

unmanned aerial vehicles) have a diverse scope in multifarious 5G assisted applications and, therefore,

cause considerable drones interference (DI) as a result of excessive drone usage. This paper investigates

the bottleneck uplink (UL) coverage performance of the MBS edge users in the presence of ICI and DI.

To mitigate both ICI and DI, we use an efficient resource allocation scheme known as reverse frequency

allocation (RFA). Moreover, we use decoupled association (DeCA) in place of coupled association to further

improve UL signal-to-interference ratio. The results depict that RFA in conjunction with DeCA overpass all

other techniques in terms of improved UL coverage performance because of effective DI and ICI mitigation.

INDEX TERMS Coverage probability, coupled association, decoupled association, heterogeneous cellular

networks, interference mitigation, reverse frequency allocation.

I. INTRODUCTION

A. MOTIVATION

In fifth-generation (5G) networks, ultra-dense deployment of

small base stations (SBSs) in the macro base station (MBS)’

coverage region, high MBS transmit power, and aggressive

frequency reuse lead to significant inter-cell interference

(ICI) [1]–[4]. Meanwhile, unmanned aerial vehicles, popu-

larly known as drones, are expected to be used excessively for

5G assisted applications because of their higher maneuver-

ability, hovering, ease of deployment, and lower maintenance

and operating costs [5], [6]. The prominent 5G applications

of drones include mineral exploration, precision agriculture,

smart logistics, air surveillance, disaster assistance, and emer-

gency healthcare [7], [8]. Such applications demand for an

excessive use of drones assisted by 5G networks. However,

The associate editor coordinating the review of this manuscript and

approving it for publication was Barbara Masini .

such excessive drone usage (EDU) leads to additional traffic

load in conjunction with users’ traffic load and, hence, causes

significant drones interference (DI). In this paper, we explore

the effect of DI and ICI on the bottleneck uplink (UL) com-

munication of MBS coverage edge users (M-EUs). Here,

the bottleneck UL communication indicates the limitations

in UL communications, i.e., (i) lower UL transmit power by

user equipment (UE), which leads to lower UL signal-to-

interference ratio (SIR), and (ii) limited available power in

battery-operated UEs [9], [10].

In two-tier heterogeneous cellular networks (HetNets),

coupled association (CA) is often considered, where a user

equipment (UE) associates with the same base station (BS)

both in downlink (DL) and UL following the maximum

received power (MRP) association rule [11], [12]. CA is

typically followed when the UEs are closer to the serving

BS. However, the M-EUs following CA experience lower

signal-to-interference ratio (SIR) because of their longer
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distances from the BS [13], [14]. Therefore, decoupled asso-

ciation (DeCA) has attracted considerable attention, where a

user associates in UL and DL directions with different tiers of

BSs [15]. By using DeCA, UL SIR of M-EUs is significantly

increased because of nearest SBS association [15].

In the state-of-the-art, different interference management

schemes, such as fractional frequency reuse (FFR) [16] and

soft frequency reuse (SFR) [17], have been studied. The

SFR scheme achieves better spectral efficiency as a result of

frequency reuse, while FFR leads to lower interference due to

partitioning of total available bandwidth [18], [19]. Another

proactive resource allocation scheme available in the state-

of-the-art is reverse frequency allocation (RFA) [20]–[22].

In RFA, the complete bandwidth is made available to both

MBS and SBS in a cell. Thus, RFA is spectrallymore efficient

as compared with both FFR and SFR. Therefore, we employ

RFA with DeCA to alleviate ICI and DI (see Sec. II-B2 for

details on RFA).

B. RELATED WORK

In [23], the authors examine the effects of users and

devicemobility in device-to-device (D2D) and drone-assisted

mission-critical machine-type communications. Their results

show that D2D links and drone-assisted access lead to 40%

improvements in link availability and reliability on top of

the cellular-only baseline. The work in [24] investigates the

security challenges posed by drones to sensitive installations.

The paper also highlights the importance of drone monitor-

ing, which can help to avoid damages to sensitive installa-

tions. Diverse drone platform applications and challenges in

the network infrastructure are discussed in [25]. Their study

highlights the significance of using drones in heterogeneous

networks to improve the network capacity and coverage. The

work in [26] investigates the use of drones mounted minia-

turized BSs to serve the network mobile users. The authors

propose that the drones move continuously within the cell.

