
University of South Florida

Scholar Commons

Graduate Theses and Dissertations Graduate School

3-21-2017

Interference Mitigation, Resource Allocation and
Channel Control Techniques for 4G and Beyond
Systems
Mustafa Harun Yilmaz
University of South Florida, myilmaz@mail.usf.edu

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in

Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact

scholarcommons@usf.edu.

Scholar Commons Citation
Yilmaz, Mustafa Harun, "Interference Mitigation, Resource Allocation and Channel Control Techniques for 4G and Beyond Systems"
(2017). Graduate Theses and Dissertations.

http://scholarcommons.usf.edu/etd/6668

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F6668&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F6668&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F6668&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F6668&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F6668&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F6668&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarcommons.usf.edu%2Fetd%2F6668&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


Interference Mitigation, Resource Allocation and Channel Control Techniques

for 4G and Beyond Systems

by

Mustafa Harun Yılmaz

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Department of Electrical Engineering

College of Engineering
University of South Florida

Major Professor: Hüseyin Arslan, Ph.D.
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ABSTRACT

The usage of the wireless communication technologies have been increasing due to the

benefits they provide in our daily life. These technologies are used in various fields such as military

communication, public safety, cellular communication. The current systems might not be sufficient

to meet the increasing demand. Therefore, the new solutions such as the usage of smart antennas

have been proposed to satisfy this demand. Among different solutions, cognitive heterogeneous

networks (HetNets) have been recently introduced as a promising one to meet the high user demand.

In cognitive Hetnets, there are secondary base stations (SBSs) with secondary users (SUs) and

primary base stations (PBSs) with primary users (PUs) in a given area without any coordination

between SBS-SBS and SBS-PBS.

Due to the physical coexistence of SBSs and the lack of available spectrum, interference

caused by the SBSs becomes a significant issue. Therefore, there is a need for the techniques that

allow users to share the same spectrum while maintaining the required performance level for each

user by adopting interference mitigation techniques. In this dissertation, we focus on resource

allocation, interference coordination/mitigation and channel control techniques in 4G and beyond

systems.

As resource allocation techniques, we propose two studies. In the first study, we present the

random subcarrier selection algorithm which is that each SU selects a specific number of subcarriers

determined by its needs. In comparison where, at each iteration of the game, the SU searches all

the subcarriers to maximize its payoff, our algorithm is based on selecting the subcarriers randomly

and checks only those subcarriers that achieve higher payoff. In the second study, we utilize the

reconfigurable antennas (RAs) which allows wireless devices to alter their antenna states determined

by different radiation patterns to maximize received signal strength, and present the joint subcarrier

and antenna state selection algorithm. SU selects the subcarriers whose capacity values are the

viii



highest among the available ones. Since SUs employ RAs, i.e., multiple antenna states, they obtain

the reports for all subcarriers from each antenna states, and select the state with the subcarriers

which provide the highest capacity gain.

As interference coordination/mitigation technique, we propose a game theoretical partially

overlapping filtered multitone (POFMT) scheme. Partially overlapping is performed in both fre-

quency and space domains. While intentional carrier frequency shift is introduced in frequency,

RAs are utilized to achieve partially overlapping in space domain. Within a game theoretical frame-

work, when SUs search for the frequency shift ratio, they also select the antenna state to increase

the system utility.

We also combine the resource allocation technique with POTs and present the game theo-

retical resource allocation with POFMT. To achieve the resource allocation, an SBS slides a group

of consecutive subcarriers through all available ones and computes the utility for each selected

subcarriers. It picks the consecutive ones which give the highest capacity result.

Our results show that our algorithms reach Nash equilibrium and increase the system gain

substantially in terms of the corresponding utility.

As channel control technique, we propose a wireless channel control using spatially adaptive

antenna arrays. This technique simultaneously utilizes beam-steering and spatial adaptation to

enhance the wireless channel gain and system capacity. While the interference is reduced via

beam-steering feature of proposed antenna, the wireless channel can be controlled by spatially

moving the antenna in one axis. Simulated realized gain patterns at various array positions and

phase shifter states are subsequently utilized in link and system level simulations to demonstrate

the advantages of the proposed concept. It is shown that the system gain can be increased with

the spatial adaptation capability of the antenna.
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CHAPTER 1

INTRODUCTION

Wireless technologies have gained important place in our daily life. Due to their indisputable

advantages, wireless communications are employed in various fields such as in cellular, vehicle-to-

vehicle, machine-to-machine, in-vivo communications. However, along with this increasing usage

in wireless technologies, a scarcity problem exists in the spectrum due to being limited source.

To solve this problem, various solutions have been proposed such as the usage of smart antennas,

directing some of the traffic to WiFi networks, developing new content compression techniques [1].

Besides these solutions, establishing a new type of network called cognitive heterogeneous networks

(HetNets) has also been presented as a promising solution for spectrum scarcity. Such networks

include the deployment of networks with small footprint called small cells within the large footprint

networks called macrocells. At this point, it worths mentioning that the term small cell is used to

express various types of cells which can be given as follows.

• Microcell: Microcells are deployed to cover the areas where the coverage of macrocell is

not sufficient. Micro base stations (BSs) are operator deployed with a coverage area from

200m to 2km. They can be utilized for indoor and outdoor environments.

• Picocell: Picocells are deployed to improve the indoor coverage such as in airports, hos-

pitals. The cell radius of picocells can be from 100m to 200m with a lower transmission

power, which is typically 250mW-to-1mW, than macrocell or microcell. Similar to micro-

cells, pico BSs are also operator deployed.

• Femtocell: Femtocell, also called as home node B, is a technology with a low power usage,

which is 1mW-to-250mW, that can provide the high data rate for the end user that cannot

be covered by the closest macro BS due to bad channel conditions. In terms of access

1



mode, it can either be open, close or hybrid [2]. In open access mode, femto BS (FBS)

can be used by femto user equipment (FUE) and macro user equipment (MUE) while it

is used only FUE in close access mode. On the other hand, in hybrid access mode, it is

used by both FUE and MUE, however, most of the resources are typically allocated to

the FUE due to its higher priority in accessing the FBS. Femto BSs are user deployed

with a coverage area from 10m to 100m.

Within a cognitive radio concept, small cells are named as secondary networks which consist

of secondary users (SUs) and secondary base stations (SBSs), and macrocells are named as primary

networks which are formed with primary users (PUs) and primary base stations (PBSs) as seen in

Figure 1.1. While the PUs have a right to use the spectrum as licensed users, SUs as unlicensed

users are required to access the spectrum by utilizing some cognitive approaches which can be

categorized as underlay, overlay and interweave approaches.

1. Underlay Approach: The SUs are allowed to share the spectrum with the PUs under

limited interference constraint. In this constraint, the power transmitted by the SUs must

guarantee that the interference at the PUs is below a predetermined threshold which is

defined as the interference temperature (IT).

2. Overlay Approach: SUs are allowed to use the licensed spectrum with PU simultaneously

by performing special coding techniques without reducing its transmission power.

3. Interweave Approach: SU performs the spectrum sensing to determine which bands are

in idle position, i.e., not used by the PU. When it finds the idle bands, SU allocates those

resources for its transmission.

Although HetNets have been proposed as a solution to spectrum scarcity, some challenges

have been emerged in the deployment of these networks. Such challenges can be summarized as

follows.

• How to perform interference coordination/mitigation?

• How to perform resource allocation?

2



• How to perform handover between PBS - SBS or SBS - SBS?

• How to manage the mobility?

• How to handle back-haul scalability?

• How to perform synchronization?

       SBS 

PBS 

  SU 

   PU 

Interference Signal 

Transmission Signal 

Figure 1.1 Heterogeneous network structure with SUs, PUs, SBSs and PBSs.

In cognitive HetNets, the secondary networks serve the purpose of providing reliable com-

munication links to the indoor users. However, these networks suffer from interference among SUs

and PUs since they share the spectrum. Therefore, among the corresponding challenges, in this

dissertation, we focus on the interference coordination/mitigation, resource allocation and channel

control techniques in 4G and beyond systems.

1.1 A Review of the Main Concepts in the Dissertation

In this dissertation, we focus on the following concepts. In each subsection, while we explain

the concepts, we also provide the related works about the corresponding concept if applicable.
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1.1.1 Game Theory

Game theory (GT) is a science of the strategic thinking. We can define the strategic

thinking in a way that it is to make a plan by considering the plans of others as well. It is a social

phenomenon and used by the military in general. While the roots of GT are based upon older times,

a seminal work had been performed by John Von Neumann and Oskar Morgenstern in 1944 [3].

After this study, John Nash introduced a notion of equilibrium point for the non-cooperative games

in 1951 [4]. After the mid 1950s, GT has been widely used in wireless communication literature.

GT is a mathematical tool and investigates the interaction between, at least, two nodes/users

where there exist two types of games; cooperative and non-cooperative games. While cooperative

games construct a game with the coalitions which refer to a subgroup of a group of users, non-

cooperative games construct a game with independently acting users. An important difference

between these two games is the availability of the payoffs of the other players at each player. In

cooperative games, users in a subgroup know what the others do, but in non-cooperative games,

such information is not available.

Since the cognitive HetNets consist of the uncoordinated networks, non-cooperative games

are utilized to solve the interference problem. These games are defined with three components:

1. Player: Players are the decision-makers in a given game and denoted with i, i ∈ I where

I is the set of players in a game. The games are played among the players.

2. Strategy: Strategies are the alternatives for the decision-makers and denoted with si for

player i.

3. Utility function: Payoff (utility function) is the set of possible outcomes which are assigned

a number, so, the player can select one towards its benefits and denoted with Ui for player

i.

After defining these three components, it is important to define another phenomenon which

is the Nash equilibrium (NE) which can be described as an equilibrium point where the players

4



have no incentive to change their strategies and can be defined as

Ui(s
∗
i , s

∗
−i) ≥ Ui(si, s

∗
−i)

∀i ∈ I, ∀si, s−i ∈ S (1.1)

where S indicates the set of strategy profiles for player i and every other player −i and ‘*’ indicates

the equilibrium point.

In the literature, selection of the highest utility is expressed with the best response corre-

spondence. The aim is to maximize the utility by playing with the most profitable strategy for

each player. This approach of playing game is reached the players to the NE. The best response

correspondence is defined as

Bi(s−i) ∈ arg max
si∈Si

Ui(si, s−i) (1.2)

Different types of games can be utilized to prove the NE existence. In this dissertation, we

employed the supermodular and potential games.

1.1.2 Supermodular Games

Supermodular game is a type of non-cooperative game. The characterization of supermod-

ular game is defined with strategic complementarities. In other words, when one player changes

his strategy towards his benefit, other players also have an incentive to do the same towards their

benefit, e.g. better/higher signal-to-interference-plus-noise ratio (SINR) under the constant trans-

mission power.

Definition 1 A game G is considered as supermodular game if, ∀i ∈ I,

1. Si is a compact set of R,

2. Ui is semi-continuous in (si, s−i),

3. Ui has increasing differences in (si, s−i).
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To obtain the NE with supermodular games, these features need to be satisfied. For the

last feature, we need to prove that Ui(si, s−i) is twice continuously differentiable, i.e.,

∂2Ui(si, s−i)

∂si∂s−i
≥ 0 (1.3)

Two important properties are possessed by the supermodular games when the above features

are satisfied [5]:

• There is at least one pure NE

• It has monotonically increasing property in its best responses.

1.1.3 Potential Games

A game is said to be a potential game defined with a potential function. When a player

changes its strategy, the change in its utility function is reflected in the potential function. Various

potential games are defined in [6]. Among those games, we utilized the ordinal potential games.

The following definition can be found in [6] for the ordinal potential games.

Definition 2 A game G is said to be an ordinal potential game if it admits an ordinal potential.

A function V is an ordinal potential for G if for every i ∈ I and for every s−i ∈ S−i

Ui(s
′
i, s−i)− Ui(si, s−i) > 0 iff V (s′i, s−i) − V (si, s−i) > 0

∀si, s
′
i ∈ Si. (1.4)

It is guaranteed that there is at least one pure NE in ordinal potential games. The NE

convergence with potential games can be shown over the finite improvement path (FIP) [6], because

this property guarantees NE convergence and indicates the increment of the utility function in each

path.
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1.1.4 Resource Allocation

In wireless communications, the resources are defined as the carrier frequencies. While

this might be a single carrier with wide band, it can also be multiple carriers with narrow band

for a given bandwidth. In orthogonal frequency-division multiple access (OFDMA), multicarrier

structure is employed. A given band consists of subcarriers with equal bandwidth. In long term

evolution (LTE) standards, each subcarrier has 15 KHz bandwidth, and 12 subcarriers form a

resource block [7].

Basically, the resource allocation is to assign the symbols to carrier frequencies. In the

literature, this can also be named as subcarrier allocation or scheduling. Figure 1.2 shows how to

allocate the resources. In OFDMA, there are two ways for resource allocation; it can either be in

consecutive order or random order based on the channel response of each subcarrier. The trans-

mitter obtains the SINR reports from the receiver for each subcarrier and allocates the resources

accordingly. If there are multiple receivers, the transmitter can perform the resource allocation

with either maximum rate or proportional fair scheduling algorithms [8].

t
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f
3
 

f
4
 

f
5
 

f
6
 

f
7
 

f
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t 

Figure 1.2 Resource allocation can either be in consecutive or random order.

Resource allocation in cognitive HetNets is commonly performed with game theoretical

methods because GT provides the tools necessary to manage the interactions between players

(users) in order to improve the performance of the network while maintaining the interference

coordination between users. Different game theoretical methods, which can be categorized as

cooperative and non-cooperative games, are used in the resource allocation literatures on cognitive

HetNets. For example, in [9], cooperative games are utilized to achieve resource allocation where
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the players establish coalitions. Stackelberg games as a non-cooperative framework are utilized in

resource and power allocation studies in [10–14]. In [15], Bayesian auction games are introduced

within the resource allocation literature. In [16–18], authors propose resource allocation techniques

by utilizing potential games. Besides game theoretical techniques, optimization methods are also

proposed in the literature to fulfill the resource allocation [19–22].

1.1.5 Reconfigurable Antennas

reconfigurable antennas (RAs) have been presented as an emerging technology due their

physical sizes which make them to be feasibly employed at the user equipments (UEs) and their

ability to provide different antenna radiation patterns for every antenna element using hardware

techniques when compared to multiple-input multiple-output (MIMO) system. A simple RA struc-

ture can be seen in Fig 1.3. Reconfigurability of antenna adds a degree of freedom in terms of

system capability to tackle the random nature of the wireless channel. This degree of freedom of

reconfigurability depends on antenna structure and reconfigurability method. Theoretically, the

number of degree of freedom depends on the number of states that an RA provides. For instance,

if an RA has three radiation patterns of different point directions and be able to operate in two

different frequency bands, it can be said that this RA has six degree of freedoms. The choice of

a reconfiguration mechanism is based on the design space and performance level required. An-

tenna reconfigurability can be categorized into four different reconfigurability functions, namely,

a)reconfiguring resonance frequency, which usually takes place by changing physical properties that

alter surface current distribution, b) reconfiguring radiation pattern, which usually takes place by

changing radiating edges, slots, or the feeding network, c) reconfiguring polarization state, which

usually takes place via changing the surface structure or the feeding network, and d) combinations

of reconfiguring the above characteristics, which usually takes place by using numerous techniques

simultaneously [23]. By reconfiguring its frequency, RA can carry out spectrum allocation and fre-

quency hopping to enhance the system capacity and can also reduce in-band frequency interference

by reconfiguring its radiation pattern and polarization [24].
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Antenna element 

State 

RA 

Figure 1.3 RAs consist of antenna elements with which the states can be formed.

Reconfigurable antenna states can be continuous or discrete. This depends on reconfigura-

tion methods, e.g., RF switches as in reconfigurable pixel antenna or variable capacitor as tunable

load. The continuous states has smooth changes in antenna impedance, which might be desirable

in some applications but this will come at the cost of more complex circuitry and similarity between

antenna states. The discrete number of states has a pre-selected antenna radiation pattern that

have different properties due to large impedance variation between antenna states. The indepen-

dence between antenna states is key feature that is required in the applications addressed in this

dissertation.

In antenna design and operation of a reconfigurable antenna with discrete antenna states,

a control circuit sends a set of ON-OFF combination of switches that correspond to each antenna

state. This combination makes a particular current distribution on antenna surface that generates

particular radiation pattern. So, if we have 8 antenna states, that means, the antenna system

has 8 sets of combinations of ON-OFF switches which makes the antenna have particular pointing

directions with particular beamwidth. Each antenna state represents a particular pointing direction

( 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦) and corresponds to a particular current distribution

density defined by a particular set of combination of ON-OFF switches.

These reconfigurable features of the RA have attracted the interest of the research commu-

nity to improve the performance of wireless communication systems in different applications. For

example, SU can select the best state of the RA that maximizes SINR or capacity [25]. RAs can
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also be utilized to detect intruders to enhance security in communication systems [26]. For MIMO

multiuser orthogonal frequency-division multiplexing (OFDM) system, RAs are utilized to increase

the performance in terms of capacity of MIMO systems for slowly fading environments and in dif-

ferent multipath environment including rich and sparse [27–30]. In [31], the authors use RAs to

achieve blind interference alignment by introducing channel fluctuations resulting in independent

signal-to-noise ratio values at predetermined time instants via blind antenna switching.

