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Abstract

In wireless communication networks, interference models are routinely used for tasks such as

performance analysis, optimization, and protocol design. These tasks are heavily affected by the accuracy

and tractability of the interference models. Yet, quantifying the accuracy of these models remains a major

challenge. In this paper, we propose a new index for assessing the accuracy of any interference model

under any network scenario. Specifically, it is based on a new index that quantifies the ability of any

interference model in correctly predicting harmful interference events, that is, link outages. We consider

specific wireless scenario of both conventional sub-6 GHz and millimeter-wave (mmWave) networks

and demonstrate how our index yields insights into the possibility of simplifying the set of dominant

interferers, replacing a Nakagami or Rayleigh random fading by an equivalent deterministic channel,

and ignoring antenna sidelobes. Our analysis reveals that in highly directional antenna settings with

obstructions, even simple interference models (such as the classical protocol model) are accurate, while

with omnidirectional antennas, more sophisticated and complex interference models (such as the classical

physical model) are necessary. We further use the proposed index to develop a simple interference model

for mmWave networks that can significantly simplify design principles of the important procedures for

wireless communication, such as beamforming, interference management, scheduling, and topology
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control. Our new approach makes it possible to adopt the simplest interference model of adequate

accuracy for every wireless network.

Index Terms

Wireless communications, interference model, performance analysis, millimeter wave networks.

I. INTRODUCTION

Due to the shared nature of a wireless media, interference plays a critical role in the design

and performance analysis of wireless networks, where the intended signal is combined with

other undesired wireless signals transmitted at the same (time, frequency, spatial) channel. The

receiver typically decodes the received signal by canceling parts of the interference and treating

the rest as noise. Successful decoding at the receiver depends on the desired signal strength, the

ambient noise level accumulated over the operating bandwidth, and the interference level. Signal-

to-interference-plus-noise ratio (SINR) is a common metric to evaluate the outage probability

(or the probability of successful decoding) of a transmission. However, performance analysis

using the SINR expression is complex as it depends on the transmission strategies (transmission

power, antenna pattern, and medium access control (MAC) protocol), often unknown or hard to

estimate random channel attenuation, receiver design, and the (often partially unknown) network

topology. Due to this overwhelming complexity, the design and analysis of wireless networks

based on the actual SINR expression, while being accurate, is very challenging. This difficulty is

further exacerbated in millimeter-wave (mmWave) networks, where penetration loss, first-order

reflection, and antenna pattern introduce further elements of randomness [2]–[4]. This motivates

developing different techniques to mathematically model (abstract) various components of the

SINR, e.g., the transmission strategy, wireless channel, and network topology.

A. Related Works and Motivations

Define an interference model as a set of deterministic or stochastic functions that model various

components of the SINR expression. There have been many attempts in the literature to design

interference models (equivalently, to approximate the SINR expression) that accurately capture

the effect of interference, while being tractable for the mathematical analysis. These interference

models largely try to answer the following questions under various network settings:
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Q1. How can we model the set of interferer whose contributions in the aggregated interference

term are dominant?

Q2. How can we simplify the transmission/reception and propagation models to enhance tractabil-

ity of the interference model with marginal loss in its accuracy?

Answering Q1 demands a careful balance between the accuracy and the simplicity of the interfer-

ence model. Considering the effects of more interferers in the SINR model generally increases the

accuracy but also the complexity. In this regard, the simplest model is the primary interference

model [5], wherein an outage event occurs only if two communication links share a common

endpoint. In other words, the only interference component in this model is self-interference that

leads to a half-duplex operating mode. Interference range model (IRM) is an attempt to improve

the accuracy of the primary interference model [6], where an outage event occurs if the closest

interferer is located no farther than a certain distance of the receiver, called the interference

range. By setting this distance to 0, the IRM can be reduced to the primary interference model.

A modified version of IRM is the protocol model (PRM), formalized by the seminal work of

Gupta and Kumar [7]. The only modification is that the interference range, instead of being a

constant value as in the IRM, depends on the received power from the intended transmitter and a

minimum SINR threshold for successful decoding. Although the IRM and PRM are very simple,

they fail to capture the effect of interference aggregation (i.e., the sum of the interference power

from multiple interferers). It might be that, while there is no interferer inside the interference

range, the aggregated interference from several transmitters outside the interference range downs

the perceived SINR below the threshold. Thus, these models are generally considered to be overly

simplistic. Nonetheless, due to their mathematical tractability, the IRM (including the primary

interference model) and PRM are extensively adopted for the performance analysis and for the

system design; e.g., transport capacity [7]–[9], delay [10], [11], fairness [12], throughput [13]–

[15], topology control [16], [17], routing [18], and backoff design [19].

To alleviate the aforementioned problem of IRM and PRM, the interference ball model (IBM)

considers the aggregated impacts of near-field interferers, located no farther than a certain

distance. The price is higher complexity of the IBM compared to the IRM and PRM. Nonetheless,

the IBM has been extensively adopted in the performance evaluation of wireless networks [4],

[20]–[22]. The topological interference model (TIM) [23] is a natural extension of the IBM that
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considers the aggregated impact of all the transmitters whose individual interference level at

the receiver side is not below a certain threshold. In other words, this model neglects weak

links based on the “topological” knowledge. The TIM is adopted for capacity and degree-

of-freedom analysis [23], [24]. The most accurate and complex answer to Q1 is the physical

model (PhyM) [7], which considers the aggregated interference of all transmitters in the entire

network.1 The PhyM, also known as the SINR model, is adopted mostly at the physical layer;

e.g., beamforming design [26]–[28], capacity evaluation [7], [29], [30], power control [31], [32],

coverage analysis [4], energy efficiency characterization [33], and spectrum sharing [34].

The answer to Q2 depends heavily on the transmission and reception strategies and propagation

environment. For instance, approximating the random wireless channel gain with its first moment

(average) is a common technique to simplify the SINR expression and to design MAC and

networking layers [14], [17], [21], [35]–[38]. Reference [39] replaced a Nakagami fading channel

by a Rayleigh one for mathematical tractability and numerically concluded from its Fig. 5 that

such approximation preserves the main properties of the rate coverage performance. Yet, the

impact of these mathematical approximations on the accuracy of the performance analysis is not

well understood. Recently, [40] considers the impact of such approximation on the scheduling.

In particular, the authors show that, if we design scheduling for n transmitters based on a proper

non-fading channel model (deterministic approximation of the random channel gain), the network

throughput will be within O(logn) of that of the optimal scheduler, designed based on the actual

random channel gains. This result, however, is limited to the Rayleigh fading model. As another

example, for mmWave communications with many antenna elements, [14] and [41] assume no

emissions from the antenna sidelobe, which affects the SINR distribution. This assumption is

relaxed in [4], where the antenna sidelobe is modeled by a small constant value, adding further

complexity into the interference model. As a result, the final derivations, while being more

accurate, are less tractable and provide less insights. However, without having a mathematical

framework that allows assessing the impact of neglecting antenna sidelobes, it is not clear which

approach better balances the simplicity-accuracy tradeoff of mathematical analysis.

1Under very special network settings (e.g., homogenous Poisson field of interferers exhibiting Rayleigh fading channel), the

PhyM may be mathematically more tractable than both PRM and IBM [25]; however, the PRM and IBM are yet more desirable

models for protocol design and for network optimization [22].
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The proper choice of interference model depends on many parameters such as the receiver design,

antenna directionality, network topology, channel model, and the choice of medium access

protocol [6], [35], [36]. To the best of our knowledge, there has been no systematic method

to analyze the accuracy of various interference models, choose the proper interference model,

and quantify the amount of error due to adopting other interference models for a given network

scenario. The accuracy of different interference models has been mostly evaluated qualitatively,

without fully understanding the mutual impacts of different parameters of the physical, medium

access, and network layers. This qualitative analysis, however, is often overly simplistic, and may

result in the use of interference models that are only marginally more accurate, yet significantly

more complex than needed. As we will show throughout this paper, in certain settings of relevant

practical interest, even the simplest interference models are sufficiently accurate and can be used

to provide significant insights into the network performance and to enable efficient protocol

design.

B. Contributions

In this paper, we substantially extend the preliminary version of this study [1] and propose a new

framework to assess the distance of two arbitrary SINR distributions. We use this framework to

develop an interference model similarity index that takes on real values between 0 and 1, where

higher values correspond to higher similarity. This index builds a universal method to assess

the accuracy of any interference model under any network scenario. In other words, instead of

introducing a new interference model or a new approach to analyze SINR distribution, we propose

a novel framework to investigate the accuracy of the existing interference models. Therefore,

our study is complementary to the rich literature of interference analysis.

To exemplify the abilities of the proposed index, we mathematically evaluate it for the PRM and

IBM under three scenarios: (i) Rayleigh fading channel and omnidirectional communications (a

typical sub-6 GHz system); and (ii) Rayleigh fading channel and directional communications; and

(iii) deterministic wireless channel, directional communications, and existence of impenetrable

obstacles in the environment (a typical mmWave system). Although the applications of the

proposed index is general and goes beyond the examples provided in this paper, we use these

examples to illustrate fundamental properties of this index and also to provide insights on the
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mutual effects of various network parameters on the accuracy of the interference model, thus

commenting on the proper model for a given network scenario.

In the first example scenario, served as a baseline, we derive a closed-form expression for

the accuracy index. We show that the accuracy of the IBM monotonically increases with the

interference range, at the expense of an increased complexity. In contrast, we show that there

is no such monotonic improvement in the accuracy of PRM. Thereby, we find the optimal

interference range that maximizes the accuracy of the PRM.

