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Abstract Two intramolecular interactions, i.e., (1) hydro-
gen bond and (2) substituent effect, were analyzed and
compared. For this purpose, the geometry of 4- and 5-X-
substituted salicylaldehyde derivatives (X=NO2, H or OH)
was optimized by means of B3LYP/6-311+G(d,p) and
MP2/aug-cc-pVDZ methods. The results obtained allowed
us to show that substituents (NO2 or OH) in the para or
meta position with respect to either OH or CHO in H-
bonded systems interact more strongly than in the case of
di-substituted species: 4- and 3-nitrophenol or 4- and 3-
hydroxybenzaldehyde by ∼31%. The substituent effect due
to the intramolecular charge transfer from the para-counter
substituent (NO2) to the proton-donating group (OH) is
∼35% greater than for the interaction of para-OH with the
proton-accepting group (CHO). The total energy of H-
bonding for salicylaldehyde, and its derivatives, is com-
posed of two contributions: ∼80% from the energy of H-

bond formation and ∼20% from the energy associated with
reorganization of the electron structure of the systems in
question.

Keywords Intramolecular hydrogen bond . H-bond
energy . Homodesmotic reaction . DFT.MP2 . SESE

Introduction

Salicylaldehyde is a compound with well-recognized
significance in many branches of chemistry. It undergoes
a variety of chemical reactions, very often being a key
precursor for new compounds exhibiting diverse molecular
structures and properties [1–3]. It is worth mentioning that
the salicylaldehyde moiety appears in many compounds
exhibiting various biological activity, including reactants
used in the design of new inhibitors of HIV-1 integrase [4],
or compounds exhibiting antiviral activity [5], as well as in
reactions resulting in new compounds with anticancer [6, 7]
or antimicrobial activity [8]. It is also present during the
synthesis of new products called “aspirin-like molecules”
exhibiting anti-inflammatory activity [9]. In addition to its
presence in many chemical reactions, salicylaldehyde has
also found applications in molecular engineering [10].

Salicylaldehyde is also an interesting subject for various
physico-chemical investigations; because it has four iso-
mers, and due to internal reorganization, it can have more
than one different hydrogen-bonded conformer [11]. The
possible conformations of salicylaldehyde and hydrogen-
bonded conformers are presented in Scheme 1.

The intramolecular hydrogen bond, spectroscopic signa-
tures and geometric parameters of this compound have been
of interest for the last several years. Many experimental as
well as theoretical works on these issues have been
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performed [12–19]. The intramolecular hydrogen bond
present in salicylaldehyde can be classified as a resonance
assisted hydrogen bond (RAHB) according to Gilli’s
concept [20]. The intramolecular hydrogen bond is of great
importance in various aspects of chemistry, biology, and
material science, as has been shown in selected examples
[21–29]. An effort to understand and describe H-bonding
can be observed in the literature, but there are still open
questions related to the proton transfer phenomenon or the
strength of the interaction, as well as environmental
influences on it [30, 31]. The steric and inductive effects
introduced by substituents can influence the strength of the
intramolecular hydrogen bond significantly [32–40]. In the
literature, one can find many papers dealing with the
relationship between substituent effects and intramolecular
H-bonding for acyclic systems [41, 42]. A very convenient
system, malonaldehyde, has been used as a model for many
studies [43–47]. One main conclusion from these studies is
that the H-bond strength and π-electron delocalization in
the OCCCO link in these systems depend on the type of
substituent. All observed changes in the model systems are
in agreement with Gilli’s concept of RAHB [20, 48–50];
for further reading and review see [51, 52]. Concerning the
intermolecular H-bond of para-substituted phenol/phenolate
[53–55] or para-substituted aniline/anilide [56], the H-
bonding and π-electron delocalization in the ring depend
significantly on the kind of substituent.

In the study, we focus on salicylaldehyde and its
derivatives presented in Scheme 2. The choice of these
compounds was governed by substituent character (electron
accepting or donating) and its position with respect to CHO
and OH groups; it is always a para position with respect to
one of them. Salicylaldehyde was used mostly as a
reference structure to investigate changes in the molecular
structure upon benzene ring substitution as well as changes
in the intramolecular hydrogen bond strength.