1.1.6 Partially Overlapping Tones

One of the most important problems with the cognitive HetNets is the other user inter-

ference. Various solutions have been proposed to mitigate this problem. Partially overlapping

tones (POTs) has also been introduced to reduce the interference coming from other users in cog-

nitive HetNets [32]. Rather than utilizing the overlapping channels as in partially overlapping

channels (POCs) techniques [33], intentional carrier frequency shift (CFS) is performed in the

POTs concept. The main idea behind POTs can be explained over Figure1.4. The allocated re-

sources to two uncoordinated users U1 and U2 are illustrated in Figure1.4a and Figure1.4b (dashed

curve) where U1 and U2 are assigned at the same time. Before U2 is provided with a frequency

shift, both users fully overlap each other, i.e., they fully interfere with each other. To decrease the

interference, U2 introduces some CFS (solid curve) as shown in Figure1.4b. Partially overlapping

scheme can therefore be achieved at the subcarrier level to reduce the cross interference as depicted

in Figure1.4c.

1.2 Dissertation Outline

1.2.1 Chapter 2: Random Subcarrier Allocation with Supermodular Game in Cog-

nitive Heterogeneous Networks

In this chapter, our main objective is to solve the problem of subcarrier allocation for the

SU using supermodular games. Under certain conditions, the supermodular games guarantee at

least one NE without the need of proving the quasi-concavity of utility functions or dealing with

interior solutions [34]. In previous studies such as in [35] and [5], subcarriers are selected based
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Figure 1.4 Users U1 and U2 fully overlap in (a) and (b). U2 performs CFS to decrease the
interference in (b). U1 and U2 partially overlap in (c).

on the payoff of each subcarrier via utilizing supermodular games. Each SU sweeps through the

all subcarriers to determine the ones which have the highest payoff. If the payoff of the best

selected subcarriers is larger than the ones which are selected in previous iteration, SU changes its

subcarriers. While this approach has an advantage in terms of fast convergence rate, i.e. to reach

the NE faster, it requires high feedback load. On the other hand, in random subcarrier allocation

technique [36], each SU picks certain number of random subcarriers based on its need and only

considers these subcarriers when making a decision. This has the advantage of limited feedback

since only the number of subcarriers considered in each iteration is much less than considering all

subcarriers. Our objective is to use this technique with supermodular games. This should provide

lower feedback load against higher convergence rate. We will present analysis and simulation to

show this trade-off among convergence and feedback load, and our results indicate that we can

have significant reduction in feedback on the expense of convergence, which makes our algorithm

beneficial in slowly varying channels.

1.2.2 Chapter 3: Joint Subcarrier and Antenna State Selection for Cognitive Het-

erogeneous Networks with Reconfigurable Antennas

In this chapter, we develop resource allocation technique for cognitive HetNets by exploiting

RAs. Our objective is to use the capabilities of RAs to generate independent channel gains with
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different parameters to improve the capacity of cognitive HetNets. We use game theory to solve this

problem and, in particular, we model the problem as potential games to solve the problem of jointly

finding the antenna state and subcarriers for each SU as these games can be shown to achieve NE

for our utility function. Since the number of antenna states in RA can be large, this might increase

the computational complexity in the system. To reduce the complexity, we divided our solution

into two steps. In the first step, before playing the game, the players select the candidate antenna

states set based on either of two different approaches. In the fixed prior state selection (FPSS)

approach, all players have the same predetermined states (or radiation patterns). On the other

hand, in the adaptive prior state selection (APSS) approach, players select the states based on

the locations of BSs and the signal-to-interference-plus-noise ratio (SINR) measurements in each

state. In the second step, after selecting a candidate set, the game starts to be played. We focus

on two different algorithms in terms of RA state selection, namely random state selection (RS) and

best selection (BeS). Both techniques are based on the best subcarriers selection in terms of their

capacity measurements among all available subcarriers achieved by the SU. In the BeS algorithm,

this process is performed for each state, while SBS sends capacity reports of the subcarriers for only

one randomly selected state with the aim of reducing the feedback load (FL) in the RS algorithm.

Our results show that, while RS gives lower FL than BeS for RAs with two states, it becomes

higher when we consider more than three states in an RA. This is due to the fact that the RS

scheme requires more iterations to converge to NE compared to the BeS scheme as the number of

states increases. On the other hand, we are showing that as the number of antenna states in RAs

increases, the capacity enhances further.

1.2.3 Chapter 4: Partially Overlapping Filtered Multitone with Reconfigurable An-

tennas in Heterogeneous Networks

In this chapter, partially overlapping filtered multitone (POFMT) with Reconfigurable an-

tenna (RA)s is proposed within a game theoretical framework. In our previous study [37], we

investigated the POFMT concept with only orthogonal waveforms in the system level without uti-

lizing the RAs. In this chapter, non-orthogonal waveforms are introduced. Additionally, RAs are
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also utilized to introduce the space domain partially overlapping and to further improve the system

performance. A joint frequency shift ratio (FSR) and antenna state selection game is proposed.

While SUs search for the FSR to reduce the interference from other SUs in the environment, they

also determine the antenna state where the highest utility can be achieved for the relevant FSR.

The existence of NE in this game is proved theoretically with potential games and simulations. As

demonstrated with simulation results, POFMT scheme with RAs outperforms OFDM in terms of

capacity with the expense of slightly lower spectral efficiency in the system.

1.2.4 Chapter 5: Resource Allocation with Partially Overlapping Filtered Multitone

in Heterogeneous Networks

In this chapter, we develop a resource allocation technique for POFMT within a game

theoretical framework in cognitive HetNets. We utilize the filtered multitone (FMT) which does not

require the synchronization and cyclic prefix usage [38]. In downlink, SBSs as players perform the

resource allocation by searching for the best subcarriers which are constrained to be in consecutive

order. To perform subcarrier selection, SBS picks a certain number of subcarriers based on the

total need of SU by starting from the first available subcarrier and computes the utility of the

selected subcarriers. Then, it shifts the subcarriers intentionally to introduce the CFS and calculates

the utility in this position, too. The SBS performs this operation throughout the all available

subcarriers. After obtaining the capacity results for every position and subcarriers, SBS selects the

one which provides the highest utility. With this scheme, the existence of NE is proved theoretically

and by simulations. As indicated in simulation results, the proposed scheme outperforms OFDM

with a slightly slower convergence rate.

1.2.5 Chapter 6: Millimeter-Wave Wireless Channel Control Using Spatially Adap-

tive Antenna Arrays

In this chapter, we introduce a wireless channel control concept based on spatially, i.e.,

position adaptive antenna arrays. This technique simultaneously utilizes beam-steering and spatial

adaptation to enhance the wireless channel gain and system capacity. The concept is inspired by
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the microfluidically reconfigurable RF devices as they can enable compact systems with spatial

adaptation capability. Specifically, a 5 element linear 28 GHz mm-wave antenna array design that

can achieve beam-steering via phase shifters and spatial adaptation via microfluidics is detailed.

Simulated realized gain patterns at various array positions and phase shifter states are subsequently

utilized in link and system level simulations to demonstrate the advantages of the proposed concept.

It is shown that a wireless communications system can achieve 51% improvement in the mean

signal-to-interference ratio due to the spatial adaptation capability.
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CHAPTER 2

RANDOM SUBCARRIER ALLOCATION IN COGNITIVE HETEROGENEOUS

NETWORKS WITH SUPERMODULAR GAME1

Increasing demand on higher data rates and the scarcity on spectrum to which this demand

leads shift providers to establish the new types of networks, namely cognitive HetNets. In such

networks includes the deployment of networks with small foot print called femtocells within large

footprints networks called macrocells. The femtocell networks serves the purpose of providing reli-

able communication links to the indoor users. While this solution resolves high data rate demand,

these networks suffer from interference among femto and macro users since they share the spectrum.

Studies were carried out to solve this interference problem by coordination or mitigation methods.

A brief study about interference coordination can be attained from [39].

Femtocell, also called as enhanced Home Node B (HeNB), is an emerging technology with

a low power usage that can provide the high data rate for the end user that cannot be covered by

the closest PBS due to bad channel conditions. In terms of access mode, it can either be open,

close or hybrid [2]. In open access mode, FBS can be used by FUE and MUE while it is used only

FUE in close access mode. On the other hand, in hybrid access mode, it is used by both FUE and

MUE, however, most of the resources are typically allocated to the FUE due to its higher priority

in accessing the FBS2.

Since femtocells are user deployed, there is no central unit controlled by the macrocell for

allocating the resources among the SU and PU. Such feature can result in interference problems

on the PU and among the SU. Therefore, there is a need for a decentralized resource allocation

techniques where the SU can dynamically select the spectrum that can share with the PUE while

1This chapter was published in IEEE Military Communications Conference (MILCOM) held in Baltimore, Mary-
land, in 6-8 Oct., 2014. Permission is included in Appendix A.

2FUE and MUE will be used as secondary and primary user,respectively, throughout this chapter.
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providing the desired data rate to the SU and maintaining the interference level to the PU at

a desired level. The potential solution to this significant problem is to use the game theoretical

approach. Game theory deals with an interaction between, at least, two nodes/users where there

exists two types of games; cooperative and non-cooperative games. While cooperative games con-

struct a game with the coalitions which refer to a subgroup of a group of users, non-cooperative

games construct a game with independently acting users. An important difference between these

two games is the availability of the payoffs of the other players at each player. In cooperative games,

users in a subgroup know what the others do, but in non-cooperative games, such information is not

available. In this chapter, we also use a non-cooperative game type solve the problem of subcarrier

allocation among SUs to be shared with the PUs.

Game theoretical methods are used in different fields in wireless communication. One such

field is resource allocation which has been studied using different types of games. In [5, 35, 40],

authors utilize the supermodular games to solve this problem, while authors use potential games

in [17, 18, 41, 42]. Supermodular games has some advantageous on top of the potential games. It

is not necessary to prove the concavity of utility functions or dealing with interior solutions in

supermodular games [34].

In this chapter, our main objective is to solve the problem of subcarrier allocation for the

SU using supermodular games. Under certain conditions, the supermodular games guarantee at

least one NE. In previous studies mentioned above, subcarriers are selected based on the payoff of

each subcarrier via utilizing supermodular games 3. Each SU sweeps through the all subcarriers to

determine the ones which have the highest payoff. If the payoff of the best selected subcarriers is

larger than the ones which are selected in previous iteration, SU changes its subcarriers. While this

approach has an advantage in terms of fast convergence rate, i.e. to reach the NE faster, it requires

high feedback load. On the other hand, in random subcarrier allocation technique [36], each SU

picks certain number of random subcarriers based on its need and only considers these subcarriers

when making a decision. This has the advantage of limited feedback since only the number of

subcarriers considered in each iteration is much less than considering all subcarriers. Our objective

3In Section 2.3, this previous algorithm is called as best selection algorithm.
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is to use this technique with supermodular games. This should provide lower feedback load against

higher convergence rate. We will present analysis and simulation to show this trade-off among

convergence and feedback load, and our results indicate that we can have significant reduction in

feedback on the expense of convergence, which makes our algorithm beneficial in slowly varying

channels.

The remainder of this chapter is organized as follows. In Section 2.1, the system model

is introduced. Then, game theoretical model is performed in Section 2.2. Section 2.3 comprises

numerical results of the proposed approach, and finally, conclusions are drawn in Chapter 7.

2.1 System Model

In this chapter, we consider an uplink scenario with one PBS. In this PBS, there are random

number of PUs denoted as M = {1,2,. . . ,M}. Random number of SBSs are distributed within the

area of PBS. Each SBS has a number of SUs denoted as F = {1,2,. . . ,F}. This structure can be

seen in Figure2.1.

Femtocell 

Macrocell 

MUE 

FUE 

Interference Signal  

of FUE in Uplink 

Transmission Signal 

of FUE in Uplink 

 

Interference Signal  

of MUE in Uplink 

Transmission Signal 

of MUE in Uplink 

 

Figure 2.1 System view. There are FUEs, FBSs and MUEs under one macrocell.

The random resource allocation is performed among SUs since PUs are assigned to resources

by PBS with the consideration of interference in between them. As mentioned above, because SUs

are not controlled by PBS, they can cause interference on PUs. On the contrary, PUs can also

interfere with SUs. Therefore, by looking at the SU perspective, PUs can be seen as interfering

source. Thus, the power of received signal on SU can be expressed as

PRX = PF − PF ,int − PM,int, (2.1)
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where PF , PF ,int, PM,int are the received signal strength (RSS) of SU, other interfering SUs and

interfering PUs, respectively. RSS of SU can be defined as

PF (dBm)= P(tx) +G− PL

where P(tx) is the power of transmitted signal, G is the transmitter antenna gain, and PL is the

path loss.

2.2 Game Theoretical Model

In this section, we provide supermodular game formulation followed by the general game

theoretical model. Random subcarrier allocation scheme is mentioned in detailed at the end of the

section.

Game theory is a tool which provides a mathematical solution method to the problems which

can be solved via strategic thinking. In non-cooperative games, the mathematical structure is made

of three components; a set of players, a set of strategies and utility function. These components

can be defined as

• The set of players as a set of SUs denoted with I = {1,2,. . . ,I},

• The set of strategies as a least interfered subcarrier selection denoted with Si = {s1, s2, . . . ,

sk},

• Utility function as the RSS difference between player i and other players, j denoted with

Ui(si, s−i). The sum of RSSs of the other players is defined as the total interference power.

The whole game, G, with these three components can be written as

G= 〈I, Si,iǫI , Ui,iǫI 〉 (2.2)

As seen in (2.2), each player chooses a strategy to achieve the best utility, i.e. each SU picks

the subcarriers which has the highest RSS difference level. If the game is played iteratively, either
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sequentially or simultaneously, each SU checks the subcarriers which have been picked in previous

round, and compares them with the others in each iteration. If there is/are subcarrier(s) with the

higher utility, then it changes its subcarrier locations. When all players reach the NE, then they

stop looking for the new subcarriers. This NE is a point where there is no need to deviate profitably

for players. It can be defined mathematically as

Ui(s
∗
i , s

∗
j ) ≥ Ui(si, s

∗
j ), ∀i ∈ I, ∀si ∈ Si (2.3)

where sj shows the strategies for all players except i.

In the literature, selection of the highest utility is expressed with the best response corre-

spondence. The aim is to maximize the utility by playing with the most profitable strategy for

each player. This approach of playing game is reached the players to the NE. The best response

correspondence is defined as

Bi(s−i) ∈ arg max
si∈Si

Ui(si, s−i) (2.4)

In this chapter, we express the utility (or payoff) function as the RSS difference between

player i and other players j on each subcarrier. Each player picks the number of subcarriers

depending on its needs. Then, it changes its subcarriers by looking at the RSS difference of them,

accordingly. The utility function can be defined mathematically as

Ui(si, s−i) =

K
∑

k=1



P k
i s

k
i −

I
∑

j=1,j 6=i

P k
j s

r
j



 . (2.5)

where k = {1,2,. . . ,K} is the subcarrier index, P k
i is the RSS on kth subcarrier of ithplayer, si shows

the least interfered selected subcarriers. ski = 1 means that the kth subcarrier is selected by the

player i.
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2.2.1 Supermodular Game Formulation

Supermodular game is a type of non-cooperative game. The characterization of supermod-

ular game is defined with strategic complementarities. In other words, when one player changes

his strategy towards his benefit, other players also have an incentive to do the same towards their

benefit, e.g. better/higher SINR under the constant transmission power.

Definition 3 A game G is considered as supermodular game if, ∀i ∈ I,

• Si is a compact set of R,

• Ui is semi-continuous in (si, sj),

• Ui has increasing differences in (si, sj).

To obtain pure Nash equilibria with supermodular games, these features need to be satisfied.

According to our strategy, a player look for resources which have the least interference power (Pj).

Since Pj is bounded with the minimum (Pmin) and maximum (Pmax) levels, i.e. [Pmin=0,Pmax],

which is a compact set of R, this satisfies the compactness feature of supermodular game. On the

other hand, let Pk be the RSS difference on subcarrier r, and let’s assume the first player calculates

the RSS difference on its side. If all players use the same subcarrier with the first player, since

Pj = Pmax, the minimum RSS difference on this subcarrier would be achieved, Pmin. When only

the first player uses the same subcarrier, since Pj = Pmin, we would reach the maximum RSS level,

Pmax. Because Pr oscillates between Pmin and Pmax, this satisfies the semi-continuity feature. To

satisfy last feature, we need to prove that Ui(si, s−i) is twice continuously differentiable, i.e.

∂2Ui(si, s−i)

∂si∂sj
≥ 0 (2.6)
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We apply the utility function given in (2.5) to (2.6) to prove that Ui has increasing differ-

ences. First order partial differentiation of (2.5) can be written as

∂Ui(si, s−i)

∂si
=

∂

∂si

K
∑

k=1



P k
i s

k
i −

I
∑

j=1,j 6=i

P k
j s

k
j



 , (2.7)

= KPi.

Second order partial differentiation of (7) can be written as

∂2Ui(si, s−i)

∂si∂sj
=

∂2

∂si∂sj
(KPi) = 0 ≥ 0 (2.8)

This results that the utility function in (2.5) satisfies the conditions for supermodular game.

Supermodular games have two important features [5]:

• There is at least one pure NE

• It has monotonically increasing property in its best responses.