In the second example scenario, we show that both the PRM and IBM are significantly more

accurate with directional antennas. Further, in the third example scenario, we show significant

accuracy improvement of both PRM and IBM due to deterministic channel, directionality, and

also blockage. As these conditions hold in mmWave networks, we show that the PRM can be

used in the analysis of mmWave networks to significantly improve the mathematical tractability

of the problem, with a negligible loss in the analysis accuracy. We further use this index to

observe marginal impacts of the first-order reflection and sidelobe transmissions on the accuracy

of the interference model, which inspire us to propose a tractable and accurate interference model

for mmWave networks.

Furthermore, we use the proposed framework to investigate the feasibility of modeling a random

fading channel with a deterministic channel. We show that if the spatial distribution of the

transmitters follow a Poisson point process on the plane and if the path-loss exponent is 2, then

the average of the fading random variable2 is among the best constant approximations of the

random fading channel to analyze any ergodic function of the SINR (e.g., transport capacity,

throughput, and delay).

Throughout the paper, we show how the proposed index can increase our understanding of the

mutual interactions among the accuracy of the performance evaluation and various network

parameters and modeling techniques. We also signify how we can rigorously develop simple

interference models of adequate accuracy to simplify design principles of the main functions

of wireless communications such as beamforming, interference management, scheduling, and

topology control.

2Rigorously speaking, the fading should be an absolutely continuous random variable, which holds for almost all wireless

channels.
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The rest of this paper is organized as follows. In Section II, we introduce our interference model

similarity index, and investigate it under various network scenarios in Sections III–VI. Future

works are presented in Section VII, and the paper is concluded in Section VIII.

II. INTERFERENCE MODEL SIMILARITY INDEX

A. Interference Model

We define a link as the pair of a transmitter and its intended receiver, where transmitter (receiver) i

refers to the transmitter (receiver) of link i. Without loss of generality and for brevity, we assume

that there is no interference cancellation, so all unintended transmitters act as potential interferers

to any receiver. Consider a reference receiver and label its intended transmitter by subscript 0.

Denote by I the set of its interferers (all active transmitters excluding the intended transmitter),

by pi the transmission power of transmitter i, by σ the power of white Gaussian noise, by di the

distance between transmitter i and the reference receiver, and by gCh
i the channel gain between

transmitter i and the reference receiver. We denote by gTx
i the antenna gain at transmitter i toward

the reference receiver, and by gRx
i the antenna gain at the reference receiver toward transmitter

i. Then, the SINR at the reference receiver is

γ =
p0g

Tx
0 gCh

0 gRx
0

∑

k∈I

pkgTx
k gCh

k gRx
k + σ

.

The SINR depends on the transmission powers, antenna patterns, set of active transmitters,

channel model, and network topology. Let β > 0 denote the SINR threshold corresponding to

a certain target bit error rate. An outage on the reference link occurs when γ < β. Different

interference models attempt to approximate the outage probability by ignoring certain compo-

nents of the interference (see questions Q1 and Q2 in Section I-A). In particular, the IRM, PRM,

IBM, TIM, and PhyM characterize the set of interferers I. Neglecting various components of

the channel model translates into different distributions for gCh
i . Power allocation affects pi, and

various scheduling protocols further affect I.

B. Formal Definition of the Similarity Index

Consider reference interference model y under a given set of parameters/functions describing the

wireless network. Define γy as the SINR of a reference receiver under this model. We define a
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binary hypothesis test, where hypotheses H0 and H1 denote the absence and presence of outage

under reference model y, respectively. That is,






H0, if γy ≥ β ,

H1, if γy < β .

(1)

We consider a test interference model x under any set of parameters/functions describing our

wireless network, which are not necessarily equal to those of the reference model y. These

differences result in possible deviation of the SINR of the reference receiver under x, denoted

by γx, from γy. From the outage point of view, irrespective of the differences between individual

parameters/functions of x and y, we say model x is similar to model y if it gives exactly the same

outage result as y. Assume interference model x is a detector of outage events under y. To evaluate

the performance of this detector compared to reference model y, we can use the notions of false

alarm and miss-detection. A false alarm corresponds to the event that x predicts outage under

hypothesis H0 (i.e., y declares no harmful interference); whereas a miss-detection corresponds

to the event that x fails to predict outage under hypothesis H1. Now, the performance of any

interference model x can be evaluated using the false alarm and miss-detection probabilities,

namely p
x|y
fa and p

x|y
md. Formally,

p
x|y
fa = Pr [γx < β | γy ≥ β] , p

x|y
md = Pr [γx ≥ β | γy < β] . (2)

The false alarm and miss-detection probabilities quantify the similarity of any interference model

x in detecting outage events compared to any reference model y. Next, we define our index to

be a convex combination of these probabilities.

Definition 1 (Interference Model Similarity Index). For any constant 0 ≤ ξ ≤ 1, any SINR

threshold β, any test interference model x, and any reference interference model y, we define

similarity of x to y at β as

Sβ,ξ (x‖y) = ξ
(

1− p
x|y
fa

)

+ (1− ξ)
(

1− p
x|y
md

)

= 1− ξ p
x|y
fa − (1− ξ) p

x|y
md , (3)

where p
x|y
fa and p

x|y
md are given in (2). Notice that random variables γx and γy must have a

common support.

Sβ,ξ (x‖y) is a unit-less quantity ranging within [0, 1], where higher values represents higher sim-

ilarity between x and y in capturing outage events at SINR threshold β. Setting ξ = Pr [γy ≥ β],

ξp
x|y
fa +(1− ξ) p

x|y
md is the average error in detecting the outage events; therefore, Sβ,Pr[γy≥β] (x‖y)
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shows the probability that interference model x has similar decision as reference interference

model y in detecting the outage events.

Remark 1 (Accuracy of an Interference Model). Let reference model y perfectly capture the

outage events in reality, namely the model y does not make any approximation/simplification.

The accuracy of any interference model x is then Sβ,ξ (x‖y), and we call it the accuracy index

throughout the paper.

The proposed index is a universal metric that can be used to quantify the accuracy of any

interference models, proposed in the literature, as we exemplify in the following sections.

C. Comparison to the Existing Statistical Distance Measures

Interference model similarity index, formulated in (3), is measuring the distance3 of the PDF

of γx compared to that of γy. Let fX denote PDF of random variable X . In the following, we

highlight three main advantages of using our index with respect to the existing standard distance

measures, such as the Bhattacharyya distance and the Kullback-Leibler (KL) divergence [42].

First, the existing standard distance measures mostly map the distance between fγx and fγy in

their entire support to only one real value. It might be that two distribution are very similar in the

meaningful ranges of the SINR values (0–10 dB), but very different outside this range. Still, the

classical statistical distance measures may result in a high distance between two distributions,

as they compare fγx to fγy in the entire SINR range. This is indeed a misleading result that

may mistakenly avoid the use of the simplified interference model x in practice. However, our

similarity index allows us to investigate whether or not x is accurate at any given SINR threshold.

Second, both the Bhattacharyya distance and the KL divergence may fail in a comparative

analysis. In particular, fγy might be more similar to fγx than fγz with point-wise comparison,

but the Bhattacharyya distance and the KL divergence of fγx from fγy become higher than that

of fγz from fγy , as shown in the following toy example.

Example 1. Consider discrete random variables X, Y, and Z with common support of [1, 2, 3]

with probability mass functions

3Rigorously speaking, our similarity index is not a distance measure, as it does not satisfy the subadditivity property. Moreover,

we are measuring the similarity, which could be in general a decreasing function of the distance.
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t fX(t) fY (t) fZ(t)

1 0.05 0.1 0.25

2 0.25 0.45 0.2

3 0.7 0.45 0.55

Then, we have the following metrics (fX is the reference in the KL divergence):

Distributions fX ,fY fX ,fZ

Euclidean distance 0.324 0.255

Bhattacharyya distance 0.033 0.045

KL divergence 0.059 0.098

In this example, neither the Bhattacharyya distance nor the KL divergence can identify higher

point-wise similarity of Z to X than Y to X .

Last, but not least, unlike the existing statistical distance metrics that are not necessarily intended

for communication systems, our similarity index is developed for these systems so that it has a

physical meaning and can provide practical insights. Specifically, setting ξ = Pr [γy ≥ β], our

index Sβ,ξ (x‖y) evaluates the probability of correct decision of outage events under interference

model x.

Note that other distance metrics may still be useful to evaluate the accuracy of an interference

model, and they may also have some relationship to our proposed index; see the following

remark as an example.

Remark 2 (Relationship to the Bhattacharyya Coefficient). Let ξ = Pr [γy ≥ β]. By noting that

Sβ,Pr[γy≥β] (x‖y) is the probability of having no hypothesis detection error and following [42,

Equation (48)], we get

3

2
− ξ − ρ

√

ξ (1− ξ) ≤ Sβ,ξ (x‖y) ≤ 1− ξ +

√

1

4
− ξ (1− ξ) ρ2 , (4)

where ρ =
∫
fγx(t)fγy(t)dt is the Bhattacharyya coefficient.

D. Applications of the Interference Model Similarity Index

In the following, we provide two class of illustrative examples where our index can be used

either to simplify the mathematical analysis or to justify the existing interference models. Use

cases of our index, however, goes beyond these examples.
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1) Simplifying the Set of Interferers: This is one of the first steps in choosing an interference

model for performance analysis, protocol design, and network optimization. With omnidirectional

transmission/reception and without interference cancelation, an outage occurs under

• PRM: if there is an active transmitter no farther than an interference range rPRM = (1+∆)d0,

where ∆ is a constant real positive value [7];

• IBM: if its SINR due to all active transmitters located no farther than an interference range

rIBM is less than β [22];

• TIM: if its SINR due to all active transmitters with strong links (with individual channel

gains higher than ε) toward receiver i is less than β [23]; and

• PhyM: if its SINR due to all active transmitters is less than β [7].