It is worth mentioning that estimating intramolecular
H-bond energy is not an easy task due to the possible
implications of internal reorganization of bonds or steric
effects. Recent decades have seen increased interest in
this problem. Various approaches have been introduced
to handle the issue. Here, a few of these are briefly
reported.

Let us start with a short overview of the simplest method
based on conformational analysis—the cis-trans method. In
this method, the intramolecular hydrogen bond energy is
calculated as the difference between the cis and trans
conformers—with and without interaction by H-bonding.
Another approach is the so-called ortho-para method, which
is restricted to aromatic compounds where the hydrogen
bond is present in two ortho substituents [57]. Cuma et al.
[16, 58] calculated the H-bond energy as the energy
required to rotate the bridged hydrogen 180° from its
equilibrium position around the appropriate C–O single
bond. Based on this method, Grabowski [43] distinguished
two components that comprise the strength of the intramo-
lecular interaction: “pure” H-bond energy and delocaliza-
tion energy. The so-called “theoretical“ energy (ΔET) was
calculated using a thermodynamic cycle, which describes
the partition of the intramolecular hydrogen bond energy.
This approach is described in [59]. Another briefly reported
approach is based on the approximate isolation of the
energy contribution that occurs upon the transition from
one structure to other conformers of the studied molecule.
The estimated energy is thus associated strictly with
changes in geometric parameters (bonds and valence
angles). The method is restricted to molecules with a
suitable number of conformers of specific form [60].
Another way to estimate intramolecular H-bond energy is
the “Molecular Tailoring Approach” proposed by Desh-
mukh et al. [61] This method is based on compound
partitioning and energy estimation of appropriate frag-
ments, which yields the intramolecular hydrogen bond
energy. The last reported approach here is based on a
hydrogen bond making/breaking reaction. Isodesmotic/
homodesmotic reactions are written in such a way that the
number and type of bonds on both sides (reactants/
products) is equal [62, 63]. Therefore, it is possible to
estimate the stabilization energy.

The main goal of the current study was to investigate
how the substituent effect acts on π-electron delocalization
and H-bond strength in the case of aromatic systems with
intramolecular H-bonding, i.e., salicylaldehyde and its
derivatives, based on energetic characteristics. Another
problem discussed is associated with the fact that, as a
result of intramolecular H-bond formation, the proton
donating group increases its electron donating power, and
the proton accepting group increases its electron accepting
power [47, 64]. A question arises: how does this effect
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Scheme 1 Possible conformations of salicylaldehyde (taken from
[11]). Dashed line Intramolecular hydrogen bond
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affect relations between substituent and H-bonding in the
studied systems?

It should be stressed that both interactions, i.e., (1) H-
bonding and (2) substituent effect, are intramolecular in
nature. Therefore another question arises: do they cooperate
or act in opposite directions?

Computational methodology

The energy minimization of the studied set of compounds
(see Scheme 2a,b; and Schemes 3, 4, 5, 6 and 7 for mono-
and di-substituted benzene derivatives) was performed
using density functional theory (DFT) [65, 66] and the
second-order Møller-Plesset perturbation (MP2) method
[67]. For DFT calculations, 6-311+G(d,p) basis sets were
used [68], whereas MP2 simulations were performed using
the aug-cc-pVDZ basis set [69]. Concerning the DFT
method, the three parameter hybrid functional proposed
by Becke [70] with correlation energy according to the Lee-
Yang-Parr formula [71], denoted as B3LYP, was employed.

Subsequently, harmonic frequencies were calculated to
confirm that the geometries obtained correspond to the
minimum on the potential energy surface (PES). Next,
single point calculations were performed to build up an
additional set of close conformers, with the intramolecular
hydrogen bond using open structures (without H-bond) and
rotation of the O–H bond 180° around the C–O single
bond.