2.2.2 Random Subcarrier Allocation Scheme

This scheme is based on the selection of random subcarriers. The key thing is that when

SU picks random subcarriers, it looks at only the payoffs of those selected subcarriers. But, in

previous studies, SU looks for the subcarriers which have the best payoff via sweeping through the

all subcarriers. This causes tremendous amount of feedback sent by SU.

We provide detailed explanation of our algorithm in Table 2.1. As seen from the algorithm,

random subcarriers are allocated to each user in the system. Based on its needs, each SU picks

certain number of random subcarriers in each iteration. These selected subcarriers are compared

with its own subcarriers in terms of their utilities. If there is subcarrier(s) whose utility is higher

than its own subcarrier’s utility, SU takes these newly selected subcarriers by removing its own

subcarriers. As these removed subcarriers could equal to the number of total subcarriers which an

SU uses, it can also be only one subcarrier. This continues until each SU reaches the NE. By doing
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Table 2.1 Random subcarrier allocation algorithm

# Simultaneous Game Algorithm

1 PUs = randomly distribute PUs to PBS
2 SUs = randomly distribute SUs to SBSs
3 RS = assign random subcarriers to PUs and SUs
4 RSS = calculate the RSS difference in each subcarrier
5 for iterations(1,2,. . . )
6 for SUs(1,2,. . . )
7 pick certain number of random subcarriers
8 compare them with the ones previously selected
9 if new subcarriers have higher payoff,

change your subcarriers with those new subcarriers
if not, keep your previous subcarriers

10 end
11 if any SU changes its subcarrier profitably
12 do the next iteration to allow others to change

their subcarriers profitably, too
13 end
14 end

this, the number of feedback is decreased to very small amounts as seen in performance evaluations

section.

2.3 Performance Evaluation

In this section, we derive the simulation results. We compare our random subcarrier allo-

cation algorithm with previous algorithm which is based on the selection of subcarriers which have

the highest payoff [5, 35, 40]. First, we look at the utility of both algorithms. Then, we compare

the capacity and the throughput of the SUs.

In this chapter, we are playing the game simultaneously. No recording from previous SU is

held unless an iteration is completed. We consider one OFDM symbol with the FFT size of 1024,

i.e. the bandwidth is 10MHz. All SUs, PUs, SBSs, and PBSs are allocated randomly. We assume

there are ten SBSs with two SUs, twelve PUs and one PBS. We consider users as static, i.e. there is

no mobility, and duplexing as time division duplexing (TDD) in between transceiver. This provides

the channel reciprocity. Other system simulation parameters can be seen on Table 2.2.
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We use two path loss models taken from 3GPP 36.814 standards. Path loss model from PU

to SBS is defined as,

PLPU,SBS = max(15.3 + 37.6log10R, 38.46 + 20log10R) + 0.7d2D,indoor + Low, (2.9)

where R is distance in m which is random, Low is the penetration loss of an outdoor wall which

is equal to 20dB, and d2D,indoor shows the distance inside the house. This is for 2GHz central

frequency.

Similarly, path loss model from SU to SBS is defined as,

PLSU,SBS = 38.46 + 20log10R+ 0.7d2D,indoor, (2.10)

Table 2.2 Simulation parameters

Simulation Parameters Parameter Value

Power of UE 23dBm
UE Antenna Gain 5dBi
Noise Figure 5dB
Bandwidth 10MHz
Bandwidth of subcarrier 15KHz
Number of subcarriers/SU 40
Number of subcarriers/PU 75
Number of SUs/SBS 2
Number of SBSs 10
Number of PUs 12
Carrier Frequency 2GHz
Modulation Order QPSK
Femtocell radius 15m
Macrocell radius 500m
Shadowing standard deviation 8dB (MU) - 4dB (FU)
FFT size 1024
Penetration Loss 20dB

Figure2.2 shows the payoffs of the two algorithms. In this analysis, for the sake of clarity,

we plot only one randomly selected SU’s results instead of all SUs. Our algorithm reaches the NE

in the seventh iteration while the best selection algorithm reaches it in the third iteration. An

important thing is that when both algorithms reaches the NE, their payoff turns out to be the
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Figure 2.2 Mean utility values in each iteration. Random selection algorithm raises convergence
rate while it decreases the feedback load tremendously in terms of utility function.

same level. By achieving this after a few more iterations, we indicate that our algorithm saves SU

to perform a significant amount of sweeping for the subcarriers which have the highest payoff. It

only needs to look at the number of subcarriers it needs. By doing this, feedback load which is the

number of subcarriers sent from the SU to SBS is reduced tremendously. While the feedback load

is equal to 7*40=280 subcarriers in our algorithm, it equals to 3*1024=3072 subcarriers in the best

selection algorithm.

2.3.1 Capacity Level Analysis

At this part, we perform the capacity analysis in terms of cumulative distribution function

(CDF) and the mean value of the capacities of the SUs on both algorithms. Capacity is defined as

Ci = log(1 + SINRi),

= log

(

1 +
PF

PF ,int + PM,int + w0

)

. (2.11)

where w0 shows the additive white Gaussian noise (AWGN).

In Figure2.3, we compare both algorithms with the initial condition of the system. At the

beginning of the game, we allocate the users to the random subcarriers. Initial condition refers to
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Figure 2.3 Capacity level vs. CDF for the whole system. At the NE point, both algorithms give
similar result in terms of capacity level.

that moment. These CDF curves show the capacity values when the players reach the NE. Both

algorithms improve the capacity of the system by 10% compared to initial condition in majority

of the capacity values. On the other hand, the capacity values obtained by our algorithm are the

same as the capacity values obtained by the previous algorithm in general. This result indicates

that our algorithm is a strong candidate for the future networks.

Similarly, Figure2.4 shows the mean capacity level of all SUs for both algorithms. This

figure also proves that for all users, our algorithm can reach the same NE attained from the

previous algorithm. In terms of the mean feedback loads, our algorithm has 2040 feedbacks while

the best selection algorithm has 5120 feedbacks. On the other hand, significant increment on mean

capacity is obtained in both algorithms. This provides more spectral efficient system as well.

2.3.2 Throughput Analysis

It is also noted that in each analysis, we pick different SU’s result to show the effect of game

theoretical approach on different players.
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Figure 2.4 Mean capacity level becomes the same in the NE. Capacity increases with decreasing
feedback load in random selection model.
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Figure 2.5 Total throughput increases 1.05Mbps in both algorithms when they reach the NE.

In this section, we analyze the performance improvement on an SU’s total throughput. The

throughput is calculated similar to [41] as

T k
i (SINR

k
i ) = max

dki

dki (1− Pe(SINR
k
i , d

k
i )). (2.12)
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where dki is the raw data rate on kth subcarrier of user i, T k
i is the throughput on kth subcarrier of

user i, Pe is the probability of error as a function of SINR value.

After achieving T k
i , the total throughput can be defined as the sum of the throughput of

all used subcarriers by the SUs. Mathematically,

TSU =
K
∑

k=1

(T k
i ). (2.13)

Figure2.4 shows the total throughput of SUs. The increment on throughput is 1.05Mbps.

While the convergence rate is increasing in our algorithm compared to the best selection algorithm,

feedback load decreases remarkably when both algorithms are on the same NE.
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CHAPTER 3

JOINT SUBCARRIER AND ANTENNA STATE SELECTION FOR COGNITIVE

HETEROGENEOUS NETWORKS WITH RECONFIGURABLE ANTENNAS1

Cognitive HetNets have been recently presented as a promising solution for spectrum

scarcity that holds back the high demand in wireless usage. This scarcity problem can be solved

with various cognitive approaches which are named as interweave, underlay and overlay approaches.

Among those approaches, we adopt the underlay approach where the SUs are allowed to share the

spectrum with the PUs under limited interference constraint. In this constraint, the power trans-

mitted by the SUs must guarantee that the interference at the PUs is below a predetermined

threshold. However, in most practical cases, this interference constraint is limited to very small

values that can lead to a reduction in the transmitted power by the SU resulting in an unaccept-

able performance. Moreover, since the PUs should operate with no coordination with the SUs, the

interference levels from the PUs transmissions at the SUs receivers may be extremely high, and

thus, degrading performance. One way to solve this issue is to use MIMO system by creating inde-

pendent spatial dimensions through different antennas, and hence, the best antenna can be found

to provide best performance for the SU. Although MIMO has many advantages over single-input

single-output (SISO), the requirement of multiple antenna usage, which has some limitations such

as distance in between two antennas [29], renders impractical the implementation of more than two

antennas on mobile devices such as cell phone.

In this chapter, we adopt an emerging technology called RA. Compared to MIMO system,

the importance of RAs comes from their physical sizes which make them to be feasibly employed at

the SUs and their ability to provide different antenna radiation patterns for every antenna element

1This chapter was published in IEEE Transactions on Communications, vol. 63, no. 11, pp. 4015-4025, Nov.
2015. Permission is included in Appendix A.
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using hardware techniques. Reconfigurability of antenna adds a degree of freedom2 in terms of

system capability to tackle the random nature of the wireless channel. This degree of freedom

of reconfigurability depends on antenna structure and reconfigurability method. The choice of a

reconfiguration mechanism is based on the design space and performance level required. Antenna

reconfigurability can be categorized into four different reconfigurability functions, namely, a) re-

configuring resonance frequency, b) reconfiguring radiation pattern, c) reconfiguring polarization

state, and d) a combination thereof [23]. By reconfiguring its frequency, RA can carry out spec-

trum allocation and frequency hopping to enhance the system capacity and can also reduce in-band

frequency interference by reconfiguring its radiation pattern and polarization [24].

These reconfigurable features of the RA have attracted the interest of the research commu-

nity to improve the performance of wireless communication systems in different applications. For

example, SU can select the best state of the RA that maximizes SINR or capacity [25]. RAs can also

be utilized to detect intruders to enhance security in communication systems [26]. For MIMO mul-

tiuser OFDM system, RAs are utilized to increase the performance in terms of capacity of MIMO

systems for slowly fading environments and in different multipath environment including rich and

sparse [27–30]. In [31], the authors use RAs to achieve blind interference alignment by introducing

channel fluctuations resulting in independent signal-to-noise ratio values at predetermined time

instants via blind antenna switching.

We consider a multiuser OFDM multicell cognitive HetNets where each SU is equipped

with an RA. Our aim is to maximize the system capacity by jointly selecting the subcarrier and

antenna state for each SU, and hence, reduce the interference in the system. This problem has

been well-studied for the omni-directional antenna case within the OFDMA, where various resource

allocation techniques have been proposed. Among these several techniques, game theoretical re-

source allocation has gained the interest of the research community because game theory provides

the tools necessary to manage the interactions between players (users)3 in order to improve the

performance of the network while maintaining the interference coordination between users. Differ-

2Theoretically, the number of degree of freedom depends on the number of states that an RA provides. For
instance, if an RA has three radiation patterns of different point directions and be able to operate in two different
frequency bands, it can be said that this RA has six degree of freedoms.

3Throughout this chapter, ‘player’ and ‘user’ are used interchangeably.

29



ent game theoretical methods, which can be categorized as cooperative and non-cooperative games,

are used in the resource allocation literatures on HetNets. For example, in [9], cooperative games

are utilized to achieve resource allocation where the players establish coalitions. It is assumed that

the group of players in the same coalition know what the others are doing. However, because of the

uncoordinated nature of HetNets, cooperative games are not suitable for studies focused on the up-

link scenarios. Therefore, more attention has been given to non-cooperative games by researchers.

Stackelberg games as a non-cooperative framework are utilized in resource and power allocation

studies in [10–14]. In Stackelberg games, there are leaders as the entities from primary networks and

the followers as the entities from secondary networks, i.e., a two-stage game has to be introduced.

However, since SUs are the interference sources and the unlicensed users, playing the game among

PUs is not necessary because of having one central controller under one primary network scenario.

In [15], Bayesian auction games are introduced within the resource allocation literature. This type

of game is based on a bidder (user) and an auctioneer (access point). While each user bids for the

available bandwidth based on its need, the access point distributes the bandwidth considering the

proportional fairness criterion. Since this approach requires a central unit for decision-making, it is

not appropriate for uncoordinated networks. In [16–18], authors propose resource allocation tech-

niques by utilizing potential games because these games have a very significant property, namely,

the FIP property which leads to NE convergence [6]. Therefore, potential games are used in this

study to solve the problem of jointly finding the antenna state and subcarriers for each SU and the

convergence to NE is shown. To the best of our knowledge, no prior study considers the exploitation

of the spatial dimension, which can be achieved via utilizing RAs, in subcarrier allocation concept

under a game theoretical framework.

In this chapter, we develop resource allocation technique for cognitive HetNets by exploiting

RAs. Our objective is to use the capabilities of RAs to generate independent channel gains with

different parameters to improve the capacity of cognitive HetNets. We use game theory to solve this

problem and, in particular, we model the problem as potential games to solve the problem of jointly

finding the antenna state and subcarriers for each SU as these games can be shown to achieve NE

for our utility function. Since the number of antenna states in RA can be large, this might increase
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the computational complexity in the system. To reduce the complexity, we divided our solution

into two steps. In the first step, before playing the game, the players select the candidate antenna

states set based on either of two different approaches. In the FPSS approach, all players have the

same predetermined states (or radiation patterns). On the other hand, in the APSS approach,

players select the states based on the locations of BSs and the SINR measurements in each state.

In the second step, after selecting a candidate set, the game starts to be played. We focus on

two different algorithms in terms of RA state selection, namely RS and BeS. Both techniques are

based on the best subcarriers selection in terms of their capacity measurements among all available

subcarriers achieved by the SU. In the BeS algorithm, this process is performed for each state,

while SBS sends capacity reports of the subcarriers for only one randomly selected state with the

aim of reducing the FL in the RS algorithm. Our results show that, while RS gives lower FL than

BeS for RAs with two states, it becomes higher when we consider more than three states in an RA.

This is due to the fact that the RS scheme requires more iterations to converge to NE compared

to the BeS scheme as the number of states increases. On the other hand, we are showing that as

the number of antenna states in RAs increases, the capacity enhances further.

As such, the contributions can be summarized as follows:

1. We formulate a model for cognitive HetNets where SUs are equipped with RAs. Different

numbers of antenna states in RAs are analyzed with various beam widths and pointing

directions.

2. Before playing the game, the APSS approach is introduced to increase the convergence

rate. After the game has started, the RS and BeS algorithms are utilized to achieve joint

subcarrier and antenna state selection.

3. SUs with RAs and conventional omni-directional antenna are compared to show the per-

formance gain of the proposed algorithms in terms of overall capacity. On the other hand,

the trade-offs are also presented in terms of convergence rates and FLs. Total capacity

improvements are investigated for increasing numbers of SUs as well. Our results show
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that an RA equipped with a 60◦ beam width provides the highest increase in the capacity

gains compared to conventional antennas.

The remainder of this chapter is organized as follows. In Section 3.1, the system model

with power control mechanism and RA structure is presented. The problem and potential game

formulations are given in Section 3.2. In Section 3.3, detailed explanation of two different algorithms

are given. The first algorithm is the candidate antenna state selection, which is performed before

the game is played and the second algorithm is the subcarrier allocation and antenna state selection

algorithm, which is performed during the game. Also, a proof of NE existence and convergence is

provided. Section 3.4 offers numerical results for the proposed approach and, finally, conclusions

are drawn in Chapter 7.

3.1 System Model

We consider a network composed of one PBS and multiple SBSs in which M PUs and I

SUs are located randomly as seen in Figure 3.1. It is assumed that SUs are equipped with RAs

that have the capability of choosing an antenna state among N possible states. The PUs, PBS

and SBSs all use omni-directional antennas. It is worth mentioning that the purpose of assuming

omni-directional antennas at the other users is to focus on quantifying the gains of exploiting

RAs at the SUs within the game structure. We also assume that the users are using orthogonal

frequency-division multiple access technique, where each SU is assigned a number of subcarriers

among a total number of subcarriers K. The capacity of user i can be expressed as follows,

Ci =

K
∑

k=1

log2






1 +

P νi
i gνiikaik

∑I
j=1,
j 6=i

Q
νj
jk +

∑M
m=1 Q̃mk + w0






(3.1)

where k = 1, 2, . . . ,K is the subcarrier index, νi indicates the antenna state index for user i, and

P νi
i denotes the transmit power for user i assuming antenna state νi is selected. Parameter aik is

the indicator function of the kth subcarrier, where aik can take value 0 or 1 depending on whether

the kth subcarrier is selected for user i or not. Variable gνiik is the channel gain on the kth subcarrier
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and antenna state νi, respectively; Q
νj
jk indicates the interference due to the received signal from

the jth SU on the kth subcarrier, and is given by Q
νj
jk = P

νj
j g

νj
jkajk, where P

νj
j shows the transmit

power; g
νj
jk is the channel gain of the kth subcarrier and ajk is the indicator function of the kth

subcarrier for the jth PU. On the other hand, Q̃mk denotes the interference due to the received

signal from the mth PU on the kth subcarrier, and is given by Q̃mk = P̃mg̃mkãmk, where P̃m shows

the transmit power, g̃mk is the channel gain of the kth subcarrier and ãmk is the indicator function

of the kth subcarrier for the mth PU. The term w0 represents the additive white Gaussian noise.

SBS 

PBS 

PU 

SU 

Transmission Signal Interference Signal 

RA State 

Figure 3.1 Cognitive heterogeneous network structure. SUs use the reconfigurable antennas with
the ability of selecting different states than others.