To present a unified view, we associate three random variables aPRM
k , aIBM

k , and aTIM
k to the link

between each transmitter k ∈ I and the typical receiver. aPRM
k is set +∞ if dk ≤ (1 + ∆)d0,

and otherwise 0. aIBM
k is set 1 if dk ≤ rIBM, and otherwise 0. Finally, aTIM

k is set 1 if gCh
k > ε,

and otherwise 0. We define a virtual channel gain for those interference models as

gxk = axkg
Ch
k , for interference model x , (5)

where x is a label denoting PRM, IBM, TIM, or PhyM, and aPhyMi , 1. Despite the virtual

channel gain, all other parameters of interference models x and y are identical. The SINR at the

typical receiver under interference model x is given by

γx =
p0g

Tx
0 gCh

0 gRx
0

∑

k∈I

pkg
Tx
k gxkg

Rx
k + σ

. (6)

The design of many key functions of a wireless network such as scheduling [43] or power

allocation [31] need an estimate of (6). To this end, a receiver may need to coordinate with a

set of interferers to estimate their individual instantaneous contributions to the SINR expression,

namely pkg
Tx
k gxkg

Rx
k for all k ∈ I. The PhyM may imply that every receiver should coordinate

with all the interferers in the entire network (global information) whose cost, complexity, and

delay may be unaffordable in many networking scenarios. Using IBM implies that each nodes

should coordinate with all transmitters within a certain radius (local information), and the PRM

necessitates coordination only with the closest unintended transmitter, which are appealing from

energy and protocol overhead perspectives. Our proposed index gives a quantitative insight on

the accuracy of various interference models, used for protocol development and for network
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optimization, and allows the use of the right interference model for a given channel model and

network scenario.

2) Simplifying the Channel Model: Our accuracy index can be used to adopt tractable channel

models (gCh
k for every transmitter k) of adequate accuracy. This is specially important for

mmWave networks, where LoS and non-LoS conditions have different channel models, non-

LoS (blockage) probability follows a rather complicated function, the LoS channel may follow

a Nakagami fading in general, and realistic antenna patterns might be a complicated non-linear

function. Various researches tried to simplify those complications without rigorous analysis

on the validity of such simplifications. For instance, [14] assumed impenetrable obstacles (so

communication only in the LoS conditions) and neglected antenna sidelobe, [4] approximated

the non-LoS stochastic function by a deterministic LoS ball in which there is no obstacle within

a certain range of the receiver and there is no LoS links outside the circle, and [39] replaced

the Nakagami fading channel by a Rayleigh fading that facilitates mathematical analysis. Due to

lack of a systematic approach to simplify the channel model, the understanding of the cross-layer

dynamics between MAC and physical layers of most of the existing standards is a largely open

problem, and the existing frameworks such as the one in [44] are not usually mathematically

tractable.

In the following, we illustrate the utility of our index for four example scenarios. Although

our index poses no limitation to these example scenarios, we may simplify some parameters of

the system model to avoid unnecessary complications. In the first three examples, we focus on

simplifying the set of interferers for various network settings and derive closed-form expressions

for the accuracy index to highlight its fundamental properties. In the last example scenario, we

use our index to numerically assess the accuracy of various approaches in simplifying the channel

model.

For the rest of this paper, without loss of generality, we assume ξ = Pr [γy ≥ β], so Sβ,ξ (x‖y)
evaluates the probability of correct decision under interference model x.
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III. EXAMPLE SCENARIO 1: RAYLEIGH FADING CHANNEL WITH OMNIDIRECTIONAL

COMMUNICATIONS

Consider a wireless network with Rayleigh fading channel and omnidirectional transmission/reception.

Assume that the PhyM can perfectly capture the outage events. In this section, we evaluate the

accuracy of IBM, PRM, and TIM (see Section II-D where we recalled the definition of these

prominent models) for such scenario.

We consider a reference receiver (called the typical receiver) at the origin of the Polar coordinate,

and its intended transmitter having geometrical/spatial length d0. We consider a homogeneous

Poisson network of interferers (unintended transmitters) on the plane with intensity λt. We assume

that all the transmitters are active with transmission power p (no power control), and that there is

no interference cancellation, which are natural assumptions in personal and local area networks.

With omnidirectional transmission and reception, there is no antenna gains, so gTx
k = gRx

k = 1,

k ∈ I ∪ {0}. Note that, under these assumptions, the PhyM is more tractable for coverage

and rate analyses than other models (PRM, IBM, and TIM) [25]; however, we still use this

example to derive closed-form expression for the new accuracy index and thereby illustrate its

fundamental properties that hold in general. Nonetheless, even in this network setting, the PRM

and IBM are more appealing than PhyM for protocol design and for network optimization [22].

We define by B(θ, rin, rout) a geometrical annulus sector with angle θ, inner radius rin, and outer

radius rout, centered at the location of the typical receiver (origin of the Polar coordinate). To

model a wireless channel, we consider a constant attenuation c at reference distance 1 m, a

distance-dependent attenuation with exponent α, and a Rayleigh fading component h. To avoid

the physically unreasonable singularity that arises at the origin under power law attenuation, we

change the path loss index to α1B(2π,0,a), where 1· is the indicator function assuming value 1 over

set · and zero otherwise. This modified power law model implies that the signal of all transmitters

located outside a disk with radius a will be attenuated by traditional power law method; however,

the transmitters inside this disk will observe no channel attenuation. Therefore, the channel gain

between transmitter i at radial distance di and the typical receiver is gCh
i = chid

−α1
B(2π,0,a)

i .

To avoid unnecessary complications while illustrating the utility of our index, we eliminate the

shadow fading from our channel model.

We are now ready to illustrate the utility of our proposed index using the SINR expression (6).
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A. Accuracy of the Interference Ball Model

For mathematical tractability, we assume that rIBM ≥ a and d0 ≥ a, and the extension to the

general case is straightforward. The false alarm probability can be reformulated as

p
IBM|PhyM
fa = Pr

[
γIBM < β | γPhyM ≥ β

]
=

Pr
[
γIBM < β

]
Pr
[
γPhyM ≥ β | γIBM < β

]

1− Pr [γPhyM < β]
. (7)

Although the PhyM considers the impacts of all the interferers in the entire network, the

IBM considers only the effects of the near-field ones. Consequently, γPhyM ≤ γIBM, and thus

Pr
[
γPhyM ≥ β | γIBM < β

]
= 0 in the nominator of (7). This results in p

IBM|PhyM
fa = 0.

For the miss-detection probability, we have

p
IBM|PhyM
md = Pr

[
γIBM ≥ β | γPhyM < β

]
= 1− Pr

[
γIBM < β | γPhyM < β

]

= 1− Pr
[
γIBM < β

]
Pr
[
γPhyM < β | γIBM < β

]

Pr [γPhyM < β]
= 1− Pr

[
γIBM < β

]

Pr [γPhyM < β]
, (8)

where the last equality is from γPhyM ≤ γIBM. In Appendix A, we have derived

Pr
[
γIBM < β

]
= 1− exp







−σβdα0
pc

− πλtEh



a2
(
1− e−βdα0 h

)
+ r2IBM

(

1− e−βdα0 hr
−α
IBM

)

−

a2
(

1− e−βdα0 ha
−α
)

+ (βdα0h)
2/α Γ

(

1− 2

α
, βdα0hr

−α
IBM

)

− (βdα0h)
2/α Γ

(

1− 2

α
, βdα0ha

−α

)










,

(9)

and

Pr
[
γPhyM < β

]
= 1− exp







− σβdα0
pc

− πλtEh



a2
(
1− e−βdα0 h

)
− a2

(

1− e−βdα0 ha
−α
)

+ (βdα0h)
2/α Γ

(

1− 2

α

)

− (βdα0h)
2/α Γ

(

1− 2

α
, βdα0ha

−α

)










, (10)

where Γ (·, ·) is the incomplete Gamma function, Γ (·) is the Gamma function, Eh denotes

expectation over random variable h, and the probability density function of h is fh(x) = e−x.

Substituting (9) and (10) into (8), the miss-detection probability can be found. Also, from (3),

the accuracy of the interference ball model Sβ,ξ (IBM‖PhyM) is derived. A simple extension of

our analysis gives the accuracy index when d0 is a random variable. Recall that the purpose of

this section is to illustrate only the utility of our index, and investigating more practical system

models is a subject of our future work; see for instance [45].
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Result 1 (Perfect Interference Ball Model). For any constant 0 ≤ ξ ≤ 1 and any β,

Sβ,ξ (IBM‖PhyM) → 1 as rIBM → ∞.

Proof: We know that p
IBM|PhyM
fa = 0 for any constant 0 ≤ ξ ≤ 1 and any β. Moreover, as rIBM

increases, Pr
[
γIBM < β

]
tends to Pr

[
γPhyM < β

]
. Considering (8), P

IBM|PhyM
md asymptotically

goes to zero as rIBM → ∞. With zero false alarm and asymptotically zero miss-detection

probabilities, the proof is concluded from (3).

Result 1 indicates that the IBM becomes more accurate with higher rIBM, and it can be arbitrary

accurate for sufficiently large rIBM. The price, however, is more complicated IBM as its approx-

imations at a receiver demands coordination with more interferers.4 Also, negotiation with other

transmitters (e.g., for MAC layer design) within this larger rIBM becomes more challenging in

terms of power consumption, signaling overhead, delay, and processing overhead.

B. Accuracy of the Protocol Model

We now consider the PRM and first note that

p
PRM|PhyM
fa = 1−

(
1− Pr

[
γPRM < β

])(
1− Pr

[
γPhyM < β | γPRM ≥ β

])

1− Pr [γPhyM < β]
, (11)

and that

p
PRM|PhyM
md =

(
1− Pr

[
γPRM < β

])
Pr
[
γPhyM < β | γPRM ≥ β

]

Pr [γPhyM < β]
. (12)

In the last two equations, note that Pr[γPhyM < β] is derived in (10). In the following, we

derive Pr[γPRM < β] and Pr
[
γPhyM < β | γPRM ≥ β

]
.