The estimation of the overall energy (Etot) associated
with the intramolecular H-bond formation was computed
using the so-called cis-trans method, for details see
Reference [72], as described below:

Etot ¼ E closed conformationð Þ � E open conformationð Þ
ð1Þ

where Etot indicates the total energy of the intramolecular
hydrogen bond, whereas E(closed conformation) and E
(open conformation) are the energies obtained after the
geometry optimization procedures for closed and open
conformations.
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Scheme 3 Homodesmotic reactions (1) for closed and open con-
formations of 4- and 5-X substituted salicylaldehydes; X=NO2 or OH
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Scheme 2a,b Structures of stud-
ied compounds: I Salicylalde-
hyde, II 4-nitro-salicylaldehyde,
III 4-hydroxy-salicylaldehyde, IV
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hydroxy-salicylaldehyde respec-
tively. a Salicylaldehyde and its
derivatives containing the
intramolecular hydrogen bonds
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Two homodesmotic reaction schemes presented in
Schemes 4 or 5 allow us to estimate the overall energy
associated with intramolecular H-bond formation:

Etot ¼ SESE IIð Þ � SESE Ið Þ ð2Þ
It is noteworthy that the final expression of the total

energy, Etot, could be transformed into the form of Eq. 1. In
the case of substituted derivatives of salicylicaldehyde, the
two homodesmotic reaction schemes presented in
Schemes 4 and 5 can be proposed. These reactions differ
in products only, but this leads to a change of meaning in
their substituent effect stabilization energy (SESE) value.

Following Grabowski’s method [43, 45], the “pure”
energy of H-bonding, EHB, can be obtained as:

EHB ¼ E open conformation�O H rotated 180�ð Þ
� E open conformation; optimizedð Þ ð3Þ

where E(open conformation_O-H rotated 180°) means the
energy of the single point calculation for the closed
conformer formed from that obtained from the open one
after the rotation of O–H around the C–O single bond. The
difference between the total and above energies is the
energy due to the changes in geometry, sometimes called
the energy of delocalization, Edeloc:

Edeloc ¼ Etot � EHB� ð4Þ

Furthermore, the SESE [63] was computed on the basis
of the designed reactions in Schemes 3, 4, 5, 6 and 7. All
computations were performed within the framework of the
Gaussian03 and Gaussian09 suite of programs [73, 74]. The
reaction schemes were prepared using the ISIS Draw v2.3
program [75].

Results and discussion

The mutual interference of substituent effects and the
intramolecular hydrogen bond in a set of 4- and 5-
substituted salicylaldehyde derivatives (see Scheme 2) was
analyzed. The energetic characteristics concerning the
coupling of the substituent effect and the presence of
intramolecular hydrogen bonds was performed using two
approaches considered at two levels of computations
(B3LYP/6-311+G(d,p) and MP2/aug-cc-pVDZ):

(1) Analysis of composition of the total energy of
interaction, Etot, for H-bonded systems perturbed by
substituents.

(2) Analysis of SESE for homodesmotic reactions for
substituted salicylaldehyde and appropriate disubsti-
tuted benzene derivatives: 4-substituted benzaldehyde
and 4-substituted phenols (substituent: OH and NO2).

Two of the four possible conformations of salicylalde-
hyde (see Scheme 1) and its derivatives were considered in
the study. Conformation (I) presented in Scheme 1 was
found to be the most stable in many studies, e.g., [11],
whereas the open conformation, labelled (II) in Scheme 1,
was necessary for the analysis presented in this study.

Table 1 summarises all the data concerning the strength
of intramolecular H-bonding, where the studied systems are
presented in sequence from the strongest down to the
weakest, taking into account the overall energy of the H-
bond, Etot. Almost the same order was found in the case of
“pure” H-bonding energy, EHB. The only difference with
respect to the sequence used in Table 1 concerns salicy-
laldehyde and its 5-nitro derivative, but the difference in the
EHB value was very small (amounts to 0.03 kcal mol−1).
The same was found for Etot, so one can draw the
conclusion that the nitro group in the meta position with
respect to the CHO acts similarly to hydrogen.
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Scheme 7 Homodesmotic reaction scheme for meta di-substituted
benzene derivatives; X=OH or CHO, Y=NO2 or OH
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Scheme 6 Homodesmotic reaction scheme for para di-substituted
benzene derivatives; X=OH or CHO, Y=NO2 or OH
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Note that Etot indicates as the most stable systems those
in which a strong through-resonance effect is present: the
para positions of CHO/OH and OH/NO2 (i.e., 4-OH- or 5-
NO2-salicylaldehyde, respectively). These systems are
more stable by ∼1 kcal mol−1 than complexes with
substituents of the same kind: para positions of OH/OH
and CHO/NO2 (i.e., 5-OH- and 4-NO2-salicylaldehyde,
respectively). This kind of regularity is also observed for H-
bond energies, EHB, but the difference between those with
and without through-resonance is smaller, ∼0.6 kcal mol−1.
For the Edel the effect is even smaller, being equal to
∼0.3 kcal mol−1. The above mentioned data are from
B3LYP/6-311+G(d,p) computations, but a similar picture