Therefore, their proposed setup reduces the distance between

the BS and the UEs and, hence, improves spectral efficiency

of the network. The simulation results in [26] indicate that

their proposed model leads to improved spectral efficiency as

compared with the scenario where drones hover over fixed

locations. In [27], the authors evaluate the usage of drones

in conventional terrestrial cellular networks. They investigate

DL spectral efficiency of the network with optimal altitude

and intensity of drones. Their results show that drones’ usage

provides improved DL spectral efficiency for conventional

terrestrial cellular networks. Similarly, the authors in [28]

evaluate drones’ usage in multiple-input multiple-output

(MIMO) and non-orthogonal multiple access assisted net-

works while utilizing stochastic geometry framework. They

derive outage probability expressions for proposed setup.

Their results show that rate and coverage of far users rely on

power allocation factors.

RFA along with CA and DeCA are considered in [29].

The authors derive DL coverage probability expressions for

their proposed setup. Their results show that RFA along with

DeCA overpass other techniques with respect to coverage

performance in the DL. In [30], the authors investigate inter-

ference mitigation and resource management while employ-

ing D2D communications. Moreover, the authors employ

DeCA and FFR in conjunction with their proposed setup.

Their results show that their proposed model significantly

abates the interference.

The work in [31] considers RFA in non-uniform HetNets.

It is assumed that the SBSs located nearMBS aremutedwhile

SBSs remain active in theMBS edge area. The results indicate

that non-uniform HetNets with RFA lead to improved UL

coverage. The work in [32] proposes modified RFA, which

leads to significant coverage improvement as a result of

reduced interference.

This work is different from the state-of-the-art as follow:

1) The works in [23]–[28] discuss various application sce-

narios of drone usage. However, they lack the analysis

of DI because of 5G assisted EDU. Therefore, in this

paper, we investigate both DI and ICI that affect the

bottleneck UL SIR of M-EUs.

2) The works in [29]–[32] analyze DL coverage in the

presence of ICI, however, in this paper, we inves-

tigate UL coverage performance in the presence of

ICI and DI.

C. CONTRIBUTIONS

In this paper, we investigate DI due to EDU for 5G assisted

applications and ICI due to multi-tier deployment. The cov-

erage region of MBS is split into non-intersecting regions,

i.e., center region, AcM, and outer region, AoM, with radii d1
and d2, respectively (see Fig. 1). The analysis is performed

on typical user, ν, located in AoM. The main contributions of

this paper are listed as follows:
1) Investigation of bottleneck M-EUs’ UL coverage per-

formance in the presence of both DI and ICI.

2) Mitigation of DI and ICI by utilizing RFA along with

DeCA and, hence, improving UL SIR of the M-EUs.

3) Derivations of the UL coverage probabilities for the

following network scenarios for ν ∈ AoM: (i) RFA, CA,

and EDU, and (ii) RFA, DeCA, and EDU.

4) The results depict 16% UL coverage improvement as

observed at SIR threshold, γM, = −10 dB by DeCA

with RFA employment in contrast to CA with RFA

employment. Moreover, at γM = −10 dB and drones

density, ρD, = 50, DeCA and RFA cause 8% UL

coverage improvement in comparison with CA and

RFA. Furthermore, increasing ρD from 100 to 150 at

γM = −10 dB leads to 15% UL coverage degradation

because of significant DI.
In the results, we show that an increase in ρD causes signifi-

cant DI and consequently lowers the UL coverage. Moreover,

the results indicate that RFA with DeCA produces improved

UL coverage as opposed to CA with RFA.

D. PAPER ORGANIZATION

The rest of the paper is organized as follows. After presenting

the system model in Section II, UL coverage probabilities are
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FIGURE 1. A multi-tier HetNet deployment model with EDU, RFA and
DeCA. Ac

M
and Ao

M
denote the center and outer regions of MSB,

respectively.

TABLE 1. Notation summary.

derived in Section III. Numerical and simulation results with

discussion are presented in Section IV. Finally, Section V

concludes our work and presents future directions. The nota-

tions used in this paper are listed in Table 1.

II. SYSTEM MODEL

This section presents the proposed network layout with DI

due to EDU for 5G assisted applications and ICI due to

FIGURE 2. Frequency allocation in the two-tier HetNets via RFA.

multi-tier deployment. Moreover, DeCA and RFA are

employed to abate ICI and DI. Furthermore, in this section,

we develop mathematical preliminaries that will be used for

the UL coverage analysis afterwards.

