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Abstract— We motivate the consideration of deterministic
broadcast channel coding as an interference management tech-
nique in wireless scenarios. We address practical coding strategies
for such channels and discuss two approaches. The first relies
upon enumerative source coding and can be applied for any deter-
ministic broadcast channel problem as the first step in pipelined
encoding for vertex rates. The second approach addresses a
wireless interference management scenario and is a complete,
practical, capacity-achieving strategy that dualizes the Luby
Transform code construction and encoding/decoding algorithms.
This results in the first practical, non-trivial, capacity achieving
code construction for the deterministic broadcast channel.

I. INTRODUCTION

One major issue in wireless networks is interference. At
a high level, we understand how to deal with noise relatively
well, but our understanding of the interaction between multiple
transmitters and receivers is still somewhat limited. As a result,
most network designs attempt to suppress these interactions by
making the different users orthogonal or performing successive
cancellation. As we argue in the following paper, however,
when properly managed, these interactions can actually result
in a net benefit to the system.

Consider the wireless communication scenario shown in
Figure 1 where two users both receive signals from a pair of
cooperating transmitters. Intuitively, the interference to Rx �
from Tx � is negligible since the signal from Tx � experiences
much higher path loss than Tx �. In contrast, Rx � receives
potentially interfering signals from both Tx � and Tx �. Similar
situations can arise in wireless networks employing multi-hop
transmission as illustrated in Figure 2. How can we model
such scenarios to understand the effect of such interference
and develop efficient communication schemes? One approach
is to consider a Gaussian broadcast channel model where
the transmitter has perfect channel side information (CSI)
describing the propagation parameters. For such models, the
capacity region [1] is obtained using Costa’s idea of writing
on dirty paper [2].

Unfortunately, this approach requires perfect knowledge of
the channel which is sometimes unrealistic. Thus it is not clear
to what extent the so-called dirty paper coding ideas apply to
non-coherent communication or to relay networks like the one
in Figure 2, which employ distributed transmitter cooperation.
Furthermore, even when perfect channel state information is
available, no practical coding scheme is known that achieves
capacity. Specifically, to our knowledge, the best known dirty
paper coding systems are around a decibel away from capacity

Fig. 1. A wireless downlink communication scenario. One user, Rx �,
receives only the signal from the first transmitter, Tx �, while the second
user, Rx �, receives signals from both transmitters Tx � and Tx �. If the two
transmitters are connected by a high data rate link such as a land-line for
terrestrial transmitters or a laser communication link for satellites, transmitter
cooperation can increase the communication rate.

[3], [4]. While a couple of decibels may seem like a small
gap to quibble over, at low signal-to-noise ratios which are
common in certain types of wireless networks, a couple of
decibels may correspond to a large fraction of the transmitted
power or rate. For multi-antenna channels, the gap to capacity
may be larger.

The existence of this gap to capacity may seem surprising in
light of the spectacular success of turbo codes [5], low density
parity check codes (LDPCs) [6] and other codes on graphs in
approaching capacity for single user channels. Intuitively, the
gap to capacity for dirty paper coding is caused by the lack of
efficient codes for the shaping/binning required in the random
coding arguments for broadcast channels.

Consequently, we approach the wireless network communi-
cation problem in Figures 1 and 2 from a different perspective.
Since dealing with noise via coding is fairly well understood
at this point, we focus purely on interference issues by con-
sidering a deterministic broadcast channel (DBC). This allows
us to develop clearer insights into the effects of interference
and appropriate coding systems.