can be drawn from MP2/aug-cc-pVDZ calculations. It can
be concluded from the data in Table 1 that the substituent
effect on Etot, EHB and Edel is rather small. The variability
of EHB due to the substituent effect is also rather small (in
the range of 0.98 kcal mol−1), slightly smaller than that of
Etot (in the range of 1.56 kcal mol−1), indicating resistance
of H-bond interaction on perturbation stemming from
substituents in the ring. Note that Edel, which is identified
with changes in π-electron delocalization in the studied
system, amounts to about 20% of Etot.

A deeper insight into the intramolecular substituent
effect gives an energetic characteristic of homodesmotic
reactions (1), (2) and (3) (see Schemes 3, 4, 5, and Table 2).

Level of theory SESE SESE SESE SESE SESE SESE
kcal/mol kcal/mol kcal/mol kcal/mol kcal/mol kcal/mol
closed, I.1 open, II.1 closed, I.2 open, II.2 closed, I.3 open, II.3

4-OH

B3LYP/6-311+G(d,p) 2.37 1.58 8.25 −3.62 9.45 −2.43
MP2/aug-cc-pvdz 1.49 0.86 7.20 −3.62 8.11 −2.71

5-NO2

B3LYP/6-311+G(d,p) −0.56 −0.59 8.75 −2.36 5.55 −5.56
MP2/aug-cc-pvdz −1.25 −1.22 7.15 −3.02 4.97 −5.20

H

B3LYP/6-311+G(d,p) 7.36 −3.72
MP2/aug-cc-pvdz 6.59 −3.61

5-OH

B3LYP/6-311+G(d,p) −2.40 −2.14 5.33 −5.49 6.82 −4.00
MP2/aug-cc-pvdz −1.75 −1.57 4.86 −5.16 6.48 −3.53

4-NO2

B3LYP/6-311+G(d,p) −3.33 −2.57 6.51 −3.81 4.18 −6.14
MP2/aug-cc-pvdz −1.26 −0.85 6.70 −3.08 4.93 −4.86

Table 2 Substituent effect sta-
bilization energy (SESE) of
reactions (1), (2) and (3) calcu-
lated for salicylaldehyde and its
4-X- and 5-X- derivatives,
X=NO2 and OH; the homodes-
motic reactions are shown in
Schemes 3, 4, and 5, respec-
tively. The sequence of the
systems is the same as in
Table 1 (from the strongest to
the weakest in terms of H-bond
overall energy)

Level of theory Etot EHB Edel Edel/Etot (%)
kcal/mol kcal/mol kcal/mol

4-hydroxy-salicylaldehyde

B3LYP/6-311+G(d,p) −11.88 −9.14 −2.74 23.1

MP2/aug-cc-pvdz −10.82 −8.55 −2.27 21.0

5-nitro-salicylaldehyde

B3LYP/6-311+G(d,p) −11.11 −8.91 −2.21 19.9

MP2/aug-cc-pvdz −10.17 −8.28 −1.89 18.6

Salicylaldehyde

B3LYP/6-311+G(d,p) −11.08 −8.94 −2.15 19.4

MP2/aug-cc-pvdz −10.20 −8.37 −1.83 17.9

5-hydroxy-salicylaldehyde

B3LYP/6-311+G(d,p) −10.82 −8.69 −2.13 19.7

MP2/aug-cc-pvdz −10.02 −8.17 −1.84 18.4

4-nitro-salicylaldehyde

B3LYP/6-311+G(d,p) −10.32 −8.16 −2.16 20.9

MP2/aug-cc-pvdz −9.79 −7.91 −1.87 19.1

Table 1 Intramolecular hydro-
gen bond energy profile for
salicylaldehyde and its deriva-
tives. Etot Overall energy of the
H-bond, EHB “pure” H-bonding
energy, Edeloc energy of
delocalization
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The obtained SESE data are specified in the same sequence
as in Table 1. Positive values of SESE indicate greater
stability of substrates, whereas negative values are products
of the homodesmotic reaction.