A. NETWORK LAYOUT WITH ASSUMPTIONS

In this paper, we consider a two-tier HetNet, compris-

ing of MBSs, SBSs, and drones with densities ρM, ρS,

and ρD, respectively. MBSs, SBSs, UEs, and drones are

deployed using independent homogeneous Poisson point pro-

cesses (IHPPPs), i.e., φM, φS, φu, and φD, respectively,

as shown in Fig. 1. This work considers frequency division

duplex (FDD) systems, where different channels are used for

UL and DL as indicated in Fig. 1 and Fig. 2. This work

can be extended to incorporate time division duplex (TDD)

systems, where the same frequency is used for both UL

and DL directions in different time slots [33]. In contrast

to FDD systems, TDD system with DeCA leads to lower

interference at the cost of increased synchronization signal-

ing [34]. We investigate DI resulting from EDU and ICI

because of multi-tier deployment. To mitigate DI and ICI,

we use RFA with DeCA as opposed to RFA with CA.

Interference is considered to be the dominant performance

limiting factor and, thus, noise is ignored. The analysis is

performed on ν located at the origin by using the Slivnyak

Theorem which retains and simplifies the statistical prop-

erties of IHPPPs [21], [35]. This work assumes Rayleigh

fading for tractability in SIR analysis using Laplace transform

(LT) [36]. In particular, |h| models Rayleigh fading, which

is independent and exponentially distributed with unit mean,

i.e., |h| ∼ exp (1) [37].

B. OVERVIEW OF SCHEMES

Here, we give a brief overview of the schemes used in this

paper from the system model perspective.

1) COUPLED AND DECOUPLED ASSOCIATIONS

According to CA, ν associates both in UL and DL with

the identical tier ω1 following the DL association rule (see

VOLUME 8, 2020 102157
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Definition 1 for the DL association rule) [15]. However,

according to DeCA, ν associates in the DL with tier ω1 based

on the DL association rule and with another tier ω2 in the UL

based on UL association rule (see Definition 2 for the UL

association rule [29]). Therefore, by following DeCA in our

proposed model, ν associates in the DL with MBS following

MRP, and with the SBS in the UL based path loss model.

Definition 1: (DL association rule). In the DL association

rule, a user connects in the DL with tier ω1 following MRP

scheme [12]. Association with ω1 can be expressed as

ω1 = arg maxi∈(M,S) P
DL
t,i r

−α
i,ν . (1)

Here, PDLt,i denotes the transmit power of BS in DL, r indicate

the distance between ν and associated BS, and α indicates

the path loss exponent.

Definition 2: (UL association rule). According to UL

association rule, a user associates in the UL with tier ω2

based on path loss, i.e., r−α [29]. The association with ω2

can be expressed as

ω2 = arg max
i∈(M,S)

r−α
i . (2)

2) REVERSE FREQUENCY ALLOCATION

In HetNets high throughput is obtained by frequency reuse.

This, however, leads to severe ICI because of co-channel

interference. Therefore, there is a need for effective inter-

ference management scheme. Hence, we use RFA (an FDD

system) in conjunctions with DeCA to increase spectral effi-

ciency due to lower interference. In RFA, the total available

frequency band, F , is split into two sub-bands, i.e., F1 and

F2, such that F =
⋃

j∈1,2 Fj. Here, frequency sub-bands of

MBS, i.e., F1 and F2 are used in AcM and AoM, respectively,

as shown in Fig. 2. The sub-bands F1 and F2 are further

divided into UL and DL sub-carriers of the MBS and are

denoted as F1 = F1,UL + F1,DL and F2 = F2,UL +

F2,DL, in A
c
M and AoM, respectively [4]. The UL and DL sub-

carriers in F1 and F2 of MBS are used as the frequency

sub-carriers in F ′
1 and F ′

2 for the SBS in reverse direction,

i.e., DL and UL transmissions with corresponding alternate

regions AoM and AcM, respectively [4], [11]. Similarly, the UL

and DL sub-carriers of the SBS in AcM and AoM are denoted as

F2 = F ′
2,UL +F ′

2,DL and F ′
1 = F ′

1,UL +F ′
1,DL, respectively.

RFA provides improvedUL coverage because of effective ICI

mitigation [20], [29].

III. ANALYSIS OF COVERAGE PROBABILITY

In this section, we derive UL coverage probability expres-

sions for: (i) EDU, RFA, and CA, (see Sec. III-A), and (ii)

EDU, RFA, and DeCA (see Sec. III-B).