3.1.1 Power Control

In cognitive networks, the SUs should make sure that the interference level at the primary

receiver should be less than a predetermined value. Hence, we consider the following two constraints

when the SU transmits a signal with a transmit power of P νi
i ,

Q̄νi
i 6

Q̄max

I

P νi
i 6 Pmax

(3.2)

where Q̄max

I indicates maximum allowable interference power in PBS caused by SU on antenna state

νi whereas Pmax indicates maximum transmit power constraint of SU on the νth antenna state.

Interference power from the νth antenna state induced on PBS, Q̄νi
i , can be defined as

Q̄νi
i = P νi

i ḡνi , (3.3)
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where ḡνi is the channel gain between the SU and the PBS. By combining the two constraints, the

adjusted transmit power of SU i, P νi
i can be rewritten as

P νi
i = min

(

Q̄max

I ḡνi
, Pmax

)

. (3.4)

The above constraint requires full knowledge of the channel state information between the

SU and PBS. Such condition may not be practical, therefore, in this chapter, we adopt a more

realistic constraint. The probability that the interference exceeds the threshold should be below

threshold ǫ, i.e.,

Pr

(

Q̄νi
i >

Q̄max

I

)

6 ǫ. (3.5)

Under the assumption that the channel between SU and PBS is Rayleigh with variance λνi
i , P νi

i

can be written as follows [43],

P νi
i = min

(

Q̄max

Iλνi
i ln(1ǫ )

, Pmax

)

. (3.6)

In this scenario, the transmit power of the SU requires only knowledge of the channel variance

λνi
i , which can be obtained easily4. Therefore, using (3.6), each SU can determine its transmission

power so as to guarantee the condition shown in (3.5).

3.1.2 Reconfigurable Antenna Structure

We study the impact of an RA system in terms of its pointing direction of maximum antenna

gain, and its beam width. The adopted antenna characteristic is based on the well known 3GPP

antenna model [44], which can be written as

A(θ) = −min

[

12

(

θ − θpd
θ3dB

)2

, Am

]

(3.7)

4Since the channel variance is utilized in this power control algorithm, subcarrier index is omitted.
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where θpd is the pointing direction (i.e., bore-sight of the antenna), −180◦ 6 θ 6 180◦, θ3dB is

the 3dB beam width of the antenna in degrees, Am is the maximum attenuation. We extend the

application of this model to RA research work. The RA parameters for multiple antenna states are

θpd for every value of the other reconfigurable parameter θ3dB. Pointing directions of every antenna

states are reconfigured to a selected number of antenna states (N) starting from boresight direction

of 0◦ and in steps of 360◦

N . For instance, for RA of 8 radiation states, their pointing directions are 0◦,

45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦ and for a specified value for the reconfigurable parameter

θ3dB.

3.2 Problem Formulation

We consider the problem of finding the best antenna state and subcarrier for each user i so

as to maximize the sum capacity of all players or equivalently,

Cmax = max
a
νi
ik

∑

i∈I
Ui(ai, νi) (3.8)

subject to:

∑

i

aik = 1

where this constraint ensures that each subcarrier is employed by a single user and Ui(ai, νi) is the

utility function which is defined as the sum capacity of the selected subcarriers that is, equivalently

Ui(ai, νi) = Ci as defined in (3.1). At this point, it is worth mentioning the reason why we pick this

utility function. In [18] and [16], authors utilize the total interference as utility function. While

this utility function provides the total interference power in the whole network for player i, it

doesn’t provide any information about the player i’s channel with its own BS. Therefore, there is a

possibility that the player i might have a bad channel response in some of the selected subcarriers

which can degrade the player i’s communication in some selected subcarrier. On the other hand,

since player i’s RSS is not computed by its own BS, the calculation of the interference that the

player i generates may not reflect the enough information about the antenna states and hence, the
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player i may select the wrong state. To solve this issue, we expressed the utility function as the

capacity.

This problem is a multidimensional optimization problem for which finding the optimal

solution can become complex. To circumvent this issue, we use game theory to develop a solution

for this problem that achieves convergence and to show the benefits of using RAs at the SUs.

Game theory provides a mathematical framework for an environment where there are non-

cooperative players interacting with one another. In our framework, the players are defined as

the SUs and denoted with i, i ∈ I. On the other hand, strategies take the form of subcarrier and

antenna state selection, which we denote by si = {ai, νi} for player i, si ∈ Si where Si is the strategy

set of player i. With the utility function Ui(ai, νi), the game G can be written with the three-tuple

G = 〈I, Si, Ui〉. With a given utility function and strategies, NE, which is an equilibrium point

where the players have no incentive to change their strategies, can be formulated as

Ui(s
∗
i , s

∗
−i) ≥ Ui(si, s

∗
−i)

∀i ∈ I, ∀si, s−i ∈ S (3.9)

where S indicates the set of strategy profiles for player i and every other player −i and ‘*’ indicates

the equilibrium point.

3.2.1 Potential Game Formulation

A game is said to be a potential game defined with a potential function. When a player

changes its strategy, the change in its utility function is reflected in the potential function. The

following definition can be found in [6].

Definition 4 A game G is said to be an ordinal potential game if it admits an ordinal potential.

A function V is an ordinal potential for G if for every i ∈ I and for every s−i ∈ S−i
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Ui(s
′
i, s−i)− Ui(si, s−i) > 0 iff

V (s′i, s−i) − V (si, s−i) > 0

∀si, s
′
i ∈ Si. (3.10)

It is guaranteed that there is at least one pure NE in ordinal potential games. In this

chapter, we define the potential function similar to [45–47] as

V (S) =
K
∑

k=1

log2







∑

n∈I
P νn
n gνnnkank +

M
∑

m=1

Q̃mk + w0






(3.11)

Since S = ({ai, νi}, {a−i, ν−i}), the potential function V ({ai, νi}, {a−i, ν−i}) can be expressed as

V ({ai, νi}, {a−i, ν−i}) =

K
∑

k=1

log2







∑

n∈I,
n 6=i

P νn
n gνnnkank + P νi

i gνiikaik +
∑

m∈M
Q̃mk + w0






. (3.12)

If the ith player changes its strategy from {ai, νi} to {a′i, ν
′
i}, then the potential function

V ({a′i, ν
′
i}, {a−i, ν−i}) becomes

V ({a′i, ν
′
i}, {a−i, ν−i}) =

K
∑

k=1

log2







∑

n∈I,
n 6=i

P νn
n gνnnkank + (P νi

i gνiikaik)
′ +

∑

m∈M
Q̃mk + w0






. (3.13)

The subtraction of (3.12) from (3.13) can be performed as follows.

V ({a′i, ν
′
i}, {a−i, ν−i})− V ({ai, νi}, {a−i, ν−i})

=
K
∑

k=1






log2







∑

n∈I,
n 6=i

P νn
n gνnnkank + (P νi

i gνiikaik)
′ +

∑

m∈M
Q̃mk + w0







− log2







∑

n∈I,
n 6=i

P νn
n gνnnkank + P νi

i gνiikaik +
∑

m∈M
Q̃mk + w0












. (3.14)
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Since all players’ strategies except player i are fixed, the difference obtained from the sub-

traction in (3.14) will only depend on the difference between (P νi
i gνiikaik)

′ and P νi
i gνiikaik. In this

chapter, the players play with the best or better response correspondence in BeS or RS algorithm,

respectively. Therefore, the change on the ith player’s strategy will lead to following result.

V ({a′i, ν
′
i}, {a−i, ν−i})− V ({ai, νi}, {a−i, ν−i}) > 0 (3.15)

This indicates that the condition which is defined in (3.10) for the ordinal potential game is satisfied

with our scheme.

3.2.2 Nash Equilibrium Convergence

The NE convergence with potential games can be shown over the FIP [6], because this

property guarantees NE convergence and indicates the increment of the utility function in each

path. Suppose that ξi is the path of player i in strategy set of Si and the game is played sequentially.

The sequence of strategies through iterations is ξi = (s0i , s
1
i , s

2
i , · · · ). In BeS scheme, the players

play with their best responses. If it is assumed that the new strategy sli provides the best response

for player i in its utility with respect to the previous strategy sl−1
i , i.e., sli = argmaxUi(s

l
i, s

l−1
−i ),

sli ∈ Si, then, the new utility function becomes Ui(s
l
i, s

l−1
−i ) > Ui(s

l−1
i , sl−1

−i ). For this case, the

potential function V (sli) in each path should satisfy the sequence of V (s0i ) < V (s1i ) < V (s2i ) < · · ·

according the FIP property. In ordinal potential games, when players begin with random strategy

profiles, if each player sequentially changes its strategy towards its unique best response, the game

reaches NE within finite steps [48]. Since, in this chapter, the players play with the best responses

in their strategies, then this proves convergence to NE.

Best responses require the search among all antenna states, which increase the FL. To

alleviate this problem, in the RS algorithm, a random state selection algorithm is proposed. Instead

of playing with best responses, players select the antenna states based on the better responses, i.e.,

the player changes its strategy if the utility of the randomly selected antenna state offers a higher

payoff. So, if Ui(s
l
i, s−i) > Ui(s

l−1
i , s−i), s

l
i is said to be the better response correspondence in the

ith player strategies. Thus, as indicated in [16], when better responses are satisfied, NE convergence
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can be achieved. At this point, it is worth mentioning that the main difference between the BeS

and RS algorithms is the convergence rate. Since RS algorithm is based on better responses, it has

slower convergence rate. This statement can also be supported by simulations as seen in Figure 3.5.

3.3 Solution Framework and Nash Equilibrium Convergence

In this section, we develop a framework for jointly selecting the antenna state and subcar-

rier for each user. The framework is divided into two step. In the first step, namely candidate

antenna state set, SUs only define a subset of the available antenna states from which the antenna

state is selected. The objective of this step to limit the search space for the antenna states and

hence improve the computational complexity of the proposed solution. In the second step, a joint

subcarrier and antenna state selection game is played among the antenna states that only belong

to the candidate antenna state set determined in the first step. It is important to note that candi-

date antenna state set selection is performed before playing the game. After the candidate set is

selected, the users start to play the game according to the RS and BeS algorithms. At the end of

the section, we show that NE convergence can be achieved.

3.3.1 Step 1: Candidate Antenna State Set

Two approaches are introduced to select candidate antenna states. In APSS approach,

the SUs selects the set of antenna states based on location information before the game starts.

Alternatively in FPSS approach, state selection is fixed and assumed to be the same for all SUs.

As described earlier, the RA at the SU can have multiple antenna state pointing directions

depending on the beam width. For instance, if the adaptive beam width is 45◦, the total number of

states would be eight, i.e., N = 360◦/45◦=8. Naturally, the complexity of the subcarrier allocation

problem in (3.2) increases as the number of states increases. To reduce complexity, each SU selects

a candidate antenna state set among those fixed directions from which the SU selects the antenna

state while running the joint antenna state and subcarrier allocation game. In particular, we

consider selecting these candidate states based on the geographical location of the PBS and the

SINR measurements performed for the states in the direction between both the SBS and PBS.
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Specifically, we sort the antenna states according to the ratio of signal strength received from the

SBS and signal strength received from the PBS; the first state would be the one with the highest

ratio. This candidate set selection approach is called the APSS approach. To explain this selection

technique further, let us assume that the RA can provide eight states, as seen in Figure 3.2, and

only three states can be selected for the candidate antenna state set. By applying this technique,

the candidate antenna state selection set is composed of state 1, state 3, and state 8. We note

that state 2 is not selected even if it provides higher signal strength from the SBS. This is due

to that fact the state 2 experiences a very high interference level from PBS and hence the ratio of

signal strengths from SBS and PBS will be lower than that experienced from state 3. In the APSS

approach, the candidate set will be different for the SU depending on its location with respect to

the SBS and PBS.

Another way of selecting the candidate set states is called the FPSS approach. This method

does not require the location information of the SBS and PBS, or performing any SINR measure-

ment. In this later case, we assume that the candidate set is fixed for all SUs, i.e., the same for

all SUs where the candidate set should be selected to maximize the coverage of the antenna. For

instance, if SUs have two states, the best antenna states to maximize the coverage would be those

pointing to 0◦ and 180◦ since the location information is not required in this stage.

3.3.2 Step 2: Joint Subcarrier Allocation and Antenna State Selection

In this game, subcarrier allocation is performed based on best responses. If the players

have omni-directional antennas, they select the subcarriers whose capacity values are the highest.

The number of subcarriers assigned to a player depends on their needs. When a player obtains

the capacity reports for each subcarriers, it sweeps through them, and looks for the ones that have

the highest capacity values. If the players have RAs, i.e., multiple antenna states, they obtain the

reports for all subcarriers from each antenna states. When the player selects the best subcarriers

that correspond to every antenna states, it computes the sum capacity of the selected subcarriers

for each antenna state. After computing the utility of each states, the player selects the one that

has the highest payoff. This is referred to as the BeS algorithm.
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Figure 3.2 Based on the geographic location of PBS and SBS, SU selects the states which would
cause the least interference onto PBS and provide the highest possible signal strength onto SBS.
In this example, SU picks first, third and eighth states when it is in (0,0) coordinates.

Obtaining the reports for each subcarrier in each state may cause higher FL, which is

defined as the number of reports sent by the transmitter to the receiver to be able to select the

best subcarriers and state. It can mathematically be expressed as

FLBeS =
∑

t∈T

∑

i∈I
Bt,iN. (3.16)

where T is the number of iterations needed for BeS algorithm, N is the number of states and Bt,i is

the number of measurements needed for the ith user at tth iteration, which depends on the number

of subcarriers. To decrease the FL, instead of taking the reports in every state, the player can

select the state randomly in each iteration, and take the reports for the subcarriers in this state

only. When it selects the best subcarriers, it compares the sum capacity result, Ui(s
′
i, s−i), with the

one that was achieved in the previous iteration, Ui(si, s−i). If the utility Ui(s
′
i, s−i) is higher than

the utility Ui(si, s−i), then the player picks these newly selected subcarriers and their associated

state. This completes the description of the RS algorithm, which is summarized in Table 3.1. So,
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the FL for the RS algorithm can be expressed as follows.

FLRS =
∑

t∈T1

∑

i∈I
Bt,i. (3.17)

where T1 is the number of iterations needed for RS algorithm. In Section 3.4, the FLs are compared

for both algorithms.

In Figure 3.3, the BeS and RS algorithms are compared with an exhaustive search algorithm

under the two secondary network scenarios. As seen in the figure, since BeS and exhaustive search

algorithm search for the resources and the state which have the highest capacity results, both

schemes provide similar performance.
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Figure 3.3 The BeS algorithm outperforms the RS algorithm and it can provides a level of perfor-
mance close to the exhaustive search algorithm.

3.4 Performance Evaluations

In this section, we provide performance results for the algorithms proposed in Section 3.3.

We assume a network with one PBS, 20 PUs, and 20 SBSs, which can be viewed as a femtocell.

Each SBS has two SUs. The radius of coverage circle for SBS is 40m. The minimum distance

between the PUs and SUs to the PBS and SBS, respectively, is 3m. The SBSs are randomly

distributed within a PBS coverage area. Similarly, the SUs are also randomly distributed within
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Table 3.1 Subcarrier allocation algorithm with random state selection

# The Game algorithm

1 Allocate random subcarriers to each player with a random state
2 for t = 1:T (iterations)
3 for i = 1:I
4 Randomly select one antenna state, ν
5 for k = 1:K
6 Calculate Ui(ai, νi)
7 end
8 if Ui(s

′
i, s−i) > Ui(si, s−i)

9 Select antenna state with Ui(s
′
i, s−i)

10 end
11 end
12 end

a SBS coverage area. The tolerance ǫ in (3.5) is assumed to be 0.05, and the maximum allowable

interference power Q̄max is set to -77dBm. All other simulation parameters are compiled in Table

3.2.

Table 3.2 Simulation parameters

Simulation Parameters Parameter Value

Cell type Hexagonal
Power of UE 23dBm
UE Antenna Gain 5dBi
Noise Figure 5dB
Bandwidth 10MHz
FFT size 1024
Number of subcarriers/SU 50
Number of subcarriers/PU 50
Number of SUs/SBS 2
Number of SBSs 10,15,20,25,30
Number of PUs 20
Modulation Order QPSK
PBS radius 500m
SBS radius 40m
Number of states 6
Shadowing standard deviation 8dB (PU) - 4dB (SU)

The adopted channel model is the clustered delay line model taken from WINNER II D1.1.2

V1.1 [49]. The path loss models defined in Table 3.3 are obtained from the 3GPP 36.814 standard

[50].
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Table 3.3 Path loss models

Case Model

PU to SBS
PL = max(15.3 + 37.6 log10R, 38.46 +
20 log10R) + 0.7d2D,indoor + qLiw + Low

SU to SBS PL = 38.46 + 20 log10R+ 0.7d2D,indoor

SU to PBS PL = 15.3 + 37.6l log10R+ Low

R is distance in m, Low is the penetration loss of an outdoor
wall which is equal to 20dB, Liw is the penetration loss of
the wall separating apartments which is equal to 5dB, q is
the number of walls separating apartments between UE and
SBS which is equal to 1, and d2D,indoor shows the distance
inside the house central frequency is 2 GHz.