Event γPRM < β occurs if there is at least one interferer inside B(2π, 0, rPRM). As I is a

homogenous Poisson point process with intensity λt, we have

Pr
[
γPRM < β

]
= 1− exp

{
−λtπr

2
PRM

}
. (13)

4Note that for special settings of this section, considering the impact of all interferers (PhyM) simplifies the analysis. However,

this does not hold in general, e.g., if we change the spatial distribution of the interferers to a determinantal point process.
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In Appendix A, we have also derived

Pr[γPhyM < β | γPRM ≥ β] = 1− exp







−σβdα0
pc

− πλtEh



− r2PRM

(

1− e−βdα0 hr
−α
PRM

)

+ (βdα0h)
2/α Γ

(

1− 2

α

)

− (βdα0h)
2/α Γ

(

1− 2

α
, βdα0hr

−α
PRM

)










. (14)

Substituting (11)–(14) into (3), we can find Sβ,Pr[γPhyM≥β] (PRM‖PhyM) for Rayleigh fading

channel with omnidirectional transmission/reception.

Result 2 (Miss-detection–False Alarm Tradeoff). Consider the protocol model of interference

with Rayleigh fading channel. Increasing the interference range rPRM reduces the false alarm

probability and increases the miss-detection probability. Decreasing the interference range in-

creases the false alarm probability and reduces the miss-detection probability.

Proof: Pr
[
γPRM < β

]
is a strictly increasing function of rPRM, see (13). Considering the equations

of the false alarm and miss-detection probabilities given in (11) and (12), the proof concludes.

Result 3 (Asymptotic Accuracy of the Protocol Model). Consider Equations (3) and (11)–(13).

For any 0 ≤ ξ ≤ 1 and any β > 0, we have the following asymptotic results:

rPRM → a, a → 0 ⇒ p
PRM|PhyM
fa → 0 , p

PRM|PhyM
md → 1 , Sβ,ξ (PRM‖PhyM) → ξ .

rPRM → ∞ ⇒ p
PRM|PhyM
fa → 1 , p

PRM|PhyM
md → 0 , Sβ,ξ (PRM‖PhyM) → 1− ξ .

Result 3 further confirms the tradeoff between the miss-detection and false alarm probabilities.

C. Numerical Illustrations

To illustrate the accuracy index in Scenario 1 with Monte Carlo simulation, we consider a spatial

Poisson network of interferers and obstacles with density λt and λo per unit area. Length of

the typical link is d0 = 20 m. We simulate a traditional outdoor microwave network [4] with

average attenuation c = 22.7 dB at the reference distance a = 1 m, path-loss index α = 3.6, and

noise power σ = −111 dBm (around 2 MHz bandwidth). We consider p = 20 dBm transmission

power and β = 5 dB minimum SINR threshold. For the ease of illustration, we define the notion
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Fig. 1: Impact of the interference range on the accuracy of interference models under Rayleigh fading channel and omnidirectional

communications.

of the average inter-transmitter distance as dt = 1/
√
λt. This distance directly relates to the

inter-site distance in cellular networks, and also shows the transmitter density in a network.

Fig. 1 illustrates the impact of the interference range on the accuracy of both IBM and PRM

under Scenario 1. From Fig. 1(a), increasing rPRM increases p
PRM|PhyM
fa and reduces p

PRM|PhyM
md ,

highlighted as the tradeoff between the miss-detection and false alarm probabilities in Result 2.

This tradeoff may lead to increment (see dt = 30) or decrement (see dt = 80) of the accuracy

index of the PRM with the interference range. The IBM has zero false alarm probability, not

depicted in Fig. 1(a) for sake of clarity of the figure. Moreover, as stated in Result 1, p
IBM|PhyM
md

decreases with rPRM, leading to a more accurate IBM, as can be confirmed in Fig. 1(b). Note

that with the same transmitter density and interference range, the PRM has lower miss-detection

probability than the IBM; however, better false alarm performance of the IBM leads to less

errors in detecting outage events and therefore higher accuracy index, see Fig. 1(b). The TIM,

not depicted in the figure, has a very high accuracy in all simulations. In particular, with

ε = −130 dB, its accuracy is about 0.99. However, the corresponding TIM considers many

interferers inside an irregular geometrical shape, which substantially decreases the tractability of

the resulting interference model.

Fig. 2 shows the accuracy of the IBM and PRM under Scenario 1 against the average inter-

transmitter distance. Again, we can observe an enhancement in the accuracy of the IBM with

rIBM, whereas the accuracy index of the PRM shows a complicated behavior as a function of

rPRM. By adopting the optimal rPRM that maximizes the accuracy index, as shown in Fig. 2(b),
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Fig. 2: Impact of transmitter density on the accuracy of the interference models under Rayleigh fading channel and omnidirectional

communications. The accuracy of the TIM with ε = −130 dB is higher than 0.98.

we can maintain a good performance for the PRM. Both interference models are very accurate

at extremely dense transmitter deployments. The main reason is the very high interference level

(ξ = Pr
[
γPhyM ≥ β

]
is almost 0 in this case), implying that the accuracy index is determined only

by the miss-detection probability. Increasing the transmitter density through reducing dt decreases

the miss-detection probability for both IBM and PRM, see Fig. 1(a), improving their accuracy.

For ultra sparse transmitter deployments, again, both interference models work accurately, as ξ

goes to 1 in this case and therefore only the false alarm probability determines the accuracy

index. This probability is zero for the IBM, and it gets smaller values (asymptotically zero) for

the PRM with higher dt, see Fig. 1(a). Finally, the TIM with ε = −130 dB, not shown in Fig.2,

has a very high accuracy in modeling the interference. Its accuracy for the same ranges of dt is

higher than 0.98.

Fig. 3 shows the KL divergence of fγIBM(x) from fγPhyM(x) and also their Bhattacharyya distance

for the same setting of Fig. 2(a), where lower values translates into higher accuracy of the IBM.

From this figure, both the KL divergence and the Bhattacharyya distance can identify higher

accuracy of the IBM with rIBM = 60 m. However, they both fail to show that the performance

of IBM with rIBM = 20 m converges to that with rIBM = 60 m once the network gets sparser.

Moreover, calculating these measures entails almost the same mathematical/numerical complexity

as our similarity index. Due to these reasons, we investigate only our accuracy index for the

rest of the paper, though one may incorporate those metrics in our proposed interference model

similarity analysis framework.
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Fig. 4: Impact of the SINR threshold on the accuracy of interference models under Rayleigh fading channel and omnidirectional

communications.

Fig. 4 illustrates the accuracy index against the SINR threshold. Increasing the SINR threshold

generally increases the sensitivity of the interference model to any approximation error in x.

IV. EXAMPLE SCENARIO 2: RAYLEIGH FADING CHANNEL, DIRECTIONALITY, AND

OBSTACLES

In this section, we analyze the accuracy of IBM and PRM in modeling a wireless network with

Rayleigh fading channels, where all transmitters and receivers use directional communications

to boost the link budget and to reduce multiuser interference. We also consider impenetrable
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obstacles. The application areas of this scenario include modeling and performance evaluation

of mmWave networks, where directional communication is inevitable and extreme penetration

loss due to most of the solid materials (e.g., 20–35 dB due to the human body [46]) justifies the

impenetrable obstacle assumption. In Section VI-B, we will comment on the impact of assuming

impenetrable obstacles on the accuracy of the interference model.

Note that the interference is not the primary limitation of mmWave networks specially if we

take an average over all possible realizations of a random topology [4], [41]. However, even

if mmWave networks are noise-limited in a statistical sense (that is, taking an average of the

interference over some time or some topologies), there are significant realizations of network

topologies at given times where some transmitters can cause strong interference. We cannot use

noise-limited arguments, which are valid over some time horizons, when we have to optimize

in real-time resource allocations or routing. In the following two sections, we show that spe-

cial characteristics of mmWave networks, such as blockage and deafness, can be exploited to

substantially simplify the interference model, so as to develop efficient scheduling and routing

algorithms, which may otherwise be impossible. In fact, our results provide, for the first time,

mathematical justifications for the use of simpler interference models in mmWave networks, as

extensively done in the literature [14], [15], [17], [47]–[51].

We assume a homogenous Poisson network of interferers as in Section III. If there is no obstacle

on the link between transmitter i and the typical receiver located at the origin, we say that

transmitter i has line-of-sight (LoS) condition with respect to the typical receiver, otherwise it

is in non-LoS condition. We assume that transmitter of every link is spatially aligned with its

intended receiver, so there is no beam-searching phase [52]. We model the antenna pattern by

an ideal sector model [4], where the antenna gain is a constant in the main lobe and another

smaller constant in the side lobe. We assume the same operating beamwidth θ for all devices

in both transmission and reception modes. Then, the antenna gain for each transmitter/receiver

is [52, Equation (3)]






2π − (2π − θ) z

θ
, inside the main lobe

z, inside the side lobe ,

(15)

where 0 ≤ z ≪ 1 is the side lobe gain. For mathematical tractability, we assume negligible

side lobe gain (i.e., z = 0) throughout this section, and numerically assess the impact of this
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simplification in Section VI-B.

Consider the link between transmitter i and receiver j with distance dij . It is shown that

with a random number of obstacles, each having random location and size, this link is in the

LoS condition with probability e−ǫλodij , where λo is the intensity of the obstacles and ǫ is a

constant value that depends on the average size of obstacles in the environment [53]. Due to

the exponential decrease of the LoS probability with the link length (also see [54, Fig. 4]), very

far interferers are most likely blocked. For mathematical simplicity, we assume independent

LoS conditions among the typical receiver and all other transmitters, and also impenetrable

obstacles. Nonetheless, the following analysis can be extended for more realistic blockage

models, introduced in [41]. Notice that we are using this simplified model to investigate the effects

of directionality and blockage on the accuracy of the interference models and to characterize

fundamental properties of the proposed accuracy index. The exact value of the accuracy index

with a more realistic mmWave channel can be readily numerically calculated under any system

model, as we highlight in the next sections.