Specifically, we consider a simple deterministic broadcast
channel model where we are able to evaluate the Marton-
Pinsker capacity region [7], [8], [9] and develop codes that
achieve it. Coding at vertices allows for significant complexity
reduction at the encoder by performing a pipelined strategy.
Since rate-splitting can be applied to transform any point in the
DBC to a vertex [10], we constrain our focus to vertex strate-
gies. Inspired by enumerative source coding [11], we introduce
encoding and decoding strategies that apply to the construction



Fig. 2. A wireless relay communication scenario. A single transmitter, Tx
�, sends a message intended for two receivers Rx � and Rx � via multi-hop
transmission. The two intermediate relay nodes each decode the message, re-
encode, and transmit to the ultimate destination. Rx � sees only the signal
from Relay �, while Rx � receives potentially interfering signals from both
relays.

of the first output sequence in the vertex encoding pipeline of
an arbitrary DBC. The code construction to achieve capacity
for the interference scenario dualizes the Luby Transform [12]
code construction and encoding/decoding algorithms.

A. Interference Management Via Deterministic Broadcast
Channels

We now consider a DBC model based on Figures 1 and
2 with a pair of binary input symbols � � �� �� ���� and
two outputs � �� � �. Intuitively, � � corresponds to the channel
input for Tx � or Relay � in Figures 1 and 2. If the two inputs
are the same, then they do not destructively interfere. But
if they differ then receiver � is unaffected and receives � �

correctly while receiver � suffers destructive interference in
the sense that it can not determine � �. We model this scenario
via the DBC in (1):

if �� � �� then � � � �� and � � � �� (1a)

if �� �� �� then � � � �� and � � � � (1b)

where � means ‘erasure’. Thus we have the following input-
output relationship:

���� ��� � � � �

������� �� ��
���� �� �� �
������ � �
��� �� � �

The channel in (1) can model a variety of physical scenarios.
Perhaps the simplest is binary phase shift keying (BPSK) with
additive combining. For this model, the channel inputs are
� � � �� with � � � �� for the receiver without interference
and additive interference corresponding to � � � �� � ��

for the other receiver. Thus the � output in (1b) represents
the case where �� � ��� resulting in a received signal
of � � � �. Equation (1) can also represent non-coherent
modulation such as frequency shift keying (FSK). In an FSK
model, each transmitter sends either on frequency �� or ��
corresponding to � � � ���. If the two transmitted signals
both equal �, then both receivers see a signal on frequency
�� and decode correctly. If the two transmitted signals are
opposite, the first receiver sees no interference and decodes
correctly while the second receiver observes signals on both
frequencies corresponding to an erasure.

II. BACKGROUND ON THE DBC

The deterministic broadcast channel has one sender and
multiple receivers. The sender combines the � independent
messages

�
�� � ��� 	 	 	 � �

����
��
���

to be sent to each re-
ceiver into a single length-
 string � � ���� 	 	 	 � ���

�, where
�� � � . At receiver � each symbol �� � �� is a deterministic
function of ��, i.e. �� � ������. The �th decoder attempts
to reconstruct �� , i.e. 	�� � ���

��. A memoryless prob-
ability distribution � ��� on �, combined with ��� 	 	 	 � �� ,
induces a memoryless joint distribution � �� �� 	 	 	 � �� � on
��� 	 	 	 � ��. For a fixed memoryless � ��� the set of all
achievable rates 	 �� ���
 ��� ��� 	 	 	 � �� � is given by [7], [8],
[9]�
� � ���

��� �
���

�� � � �� ���
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where � ��� � �� � � � � ��. The capacity region of the DBC
is given by
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where �� denotes closure and �� denotes convex hull.
In this paper, we focus on the two-receiver case and

postpone the � -receiver problem to future work.

A. Binning as an Achievable Strategy

As in the Slepian-Wolf (SW) problem [13], binning has
been discussed as a strategy to attain any achievable rate.
For � � �� �, all possible output sequences � � ��� are
partitioned into a set of ���� bins. At receiver �, the DBC
decoder observes � and specifies as its output the bin index
associated with that sequence. The DBC encoder observes as
its input a set of messages that specify, for each receiver, which
bin the received sequence should lie in. The DBC encoder
next searches within these bins for a (usually non-unique)
set of jointly typical sequences ��� ��. Having selected the
output of the channel, the encoder’s final step is to choose
an input sequence to produce this output. Specifically, for
every � � ��� 	 	 	 � 
�, the tuple ��� � 

�
� � is used to select any

�� � 
�
����

��
� ��� �.