In Figure 3.4, the BeS and RS algorithms are shown using the FPSS approach. The beam

width is assumed to be equal to 60◦. Figure 3.4 indicates that, when the number of states increases,

the capacity values also increase. This can be explained by the fact that increasing the number of

states increases the number of channels with independent channel impulse responses. This gives

a higher chance to find an antenna state that has better channel condition for every user. As

explained above, in FPSS, all users play the game among the predetermined candidate antenna

states. For instance, for the two-state case, all users select between two states with the beam

directions of 0◦ and 180◦. If the SBS is located in the direction of 90◦ and, hence, the beam cannot

be directed towards that direction, a low capacity value is achieved with high probability. But, for

the six-state case, for which the antenna can direct the beam to more pointing directions, it can

select the one that is more directed towards the SBS.

This figure also shows the difference between the BeS and RS algorithms. The BeS algorithm

gives better results for any number of antenna states. The comparison between these two algorithms

can be seen in Table 3.4. This table shows the difference in terms of percentage from the omni-

directional case in the 50th percentile.

Table 3.4 Percentage difference in RS & BeS algorithms

2 States 3 States 4 States 5 States 6 States

RS 9.3% 27.9% 36% 40.7% 46.5%

BeS 20.9% 37.2% 44.2% 50% 54.7%

44



5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Capacity Level (b/s/Hz)

C
D

F

 

 

RS w/2S

RS w/4S

RS w/6S

BeS w/2S

BeS w/4S

BeS w/6S

Omni

Figure 3.4 When the antenna state selection is not adaptive, i.e., it is fixed for all users, the
capacity difference in terms of percentage from 2S case to 6S case in 50% level is 37.2% and 33.8%
in RS and BeS algorithms, respectively.

As mentioned in Section 3.3.1, before the players play the game, antenna state selection is

performed. Figure 3.5 shows the mean capacity results achieved with the APSS approach in each

iteration. While this figure gives information about the difference between the number of cases for

both RS and BeS algorithms, it also shows in which iteration NE is reached, i.e., the convergence

rate can be obtained. While NE is reached in the 4th, 15th, 24th, 29th and 42nd iteration in RS,

it is reached in the 4th iteration in BeS algorithm with two-to-six states, respectively. Also, it is

attained in the 5th iteration in the omni-directional antenna case. Based on iteration information

attained above, FLs can be seen in Table 3.5 for both algorithms.

Table 3.5 Feedback loads for RS & BeS

Feedback Loads
Omni 2 States 3 State 4 State 5 State 6 State

RS 5120 4096 15360 24576 29696 43008

BeS 5120 8192 12288 16384 20480 24576

Table 3.5 presents the FL for the RS and BeS algorithms for different values of the antenna

states. As it is evident from the values, RS does not necessarily provide the lowest FL since the RS

algorithm requires more iterations to achieve the NE. For instance, for a number of states above
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Figure 3.5 Users reach the NE in each case. In RS algorithm, when the number states increases,
convergence to NE is taken longer duration because of the randomly selection of the state informa-
tion.

two, BeS provides lower FL and higher capacity. This shows that there exists a tradeoff between

the FL and the amount of capacity required.

In Figure 3.6, the capacity levels of different states are compared under the APSS approach

for both the RS and BeS algorithms. As shown in previous results, BeS gives higher capacity gains.

The important point in this figure is that the RAs with various number of states offer similar

performance. For instance, the difference between the two and six-state cases is negligible. Since

the user can select the antenna pointing direction based on the location and SINR measurements

before playing the game, this leads to playing the game among the best states which have the least

interference and highest received transmission power. If PBS and SBS are in the same direction,

then through power control, interference is kept under a certain threshold. In terms of FLs, the

two-state case provides the lowest level, as seen in Table 3.5. This APSS approach saves users from

tremendous amount of FLs. Thus the energy consumption is decreased significantly.

Table 3.6 compares the gain in mean and median capacity level from omni-directional

antenna case to other state cases in terms of percentage values.

Figure 3.7 compares the results for FPSS and APSS in terms of the number of antenna

states used during the game. As seen from the figure, the FPSS approach with six states provides a
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Figure 3.6 When state selection is adaptive for all users, the mean capacity difference from 2S case
to 6S case is %3.2 and %2.2 in the RS and BeS algorithms, respectively.

Table 3.6 Capacity gains in terms of mean&meadian level for RS & BeS

Algorithm 2 States 3 State 4 State 5 State 6 State

Mean
RS %42.4 %43.8 %44.8 %45 %45.6
BeS %50 %50.8 %51 %52.2 %52.2

Median
RS %46.6 %46.5 %47.7 %47.7 %48.5
BeS %53 %53.4 %53.5 %54.2 %54.2

capacity gain similar to the APSS approach with two states. Thus, the FL is reduced by playing the

game among only two states instead of six states. Moreover, as mentioned above, it also decreases

the complexity.

In Figure 3.8, the total capacity change, which is obtained by summing the capacity results

of all the users in the network, is shown with different numbers of SUs. When the number of users

increases, the total capacity also increases. Since this figure is obtained with APSS, both the RS

and BeS algorithms attain almost the same capacity values for the users with different number of

states. This figure also supports our previous results in terms of the closeness in the capacity values

with APSS approach. When the users employ omni-directional antenna, they perform the worst.

As shown in this figure, usage of RAs in all devices provides better results even when the number

of users increases. To find in what number of SUs the system would provide the highest capacity,

one can observe from the curves in Figure 3.8 that there is a trend toward a maximum value. The

data presented in Figure 3.8 are used to model the trend via fitting a second order equation as a
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Figure 3.7 Capacity values in APSS approach with two states are very close to ones in FPSS
approach with six states.

function of number of users x. The second order polynomial equation y = ax2+bx+c is utilized. By

equating the first order derivative of this equation to zero, i.e., 0 = 2ax+ b, the maximum number

of SUs can be identified. Table 3.7 shows the number of SUs that yields the highest capacity in the

network for each antenna state case. It can be seen that RS serves slightly more users, and both

RS and BeS serve much higher number of users.
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Figure 3.8 When the number of SUs increases, the total capacity also increases. The capacity
values of the users who have different number of states are very close to one another.
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Figure 3.9 When the beam width is 60◦, the maximum mean capacity level is obtained.

Table 3.7 The maximum number of SUs who would perform the highest capacity in the network
for RS & BeS

Omni w/2S w/3S w/4S w/5S w/6S

RS 117 283 280 266 294 294

BeS 117 277 278 287 280 289

Figure 3.9 shows the mean capacity change for different beam widths. To achieve that,

we compare the beam widths of 30◦, 60◦, 90◦, 120◦ and 180◦. The number of states is constant

in each case, i.e., each user has two states with APSS. As seen on the figure, the highest mean

capacity value is obtained when the beam width is 60◦ in both the RS and BeS algorithms. This is

a very significant result for RA studies. When the beam width is 30◦, although users experience less

interference due to the narrow beam width, the received transmission power also becomes negatively

affected. On the other hand, increasing the beam width will reduce the chance of attenuation of

the signal of interest, but it increases the level of interference. Therefore, when the beam width is

180◦, the capacity gain of the system decreases. Figure 3.9 indicates that the mean capacity results

attained from the antenna states with the beam width of 30◦ and 180◦ are close to each other. For

future system designs with RAs, 60◦, 90◦ and 120◦ beam widths can be utilized.
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CHAPTER 4

PARTIALLY OVERLAPPING FILTERED MULTITONE WITH

RECONFIGURABLE ANTENNAS IN HETEROGENEOUS NETWORKS

Due to the unprecedented increase in the wireless usage demand, researchers have primarily

focused on spectrally efficient solutions. As one of the most efficient solutions, OFDM has been

proposed to satisfy this demand. On the other hand, its robustness against fading caused by mul-

tipath propagation and inter-symbol interference make OFDM widely used technique in today’s

systems. In coordinated networks such as homogeneous networks, OFDM provides high spectral

efficiency. However, OFDM is highly vulnerable to interference coming from other users in uncoor-

dinated networks such as cognitive HetNets or self-organizing networks. In cognitive HetNets, SUs

are unlicensed users that need to utilize the licensed bands. Therefore, SUs produce destructive

interference over licensed PUs due to their presence in the primary network area. While SUs cause

high interference on PUs, they may also create interference on other SUs.

Various solutions have been proposed in the literature to handle/decrease the interference

in cognitive HetNets. One group of studies focuses on the game theoretical resource allocation

techniques. Since GT investigates the interactions between two or more nodes and can provide

a solution among uncoordinated players (users), it has been utilized extensively in the resource

allocation studies. S-modular games are used in [51] to carry out the subcarrier allocation. [10,11,

13, 14] utilized the Stackelberg game which is based on the leader and followers scenario. When

there are multiple primary and secondary networks, this game can be utilized to perform resource

allocation. While a cooperative game approach is used in [9], potential games are proposed with

resource and power allocation literature in [16, 17,52].
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Another group of studies focuses on the POCs [33,53] to reduce the interference in cognitive

HetNets. In WiFi networks, there are three non-overlapping channels among the eleven available

channels. POCs is utilized when there are more than three users in a WiFi network. For example,

for four users case, instead of using non-overlapping channels of 1, 6 and 11, channels 1, 4, 7 and

11 are proposed to be used in a partially overlapping manner. Also, in [54–56], POCs concept is

utilized to increase throughput. In [57], a game theoretical POCs is proposed where players are

trying to find the least aggregated interference channel. Cooperative games are used among access

points in [58] to increase throughput, and hence, to decrease the interference.

Recently, POTs concept has been introduced in [32] to reduce the interference coming from

other users in uncoordinated networks. Rather than utilizing the overlapping channels as in POCs

techniques, intentional CFS is performed in the POTs concept. The allocated resources to two

uncoordinated users i and j are illustrated in Figure 4.1a and Figure 4.1b (solid curve) where i and

j are assigned at the same time. Before j is provided with a frequency shift, both users fully overlap

each other, i.e., they fully interfere with each other. To decrease the interference, j introduces some

CFS (dashed curve) as shown in Figure 4.1b. Partially overlapping scheme can therefore be achieved

at the subcarrier level to reduce the cross interference as depicted in Figure 4.1c.

f 
f1 f2 f3 f4 f5 

i 

(a) 

(b) 

(c) 

f 
f1 f2 f3 f4 f5 

j 

f 
f1 f2 f3 f4 f5 

i 

j 

j 

CFS 

Figure 4.1 Users i and j fully overlap in (a). j performs CFS to decrease the interference in (b). i
and j partially overlap in (c).

The POTs concept in the frequency domain at the link level has recently been proposed

in [32]. In this chapter, system level analysis of this concept is performed with both orthogonal
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and non-orthogonal waveforms where the results are compared with OFDM. As a scheme, FMT is

utilized due to certain advantages over OFDM such as providing flexibility in resource allocation,

not requiring synchronization between transmissions in both ends of a link, and not necessitating

the cyclic prefix usage [38]. When partially overlapping scheme is performed among multiple users,

two questions arise:

1. Which user should perform partially overlapping in the cognitive HetNets system struc-

ture?

2. How much overlapping should a user carry out, i.e. what percentage1 of the frequency

shift should a user adopt?

If all users introduce the same amount of CFS at the same time, partially overlapping

would not be achieved since the users would still fully overlap each other. In this case, all users

will capture the same interference. To overcome this issue, we propose game theoretical POFMT

technique. While GT is utilized to determine the FSR in the frequency domain, it may also be

used to select the antenna state (radiation pattern) of RA to achieve partially overlapping in the

space domain. In RAs, the antenna characteristics can be reconfigured electrically or mechanically.

In the fixed directions, different radiation patterns can be generated with RAs. Also, they have

the capability to work in different operating frequencies [23] which can provide additional degree of

freedom in the user equipment. The main motivation to use these antennas in this chapter is their

physical sizes and capability of generating multiple states. MIMO technology can also be used to

form multiple states. Due to the challenges such as minimum distance requirement between two

antennas, MIMO technology is currently not feasible in mobile devices. RA therefore becomes

a possible future solution for small devices. In the literature, RAs have been utilized in various

studies. In [27, 29, 30], RAs are used with MIMO to increase the system performance in different

environments. RAs are utilized in [26] to perform the intrusion detection. These antennas are used

in [25] to perform sub-channel allocation and a blind interference alignment with RAs is proposed

1It is considered that 50% equals f0/2, where f0 is a subcarrier spacing.
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in [31]. To the best of our knowledge, however, RAs have not been utilized with POTs in the

literature.

In this chapter, POFMT with RAs is proposed within a game theoretical framework. In our

previous study [37], we investigated the POFMT concept with only orthogonal waveforms in the

system level without utilizing the RAs. In this chapter, non-orthogonal waveforms are introduced.

Additionally, RAs are also utilized to introduce the space domain partially overlapping and to

further improve the system performance. A joint FSR and antenna state selection game is proposed.

While SUs search for the FSR to reduce the interference from other SUs in the environment, they

also determine the antenna state where the highest utility can be achieved for the relevant FSR.

The existence of NE in this game is proved theoretically with potential games and simulations. As

demonstrated with simulation results, POFMT scheme with RAs outperforms OFDM in terms of

capacity with the expense of slightly lower spectral efficiency in the system.

The contributions can be summarized as follows:

1. System level implementation and analysis of POTs are introduced in the cognitive HetNets

with homogeneous 2-D Poisson point process (PPP) realization.

2. Orthogonal and non-orthogonal waveforms are investigated under POTs concept with

various subcarrier spacing and filter roll-off and dispersion parameter values. The results

are compared with OFDM. When the different subcarrier spacing values are examined,

the filter roll-off value is fixed. Similarly, when the different roll-off values are investigated,

the filter subcarrier spacing value is fixed.

3. RA is utilized to achieve the partially overlapping in space domain. Joint FSR and

antenna state selection is introduced. The results are compared with omni-directional

antenna usage.

4. Play&Wait (P’nW) algorithm is introduced. In this algorithm, players randomly play for

some time and then wait for some random time. As a result, players may reach NE.

The remainder of this chapter is organized as follows. In Section 4.1, the system model

is introduced where the transmission, channel, and reception models are given within the system
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model. The problem formulation with potential games and the game algorithm is explained in

Section 4.2. Section 4.3 entails numerical results of the proposed approach. Conclusions are drawn

in Chapter 7.

4.1 System Model

We consider an uplink scenario which has multiple SBSs and SUs within a coverage area

of primary cell. We also consider that the SBSs are distributed in an area as a realization of

homogeneous 2-D PPP of φ with the intensity λ as seen in Figure 4.2. It is assumed that each SBS

serves to a single SU and there is only one SBS-SU pair in each Voronoi cell. We also consider that

SUs are equipped with RAs while SBSs use omni-directional antenna. SUs are assumed to be able

to introduce an intentional frequency shift compared to the other links.

4.1.1 Transmission Model

The transmitted signal of ith SU, i ∈ I, where I is the set of SUs, is given by

xi(t;ϕi) =
∞
∑

m=−∞

K−1
∑

k=0

Xkmig(t−mT )ej2πk(f0+ϕi)t, (4.1)

where K is the total number of subcarriers, Xkmi is the modulated symbols on the kth subcarrier

of mth symbol, f0 is the subcarrier spacing, T is the symbol duration, g(t) is the prototype filter,

and ϕ ∈ [0, f0] is the frequency shift introduced by ith user, which aims to reduce the interference

coming from other users with the concept of POTs.

4.1.2 Channel Model

We consider utilizing an antenna model given in 3GPP standards [50] as an RA. This model

captures different large scale attenuations with respect to the νth RA state, ν ∈ Λ where Λ is the

state set of antenna, and is given by

Aν(θ) = −min

[

12

(

θ

θ3dB

)2

, Amax

]

. (4.2)
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Transmission Signal Interference Signal 

Figure 4.2 System view. In Poisson point process approach, the system has multiple SBSs with a
single SU and each voronoi cell has one SBS-SU pair. Also, each user has RA which can form a
state in one direction.

where θ is the angle between the direction of relevant BS and the boresight direction, −180◦ 6

θ 6 180◦, θ3dB is the 3 dB beamwidth of the antenna, and Amax is the maximum attenuation.

In this chapter, we consider fixed boresight directions towards where the antenna can generate the

radiation pattern. For instance, when an RA generates six beams, and the angle between beams

is 60◦, then, the boresight directions become 0◦, 60◦, 120◦, 180◦, 240◦ and 300◦ by starting from

0◦. With the consideration of small scale Rayleigh fading, channel impulse response for the νth

antenna state is given as h(t, τ ; ν) =
∑L−1

ℓ=0
̺ℓ(t; ν)δ(t− τℓ) where ℓ is the path index, L is the total

number of paths, τℓ is the delay of the ℓth tap, and ̺ℓ(t) is the path gains. The channels of ith

intended user and jth interfering user are denoted with hi(t, τ ; νi) and hj(t, τ ; νj).

The received signal strength (RSS) of the user is calculated as RSS = Ptx +G−PL where

Ptx is the transmit power, G is the transmit antenna gain, and PL is the path loss. The transmit

antenna gain can be calculated as G = Gtx + Aν(θ) where Gtx is the constant antenna gain given

in [50] and Aν(θ) is the attenuation.
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4.1.3 Reception Model

The received signal of SBS of the ith SU is expressed as

yi(t;ϕi, νi) =

∫

τ

∫

ϕ
Hi(t, τ ; νi)xi(t− τ ;ϕi)dϕdτ

+
∑

j∈I,j 6=i

∫

τ

∫

ϕ
Hj(t, τ ; νj)xj(t− τ ;ϕj)dϕdτ + w(t), (4.3)

where j is the interfering users index, w(t) is the additive white Gaussian noise, Hi(t, τ ; νi) and

Hj(t, τ ; νj) are the Fourier transformations of hi(t, τ ; νi) and hj(t, τ ; νj), respectively.