To evaluate the accuracy of IBM and PRM, we first notice that an intended transmitter can cause

a significant interference contribution to the typical receiver if: (a) the typical receiver is inside

its main lobe, (b) it has LoS condition with respect to the typical receiver, and (c) it is inside the

main lobe of the typical receiver. Due to random deployment of the transmitters and receivers, the

probability that the typical receiver locates inside the main lobe of a transmitter is θ/2π. More-

over, we have independent LoS events among the typical receiver and individual transmitters.

Therefore, the interferers for which conditions (a)–(b) hold follow an inhomogeneous Poisson

point process I with intensity of λI (r) = λtθe
−ǫλor/2π at radial distance r. Condition (c) reduces

the angular region that a potential interferer should be located to contribute in the interference

observed by the typical receiver. We note that I ∩B(θ, 0, rPRM) is the set of potential interferers

inside the vulnerable region of the PRM, shown by red triangles in Fig. 5, and I∩B(θ, rPRM,∞)

shows the set of potential interferers outside that region, shown by green circles in Fig. 5. Also,

I ∩ B(θ, 0, rIBM) is the set of potential interferers for IBM (near-field interferers).
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Fig. 5: Illustration of the vulnerable area.

A. Impact of Directionality and Blockage

Before deriving the accuracy of IBM and PRM, we first evaluate the impact of directionality

and blockage on the number of the interferers. We define by ΛB(θ,0,R) the measure of the region

B(θ, 0, R), i.e., the average number of interferers inside the region. We have

ΛB(θ,0,R)= θ

∫ R

0

λI(r)r dr=
θ2λt

2πǫ2λ2
o

(

1− (1 + ǫλoR) e−ǫλoR
)

. (16)

Then, for any real R > 0, the number of potential interferer inside the region B(θ, 0, R), denoted

by NB(θ,0,R), is a Poisson random variable with probability mass function

Pr[NB(θ,0,R) = n] = e−ΛB(θ,0,R)

(
ΛB(θ,0,R)

)n

n!
. (17)

Result 4 (Impact of Directionality). Consider (16), and let ǫλo → 0. The average number of

potential interferers converges to

θ2λt

4π
R2 =

(
θ

2π
λt

)(
θ

2
R2

)

. (18)

To interpret Result 4, with no obstacle in the environment (ǫλo → 0), we will have a homogenous

Poisson network of interferers with density λtθ/2π. Therefore, the average number of interferers

over B(θ, 0, R) is the product of the density per unit area and the area of B, which is θR2/2. It can

be concluded that adopting narrower beams reduces the average number of potential interferers

within a certain distance R; however, it still tends to infinity almost surely as R → ∞.

Result 5 (Impact of Blockage). Consider (16), and let R → ∞. The average number of potential

interferers converges to

θ2λt

2πǫ2λ2
o

, (19)

which is less than infinity almost surely if ǫλo > 0.

Result 5 implies that any receiver observes a finite number of potential interferers almost surely if

there is a non-negligible blockage. This unique feature holds for the mmWave bands, as most of
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the obstacles can severely attenuate the signals.5 Therefore, not only the farther transmitters

will contribute less on the aggregated interference (due to higher path-loss), but they will

be also thinned by directionality and blockage such that only a finite number of spatially

close transmitters can cause non-negligible interference to any receiver. Note that, these fewer

interferers may still cause strong interference, if they are located very close to the receiver. The

point is that the thinning process due to directionality and blockage makes the SINR distribution

under PhyM closer to that of the IBM, which considers only the near-field interferers. To elaborate

more, we characterize the average number of far-field interferers in the following.

Proposition 1 (Measure of Far-Field Interferers). Let θ be the operating beamwidth, λt be the

density of the transmitters, λo be the density of the obstacles, and ǫ > 0 be a constant. Then,

the average number of interferers located inside B(θ, R,∞) is

ΛB(θ,R,∞) =
θ2λt

2πǫ2λ2
o

(1 + ǫλoR) e−ǫλoR , (20)

and the probability of having no far-field interferer is

Pr[NB(θ,R,∞) = 0] = e−ΛB(θ,R,∞) . (21)

Proof: To prove, we only need to compute
∫∞

R
θλI (r) r dr, and (20) follows. Moreover, by

substituting ΛB(θ,R,∞) into (17) with n = 0, we conclude (21).

From Proposition 1, the average number of far-field interferers will be decreased exponentially

with distance. Consequently, from (21), the probability of having no far-field interferers increases

exponentially with the distance. Fig. 6 shows the probability of having at least one far-field

interferer as a function of the distance. By defining any arbitrary minimum threshold κ on this

probability, we can find a distance Rκ after which the probability of having far-field interferer(s)

is arbitrarily close to 0 (less than κ). This suggests that by setting rIBM = Rκ, IBM can capture,

at least, (1 − κ) fraction of the total number of interferers for any arbitrary small κ. Recall

that the neglected interferers, if any, are far-field and their contributions to the total interference

term are suppressed by the significant distance-dependent path-loss. All these facts result in the

following conclusion:

5In the conventional microwave systems where the transmission is less sensitive to blockage, the number of potential interferers

is almost surely infinite, as highlighted in Result 4.
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Fig. 6: Probability of having at least one far-field interferer as a function of distance. Simulation parameters are similar to those

of Fig. 1.

Result 6. Directionality and blockage can substantially increase the accuracy of the interference

ball model.

We can argue similar accuracy improvement in the PRM, as we numerically illustrate in the next

subsections.

B. Accuracy of the Interference Ball Model

Assume rIBM ≥ a and d0 ≥ a. Using similar claims as in Section III-A, it is straightforward to

show p
IBM|PhyM
fa = 0. To find the miss-detection probability, in Appendix B, we derive

Pr
[
γIBM < β

]
= 1− exp







− σθ2βdα0
4pcπ2

− θ2

2π
λtEh




(
1− e−βdα0 h

)
(
1− (ǫλoa+ 1) e−ǫλoa

ǫ2λ2
o

)

+

∫ rIBM

a

(

1− e−βdα0 hr
−α
)

e−ǫλorr dr











,

(22)
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and

Pr
[
γPhyM < β

]
= 1− exp







− σθ2βdα0
4pcπ2

− θ2λt

2πǫ2λ2
o

Eh



1− e−βdα0 h
(
1− (ǫλoa+ 1) e−ǫλoa

)

− ǫ2λ2
o

∫ ∞

a

e−βdα0 hr
−α−ǫλorr dr











, (23)

and substitute them into (8). Then, Sβ,ξ (IBM‖PhyM) can be found using (22), (23), (8), and

then (3). Similar to Remark 1, for any 0 ≤ ξ ≤ 1, Sβ,ξ (IBM‖PhyM) → 1 as rIBM → ∞.

C. Accuracy of the Protocol Model

To derive the accuracy of the PRM, we need to derive Pr[γPhyM < β], Pr[γPRM ≤ β] and

Pr[γPhyM < β | γPRM ≥ β], and substitute them into (11) and (12). Pr[γPhyM < β] is derived

in (23).

Event γPRM < β implies that |I ∩ B(θ, 0, rPRM)| ≥ 1, namely there is at least one potential inter-

ferer inside B(θ, 0, rPRM). Considering (17), the probability of this event is Pr[NB(θ,0,rPRM) ≥ 1],

thus

Pr
[
γPRM < β

]
= 1− exp

{

− ΛB(θ,0,rPRM)

}

, (24)

Event γPRM ≥ β implies that there is no interferer inside B(θ, 0, rPRM). Assuming rPRM ≥ a, it

is easy to find Pr[γPhyM < β | γPRM ≥ β]:

Pr[γPhyM < β | γPRM ≥ β] = 1−exp







−σθ2βdα0
4pcπ2

−θ2λt

2π
Eh





∫ ∞

rPRM

(

1− e−βdα0 hr
−α
)

e−ǫλorr dr











.

(25)

Substituting (23)–(25) into (11) and (12) gives the accuracy index of the PRM. Note that Results 2

and 3 hold here.

D. Numerical Illustrations

To numerically illustrate the accuracy index in Scenario 2, we use the same simulation environ-

ment of Section III-C. We independently randomly mark some wireless link to be blocked by

obstacles, with the exponential blockage probability with ǫλo = 0.008 [53]. We then assume

infinite penetration loss for the blocked links, and use the large scale LoS path loss model at
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Fig. 7: Accuracy of IBM and PRM under Rayleigh fading channel and directional communications with obstruction.

28 GHz [2, Table I]. System bandwidth is 1 GHz (noise power σ = −84 dBm). Without loss

of generality, we assume rPRM = 40 m and rIBM = 80 m.

Fig. 7 illustrates the impact of the operating bandwidth and average inter-transmitter distance on

the accuracy index of both IBM and PRM under Scenario 2. As expected, the IBM outperforms

PRM. More importantly, directionality and blockage improve the accuracy of both interference

models. We show in the following section that changing the underlying channel model from a

Rayleigh fading model to a deterministic model further enhances their accuracies. Moreover, the

accuracy of the TIM with ε = −130 dB, not depicted for the sake of clarity in Fig. 7, is nearly

1 in our simulations. Notice that a simplified interference model (e.g., PRM, IBM, or TIM) may

not be of sufficient accuracy for all range of parameters, still it is substantially improved by

directionality and blockage, as highlighted by Results 4–6.