B. Vertices: Successive Encoding

If we consider an encoding strategy with a memoryless
probability distribution � ���, then the set of achievable rates
	 �� ���
 ��� ��� has vertices or corner points associated with
expanding ��� �� � �� into � terms by successive applications
of the chain rule for entropy and assigning to each rate the
unique corresponding term in the expansion. Transmitting at
such rates allows for the joint search over all users’ bins to
be done successively. For example, consider communicating
at the rate ���� ��� �

�
��� �
� ��� ��� ��

�
:

� Encoding message �� at rate �� � ��� �� can be
done by simply searching in the bin of message �� for
a typical � sequence. This is because there are ����

such bins, one for each message �� index, and there are
asymptotically ��
�� �� typical � sequences.

� After successful encoding of ��, encoding message ��

at rate �� � ��� �
� �� can be done by simply searching
in the bin of message �� for a sequence � that allows
for ��� �� to be jointly typical. This is because there
are ���� such bins, one for each message �� index, and
there are asymptotically ��
�� ��� �� sequences � that
allow for ��� �� to be jointly typical.

Figure 3 illustrates the successive encoding mechanism.
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Fig. 3. Pipelined Encoder for Communicating at a Vertex Rate for the DBC.

III. PRACTICAL CHALLENGES FOR THE DBC

We now discuss some practical issues for the deterministic
broadcast channel that differ from other practically solvable
multi-terminal binning problems (such as Slepian-Wolf [13]).

A. Shaping

Depending on the desired output joint distribution
� �� �� � ��, the optimal input to the channel � ��� need not be
uniform. A shaping code must take uniform bits and map them
to symbols with non-uniform probabilities. This operation is
in some sense the dual of lossless compression systems which
take non-equiprobable symbols and map them to uniform bits.
Gallager [14, pp. 208-209] discusses one encoding approach
using linear codes, but he also notes that the decoding process
is prohibitively complex. We note that in such a situation, it
is unclear how to traditionally use a linear code to map the
inputs to outputs with low encoder and decoder complexity.

B. Binning

Another interesting coding question for this problem is
the construction of low complexity, efficient binning codes.
Specifically, in the random coding argument proving the
capacity region of broadcast channels, a random codebook
is generated according to the joint distribution � �� �� � ��.
Each codeword is assigned a bin number for Rx � and a bin
number for Rx �. To send messages �� and ��, jointly typical
output codewords ��� �� that lie in bin numbers �������
are selected.

Having selected the output of the channel, the DBC en-
coder’s final step is to choose an input sequence to produce
this output. Specifically, for every � � ��� 	 	 	 � 
�, the tuple
��� � 

�
� � 	 	 	 � 

�
� � is used to select any �� � �����

��
� ��� �.

For all achievable rates, with high probability there will be
exponentially many such jointly typical codewords. Thus the
key difference in binning codes for deterministic broadcast
channels vs. binning codes for other problems such as Slepian-
Wolf coding is that there is only a single jointly typical pair
in the latter while many jointly typical pairs exist in the
former. This difference manifests itself in the difficulty of
applying existing iterative coding ideas to the general (non-
deterministic) broadcast problem. By focusing on the special
deterministic channel, however, we develop the first non-
trivial, low complexity, capacity-achieving DBC codes.