The location of the users with respect to their corresponding SBS is critical in terms of

RA state. If the direction of the interfering users’ antenna state νj is not towards the ith SBS,

lower interference power is captured when compared to the case where all users are equipped with

the omni-directional antenna. Thus, in order to obtain the received symbol, the received signal is

projected onto the corresponding received filter as

X̃lni(ϕi, νi) =
〈

yi(t;ϕi, νi), g(t− nT )ej2πl(f0+ϕi)t
〉

=

∫

t
ri(t, τ ;ϕi, νi)g(t− nT )e−j2πl(f0+ϕi)tdt

+
∑

j∈I,
j 6=i

∞
∑

n=−∞

K−1
∑

l=0

∫

t
rj(t, τ ;ϕi, νj)g(t− nT )

× e−j2πl(f0+ϕi)tdt+ w(t), (4.4)

where ri(t, τ ;ϕi, νi) =
∫

τ

∫

ϕHi(t, τ ; νi)xi(t−τ ;ϕi)dϕdτ . As it can be seen in (4.4), SBS employs the

same frequency shift of ith user in order to receive the symbol properly. Otherwise, the transmit

pulse shape will be captured partially, which can degrade the performance tremendously in terms

of capacity. Alternatively, the same situation provides significant advantage against the interfering

users that introduce different amount of frequency shift ϕj . Since the interfering signal is captured

based on ϕj , the SINR of the ith user is increased significantly. Therefore, SINR of SBS of the ith
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SU can be expressed as

SINRi =
Pi(ϕi, νi)

Pj(ϕi, νj) + w0
. (4.5)

In (4.5),

Pi(ϕi, νi) = E
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4.2 Problem Formulation

We consider joint FSR and antenna state selection among SUs in cognitive HetNets within

the game theoretical framework. GT is a mathematical tool which provides a solution method in

an uncoordinated environment. It investigates the interactions between two or more agents. Since

it relies on the strategic thinking, for uncoordinated networks, GT can be exploited by the SUs

which are defined as players and denoted with i. The strategies are given as the FSR and antenna

state selection and can be denoted with si = {ϕi, νi}, si ∈ Si where Si is the strategy set of player

i. Finally, the utility function is defined as the capacity of the player i and expressed as

Ui(ϕi, νi) = log2(1 + SINRi). (4.6)

Thus, the game G can be described with three components as G = 〈I, Si, Ui〉. So, the NE

can be formulated as

Ui(s
∗
i , s

∗
−i) ≥ Ui(si, s

∗
−i) ∀i ∈ I, ∀si, s−i ∈ S (4.7)
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where s−i represents the strategies for all players except i, ‘*’ shows the equilibrium point, and S

is the strategy profile of all players.

4.2.1 Potential Game Formulation

A game is considered as potential game when a function called potential function exists.

This function reflects the change of one player’s utility function with respect to its unilateral

deviation. [6] defines a game as an ordinal potential game as in the following.

Definition 5 A game G is said to be an ordinal potential game if it admits an ordinal potential.

A function V is an ordinal potential for G if, for all, i ∈ I

Ui(s
′
i, s−i)− Ui(si, s−i) > 0 iff

V (s′i, s−i) − V (si, s−i) > 0

∀si, s
′
i ∈ Si. (4.8)

where s′i indicate the change in the strategy of player i.

Ordinal potential games guarantee that there is at least one pure NE. In this chapter, the

potential function is defined as follows [45]

V (S) = log2







∑

b∈I
Pb(ϕb, νb) + w0






(4.9)

where S = ({ϕi, νi}, {ϕ−i, ν−i}). So, the potential function V ({ϕi, νi}, {ϕ−i, ν−i}) can be expressed

as

V ({ϕi, νi}, {ϕ−i, ν−i})

= log2







∑

b∈I,
b 6=i

Pb(ϕb, νb) + Pi(ϕi, νi) + w0






(4.10)
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When player i changes its strategy from {ϕi, νi} to {ϕ
′
i, ν

′
i}, the potential function V ({ϕ′

i, ν
′
i},

{ϕ−i, ν−i}) would be

V ({ϕ′
i, ν

′
i}, {ϕ−i, ν−i})

= log2







∑

b∈I,
b 6=i

Pb(ϕb, νb) + Pi(ϕi, νi)
′ + w0






, (4.11)

Since the strategies of all users except i remain unchanged, the difference between potential

functions would become

V ({a′i, ν
′
i}, {a−i, ν−i})− V ({ai, νi}, {a−i, ν−i}) > 0 (4.12)

Equation (4.12) shows that our scheme is an ordinal potential game. So, the NE existence

is proved.

4.2.2 Convergence to Nash Equilibrium

Every finite potential game has a FIP [59]. A path in strategy set S is defined as a sequence

of γ = {s0, s1, s2, . . . }. For a finite path, there are initial and terminal points of γ as s0 and the

last element. γ is considered as having an improvement path if Ui(sz) > Ui(sz−1), so the potential

function V (s0) < V (s1) < V (s2) < . . . . Since, in our scheme, we play with the best response

correspondences, no player would select the strategy which will provide smaller utility and smaller

potential function. This indicates that our scheme has the FIP, and, as shown in Figure 4.6b and

Figure 4.7b, converges to NE.

4.2.3 FSR and Antenna State Selection Scheme

In this scheme, the players first choose the FSR from the set of ϕ = {0%, 50%}. By

introducing the shift with the interval of 50%, a player looks for a position where it captures the

least interference. At the same time, a player selects the antenna state which provides the highest

SINR result among the all available states. To reach NE, ”P’nW” algorithm is introduced. In this
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algorithm, each player plays the game for random time and waits for random time. For instance,

for two players case, player i plays the game for 3 seconds and waits for 4 seconds. At the same

time, player j plays for 2 seconds and waits for 1 second. Then, after waiting for 4 seconds, player

i plays again for 5 seconds and waits for 3 seconds. In each time, players are playing and waiting

for random time. After some iterations, NE can be reached with this algorithm. The detailed

explanation of this game can be seen in Table 4.1.

Table 4.1 FSR and antenna state selection scheme

# Sequential Game Algorithm

1 Assign the same FSR and antenna state to each player
2 for iterations = {1,2,. . . }
3 for i = {1,2,. . . }
4 for ϕ = {ϕi,1, ϕi,2, . . . }
5 introduce an FSR
6 for Λ = {νi,1, νi,2, . . . }
7 select an antenna state of player i

8 calculate E

[∣

∣

∣

∣

∫

t ri(t, τ ;ϕi, νi)g(t− nT )

×e−j2πl(f0+ϕi)tdt

∣

∣

∣

∣

2]

(player i’s received signal power)

9 calculate
∑

j∈I,j 6=i

∑∞
n=−∞

∑K−1
l=0

E

[∣

∣

∣

∣

∫

t rj(t, τ ;ϕi, νj)

×g(t− nT )e−j2πl(f0+ϕi)tdt

∣

∣

∣

∣

2]

(interfering players’ received signal power)
10 calculate Ui(ϕ,Λ)
11 end
12 end
13 pick the highest payoff from the set of Ui(ϕ,Λ)

if the payoff selected in previous iteration is the highest one,
don’t change the strategy

14 update the antenna state and FSR indexes for player i
15 end
16 end
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4.3 Performance Evaluation

In this section, performance results are provided to show the performance of the system

with the POFMT in cognitive HetNets. The results can be categorized into two groups: 1) To

demonstrate the advantages of POTs concept in frequency domain over OFDM, each SU is equipped

with omni-directional antenna. The performance results with omni-directional antenna is shown

in Figures 4.3a-4.5. 2) Joint partially overlapping in frequency and space domain performance

results are depicted in Figure 4.6-4.7. Here, we do not consider mobility for SUs. All of the

simulation parameters are listed in Table 4.2 where the parameter values for RA and the path loss

model are taken from [60] and [50], respectively. The path loss model employed in this chapter

is PL(dB) = max(15.3 + 37.6 log10R, 38.46 + 20 log10R) + 0.7d2D + qLiw + Low, where R is the

distance between transmitter and receiver, d2D is the total distance inside the houses, q is the

number of walls separating houses between transmitter and receiver, Liw is the penetration loss of

wall separating houses, and Low is the penetration loss of outdoor walls of houses. As a filter, we

use a band limited root raised cosine filter (RRCF) with a roll-off factor β to obtain orthogonal

waveform. The response of the filter is

hRRCF (t) =



































(

1− β + 4β
π

)

, t = 0

β√
2

[

(

1 + 2
π

)

sin
(

π
4β

)

+
(

1− 2
π

)

cos
(

π
4β

)]

, t = ± T
4β

sin[π t
T
(1−β)]+4β t

T
cos[π t

T
(1+β)]

π t
T

[

1−(4β t
T )

2
] .

(4.13)

To attain non-orthogonal signal, we utilize the Gaussian filter (GF), which is distributed in

both time and frequency domain in an optimum way and defined as [32]

hGF (t) = (2ρ)1/4e−πρt2 (4.14)

where ρ is the dispersion adjustment parameter of the pulse in time and frequency. We consider

that all transceiver pairs use the same filter for a given scenario.
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Table 4.2 Simulation parameters

Simulation Parameters Parameter Value

Power of UE 23dBm
Number of subcarriers 16
Maximum antenna attenuation 20dBm
Maximum antenna gain 12dBi
Antenna beamwidth 120
Modulation Order QPSK
d2D 20m
q 1
Liw 5dB
Low 20dB

4.3.1 POFMT for Various Filter Roll-off and Dispersion Parameter Values

SINR distributions of the orthogonal waveform with various filter roll-off values and OFDM

signal are shown in Figure 4.3a. Orthogonal waveform is labeled as RRCF in the legend. As seen

from Figure 4.3a, when β value increases, the SINR values of RRCF decrease. This is basically be-

cause the higher β values spread over the frequency more. Although there is a considerable amount

of the subcarrier spacing (i.e., 1.5), the gap in between two consecutive subcarriers diminishes. The

intended users therefore can capture more interference from other users. As compared to OFDM,

POFMT with RRCF provides higher SINR gain.

In Figure 4.3b, the comparison of the SINR distributions of the non-orthogonal waveform

and OFDM is shown. Non-orthogonal waveform is labeled as GF in the legend. As indicated in

Figure 4.3b, when the value of ρ decreases, the system can achieve higher SINR gain. The aim in

this analysis is to show the effect of partially overlapping with various ρ values when the subcarrier

spacing is equal to 1, i.e., when there is no gap between subcarriers. If ρ = 1, the SINR distribution

of GF would be very close to the SINR distribution of OFDM. The difference between these two

distributions is negligible. On the other hand, when ρ = 0.2, a high amount of gain can be achieved.

As indicated in [32], when the value of ρ decreases, the subcarriers shrink in frequency, which leads

to increasing gap in between subcarriers. While lower ρ values provide less interference on other

players, they increase the self-interference. This causes higher inter-symbol interference on each

player. So, this trade-off needs to be taken into account in the system design.
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Figure 4.3 (a)When subcarrier spacing is constant, increasing the filter roll-off decreases the SINR
gain in orthogonal waveforms. (b) When subcarrier spacing is constant, increasing the filter control
parameter decreases the SINR gain in non-orthogonal waveforms.

4.3.2 POFMT for Various Subcarrier Spacing

Orthogonal waveforms have an important feature, which is to keep the signal energy same

before and after passing through the receiver filter [32]. This is advantageous for the signal trans-

mitted from the legitimate transmitter. However, if the signal is coming from the interfering source,

it becomes disadvantageous. Therefore, to reduce the energy of the signal taken from the inter-

fering SU, subcarrier spacing is utilized with partially overlapping technique. Figure 4.4a shows

the effect of POFMT in terms of the interference mitigation in orthogonal waveforms for various

subcarrier spacing values. As seen in this figure, when the subcarrier spacing increases, the system

gives higher performance gain in terms of SINR if the filter roll-off value is constant. It is basically

because the higher subcarrier spacing leaves more gap between subcarriers, and hence, the intended

SU captures less interference from the other SUs who are not fully overlapped. Alternatively, since

there is no spacing between subcarriers in OFDM scheme, it gives the least SINR gain.

When a system is designed, it would be desirable to use high subcarrier spacing with the ex-

pense of higher bandwidth occupation since increasing subcarrier spacing decreases the interference.

Figure 4.4b shows the bandwidth usage in terms of mean SINR level for orthogonal waveforms. As

seen in the figure, x-axis is labeled as subcarrier spacing which is multiplied with the bandwidth
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Figure 4.4 (a)When filter roll-off is constant, increasing the subcarrier spacing increases the SINR
gain in orthogonal waveforms. (b)When the subcarrier spacing increases, i.e., in other words, when
the bandwidth usage rises, mean SINR level also increases in orthogonal waveforms.

of individual subcarrier to find how much bandwidth is used. For instance, if a bandwidth of a

subcarrier is 15KHz as being in 3GPP standards and there are 16 subcarriers, total bandwidth

usage is said to be 240KHz and 360KHz for subcarrier spacings of 1 and 1.5, respectively, without

considering the guard bands. As seen in Figure 4.4b, when more bandwidth is allocated in POTs

case, mean SINR gain increases in both schemes. If the same bandwidth as occupied with OFDM

scheme is desired to be used, some subcarriers need to be turned off. In this case, there would be a

slight loss in spectral efficiency. This introduces the tradeoff within POFMT technique. One will

either use a complex interference reduction method in receiver without losing from the spectral

efficiency [32] or select the significant interference mitigation with less spectral efficiency.

Similarly, in Figure 4.5a, the SINR distributions of OFDM and non-orthogonal schemes with

various subcarrier spacing values are given while the filter control parameter is constant. Similar to

orthogonal scheme, SINR gains increase with the higher subcarrier spacing values. Significant gain

can be achieved when f0=2. Figure 4.5b depicts the mean SINR variation for different subcarrier

spacing values. This figure also proves the higher performance gain achievement depending on the

higher f0 values.
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Figure 4.5 (a)When filter control parameter is constant, increasing the subcarrier spacing increases
the SINR gain in non-orthogonal waveforms. (b)When the subcarrier spacing increases, i.e., in
other words, when the bandwidth usage rises, mean SINR level also increases in non-orthogonal
waveforms.

For fully overlapping (FO) case, bandwidth increment does not make any difference in

system gain because the gaps are not utilized by the players. Moreover, more bandwidth is occupied

unnecessarily. These figures also indicate the benefit of POFMT technique over conventional FO

case. For the same amount of bandwidth usage, proposed technique outperforms in terms of SINR.

4.3.3 POFMT with Reconfigurable Antenna

In this chapter, POFMT is investigated in both frequency and space domains. To exploit

the space domain, RAs are utilized within the partially overlapping concept. In Figure 4.6 and

Figure 4.7, the advantages of RA over conventional omni-directional antenna are shown when

POFMT in frequency domain is performed with both antennas. Figures 4.6a and 4.7a show the

distribution of the capacity values of orthogonal and non-orthogonal schemes, respectively. Since

RAs can form a state in fixed and different directions, it can help to decrease the interference

induced on intended players. At the same time, if the serving BS is in the boresight direction,

RA can provide higher antenna gains. Therefore, when joint partially overlapping in frequency

and space domains is performed, the system performance can be improved further in terms of

capacity. Finally, Figure 4.6b and Figure 4.7b show the mean capacity values in each iteration of
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Figure 4.6 (a)When RAs are used within POT concept, the system gain can be increased further
in orthogonal schemes. (b) The system with orthogonal scheme and RA can reach the NE.

the algorithm in orthogonal and non-orthogonal schemes, respectively. NE existence can be proved

with these figures. The increment from FO case to partially overlapping can be clearly seen in these

figures. When the RAs are used with partially overlapping concept, the system capacity can be

increased further. These results show that the POFMT with RAs is the candidate solution against

the significant interference problem in the cognitive HetNets.
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Figure 4.7 (a)When RAs are used within POT concept, the system gain can be increased further
in non-orthogonal schemes. (b)The system with non-orthogonal scheme and RA can reach the NE.
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CHAPTER 5

RESOURCE ALLOCATION WITH PARTIALLY OVERLAPPING FILTERED

MULTITONE IN HETEROGENEOUS NETWORKS1

POTs have recently gained interests due to the capability of solving the interference problem

in cognitive HetNets by introducing the intentional CFS. By virtue of high spectral efficiency,

OFDM is extensively utilized in today’s systems. However, OFDM is vulnerable against the other

user interference due to the selfish behavior of the SUs in cognitive HetNets. At this point, POTs has

been proposed as a promising solution for cognitive HetNets against this interference problem [32].

In POTs concept, the gaps between subcarriers are utilized by the SUs. For the case of two

SUs, if one SU allocates all available subcarriers, the other SU also uses the same subcarriers by

intentionally shifting the carrier frequency as seen in Figure 5.1. By performing partial overlapping

among SUs, other user interference can significantly be reduced [37].

In the literature, the other user interference has been proposed to be mitigated via utilizing

the partially overlapping channels and various game theoretical resource allocation techniques.

In [57] and [58], authors exploit the gaps between channels in a partial overlapping manner in

WiFi networks to increase the throughput, and hence, reduce the interference. In terms of resource

allocation, while in [13], Stackelberg games are utilized in cognitive HetNets, authors in [51] use the

supermodular games to perform resource allocation. In [61], potential games are utilized to allocate

subcarriers in uncoordinated networks. However, no study considers the resource allocation with

POTs.