A. UL COVERAGE PROBABILITY WITH CA

The UL coverage probability given that ν ∈ AoM, PUL
′′

AoM
(γM),

while assuming EDU, RFA, and CA, can be written as [20]

PUL
′′

AoM
(γM) = P

(

SIRUL
M > γM

)

. (3)

Here, SIRUL
M is the UL received SIR by MBS and γM is the

SIR threshold of MBS. Because of RFA, the UL interference

received is the union of MBS-tier UL interference in AcM,

IUL
φM,AcM

, SBS-tier DL interference in AoM, IDL
φS,A

o
M
, and the

interference from EDU, IDL
φD,AcM

. Therefore, SIRUL
M from (3)

can be rewritten as

SIRUL
M =

PULt,ν |hM|r−α
M

IUL
φM,Ao

M
+IDL

φS,Ac
M

+IDL
φD,Ac

M

. (4)

Eq. (4) can be further expanded as

SIRUL
M

=
PULt,ν |hM|r−α

M
∑

l∈φM

PULt,l |hl |r
−α
l +

∑

k∈φS

PDLt,k |hk |r
−α
k +

∑

j∈φD

PDLt,j |hj|r
−α
j

.

(5)

Here, PULt,l denotes the UL transmit power of MBS associated

ν, PDLt,k indicates the SBS transmit power in DL, and PDLt,j is

the drones transmit power in DL. Now, by substituting (4)

into (3), we obtain PUL
′′

AoM
(γM) as

PUL
′′

AoM
(γM)

= P





PULt,ν |hM|r−α
M

IUL
φM,AoM

+ IDL
φS,A

c
M

+ IDL
φD,AcM

> γM





= ErM,IUL
φM,Ao

M
,IDL

φS,Ac
M

,IDL
φD,Ac

M

×

[

exp

(

−
rα
MγM

PULt,ν

(

IULφM,AoM
+ IDLφS,A

c
M

+ IDLφD,AcM

)

)]

= ErM

[

LIUL
φM,Ao

M

(s) × LIDL
φS,Ac

M

(s) × LIDL
φD,Ac

M

(s)

] ∣

∣

∣

∣

s=
rα
MγM

PULt,ν

,

(6)

where L(·) denotes the LT.

The LT of the interference from MBS-tier in UL,

i.e., LIUL
φM,Ao

M

(s), is obtained as

LIUL
φM,Ao

M

(s)

= exp

(

ρMπγMd
(2−α)
2 rα

M

α/2 − 1
2F1

(

1, 1 −
2

α
, 2 −

2

α
, −γM

(

rM

d2

)α)

−
ρMπγMd

(2−α)
1 rα

M

α/2 − 1
2F1

×

(

1, 1 −
2

α
, 2 −

2

α
, −γM

(

rM

d1

)α))

. (7)

Proof: The proof of (7) is given in Appendix A.
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We obtain the LT of the interference from SBSs in DL,

i.e., LIDL
φS,Ao

M

(s), in a way similar to (7), and given as

LIDL
φS,Ao

M

(s)

= exp

(

ρSπζ1γMx
(2−α)
2 rα

M

α/2 − 1
2F1

(

1, 1 −
2

α
, 2 −

2

α
, −ζ1γM

(

rM

x2

)α)

−
ρSπζ1γMx

(2−α)
1 rα

M

α/2 − 1
2F1

×

(

1, 1 −
2

α
, 2 −

2

α
, −ζ1γM

(

rM

x1

)α))

. (8)

Here, ζ1 is the ratio of PDLt,S and PULt,ν , where P
DL
t,S is the SBS

DL transmit power.

From (8), the LT of the interference from SBSs in UL,

i.e., LIUL
φS,Ao

M

(s), is obtained as

LIUL
φS,Ao

M

(s) =

(

LIDL
φS,Ao

M

)

\ζ1, (9)

where (·) \ζ1 denotes the exclusion of ζ1 from (8).

The LT of DI due to EDU, i.e., LIDL
φD,Ac

M

(s), can be given as

LIDL
φD,Ac

M

(s)

= exp

(

ρDπζ2γMd
(2−α)
1 rα

M

α/2 − 1
2F1

(

1, 1 −
2

α
, 2 −

2

α
, −ζ2γM

(

rM

d1

)α)

−
ρDπζ2γMy

(2−α)rα
M

α/2 − 1
2F1

×

(

1, 1 −
2

α
, 2 −

2

α
, −ζ2γM

(

rM

y

)α))

. (10)

In (10), ζ2 is the ratio of PDLt,D and PULt,ν , where P
DL
t,D is the

transmit power of drones inAcM. y and d1 define the interfering

drones area, s.t., y < d1.