IV. PRACTICAL FIRST-STAGE VERTEX PIPELINED

ENCODING FOR THE GENERAL DBC

We now consider communicating at a vertex rate and
attempt to construct the first sequence � in the pipeline, which
has a rate given by �� � �

�
� �
�
. This uses an enumerative

source coding [11] data compression strategy proposed by
Cover, which involves the method of types [15]. Consider a
typical sequence  we attempt to construct according to � �� �.
Define:
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For a type � �

� � �� ���, we construct our encoder � �
�� � ���

� �. Note that this constrains every codeword  to
lie in the same type class � �� �

� �. For a target distribution
� �� �, we select � �

� such that
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Because � is dense in �, � �
� � � �� �. Moreover, since
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where ��
� � �, we have that

�
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We construct a lexicographic order on each  � � �� �
� �. Any

two sequences �� � � � ���
� � can be compared order-wise

by observing the first leftmost symbol � such that  �
� and

�� differ. The order relation gives higher precedence to the
sequence with larger value in the �th symbol.

The decoder � � � �� �
� � �� maps a given  � � �� �

� �
to its position in the lexicographically ordered alphabet by
performing combinatorial calculations by exploiting (2).

If we consider multiplication as a fixed cost operation,
then encoding and decoding can be done in ��
� time by
saving in memory, throughout the process, previously counted
operations and dividing or multiplying by at most 
�
 numbers.
The encoding and decoding process follows from [11].

V. A CAPACITY-ACHIEVING LOW-COMPLEXITY

SOLUTION FOR DBC INTERFERENCE MANAGEMENT

We now discuss the DBC problem presented in I-A. Con-
sider maximizing ��, which is done by generating � accord-
ing to the uniform distribution on ���� �� ��. Given �� �
��� �� � �������, we see from the input-output relationship
table in section I-A that to maximize �� � ��� �
� ��, we
must select a � ��� that maximizes ���� � ��� �� � ��
subject to � ������� � � ��� �� � �


 . Thus � ��� should be
drawn according to the distribution:

���� ��� � ���� ���
������� �
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Since �� � ��� ��, we can construct � by using the
enumerative source coding technique discussed in Section IV.

A. Coding to Construct �

One general approach for using linear codes for binning
in this problem is as follows. A code and its parity check
matrix � are fixed before transmission begins. A sequence
� is selected for Rx � based on the shaping code. To send
a message, �, to Rx �, two conditions must be satisfied. The
first is that � � � � �, which ensures that Rx � can decode
the message v by looking at the bin index of  �. The second
condition is that � and � are consistent, which is represented
by the equation � � � � � � � where � is identity matrix
with entries corresponding to the � symbols in � set to �. We
can combine these equations into a single linear system using
block matrices to get

��� � � � � ��� � ��	

Thus a general linear code used for this problem needs a matrix
inversion to determine � requiring ��

� complexity. Ideally,
we would like to use a low density parity check code or some
other sparse graph code to reduce this complexity.

ERASURE-DECODE-BEC��� ��
1. While � has at least one unrecovered sample do
2. if � one unerased (check) � connected to exactly one

neighbor �� then
3. Recover �� immediately and propagate it to any

adjacent unerased checks �� via ��� � ��� � �� .
4. else
5. return FAIL
6. end if
7. end while
8. Set � to the values from the checks obtained from y
9. return �

Duals of LT Codes We now exploit the structure of this
problem and its similarity to binary erasure quantization using
codes on graphs [16]. In that setting, a sequence of symbols
 � ��� �� ��� is given to an encoder which decodes to � � �
for some binary linear code � such that � agrees with 
in non-erased positions. There are an exponential number of
such �’s for any typical , just as in our case. By dualizing
capacity-achieving parity-check graphical representations of
linear codes for the binary erasure channel (BEC), the authors
construct a rate-distortion optimal generator-form graphical
representation of the linear code for binary erasure quan-
tization. The dual quantization algorithm discussed in [16]
fails if and only if the analogous BEC decoding algorithm
fails. One slight difference in our setting is that there is an
extra constraint that must be satisfied: if � is the parity-
check matrix for �, then we must have �� � � where �
is the message bin index. Thus mapping from a parity-check
representation to a generator representation will not apply here,
because the generator matrix for any code produces codewords
� that lie in �, which means that �� � �. Moreover,
attempting to dualize a generator representation that has a
graphical representation like that of an LDPC will provably
fail: any representation with a constant fraction of nodes
with bounded degree will have a non-negligible probability
of encoding failure [16].