While one advantageous of POTs is to decrease the other user interference, another advan-

tageous over OFDM can be given as allowing asynchronous transmission, which is also a significant

1This chapter was published in IEEE Communications Letters, vol. 20, no. 5, pp. 962-965, May 2016. Permission
is included in Appendix A.
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issue in cognitive HetNets, by employing the FMT [38]. It is noted that the usage of FMT provides

flexibility on adjusting the gap (stemming from the guard-band) between subcarriers by alternating

the filter parameters such as roll-off factor. Since this gap is negligible in OFDM scheme, this makes

FMT more suitable for POTs concept. In this study, we develop a resource allocation technique for

POFMT within a game theoretical framework in cognitive HetNets. In downlink, SBSs as players

perform the resource allocation by searching for the best subcarriers which are constrained to be

in consecutive order. To perform subcarrier selection, SBS picks a certain number of subcarriers

based on the total need of SU by starting from the first available subcarrier and computes the

utility of the selected subcarriers. Then, it shifts the subcarriers intentionally to introduce the CFS

and calculates the utility in this position, too. The SBS performs this operation throughout the

all available subcarriers. After obtaining the capacity results for every position and subcarriers,

SBS selects the one which provides the highest utility. With this scheme, the existence of NE is

proved theoretically and by simulations. As indicated in simulation results, the proposed scheme

outperforms OFDM with a slightly slower convergence rate.

f1 f2 
f 

U1 

f3 

f 
f1 

U2 

f2 f3 

f 
f1 

U2 

f2 f3 

U1 

(a) (b) 

Figure 5.1 (a) Both users allocate the same resources at the same time. This leads to fully
overlapping case where the highest interference is achieved. (b) U2 is shifting the carrier frequency.
Therefore, users are partially overlapped to each other. This reduces the other user interference.

The remainder of this paper is organized as follows. In Section 5.1, the system model is

introduced with the transmission and reception models. The problem formulation and potential

game formulation with the proof of NE convergence are explained in Section 5.2 in which the
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subcarrier and FSR selection scheme is also introduced. Section 5.3 entails numerical results of the

proposed approach. Conclusion is drawn in Chapter 7.

5.1 System Model

We consider a downlink scenario with multiple SBSs, where each SBS serves multiple SU in

a given area. Each SU allocates the certain number of subcarriers under the assumption that the

total number of available resources is higher than the total number of resources that SUs served

by a single SBS need. It is assumed that the intentional CFS is performed by the SBS with the

orthogonal waveforms.

The transmitted signal of the SBS i , i ∈ I which is the total number of SBSs, is defined as

xi(t;ϕi, ai) =

∞
∑

m=−∞

K−1
∑

k=0

Xkmig(t−mT )ej2πk(f0+ϕi)taki, (5.1)

where K is the total number of subcarriers, f0 is the subcarrier spacing, g(t) is the prototype filter,

T is the symbol duration, Xkmi is the modulated symbols on the kth subcarrier of mth symbol,

aki is the indicator function, where if the kth subcarrier is used by the SBS i, then aki = 1, if not,

then aki = 0, and ϕ ∈ [0, f0] is the frequency shift introduced by the SBS i. The aim in CFS is to

decrease the other SBS interference.

With a Rayleigh fading channel consideration, the received signal of the SU of the SBS i is

given by

yi(t;ϕi, ai) =

∫

τ

∫

ϕ
Hi(t, τ)xi(t− τ ;ϕi, ai)dϕdτ +

∑

j∈I,j 6=i

∫

τ

∫

ϕ
Hj(t, τ)xj(t− τ ;ϕj , aj)dϕdτ + w(t),

(5.2)

where j is the interfering SBSs index, Hi(t, τ) andHj(t, τ) are the Fourier transformations of hi(t, τ)

and hj(t, τ), respectively and w(t) is the additive white Gaussian noise. The received symbol can
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be obtained by projecting the corresponding received filter onto the received signal as

X̃lni(ϕi, ai) =
〈

yi(t;ϕi, νi), g(t− nT )ej2πl(f0+ϕi)t
〉

=

∫

t
ri(t, τ ;ϕi, ai)g(t− nT )e−j2πl(f0+ϕi)tdt

+
∑

j∈I,
j 6=i

∞
∑

n=−∞

K−1
∑

l=0

∫

t
rj(t, τ ;ϕi, aj)g(t− nT )e−j2πl(f0+ϕi)tdt+ w(t), (5.3)

where ri(t, τ ;ϕi, ai) =
∫

τ

∫

ϕHi(t, τ)xi(t− τ ;ϕi, ai)dϕdτ .

It is important to mention that for SU to obtain the symbols properly, it needs to employ

the same amount of FSR with the SBS. Otherwise, the signal will be taken partially. On the other

hand, it becomes advantages when the interference coming from other SBSs is captured. Finally,

the SINR of the SU can be expressed as

SINRi =
Pi(ϕi, ai)

Pj(ϕi, aj) + w0
(5.4)

where

Pi(ϕi, ai) = E
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∣
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∣

∣

∣

∣

∫
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∣

∣

∣
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∣

∣
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,

and

Pj(ϕi, aj) =
∑

j∈I,
j 6=i

∞
∑

n=−∞

K−1
∑

l=0

E







∣

∣

∣

∣

∣

∣

∣

∫
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∣

∣

∣

∣

∣

∣

∣
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.

5.2 Problem Formulation

In this study, we consider joint subcarrier and FSR selection to perform the resource allo-

cation with the POFMT. This is a multidimensional optimization problem. However, since finding

the optimum solution increases the overhead and the complexity of the system [18], we formulate
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Figure 5.2 A player searches for the consecutive subcarriers which give the highest utility by sliding
the subcarrier set (SS) through all the available ones.

our problem within the game theoretical structure. GT provides a solution among selfishly behaved

players (users) who are interacted with each other. In GT, each player changes its strategy to in-

crease its utility towards its benefits. In this paper, we define the players as the SBSs, strategies

as the selection of subcarriers and FSR which are denoted with si = {ϕi, ai}, si ∈ Si where Si is

the strategy set of player i. Finally, the utility function is defined as the capacity of the ith player

and given as

Ui(ϕi, ai) = log2(1 + SINRi). (5.5)

When the players play with their best responses, they aim at reaching the NE in GT. So,

the NE can be defined as

Ui(s
∗
i , s

∗
−i) ≥ Ui(si, s

∗
−i)

∀i ∈ I, ∀si, s−i ∈ S (5.6)

where s−i indicates the strategies for all players except i, S is the strategy profile of all players and

‘*’ represents the equilibrium point.
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5.2.1 Subcarrier and Frequency Shift Ratio Selection Scheme

The selection of subcarrier and FSR is performed with P’nW algorithm given in [37]. In

this algorithm, players play and wait for random time. For instance, for two players case, player-1

plays for 3ms and waits for 5ms while player-2 plays for 4ms and waits for 2ms.

In OFDMA structure, the players can pick any subcarriers among the available ones, i.e., the

selected subcarriers don’t have to be consecutive. However, when the players perform the subcarrier

selection with POFMT, they need to select the ones which are in consecutive order. Otherwise, an

intra-cell interference problem may occur. On the other hand, it is a challenging task to manage the

frequency shift in randomly allocated subcarriers among multiple users. Another problem with this

randomized scheme is to increase the loss in the spectral efficiency. Because of these drawbacks, we

introduce the constraint on the selection of subcarriers in terms of performing it in a consecutive

order.

With this constraint, a player searches for the consecutive subcarriers which give the highest

utility by sliding the subcarriers through all the available ones as seen in Figure 5.2 which is shown

for the selection of five subcarriers as an example. The player first picks the subcarriers of f1 to f5

and computes the utility for these subcarriers. Then, it introduces the CFS and again, computes

the utility for the shifted consecutive subcarriers, i.e., for (f1+ϕ) to (f5+ϕ). After calculating the

utility for all subcarriers with their corresponding CFS, the player selects the ones which provide

the highest capacity result. If the same SBS serves to more than one SU, SBS assigns the first SU

to its best responses and then, follow the same step for other SUs in a round-robin manner. The

game steps can be seen in Table 5.1, too.

5.2.2 Potential Game Formulation

Potential games are defined with a potential function which shows the unilateral deviation

of a player with respect to other players. As given in [6], there are various potential games. Among

those, the ordinal potential games are defined as follows.

Definition 6 A game G is said to be an ordinal potential game if it admits an ordinal potential.

A function V is an ordinal potential for G if, for all, i ∈ I and ∀si, s
′
i ∈ Si
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Ui(s
′
i, s−i)− Ui(si, s−i) > 0 iff V (s′i, s−i) − V (si, s−i) > 0 (5.7)

where s′i indicate the deviation of the strategy of the ith player.

NE existence is guaranteed with ordinal potential games [6]. In this study, we define the

potential function similar to [45] as

V (S) = log2







∑

b∈I
Pb(ϕb, ab) + w0






, (5.8)

where S = (si, s−i). When the potential function V (si, s−i) is rewritten, ith player’s potential can

be separated as follows.

V (si, s−i) = log2







∑

b∈I,
b 6=i

Pb(ϕb, ab) + Pi(ϕi, ai) + w0






, (5.9)

If only the ith player alters its strategy from si to s′i, the potential function V (s′i, s−i) can

be expressed as

V (s′i, s−i) = log2







∑

b∈I,
b 6=i

Pb(ϕb, ab) + Pi(ϕi, ai)
′ + w0






, (5.10)

When (5.9) is subtracted from (5.10), and since the only the ith player changes its strategy,

i.e., other players strategies remain the same, the following result is observed.

V (s′i, s−i)− V (si, s−i) > 0. (5.11)

Thus, the condition in (5.7) would be satisfied with (3.15). This proves the NE existence.
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Table 5.1 Subcarrier and FSR selection scheme

# Game Algorithm

1 Assign the same subcarriers and carrier frequency
shift ratio to each player

2 for iterations = {1,2,. . . }
3 for i = {1,2,. . . }
4 for ϕi = [0, . . . , f0]
5 select an FSR
6 for Subcarrier set = {SS1, SS2,. . . }
7 compute Ui(ϕi, ai)
8 end
9 end
10 pick/allocate the best resources and FSR to i
11 end
12 end

5.2.3 Convergence to Nash Equilibrium

As mentioned in Section 5.2.2, ordinal potential games has at least one pure NE. To show

the NE convergence in potential games, FIP which is a significant feature of the potential games

is being utilized. In FIP, ξi = (s0i , s
1
i , s

2
i , · · · ) is defined as a sequence of path of the strategy set

of Si for player i. It is assumed that the new and previous strategies of player i are sli and sl−1
i ,

respectively. Based on the improvement path of ξi, the potential function V (sli) should satisfy

V (s0i ) < V (s1i ) < V (s2i ) < · · · . Since the players play with their best responses in this paper, the

potential function with the new strategy will become V (sli) > V (sl−1
i ). Therefore, the improvement

path of the potential functions would be satisfied. This proves the convergence to unique NE with

our algorithm for a given scenario.

5.3 Performance Evaluation

We consider there are 20 SBSs which are randomly distributed in a given area, and each

SBS serves to 2 SUs. We assume that there are 64 available subcarriers and each SU needs 16

subcarrier. To perform orthogonal transmission with FMTs, we utilize the band limited RRCF

with a roll-off factor β taken as 0.35. We adopt a path loss model which is defined as PL(dB) =

43.3log10(R) + 11.5 + 20 ∗ log10(fc), where R is the distance between transceivers and fc is the
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center frequency, which is 2GHz [50]. Finally, the subcarrier spacing is taken as 1.2, i.e., f0 = 1+0.2

which introduces slight loss in spectral efficiency.

Figure 5.3a shows the cumulative distribution function curves of the proposed and existing

schemes. As an existing scheme, OFDM is utilized. As seen in figure, the proposed scheme provides

higher performance gain in terms of the capacity. While the introducing only CFS decreases the

other user interference as shown in [37], CFS with subcarrier allocation provides further reduction in

interference. It is basically because each user may select the different subcarriers and/or only some

of the subcarriers might be allocated by other user(s). In the mean capacity level, the proposed

scheme gives 94% higher capacity gain. In Fig. 5.3b, the mean capacity of the system in each

iteration is depicted for both schemes. This figure proves that the proposed scheme reaches the

NE with slightly slower convergence rate which is basically due to the consecutiveness constraint

we introduced in our scheme. That is, while some resources might have high capacity gain in

the selected subcarriers, some other resources might have lower gain. Therefore, finding the more

resources with the highest gain takes longer duration for each user, and hence, equilibrium is

achieved more slowly.
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Figure 5.3 (a)The resource allocation with POFMT outperforms the resource allocation with
OFDM. (b)POFMT algorithm reaches the NE. However, the convergence rate is slow.
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CHAPTER 6

MILLIMETER-WAVE WIRELESS CHANNEL CONTROL USING SPATIALLY

ADAPTIVE ANTENNA ARRAYS1

Wireless channel formation is conventionally accepted as an uncontrollable phenomenon

since the physical environment and propagation scenario that determine the fading and time-

varying response are assumed to be random. Wireless communication techniques treat the channel

response as a given parameter and try to compensate the fading and distortion via equalization [62]

and/or benefit from multitudes of independent channels by employing multiple antennas [63]. This

causes overall performance of the state-of-the-art techniques to depend on the randomness level of

the wireless channel.

In contrast to the traditional wireless spectrum below 6 GHz, small wavelengths of mm-

wave bands make physical displacements on the order of several wavelengths practically achievable

within compact devices. Based on this observation, a wireless channel control concept utilizing

spatially, i.e., position adaptive antenna arrays is proposed. The main principle relies on the fact

that the phase of each multipath component is affected by the position of the antenna array. The

system level objective is therefore to find the best array position that will provide a constructive

combination of the individual components for maximizing the received signal power and reduce

fading, especially in narrowband systems. For the broadband systems, controlling the channel will

reduce the burden on the scheduler by finding the better channel for the same resource(s) allocated

to a user. On the other hand, this concept also provides additional degree of freedom for the system

and increases the reliability with spatial diversity via displacing the antenna array spatially.

1This chapter was published in IEEE Communications Letters, vol.pp, no.99, pp.1-1. Permission is included in
Appendix A.
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To carry out this control concept, the microfluidically reconfigurable RF devices are em-

ployed in this study. References [64–66] have recently utilized repositionable selectively metallized

plates inside microfluidic channels bonded to printed circuit board (PCB) substrates to realize

wideband frequency tunable antennas, filters, and mm-wave beam-steering focal plane arrays. As

compared to a mechanical assembly, a microfluidic based approach requires movement of a lower

mass, i.e., a selectively metallized plate defining the antennas by allowing to keep the feed network

stationary [66]. This is expected to result in low-cost, compact, and efficient devices.

To demonstrate the advantages of the proposed channel control concept, the following

section considers a wireless communication system model at 28 GHz in which a BS and a UE

employ spatially adaptive antenna arrays and omni-directional antennas, respectively. Section

6.2 summarizes the design, layout, and simulated performance of the antenna array. Section 6.3

presents the evaluation of the system performance. It is shown that the wireless communications

system observe 51% gain in the mean SINR due to the inclusion of spatial adaptation capability.

6.1 System Model

Figure 6.1 depicts the downlink scenario in which a BS and a UE are equipped with a spa-

tially adaptive linear antenna array and an omni-directional antenna, respectively. The considered

antenna array is capable of changing its position along the y-axis using microfluidics and perform

beam-steering in the orthogonal x-z plane using phase shifters.

Base Station 

(BS)

User 

Equipment 

(UE)

Position #1

Position # N

z x

y

Steerable beam within 

50 in x-z plane

Spatially adaptive 

antenna array in y-axis

Figure 6.1 Base station (BS) changes position of the antenna array to maximize signal power and
reduce fading.

.
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After passing through the wireless multipath channel, the transmitted signal x(t) is received

as

y(t; ) = x(t) ∗ h(t, τ ; ) + w(t), (6.1)

where h(t, τ ; ) is the channel response between the transmitter and the receiver including the radia-

tion pattern and the multipath reflections, is the spatial offset of the transmitter antenna array and

w(t) is the additive white Gaussian noise. In a directional transmit (tx) or receive (rx) scenario,

resulting channel response is determined by the weighted sum of the taps as

h(t, τ ; ) =

K
∑

k=1

L
∑

l=1

gkl(t, τ ; )utx(θ
tx
k ())urx(θ

rx
k ())δ(τ − τkl), (6.2)

where l is the path index, L is the total number of paths, τ is the delay of the lth path, gkl(t, τ ; )

is the complex channel gain of lth path of kth cluster, and u(θk()) is the antenna gain factor as

a function of the departure/arrival angle of the tx/rx signal path. In this scenario, the multipath

environment itself is considered to be time invariant. Thus, the only source of change in the

multipath response is the spatial offset of the transmitter antenna array. Therefore, the time

variable can be substituted into the offset value, i.e., (t). In addition, the bandwidth of the signal

is considered not to be sufficiently large enough for resolving each path in a cluster. Thus, the

paths in each cluster are combined to constitute one tap per cluster as would be valid in indoor

environments. Consequently, by dropping the path dependency in multipath delays via τkl ≈ τk,

the channel response can be further simplified as

h(τ ; ) =
K
∑

k=1

gk(τ ; )utx(θ
tx
k ())urx(θ

rx
k ())δ(τ − τk). (6.3)

Mm-wave channels are known to be sparse [67]. Therefore, small alterations in the antenna

location in the range of few wavelengths is expected to vary the phase of each tap coefficient due to

change in total propagation distance. This sparse nature of the mm-wave multipath channel is the
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key enabling factor that makes the control of the overall channel response via spatial adaptation

possible.