V. EXAMPLE SCENARIO 3: DETERMINISTIC CHANNEL, DIRECTIONALITY, AND OBSTACLES

In this section, we investigate how accurately the IBM and PRM can model a wireless network

with directional communications, blockage, and deterministic wireless channel. The last assump-

tion holds generally in mmWave networks, where sparse scattering characteristic of mmWave

frequencies along with narrow beam operation makes the mmWave channel more deterministic

compared to that of microwave systems with rich scattering environment and omnidirectional

operation [54].
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A. Accuracy of the Interference Ball Model

Again, it is straightforward to show p
IBM|PhyM
fa = 0. However, unlike previous cases, we cannot

derive closed-form expression for the miss-detection probability, and consequently for the ac-

curacy index. In Appendix C, we have derived upper bounds on the miss-detection probability

using the Chernoff bound.

B. Accuracy of the Protocol Model

Again, deterministic wireless channel prohibits deriving closed-form expressions for the false

alarm and miss-detection probabilities. Nevertheless, we can show that both Remarks 2 and 3

holds here. Moreover, we have the following result:

Result 7 (Zero False Alarm Probability). Under the deterministic channel model, the false alarm

probability is zero for any rPRM ≤ ζ−1/α, where

ζ =
d−α
0

β
− σ

pc

(
θ

2π

)2

. (26)

Proof: The SINR that the typical receiver experiences due to transmission of the intended trans-

mitter and an unintended receiver located at distance rPRM is

pc
(
2π
θ

)2
d−α
0

pc
(
2π
θ

)2
r−α
PRM + σ

.

Comparing the SINR expression to β, we get that any interferer located at distance rPRM less

than (

d−α
0

β
− σ

pc

(
θ

2π

)2
)−1/α

= ζ−1/α

can cause packet loss at the typical receiver, namely γPhyM < β. Now, if we consider the general

equation of the false alarm probability, we have

p
PRM|PhyM
fa = Pr

[
γPRM < β | γPhyM ≥ β

]
=

Pr
[
γPRM < β

]
Pr
[
γPhyM ≥ β | γPRM < β

]

1− Pr [γPhyM < β]
.

For rPRM ≤ ζ−1/α, Pr
[
γPhyM ≥ β | γPRM < β

]
= 0; since event γPRM < β implies that there is

at least one interferer inside B(θ, 0, rPRM). This interferer ensures γPhyM < β, so p
PRM|PhyM
fa = 0

for rPRM ≤ ζ−1/α.

The following proposition characterizes bounds for the accuracy index for the Example Scenario 3

(mmWave networks):

Proposition 2. For ξ = Pr
[
γPhyM ≥ β

]
and any 0 < rPRM ≤ ζ−1/α, we have

Pr
[
γPRM < β

]
≤ Sβ,ξ (PRM‖PhyM) ≤ 1 ,
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where Pr
[
γPRM < β

]
is given in (24).

We have provided a proof for this proposition along with other bounds in Appendix C. We have

the following scaling law results:

Result 8 (Scaling laws for the PRM). The following scaling laws are implied by Proposition 2

and inequality ex ≥ 1 + x for any x ≥ 0:

• Scaling with θ: For any constant rPRM no larger than ζ−1/α, limθ→0 Sβ,ξ (PRM‖PhyM) ≥
1− e−θ2C , for some constant C ≥ 0.

• Scaling with λt: For any constant rPRM no larger than ζ−1/α, limλt→∞ Sβ,ξ (PRM‖PhyM) ≥
1− e−λtC for some constant C ≥ 0.

• Scaling with λo: For any constant rPRM no larger than ζ−1/α, limλo→0 Sβ,ξ (PRM‖PhyM) ≥
1 − exp{−C} for some constant C ≥ 0, and limλo→∞ Sβ,ξ (PRM‖PhyM) ≥ 1 − e−λ−2

o D

for some constant D ≥ 0.

Due to lack of space and complexity of the analysis, we leave scaling laws of the IBM for a

future publication. In Appendix C, we have used the Chernoff bound to bound Pr
[
γPRM < β

]
,

which is the first step to derive scaling laws for the IBM.

C. Numerical Illustrations

Using similar setting as in Section IV-D, Fig. 8 shows the accuracy index of both IBM and PRM

under Scenario 3 against dt. Comparing this figure to Fig. 7, we observe that directionality and

blockage can further boost the accuracy index when we have a deterministic wireless channel.

Surprisingly, the PRM is accurate enough to motivate adopting this model to analyze and design

of mmWave networks instead of the PhyM, TIM, and even IBM. For relatively pencil-beams (e.g.,

θ = 10 ∼ 20◦), which may be used in wireless backhauling applications, the accuracy of the

PRM in detecting outage events is almost 1 in all our simulations. Compared to the PRM,

the PhyM and IBM respectively have less than 5% and 2% higher accuracy in modeling the

interference and detecting the outage events, but with substantially higher complexities. These

complexities often result in limited (mostly intractable) mathematical analysis and little insight.

More interestingly, the relative difference between the average rate of the typical link computed

by the PRM and that of computed by the PhyM, namely E[log2(1+ γx)] and E[log2(1+ γy)] is
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Fig. 8: Accuracy of IBM and PRM under deterministic channel and directional communications. rPRM = ζ−1/α where ζ is

given in (26), and rIBM = 2rPRM. The relative difference between the average per-user rate computed by the PRM and that of

computed by the PhyM is less than 0.002%.

less than 0.002%, implying the accuracy of the simple PRM to analyze long-term performance

metrics (such as throughput and delay).

Fig. 8 together with Results 4-7 support the validity of the previously proposed pseudo-wired

model [14], at least for sparse networks like mmWave mesh networks [55]. This highlights

the importance of having quantitative (not only qualitative) insight of the accuracy of different

interference models we may face in different wireless networks. Thereby, we can adopt a simple

yet accurate enough model for link-level and system-level performance analysis.

So far, we have observed how we can simplify the set of dominant interferers and how much

accuracy loss they entail under three network scenarios. Besides the set of interferers I, com-

puting the SINR expression requires modeling the wireless channel and the antenna patterns.

More accurate models generally reduce tractability of the SINR expression and therefore the

interference model. In the next section, we analyze the possibility of adopting simple models

for the wireless channel and for the antenna pattern.

VI. EXAMPLE SCENARIO 4: IMPACT OF OTHER COMPONENTS OF THE SINR EXPRESSION

In this section, we analyze the accuracy loss due to simplifying wireless channel model and

antenna pattern of the SINR expression. In particular, we use the proposed accuracy index to

investigate the feasibility of modeling a random fading channel with a constant value without

affecting the long-term performance of the real system (with random fading). The importance
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Fig. 9: Impact of modeling a fading channel by a deterministic one on the accuracy of the resulting interference model (dt =

80 m).

of this scenario is due to that numerous studies develop protocols and optimize the network

based on deterministic wireless channels, yet no study focuses on the accuracy and validity of

this underlying model. In the following, we comment on what this deterministic channel gain

should be to maximize its similarity to the actual random wireless channel. We then use the

proposed accuracy index to assess the impact of neglecting the reflections, assuming impenetrable

obstacles, and neglecting sidelobe gain of the directional antenna on the accuracy of the resulting

interference model. We consider the PhyM for both x and y throughout this section.

A. Approximating a Fading Channel with a Deterministic One

To design many protocols for wireless networks (such as power control, scheduling, and routing),

it is often preferable to use deterministic channel gains that depend only on the distance among

the transmitters and receivers [14], [17], [36]–[38]. In this subsection, we investigate the accuracy

of approximating the fading gain between transmitter i and the reference receiver (hi) in y

by a deterministic value c0 in x. After this approximation, the channel gain in x becomes

gCh
i = ac0d

−α
i , and all other parameters of x are identical to those of y. For sake of simplicity,

we consider omnidirectional communications without blockage, as in Section III.

Using the same simulation setup as of Section III, we numerically find c0 in x that gives the

highest similarity between x and y, averaged over all β ∈ [0, 10] dB. Fig. 9 shows the accuracy

index, obtained by the optimal c0, for Rayleigh and Nakagami fading. Moreover, we report in
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TABLE I: Accuracy of the mathematical analysis when we replace fading channels with a deterministic one (dt = 80 m). “AI”

refers to our accuracy index, shown also in Fig. 9. “BC” refers to the Bhattacharyya coefficient of the SINR distributions of x

and y, and “TD” refers to the deviation of the throughput obtained by interference model x from that of y.

Fading type α = 2 α = 3 α = 4 α = 5

Rayleigh

AI 0.68 0.881 0.939 0.956

BC 0.275 0.048 0.014 0.005

TD 13% 9.3% 6.7% 4.5%

Nakagami (m = 3)

AI 0.951 0.985 0.995 0.998

BC 0.01 0.004 0.003 0.002

TD 5.8% 4.1% 3.2% 2%

Nakagami (m = 9)

AI 0.997 0.9991 0.9996 0.9999

BC 0.001 0.0008 0.0006 0.0003

TD 1.4% 1% 0.7% 0.3%

Table I the Bhattacharyya coefficient between SINR distribution of x and that of y, and also the

relative difference in corresponding average throughput. From Fig. 9 and Table I, interference

model x (with deterministic channel) becomes more similar to y (with fading channel) as

the path-loss index grows. This higher similarity manifests itself in higher accuracy indices,

in lower Bhattacharyya coefficients, and also in lower errors in the rate analysis. Moreover,

approximating a random wireless channel gain with Rayleigh fading and a small path-loss index

(outdoor environment) by a constant value6 may lead to a non-negligible inaccuracy in the final

throughput analysis (up to 13% error in our example). However, a Nakagami-m fading channel

with high m can be well approximated by a deterministic channel gain, substantially simplifying

the mathematical analysis and protocol development. The error due to this approximation will

be reduced with m. To highlight the importance of this observation, we note that the directional

communications will be largely applied in future wireless networks [56]. Therefore, wireless

networks with Nakagami-m fading channels will play a major role in future of wireless networks.

For mmWave communications, for instance, we are already using narrow beams [3], [55], which

result in high m in the corresponding Nakagami-m fading channel. The following conjecture

states how we can approximate a Nakagami-m fading channel by a deterministic channel gain.