Luby has constructed LT codes [12] that have degrees
�����
�, are decoded in generator-representation form, and
are provably capacity-achieving on the BEC under the follow-
ing low-complexity algorithm:

Reversely analogous to [16], dualizing an LT code in
generator form yields another code in parity check matrix
form. Once in parity matrix form, we can transform this to a
syndrome-former representation by adding dongles on checks
to represent the coset constraints for the message index [17,
sec. VIII.B]. The dual algorithm is as follows:

Proposition 5.1: Consider a linear code with generator ma-
trix � and its dual code with �� � � . The algorithm
ERASURE-DECODE-BEC��� � fails in step � if and only
if the algorithm ERASURE-ENCODE-DBC��� �� �� fails in
step � where  has erasures specified by  and � has erasures
specified by  � � ��  .

The dual of an LT code [12] is successful with com-
putational complexity of ��
 ���
�. Figure 4 (L) gives an



ERASURE-ENCODE-DBC��� �� ��
1. While � has at least one erased sample do
2. if � one �� connected to exactly one neighbor

check � then
3. Reserve �� to later satisfy check � with syndrome

�� and erase check �.
4. else
5. return FAIL
6. end if
7. end while
8. Arbitrarily set unreserved erased �� values.
9. Set reserved variables to satisfy the corresponding

checks starting from the last reserved variable
and working backward to the first reserved variable

10. return �
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Fig. 4. (L) Generator Form LT Code for Decoding on a Binary Erasure Chan-
nel; (R) Syndrome Former Dual LT Code for Encoding on a Deterministic
Broadcast Channel

example of decoding with a generator form LT code. The
partially erased received sequence  lies on the right and
the decoder must recover ! corresponding to the non-existent
symbols on the left. ERASURE-DECODE-BEC��� � per-
forms successfully here and the unique solution is given by
! � ��� �� �� �� and thus !� � ��� �� �� �� �� �� ���. (R) of
Figure 4 gives the syndrome-former dual of the LT code
in (L). Here, the syndrome is given on the left part of the
graph by � � ��� �� �� ���. The partially erased sequence �
lies on the right and the encoder must recover �. ERASURE-
ENCODE-DBC��� �� �� performs successfully here and one
possible solution is given by � � ��� �� �� �� �� �� ���

VI. CAPACITY ACHIEVING CODES FOR THE BLACKWELL

CHANNEL

Our approach can also be used for the Blackwell channel,
which is a classic example for the DBC model. In the
Blackwell channel, the input is � � ��� �� �� with outputs

� � �

�
�� � � �

�� � � � or �
and � � �

�
�� � � � or �

�� � � � �
(3)

and the capacity region is all rates of the form �� � �������,
�� � �������, and �� � �� � ���� � where ����� denotes
the binary entropy function.

To operate at the corner point ���� ��� � ��������� ����,
we can first use enumerative source coding [11] to map
message �� into a sequence � with ��� ones and ��� zeros

as described in Section IV. Because of the structure of the
Blackwell channel, wherever � �

� � �, we must have � �
� � �

as well. So communicating �� requires us to appropriately
modulate the elements of � that are not constrained to be 1.

Specifically, to communicate the message ��, we choose
� to be a sequence consistent with � such that � � � �
�� where � is a fixed parity check matrix. Designing the
parity check matrix, � , and constructing a low complexity
encoding algorithm for � is then exactly the same problem
as considered in Section V-A. By using duals of LT codes, it
is possible to construct codes that allow us to select � so as
to approach an information rate of �� � ���. The total rate
at this corner point is ��������� ���� with a rate sum of
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The ����� �������� rate point can be achieved in a similar
manner, and the remaining capacity region can be achieved
via time-sharing.
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