Proof: See Appendix B for the proof of (10).

Given that ν ∈ AoM, i.e., νAoM , and associated with MBS at

a distance rM, has the PDF of distances given as [38]

frM|νAo
M

(rM) =
2πρMrMexp

(

−ρMπr2M

)

exp
(

−ρMπd21

) . (11)

Similarly, assuming that ν ∈ AoM, i.e., νAoS , and associated

with SBS at a distance rS, has the PDF of distances given as

frS|νAo
S
(rS) =

2πρSrSexp
(

−ρSπr
2
S

)

exp
(

−ρMπd21

) . (12)

The UL coverage probability expression, i.e., PUL
′′

AoM
(γM),

for ν associated with MBS in AoM while considering EDU,

FIGURE 3. UL coverage in Ao

M
with CA and DeCA.

TABLE 2. Simulation parameters.

RFA, and CA can be written as [39]

PUL
′′

AoM
(γM) =

∫ d2

d1

LIUL
φM,Ao

M

(s) × LIDL
φS,Ac

M

(s) × LIDL
φD,Ac

M

(s)

×frM,ν |νAo
M

(

rM,ν

)

drM,ν . (13)

By substituting (7), (8), (10), and (11) into (13), the expres-

sion for UL coverage probability, given that ν is associated

with MBS in AoM, can be written as (14), shown at the

bottom of the next page. In (14), J (·) indicates the Gauss-

hypergeometric function.

B. UL COVERAGE PROBABILITY WITH DeCA

The UL coverage probability expression, i.e., PUL
′

AoM
(γS),

assuming EDU, RFA and DeCA, can be written as [29], [40]

PUL
′

AoM
(γS) =

∫ d2

d1

[

LIUL
φS,Ac

M

(s) × LIDL
φS,Ao

M

(s) × LIDL
φD,Ac

M

(s)

]

×frS|UAo
M

(rS) drS. (16)

By substituting (8), (9), (10) and (12) into (16), PUL
′

AoM
(γS)

can be expressed as (15), shown at the bottom of the next

page.

IV. RESULTS AND DISCUSSION

This section presents simulation and numerical results for the

UL coverage probability given that ν ∈ AoM, while consider-

ing EDU and RFA for (i) CA, and (ii) DeCA. A is taken as

π (1000m)2, s.t., A = AcMUAoM. Moreover, transmit powers

of MBS, SBS, UE, and drone are configured as 40 dBm,
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FIGURE 4. UL coverage in Ao

M
with and without RFA.

30 dBm, 20 dBm, and 20 dBm, respectively. Mathematica

11 and MATLAB 2017B have been used to derive and eval-

uate the coverage probability expressions.

In Figs. 3 and 4, we measure the UL coverage against

the predefined threshold, γM, and different values of ρD
while assuming different network scenarios, such as with and

without CA, with and without DeCA, and with and without

RFA. In Fig. 3, we compute numerical and simulation results

for the UL coverage probabilities taking CA and DeCA into

account. This figure validates (14) and (15) and points toward

improved UL coverage with DeCA as compared with CA.

Moreover, the plots in Fig. 3 indicate that increase in the the

values of ρD reduces the UL coverage.

The plots in Fig. 4 indicate significant coverage improve-

ment by using RFA as compared with the conventional meth-

ods. This is due to the fact that by using RFA, the interference

received by ν from drones located in AcM is neglected. More-

over, the results demonstrate that DeCA outperforms CA

due to users’ association with the closest BSs. Furthermore,

the results depict that the UL coverage degrades significantly

when ρD = 100. Furthermore, the plots in Fig. 4 indicate 16%

FIGURE 5. UL coverage in Ao

M
against γM and ρD.

UL coverage improvement as observed at γM = −10 dB by

DeCA with RFA, as compared to CA with RFA.

Figs. 5(a) and 5(b) measure the UL coverage probabili-

ties against ρD while employing CA and DeCA. Both these

figures indicate that the UL coverage considerably degrades

with an increase in ρD. This is due to the fact that an increase

in the values of ρD leads to severe DI. However, Fig. 5(b)

indicates improved UL coverage as compared with Fig. 5(a)

due to effective interference mitigation by using both DeCA

and RFA. Moreover, Figs. 5(a) and 5(b) indicate that, at

γM = −10 dB and ρD = 50, DeCA with RFA leads to 8%

UL coverage improvement as opposed to CA with RFA.