Conjecture 1. Consider a 2D network. Assume that the wireless channel attenuation consists of

a constant attenuation at a reference distance, a distance-dependent attenuation with path-loss

6We observed in our simulations that c0 = Eh[h
2/α] = Γ(1+ 2/α) is roughly the optimal constant that provides the highest

similarity index in Rayleigh fading channel. Notice that it is 2/α-th moment of random variable h.
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index α, and a random fading h. If h has a Nakagami-m distribution with m ≥ 3, the wireless

channel can be well approximated by a deterministic LoS channel without significant drop in

the accuracy of the resulting interference model or in the analysis of the ergodic performance

metrics such as spectral efficiency, energy efficiency, throughput, and delay. If h has Rayleigh

fading distribution, replacing h by its 2/α-th moment, namely Eh[h
2/α], results in sufficiently

accurate analysis of the ergodic performance metrics.

In the following, we further exemplify the proposed index to investigate the accuracy drop due

to simplifying other parameters of the SINR expression.

B. Other Components of the SINR

In this subsection, we focus on mmWave networks and propose a very simple yet accurate

interference model. In particular, we consider a PRM wherein we assume that i) obstacles are

impenetrable, ii) there is no reflection, and iii) there is no sidelobe transmissions/receptions. Al-

though these assumptions do not generally hold in practice, we show that this simple interference

model can be very accurate abstraction of real mmWave networks. Previously, references [14],

[38] used this interference model for performance evaluation and protocol development for

mmWave networks. Therefore, the discussions of this subsection are a complementary study

of those works.

We consider a random number of obstacles in the environment each with penetration loss lo.

The obstacles are assumed to have rectangular shape whose centers follow a spatial Poisson

distribution with density λo on the plane, independent of the Poisson process of the interferers.

To each rectangle, we associate a random width that is independently uniformly taken from

[0, 4] meters, a random length that is independently uniformly taken from [0, 3] meters, and

a random orientation that is independently uniformly taken from [0, 2π]. The obstacles can

represent small buildings, human bodies, and cars. We independently randomly mark some

obstacles to be reflectors with coefficient r ≤ 1. Without loss of generality, we mark the obstacles

as reflectors with probability 0.1. We also assume that the links can be established either by

the direct path or by a first-order reflected path. We consider a large scale path loss model at

28 GHz [2], which consists of a constant attenuation, a distance dependent attenuation, and a

large scale log-normal fading. Besides these attenuation sources, we consider the penetration
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TABLE II: Effects of assuming infinite penetration loss, no reflection, and no sidelobe gain on the accuracy of the resulting

interference model. The shown parameters are for reference model y. SINR threshold is β = 5 dB. dt = 1/
√

λt and do = 1/
√

λo.

Experiment lo r z θ dt do Accuracy

1 10 0.63 -10 20◦ 50 20 0.9998

2 10 0.74 -10 40◦ 30 20 0.9992

3 20 0.9 -10 40◦ 50 50 0.9993

4 10 0.74 -10 20◦ 50 50 0.9614

5 20 0.74 -10 20◦ 30 50 0.9856

6 20 0.74 -10 20◦ 30 20 0.9588

7 15 0.74 -5 20◦ 50 20 0.9235

8 15 0.74 -5 20◦ 20 50 0.7090

9 15 0.74 -10 40◦ 30 20 0.9311

10 25 0.9 -10 10◦ 30 30 0.8810

11 15 0.63 -15 30◦ 50 50 0.9473

12 15 0.74 -10 20◦ 100 50 0.9718

and reflection losses. Consider path k between transmitter i and the reference receiver. Let dik

be the distance of this path (path length), nk be the number of obstacles in this path, lo be the

penetration loss due to any obstacle in dB, and lr = −10 log(r) be the reflection loss in dB. Let

1k denote an indicator function that takes 1 if path k contains a reflector, otherwise 0. Then,

the channel gain in k-th path between transmitter i and the reference receiver is modelled as

gCh
ik [dB] = −61.4− 20 log(dik) + 1k10 log(r)− njlo −X , (27)

where X is a zero mean i.i.d. Gaussian random variable with standard deviation 5.8 [2]. Note

that the atmospheric absorbtion is almost negligible (0.15 dB/Km) at the 28 GHz [46]. Moreover,

changing the carrier frequency will change the parameters of channel model (27), without

affecting the generality of the results of this subsection. Again, we consider ideal sector antenna

pattern, formulated in (15), at all transmitters and receivers.

We consider a realistic reference physical model y with finite penetration loss (lo < ∞), first-order

reflections (r > 0), and non-zero antenna side lobe (z > 0). We execute several experiments in

which we change the type of the reflectors, type of obstacles, side lobe gain, operating beamwidth,

and the average number of interferers and obstacles. We execute four sets of experiments. For

each experiment, we compute the average accuracy index over 105 random topologies and report

the result in Table II.

Effects of no reflection assumption: In the first set of experiments (1–3), we consider three

materials for the reflectors: drywall with reflection coefficient 0.63, clear glass with reflection
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coefficient 0.74, and the tinted glass with reflection coefficient 0.9 [57]. All parameters of

interference models x and y are similar (reported in the table), except that r = 0 in x. From

Table II, the accuracy index is near 1 for all scenarios. The accuracy marginally decreases with

the density of the transmitters, yet it is high enough for typical transmitter densities (dt > 30 m in

downlink cellular networks). Increasing the operating beamwidth has similar effect as increasing

the transmitter densities.

Effects of infinite penetration loss assumption: In the second set of experiments (4–7), we

consider different penetration losses for the obstacles. All parameters of x and y are similar

(reported in the table), except that lo = ∞ in x. From the table, the accuracy index reduces

with the density of the obstacles, as more obstacles correspond to higher source of errors in x.

Moreover, the assumption of impenetrable obstacles is more accurate for higher penetration loss

values. Moreover, denser mmWave networks (dt = 30) are less sensitive to assuming infinite

penetration loss. The main reason is that densifying the network increases the probability of

having interferers with LoS condition to the reference receiver. The contribution of those non-

blocked interferers in the aggregated interference term dominate that of blocked interferers.

Effects of no side lobe gains assumption: In the third set of experiments (7–9), we investigate

the impact of neglecting antenna side lobes z in interference model x. All parameters of x and y

are similar (reported in the table), except that z = 0 in x. Expectedly, neglecting higher z lowers

the accuracy of x, and this error increases also with the number of interferers in the network.

Unlike the previous parameters, neglecting side lobe gain may lead to a large deviation of x from

y. From the numerical results, not shown in this paper due to the space limitations, if we have

either a typical dense network 7 with dt = 30 or enough side lobe suppression (at least 10 dB),

we are safe to ignore side lobe gains from the interference model. Increasing the operating

beamwidth increases the chance of observing an aligned interferer (which contributes in the

link budget with its main lobe gain). As such interferers have dominant role in the aggregated

interference term, increasing the operating beamwidth can improve the accuracy of x.

Joint effects of all parameters: In the last set of experiments (10–12), we analyze joint effects of

7Note that using scheduling, we can reduce mutual interference by controlling the number of simultaneous active transmitters.

Therefore, the number of transmitters in the environment is not necessarily equal to the number of interferers; rather, it is usually

much higher than that.
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all those parameters by considering infinite penetration loss, zero reflection coefficient, and zero

side lobe gain in x. Other parameters of x are similar to those of y, reported in Table II. From

the results, our simple interference model x is sufficiently accurate for typical mmWave network

scenarios. On the negative side, larger number of interferers magnifies the small error due to

neglecting antenna side lobes. This magnified error together with other approximations leads

to 12% error in detecting outage event by the simplified interference model in Experiment 10.

On the positive side, this higher transmitter density reduces the error due to both neglecting

reflection and assuming impenetrable obstacles.

VII. FUTURE DIRECTIONS

Throughout this paper, we highlighted the tradeoff between the accuracy and mathematical

tractability of the interference models, and exemplified the use of our accuracy index to opti-

mize such tradeoff for different wireless network scenarios, with specific reference to mmWave

networks. Although we have simplified system models of the examples to avoid unnecessary

complications, our index poses no limitation to these example scenarios. We have recently

used this index to assess the accuracy of a simple interference model for a mmWave cellular

network [45]. Two future directions can be envisioned from this paper.

First, one may use our accuracy index to simplify the existing and develop new interference

models for various network settings. In particular, illustrative examples of this paper were

more suitable for ad hoc networks, and evaluating the generality of the resulting insights is

an interesting future research line. Moreover, our proposed index can be used to assess the

accuracy of different blockage models like one-ball [53], two-ball [4], cone [41], and queue-

based models [58] and even develop novel accurate yet tractable models.

Second, we can extend the index itself. In this paper, we have defined the similarity index for any

interference model x based on its ability to correctly predict the outage events; see Definition 1.

To generalize our approach, one may aim at measuring the similarity based on any other functions

of SNIR. For example, given some alternatives for one function inside SINR (e.g., different set

of interferers or different antenna models), one may use an extension of our approach to identify

which of them better balances the accuracy-complexity tradeoff for a throughput/delay analysis.
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VIII. CONCLUSION

We developed a new mathematical framework to address very fundamental questions in analysis

and design of wireless networks: how accurate different interference models are and how to select

the right one. We proposed a new accuracy index that quantifies the ability of any interference

model in correctly predicting outage events, under any network setting. We analytically and

numerically illustrated the use of our index via many example scenarios. In particular, we

evaluated the accuracy of the prominent techniques that model the set of dominant interferers.