The influence of the substituent on the formyl and
hydroxyl groups—participants in the intramolecular hydro-
gen bond—is seen in the first reaction (1; see Scheme 3 and
data in the second and third column in Table 2). The
greatest strengthening of the H-bond compared with that in
salicylaldehyde, is caused by the OH group in the para
position with respect to CHO [4-OH-salicylaldehyde, SESE

(I.1)=2.37 kcal mol−1], whereas the opposite situation
occurs in the case of the NO2 group in the same position
[4-NO2-salicylaldehyde, SESE(I.1) = −3.33 kcal mol−1]. A
similar variability in SESE values is also observed for
“open” conformations (1.58 and −2.57 kcal mol−1, respec-
tively), indicating a strong through-resonance effect in the
first case and its absence in the second.

The ranges of SESE variability for reaction (1),
calculated for 4-X- and 5-X- salicylaldehyde derivatives,
X=NO2 and OH, are 5.70 kcal mol−1 and 4.15 kcal mol−1

for the closed and open forms, respectively. This data can

Table 3 SESE calculated for para-di-substituted benzene derivatives. The homodesmotic reactions are illustrated in Scheme 6. Energies of the
reaction components are given in Hartree

Level of theory SESE (kcal/mol)

4-NO2-C6H4-OH+C6H6→C6H5-OH+C6H5-NO2

4-NO2-C6H4-OH Benzene PhOH PhNO2

B3LYP/6-311+G(d,p) −512.124008 −232.311245 −307.558632 −436.874621 1.25

MP2/aug-cc-pVDZ −510.689883 −231.540220 −306.610690 −435.618828 0.37

4-OH-C6H4-OH+C6H6→C6H5-OH+C6H5-OH
4-OH-C6H4-OH Benzene PhOH PhOH

B3LYP/6-311+G(d,p) −382.803057 −232.311245 −307.558632 −307.558632 −1.86
MP2/aug-cc-pVDZ −381.678535 −231.540220 −306.610690 −306.610690 −1.65

4-NO2-C6H4-CHO+C6H6→C6H5-CHO+C6H5-NO2

4-NO2-C6H4-CHO Benzene PhCHO PhNO2

B3LYP/6-311+G(d,p) −550.228511 −232.311245 −345.669087 −436.874621 −2.48
MP2/aug-cc-pVDZ −548.680014 −231.540220 −344.603603 −435.618828 −1.38

4-OH-C6H4-CHO+C6H6→C6H5-CHO+C6H5-OH
4-OH-C6H4-CHO Benzene PhCHO PhOH

B3LYP/6-311+G(d,p) −420.918827 −232.311245 −345.669087 −307.558632 1.48

MP2/aug-cc-pVDZ −419.675466 −231.540220 −344.603603 −306.610690 0.87

Table 4 SESE calculated for meta-di-substituted benzene derivatives. Energies of the reaction components are given in Hartree

Level of theory SESE (kcal/mol)

3-NO2-C6H4-OH+C6H6→C6H5-OH+C6H5-NO2

3-NO2-C6H4-OH Benzene PhOH PhNO2

B3LYP/6-311+G(d,p) −512.121766 −232.311245 −307.558632 −436.874621 −0.15
MP2/aug-cc-pVDZ −510.689934 −231.540220 −306.610690 −435.618828 0.40

3-OH-C6H4-OH+C6H6→C6H5-OH+C6H5-OH
3-OH-C6H4-OH Benzene PhOH PhOH

B3LYP/6-311+G(d,p) −382.806466 −232.311245 −307.558632 −307.558632 0.28

MP2/aug-cc-pVDZ −381.681107 −231.540220 −306.610690 −306.610690 −0.03
3-NO2-C6H4-CHO+C6H6→C6H5-CHO+C6H5-NO2

3-NO2-C6H4-CHO Benzene PhCHO PhNO2

B3LYP/6-311+G(d,p) −550.229361 −232.311245 −345.669087 −436.874621 −1.95
MP2/aug-cc-pVDZ −548.679327 −231.540220 −344.603603 −435.618828 −1.81