In Figs. 6(a) and 6(b), we present the UL coverage proba-

bilities against different values of PDLt,D and ρD taking CA and

DeCA into account, respectively. In both the figures, the value

of PDLt,D ranges from 20 dB to 100 dBwhile ρD = 0, 10, 20, 30,

40, and 50. The figures depict that an increase in the value of

PDLt,D and ρD leads to reduced UL coverage because of higher

DI. This is due to the fact that an increase in the values of

PDLt,D and ρD leads to significant DI. Moreover, in Fig. 6(b),

PUL
′′

AoM
(γM)

=
2πρM

exp
(

−ρMπd21

)

∫

d2

d1

exp

(
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FIGURE 6. UL coverage in Ao

M
against PDL

t,D
and ρD.

FIGURE 7. UL coverage in Ao

M
against PDL

t,D
and γM.

FIGURE 8. UL coverage in Ao

M
for CA, DeCA, and different configurations

of γM and ρD.

we show significant improvement in the UL coverage due to

DeCA and RFA as compared to CA and RFA in Fig. 6(a).

Figs. 7(a) and 7(b) present the UL coverage probabilities

against PDLt,D and γM while employing CA and DeCA. The

plots in the figures show that raising values of PDLt,D causes

reduced UL coverage as a result of higher DI. Moreover,

the plots in the figure show that lower values of γM cause

higher UL coverage due to improved users association. Fur-

thermore, the results indicate that RFA with DeCA provides

improved UL coverage.

Next, in Figs. 8(a) and 8(b), we compute the UL cov-

erage probability for different values of ρD and γM. The

figures indicate that raising the values of γM causes lower

UL coverage due to lower user associations. Moreover,

an increase in the values of ρD causes reduced UL coverage

because of higher DI. Furthermore, the figures indicate that

DeCA in conjunction RFA overpass all other scenarios due to

efficient ICI and DI management.

V. CONCLUSION

In 5G networks, SBS densification in the MBS coverage area

give rise to improved spectral efficiency and capacity, how-

ever, this causes significant ICI. Moreover, 5G assisted EDU

imposes considerable DI on the network. To mitigate both DI

and ICI, we use RFA along with DeCA. The results depict

that higher values of PDLt,D and ρD cause lower UL coverage

for ν which is located in AoM. Moreover, the results show that

RFA andDeCA lead to significant UL coverage improvement

and, thus, outperform all other techniques. This work can be

further extended by incorporating fractional power control in

the proposed setup.

APPENDIX A

PROOF OF THE LT OF (7)

Proof of (7): The LT of the UL interference fromMBS-tier

in AoM, i.e., LIUL
φM,Ao

M

(s), is obtained as

LIUL
φM,Ao

M

(s)

(a)
= EIUL
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[
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∣

∣

∣
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(17)
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where equality (a) is achieved by following LT defini-

tion [20], equality (b) is achieved by replacing IUL
φM,AoM

=
∑

l∈φM

PULt,l |hl |r
−α
l into equality (a), equality (c) is achieved

by replacing s =
(

rα
MβM

)

/
(

PULt,ν
)

into equality (b), equality

(e) is achieved by evaluating the LT of equality (d) in terms

of hj, equality (f ) is achieved from probability generating

functional (PGFL) of IHPPP [39], and equality (g) is achieved

by replacing u =
(

rl/(γM)1/αrM
)2

into equality (f ). Lastly,

employing Gauss-hypergeometric function [20] yields (7).�

APPENDIX B

PROOF OF THE LT OF (10)

Proof of (10): The LT of DI received from EDU,

i.e., LIDL
φD,Ac

M

(s), can be shown as

LIDL
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M

(s)
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= EIDL
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[
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(18)

Here, equality (h) is achieved from the LT definition

[20], equality (i) is achieved by replacing IDL
φD,AcM

=
∑

j∈φD
PDLt,j |hj|r

−α
j into equality (h), equality (j) is achieved

by replacing s =
(

rα
MβM

)

/
(

PULt,ν
)

into equality (i), equality

(l) is achieved by evaluating the LT of equality (k) with

respect to hj, equality (m) is achieved by using PGFL of

IHPPP, and equality (n) is achieved by replacing u =
(

rj/(ζ2γM)1/αrM
)2

into equality (m). Finally, by employing

Gauss-hypergeometric function to equality (n), we obtain the

expression given in (10) �
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