6.2 Spatially Adaptive Antenna Array

Fig. 6.2 depicts the structure and substrate stack-up of the 5 element linear 28 GHz patch

antenna array that is considered for the performance evaluation of the proposed wireless channel

control concept. A 254 µm thick 54 × 30 mm2 RT5880LZ PCB (ǫr = 1.96, tan δ = 0.0027) acts

as a selectively metallized plate placed inside a microfluidic channel that is prepared within 1 mm

thick polydimethylsiloxane layer (PDMS, ǫr = 2.7, tan δ = 0.04). The remaining volume of the

microfluidic channel is filled with a low-loss dielectric solution (FC-40, ǫr = 1.9, tan δ = 0.0005).

The top and bottom surfaces of the RT5880LZ PCB carry the patch antenna and the 50 Ω microstrip

feed line (M2) metallization patterns, respectively. The feed lines are electrically connected to the

antennas with vias. The microfluidic channel is bonded to a 127 µm thick 105×40 mm2 RT5880 PCB

(ǫr = 2.2, tan δ = 0.0009) using a 6 µm thick benzocyclobutene (BCB, ǫr = 2.65, tan δ = 0.0008)

layer. The top surface of the RT5880 PCB carries the stationary microstrip feed lines (M1), the

grounding pads (M1), and the vias. Its bottom surface is the ground plane of the antenna system.

This substrate stack-up is similar to the recent microfluidically reconfigurable antenna [64] and

filter [65] realizations with the exception of utilizing thinner layers and lower permittivity PCBs

for enhanced radiation performance at 28 GHz. Piezoelectric micropumps drive a closed loop

fluid system and generate the flow to reposition the PCB inside the microfluidic channel [64–66].

Distances d= 0 mm and d= 45 mm denote that the PCB located inside the microfluidic channel

is at its farthest and closest position to the input/output RF ports of the stationary feed network,

respectively. Fig. 6.2 also illustrates the state of the PCB inside the microfluidic channel at d= 10

mm, d= 22.5 mm, and d= 45 mm positions.

Fig. 6.3 shows the layout details of the antenna and the feed lines. In a physical device

implementation, the input/output RF port of the stationary feed network (M1 trace) is expected to

be interconnected with other PCB layers that will be hosted under the ground plane of the antenna

system and interface with the digital phase shifters. The thin BCB insulator between the M1 trace
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Channel to micropump tube transition (not modeled in simulations)

Microfluidic channel: FC-40 and Metalized Plate (54 × 30 mm2)
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Figure 6.2 (a) 5 element linear patch antenna array that can perform spatial, i.e., position adap-
tation using microfluidics; (b) Substrate stack-up in which an RT5880LZ PCB is located inside a
microfluidic channel (formed by bonding PDMS mold onto RT5880 PCB with 6 µm thick BCB
layer).

and the feed line inside the microfluidic channel (M2 trace) allows for strong capacitive coupling

in overlapping regions. This is utilized for allowing the RF signal to pass between the two traces

without making physical electrical contact.
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Figure 6.3 Layout details of the antenna, feed network, and grounding vias (units: mm).

.

The feed line design is carried out using Momentum Suite of the Keysight’s Advanced

Design System (ADS) software due to its accuracy and effectiveness in handling planar layered

geometries. The 50Ω microstrip lines are designed for the selected substrate stack-up using the
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procedure outlined in [66]. As shown in Fig. 6.3, the feed lines maintain a constant overlap length

(fov) of 2.7 mm at any (d) position of the moving PCB. A 1.94 mm long (≈ λg/4, where λg is the

guided wavelength of 10.71 mm at 28 GHz) short-ended stub is placed to create an open circuit

condition at one end of the T-junction to fully direct the signal from the RF port to the antenna,

and vice versa. As depicted in Fig. 6.4(a), fov affects the bandwidth of the feed network and it

is selected to get the largest S21 > −0.5 dB bandwidth around 28 GHz. As the PCB inside the

microfluidic channel moves to greater d positions, the open-ended M2 trace that remains outside

of the overlap area exhibits resonances that hinder the functionality of the feed network (see Fig.

6.4(b)). This issue is alleviated by grounding the M2 trace in 5 mm periods using grounding pads

and vias over the PCB of the stationary feed network (see Fig. 6.4(c)). Fig. 6.4(d) demonstrates

the S21 performance of the feed network at 28 GHz as the PCB inside the microfluidic channel is

positioned from d= 0 mm to d= 45 mm. As seen, the loss is linearly proportional to the feed line

length and 0.15 dB loss at d= 0 mm implies the effectiveness of the designed feed transition.

Antenna array design is carried out with Ansys HFSS v16.2 to account for the finite sub-

strate and ground plane effects. The patch antenna element of the array has a footprint of 3.4×3.08

mm2 and resonates at 28 GHz with a 3.2 GHz of S11 < −10 dB bandwidth. The element separation

within the array is 5.4 mm and corresponds to λ/2, where λ is the free space wavelength. The

radiation efficiency is 80% when the array is located at its closest position, i.e., d= 45mm to the RF

ports and is primarily affected by the dielectric loss of the PDMS mold that forms the microfluidic

channel. In this position, the uniformly excited array exhibits 11.1 dB realized broadside gain with

20◦ half-power-beamwidth (HPBW) in the x-z plane. As expected, a lower radiation efficiency is

attained when the array moves to different positions due to the increased feed line loss. The realized

gain of the array drops by ∼ 5 dB as the beam is scanned to θ = ±50◦ from the broadside using a

progressive phase shift of β = ∓7π/8. This 100◦ range is taken as the FoV of the array. To rep-

resent the beam-steering performance accurately, 15 different realized gain patterns are extracted

by varying β in π/8 increments which is also possible to accomplish with commercially available

discrete phase shifters. The array position is varied with d= 2.5mm, i.e., ∼ λ/4 increments to

sample both correlated and uncorrelated wireless channel gains. Consequently, the total dataset
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Figure 6.4 (a) S21 performance of the feed network for: (a) various overlap length fov values
(reference plane is taken for feed transition); (b) no grounding pads and vias (c) with grounding
pads and vias (d) different array positions d (reference plane is taken for feed loss evaluation).

obtained from full-wave electromagnetics simulations consists of 285 realized gain patterns. Fig.

6.5 depicts representative patterns for various β and d combinations. It is observed that the main

lobe characteristic of the radiation pattern is mostly independent of the array position. Therefore,

the feed network loss is the major parameter that affects the performance of the array as it is

spatially adapted.

6.3 Performance Evaluation

To demonstrate the advantage of the proposed concept in the link level, an environment is

considered where 800λ×800λ multipath reflection region with scatterers is placed in between a BS
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Figure 6.5 Simulated x-z plane realized gain patterns of the antenna array at various d positions
for progressive phase shifts of (a) β = 0, (b) β = π/4, (c) β = −π/4, and (d) β = 7π/8.

and a UE separated 2000λ apart. The number of scatterers are randomly selected from the Poisson

distribution in each realization of the link level simulation (between 2-4) and a single ray reflected

from a scatterer is considered. A path loss model and the scenario parameters are adopted from [67]

and is given as PL(dB) = α+ β10 log10 r0 where r0 is the distance, α is the best fit floating point

(α = 72) and β is the slope of best fit (β = 2.92). Different channels are achieved for a BS by

spatially displacing the antenna array position as given in equation (6.3). Fig. 6.6(a) depicts the

link capacity in terms of spectral efficiency as the spatial adaptation range of the antenna array

in the BS is increased from 0λ, i.e., no adaptation to 4.5λ. While antenna gain is considered as
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5dBi for the omni-directional antenna, the “beam-steering only” scenario uses the realized gain

performance of the antenna array positioned at d= 45 mm, i.e., best radiation efficiency and

performs beam angle adaptations based on the observed channel gain. On the other hand, the

“spatial & beam-steering” scenario harnesses beam angle and position adaptations simultaneously

to maximize channel gain. As depicted in Fig. 6.6(a), the link capacity increases up to 2 bit/s/Hz

with the 4.5λ spatial adaptation range of the antenna array over beam-steering only array. When

the range increases, the link capacity gain increases due to providing more uncorrelated channel

responses on the receiver.

The system level advantage of the proposed concept is demonstrated by considering a sce-

nario in which 50 small cells are randomly distributed within a 200 × 200 m2 area with each BS

serving a single user and has randomly distributed scatterers [67]. The transmit power of each BS

is considered as 30 dBm which is taken from [50]. Each BS is assumed to be a selfish, i.e., there is

no coordination between small BSs. In narrowband systems, it is also assumed that all BSs allocate

the same resource at the same time. A game theoretical framework is established as in [68]. How-

ever, in this framework, BSs are modeled to perform simultaneous array position and beam angle

selection affecting the received signal strength (RSS) evaluation. This joint behavior also provides

interference management in the system. In addition, equation (6.3) is adapted for modeling wireless

channels. The same framework is also modeled with a beam-steering only array for comparison.

Every BS searches for the best antenna position and state in terms of SINR. The results are drawn

when the system reaches the equilibrium. Similar to link level results, the distribution of spatially

adaptive array provides better performance than beam-steering only arrays under the interference

coming from the other users in the environment. Fig. 6.6(b) shows the CDF of the SINR results. In

the mean SINR value, spatially adaptive antenna arrays achieve 51% improvement with respect to

beam-steering only arrays. Fig. 6.6(c) indicates the mean SINR difference in each user separately

and presents the advantage of the spatially adaptive arrays per user case. As seen from the figure,

the SINR of each user is increased with the spatially adaptive arrays up to 5.4 dB as compared to

the beam-steering only arrays.
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Figure 6.6 (a) Link capacity vs. spatial adaptation range; (b) SIR gains of wireless systems
utilizing different types of antennas at BSs; (c) Mean SIR gains of each individual user within the
wireless systems. “Spatial and Beam-Steering” arrays of the system exhibit 4.5λ spatial adaptation
capability.
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CHAPTER 7

CONCLUSION AND OPEN ISSUES

Cognitive HetNets have been proposed as a promising solution to increase the per user data

rate which is achieved by shrinking the cell sizes, i.e., by forming the small cells such as femtocells,

picocells. While shrinking the cell increases the spectrum efficiency, it also increases the other user

interference due to having uncoordinated structure. Therefore, interference mitigation in cognitive

HetNets becomes a significant subject in wireless communication systems. In this dissertation, we

focus on the interference mitigation techniques in the system level.

In the second chapter, we proposed the random subcarrier allocation algorithm in cognitive

HetNets within a game theoretical approach to handle the interference. As a game type, we used

supermodular games which have at least one pure NE and monotonically increasing property in

their best responses. Apart from the previous studies which is based on sweeping all subcarriers to

find the ones which have the highest utility, we picked random subcarriers as many as user needs and

look at the payoffs of only those subcarriers. Our simulation results showed that we achieved similar

results with the previous studies in terms of increasing utility, capacity and throughput levels. This

remarkably decreases the the feedback loads on the SUs on the expense of slow convergence rate.

At the same time, this saves the battery power in the mobile devices.

In the third chapter, we presented the resource allocation techniques with the usage of RAs

in UEs. Since RAs have different radiation states that may lead to different channel conditions,

they provide different gains for each state. By utilizing this feature of RAs, we showed that RA

can improve the total system capacity. We used two different algorithms, namely RS and BeS.

While a player selects the best resources with the best state in each iteration in the BeS algorithm,

it chooses again the best resources but with one randomly selected state in the RS algorithm.

The aim in the RS algorithm is to decrease the FL. According to our results, if an RA has two
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states, the resulting FL obtained is lower in RS. If there are more than three states, then the BeS

algorithm provides lower FL. Our results also show that when the number of states increases, the

total system capacity increases as well. By comparing the beam width dependable capacity results,

we obtained that the highest mean capacity is achieved with 60◦ beam width. Also, by performing

APSS before the game starts, we showed that, instead of dealing with many states such as four or

five states, the two-state selection case gives similar performance results to six states selection case.

In the fourth chapter, we proposed POFMT within game theoretical framework. In orthog-

onal frequency-division multiple accessing technique, resources are allocated accordingly to manage

the interference between users when the whole network is controlled by a central unit. However,

in uncoordinated networks, it is impossible to establish coordination among users, which leads to

increasing interference in the shared environment. To decrease the interference in uncoordinated

networks, POFMT was proposed within game theoretical framework in this chapter. As players,

users introduced joint partially overlapping in frequency and space domains. While frequency do-

main partially overlapping was fulfilled by giving intentional CFS, RAs were utilized to introduce

space domain partially overlapping. The system was evaluated with various subcarrier spacing and

filter control parameter values to show the advantages of partially overlapping in only frequency

domain. It is found that increasing subcarrier spacing decreases the interference in the system.

Also, when the filter control parameter decreases, the system gain increases. With the utilization

of RAs, the system performance is shown to increase further.

In the fifth chapter, we presented the game theoretical resource allocation with POFMT

in cognitive HetNets. In cognitive HetNets, the users are affected by the high interference coming

from the other users in the environment. To mitigate this interference, in this chapter, we proposed

the game theoretical resource allocation with POFMT in cognitive HetNets. While SBSs look for

the consecutive subcarriers which have the highest utility, they also perform the CFS. By jointly

selecting the subcarriers and FSR, the system performance was significantly increased in terms of

the capacity gain with the expense of slight loss in spectral efficiency. It is noted that the POFMT

concept is offered for cognitive HetNets where significant other user interference is possessed. On

the other hand, asynchronous transmission is also allowed with POFMT. Due to the constraint
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we introduced, the convergence rate to NE becomes slower when compared to OFDM. While this

concept can be implemented in 4G cognitive HetNets, this can also be considered for the future

generations’ cognitive HetNets.

In the sixth chapter, we presented a wireless channel control concept based on spatial

adaptation of antenna arrays. Small wavelengths at mm-wave bands make it possible to apply this

concept within compact devices. Recently introduced microfluidically reconfigurable RF devices

can achieve these spatial adaptations efficiently and in a simple way by keeping the feed networks

and control devices (such as phase shifters) stationary. Specifically, a 5 element 28 GHz antenna

array design that achieve spatial adaptation over a 4.5λ distance via microfluidics was discussed.

Subsequently, its performance was utilized in example wireless link and system level scenarios. This

spatially adaptive antenna array provided 2 bit/s/Hz capacity gain over its traditional counterpart.

In addition, 51% increment in the mean SINR can be obtained in the wireless communications

system when the array acquired the spatial adaptation capability.

In this dissertation, possible extensions can be listed as follows:

1. For the studies where we utilized the RAs, it is assumed that only the SUs are equipped

with RAs. The scenario where PUs, SBSs and PBS are all equipped with RAs or any

combination of them in the network needs further investigation.

2. For resource allocation studies, learning algorithm can be applied. If the SU learns from

previous actions, it can utilize this information to decrease the FL further.

3. For POFMT study, it is assumed that the time domain synchronization is perfectly ob-

tained. For the scenario where there are multiple SUs served by one SBS, i.e., there will

be multiple SBSs with multiple SUs, SUs have to satisfy the time synchronization with

their single BS. So, this needs further investigation.

4. For POFMT study, another extension can be considered as finding the optimum subcarrier

spacing.
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5. For channel control study, future work can focus on experimental verification of the pre-

sented antenna array and investigation of the wireless link/system level performances

under different scenarios such as for broadband systems.
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copyright line � 2011 IEEE.
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obtain the senior author�s approval.
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2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your
thesis on-line.
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prominent place on the website: In reference to IEEE copyrighted material which is used with
permission in this thesis, the IEEE does not endorse any of [university/educational entity's name goes
here]'s products or services. Internal or personal use of this material is permitted. If interested in
reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating
new collective works for resale or redistribution, please go to http://www.ieee.org
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Appendix B: List of Acronyms

APSS Adaptive prior state selection

AWGN Additive white Gaussian noise

BeS Best selection

BS Base station

CDF Cumulative distribution function

CFO Carrier frequency offset

CFR Channel frequency response

CFS Carrier frequency shift

CIR Channel impulse response

CoP Continuous play

FBS Femto BS

FIP Finite improvement path

FL Feedback load

FMT Filtered multitone

FO Fully overlapping

FPSS Fixed prior state selection

FSR Frequency shift ratio

FUE Femto user equipment

GF Gaussian filter

GT Game theory

HeNB Enhanced Home Node B

HetNets Heterogeneous networks

HPBW Half power beamwidth

IT Interference temperature

MIMO Multiple-input multiple-output
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Appendix B (Continued)

MUE Macro user equipment

NE Nash equilibrium

OFDMA Orthogonal frequency-division multiple access

OFDM Orthogonal frequency-division multiplexing

PBS Primary base station

PCB Printed circuit board

P’nW Play&Wait

POCs Partially overlapping channels

POFMT Partially overlapping filtered multitone

POTs Partially overlapping tones

PPP Poisson point process

PU Primary user

RA Reconfigurable antenna

RRCF Root raised cosine filter

RS Random state selection

RSS Received signal strength

SBS Secondary base station

SG Supermodular game

SINR Signal-to-interference-plus-noise ratio

SIR Signal-to-interference ratio

SISO Single-input single-output

SU Secondary user

TDD Time division duplexing

UE User equipment
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