We then showed that directional antenna and obstructions (basic characteristics of mmWave

networks) substantially enhance the accuracy of any interference model, making the simple

classical protocol model accurate enough for analysis and optimization of such networks. Fur-

thermore, we measured the accuracy of approximating a random fading wireless channel with

a deterministic channel. We conjectured that a Nakagami-m fading channels with m ≥ 3 can

be well approximated by a deterministic value without introducing a significant gap in the

ergodic performance metrics (e.g., throughput and delay); whereas, such gap is generally non-

negligible under Rayleigh fading channels. Finally, we showed surprisingly high accuracy of a

simple interference model that assumes (i) infinite penetration loss, (ii) no reflection, and (iii)

no antenna side lobes in modeling a typical mmWave network where none of those assumptions

hold.

APPENDIX A: DERIVING COMPONENTS OF EXAMPLE SCENARIO 1

A. The Interference Ball Model

Let Ex denote expectation over random variable x. From (5) and (6),

Pr
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= 1− exp
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From probability generating functionals, we have
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2/α Γ

(

1− 2

α
, βdα0ha

−α

)










,

(29)

where Γ (·, ·) is the incomplete Gamma function, (⋆) is derived using integration by parts, and

probability density function of h is fh(x) = e−x. To find Pr
[
γPhyM < β

]
, we only need to

evaluate Pr
[
γIBM < β

]
at rIBM → ∞, that is,

Pr
[
γPhyM < β

]
= lim

rIBM→∞
Pr
[
γIBM < β

]
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= 1− exp







− σβdα0
pc

− πλtEh



a2
(
1− e−βdα0 h

)
− a2
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1− 2

α

)

− (βdα0h)
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(

1− 2

α
, βdα0ha

−α

)










,

(30)

where Γ (·) is the Gamma function.

B. The Protocol Model

Event γPRM ≥ β implies that there is no interferer inside B(2π, 0, rPRM). Assuming rPRM ≥ a

and d0 ≥ a, and following similar steps as in (28) and (29), we have

Pr[γPhyM < β | γPRM ≥ β] = 1− exp







− 2πλtEh





∫ ∞

0

1B(2π,rPRM,∞)

(

1− e−βdα0 hr
−α1

B(2π,0,a)
)

r dr





− σβdα0
pc







= 1− exp







−σβdα0
pc

− 2πλtEh





∫ ∞

rPRM

(

1− e−βdα0 hr
−α
)

r dr











= 1− exp







−σβdα0
pc

− πλtEh



− r2PRM

(

1− e−βdα0 hr
−α
PRM

)

+ (βdα0h)
2/α Γ
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1− 2

α

)

− (βdα0h)
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(

1− 2

α
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−α
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)










.

(31)
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APPENDIX B: DERIVING COMPONENTS OF EXAMPLE SCENARIO 2

A. The Interference Ball Model

We have

Pr
[
γIBM < β

]
= Pr







p
(
2π
θ

)2
ch0d

−α
0

∑

k∈I∩B(θ,0,rIBM)

p
(
2π
θ

)2
chkd

−α1
B(2π,0,a)

k + σ
< β







= 1− EI,h



exp






−




∑

k∈I∩B(θ,0,rIBM)

hkd
−α1

B(2π,0,a)

k +
σθ2

4pcπ2



 βdα0











= 1− exp

{

−σθ2βdα0
4pcπ2

}

EI




∏

k∈I∩B(θ,0,rIBM)

Eh

[

exp
{

−βdα0hkd
−α1

B(2π,0,a)

k

}]




︸ ︷︷ ︸

B

,

(32)

where

B = exp







−
∫ ∞

0

1B(θ,0,rIBM)

(

1− Eh

[

e−βdα0 hr
−α1

B(2π,0,a)
])

θλI(r)r dr






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2π
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(
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−α1
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)
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
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
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= exp
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(
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+

∫ rIBM
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(
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−α
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e−ǫλorr dr






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

.

(33)

Also, we have

Pr
[
γPhyM < β

]
= lim

rIBM→∞
Pr
[
γIBM < β

]

= 1− exp







− σθ2βdα0
4pcπ2

− θ2λt

2πǫ2λ2
o

Eh



1− e−βdα0 h
(
1− (ǫλoa+ 1) e−ǫλoa

)
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− ǫ2λ2
o

∫ ∞

a

e−βdα0 hr
−α−ǫλorr dr











.

(34)

B. The Protocol Model

We have

Pr[γPhyM < β | γPRM ≥ β] = 1− exp







−Eh



θ

∫ ∞

0

1B(θ,rPRM,∞)

(

1− e−βdα0 hr
−α1

B(2π,0,a)
)

λI(r)r dr


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4pcπ2


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= 1− exp
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(35)

APPENDIX C: DERIVING BOUNDS FOR EXAMPLE SCENARIO 3

In this appendix, we derive bounds on the miss-detection probability in Example Scenario 3.

A. The Interference Ball Model

To derive an upper bound on the miss-detection probability, we substitute a lower bound of

Pr
[
γIBM < β

]
and upper bound of Pr

[
γPhyM < β

]
into (8) of the main manuscript. Recall the

definition of ζ in (26). For any real positive τ ,

Pr
[
γIBM < β

] (⋆)
= Pr

[
∑

k∈I

d
−α1

B(2π,0,a)

k 1B(θ,0,rIBM) > ζ

]

= 1− Pr

[
∑

k∈I

d
−α1

B(2π,0,a)

k 1B(θ,0,rIBM) ≤ ζ

]

(⋆⋆)

≥ 1− inf
τ>0

eτζ EI



 exp

{

−τ
∑

k∈I

d
−α1

B(2π,0,a)

k 1B(θ,0,rIBM)

}



︸ ︷︷ ︸

C

. (36)

where (⋆) is due to (6) in the main manuscript, and (⋆⋆) follows from the Chernoff bound and

the probability generating functionals.

C = exp






− θ

∫ rIBM

0

(

1− e−τr
−α1

B(2π,0,a)
)

λI(r)r dr






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= exp







− θ2

2π
λt




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0

(
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)
re−ǫλor dr +
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






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= exp
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− θ2λt

2π




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o
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a
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dr











. (37)

Using similar technique, we use the Chernoff bound to find exponentially decreasing bound on

the tail distribution of γPhyM as

Pr
[
γPhyM < β

]
= Pr

[
∑

k∈I

d
−α1

B(2π,0,a)

k 1B(θ,0,∞) > ζ

]

≤ inf
τ>0

e−τζ
EI



 exp

{

τ
∑

k∈I

d
−α1

B(2π,0,a)

k 1B(θ,0,∞)
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τ>0

exp
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− τζ − θ2λt

2π




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−ǫλoa+τ

ǫ2λ2
o

−
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a
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









.

(38)

Note that bounds (36) and (38) are derived using the Chernoff bound. However, easier but looser

bounds can be found using Markov and Chebyshev inequalities. These bounds can be readily

derived by direct application of the Campbell’s Theorem [25].

B. The Protocol Model

We can also find bounds and scaling laws for the accuracy index of the PRM in Example Sce-

nario 3. To this end, we use the following proposition:

Proposition 3. For ξ = Pr
[
γPhyM ≥ β

]
, we have

max
(
Pr
[
γIBM < β

]
,Pr

[
γPhyM ≥ β

])
≤ Sβ,ξ (IBM‖PhyM) ≤ 1 . (39)

Also, for any 0 < rPRM ≤ ζ−1/α where ζ is defined in (26) of the manuscript we have

max
(
Pr
[
γPRM < β

]
,Pr

[
γPhyM ≥ β

])
≤ Sβ,ξ (PRM‖PhyM) ≤ 1 , (40)
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where

Pr
[
γPRM < β

]
= 1− exp

{

− θ2λt

2πǫ2λ2
o

(

1− (1 + ǫλorPRM) e
−ǫλorPRM

)}

.

Proof: For the IBM, the upper bound is trivial. To derive the lower bound, from (3) of the

manuscript we have

Sβ,ξ (IBM‖PhyM) = 1− ξp
IBM|PhyM
fa − (1− ξ) p

IBM|PhyM
md

(⋆)
= 1− (1− ξ) p

IBM|PhyM
md

(⋆⋆)
= Pr

[
γPhyM ≥ β

]
+ Pr

[
γIBM < β

]
, (41)

where (⋆) is because p
IBM|PhyM
fa = 0 for any rIBM ≥ 0, and (⋆⋆) is due to (8) of the manuscript.

Then, (39) follows.

To derive the lower bound of the PRM, we first note that Pr
[
γPhyM < β | γPRM ≥ β

]
≤ Pr

[
γPhyM < β

]

for any rPRM > 0. Therefore, from (12) of the manuscript,

p
PRM|PhyM
md ≤ 1− Pr

[
γPRM < β

]
= exp

{

− θ2λt

2πǫ2λ2
o

(

1− (1 + ǫλorPRM) e
−ǫλorPRM

)}

. (42)

Then, from (3) we have

Sβ,ξ (PRM‖PhyM) = 1− ξp
PRM|PhyM
fa − (1− ξ) p

PRM|PhyM
md

(⋆)
= 1− (1− ξ) p

PRM|PhyM
md

≥ 1− p
PRM|PhyM
md

(⋆⋆)

≥ Pr
[
γPRM < β

]
= 1− exp

{

− θ2λt

2πǫ2λ2
o

(

1− (1 + ǫλorPRM) e
−ǫλorPRM

)}

,

(43)

where (⋆) is because p
PRM|PhyM
fa = 0 for any rPRM ≤ ζ−1/α where ζ is defined in Eqn. (27) of

the manuscript (see Result 7 of the manuscript), and (⋆⋆) is due to Eqn (42). Moreover,

Sβ,ξ (PRM‖PhyM) = 1− (1− ξ) p
PRM|PhyM
md

(⋆)
= 1− Pr

[
γPRM ≥ β

]
Pr
[
γPhyM < β | γPRM ≥ β

]

≥ 1− Pr
[
γPhyM < β | γPRM ≥ β

]

≥ 1− Pr
[
γPhyM < β

]
, (44)

where (⋆) is from (12). Combining (43) and (44) results in (40).
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