3-OH-C6H4-CHO+C6H6→C6H5-CHO+C6H5-OH
3-OH-C6H4-CHO Benzene PhCHO PhOH

B3LYP/6-311+G(d,p) −420.915883 −232.311245 −345.669087 −307.558632 −0.37
MP2/aug-cc-pVDZ −419.674037 −231.540220 −344.603603 −306.610690 −0.02
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be compared with SESE values for para and meta di-
substituted benzene derivatives; X=OH or CHO and Y=
NO2 or OH of the appropriate reactions (see Schemes 6, 7).
The relevant data are presented in Tables 3 and 4. The
greatest SESE value was found for 4-OH-C6H4-CHO
(1.48 kcal mol−1), supporting the strong through-
resonance effect mentioned above, whereas the smallest
was found for 4-NO2-C6H4-CHO (−2.48 kcal mol−1). The
ranges of SESE variability for these cases are 3.96 kcal
mol−1 and 2.23 kcal mol−1 for the para and meta substituted
systems, respectively. Energetically, it means that the
overall substituent effect on intramolecular H-bond in 4-
X- and 5-X- substituted salicylaldehyde is ∼31% larger
than that observed in 3-X- and 4-X- substituted benzalde-
hyde or 3-X- and 4-X- substituted phenol. It should be
noted that for the “open” conformations the effects
compared above are similar to those observed for di-
substituted benzene derivatives.

When we compare the ranges of SESE values for H-
bonded systems (Table 2, 5.70 kcal mol−1 for the closed
system and 4.15 kcal mol−1 for the open one), those for
hydroxy- and nitro- benzaldehyde and phenol (3.96 kcal
mol−1 for para derivatives, Table 3; 2.23 kcal mol−1 for
meta systems, Table 4) with the range of Etot and EHB (1.56
and 0.98 kcal mol−1, respectively, Table 1) we find
immediately that the substituent effect, which is energeti-
cally substantial, acts very weakly on the total energy of H-
bond formation as well as on the H-bond energy itself.

Two remaining homodesmotic reactions for salicylalde-
hyde and its derivatives (presented in Schemes 4, 5, and
S1–S5 in Supporting Information, and data in Table 2)
show another aspect of the substituent effect on H-bond
formation. The range of SESE values for the I.2 reaction
(closed) is 3.42 kcal mol−1. In this case the substituent
interacting via a through-resonance effect (OH group) is
para in relation to the CHO group involved in H-bond
formation. It may be compared with the range of SESE
values for reaction I.3 (closed) which is 5.27 kcal mol−1.
Note that, in this case, the substituent interacting via a
through-resonance effect (NO2 group) is para with respect
to the OH group involved in H-bond formation as a proton
donating group. Thus, energetically, the substituent effect
due to the intramolecular charge transfer from the para-
counter substituent (NO2) to the proton-donating group
(OH) is ∼35% greater than for the interaction of the para-
OH with the proton-accepting group (CHO). This may
suggest that, due to intramolecular charge transfer, the
proton-donating component of H-bonding is more sensitive
to the substituent effect than the proton-accepting one. A
weaker H-bonding in 5-nitro-salicylaldehyde than in 4-
hydroxy-salicylaldehyde (Table 1) explains the obtained
SESE value for meta-nitrobenzaldehyde (−1.95 kcal mol−1,
Table 4).

Conclusions

In the case of intramolecular H-bond formation, the proton
donating group (OH) increases its electron donating power,
and the proton-accepting group (CHO) increases its
electron accepting power [47, 57]. As a result, counter
substituents (NO2 or OH) in the para position to them in H-
bonded 4- or 5- substituted salicylaldehyde interact more
strongly (by ∼31%) than in the case of 4-nitrophenol or 4-
hydroxybenzaldehyde. Despite this strengthening, this
perturbation acts weakly on the total energy of H-bond
formation, Etot, as well as the H-bond energy itself, EHB.

The substituent effect due to the intramolecular charge
transfer from the para-counter substituent (NO2) to the proton-
donating group (OH) is ∼35% greater than for the interaction
of para-OH with the proton-accepting group, CHO.

The total energy of the intramolecular H-bonded system,
Etot, contains ∼20% of the energy associated with electron
redistribution of the whole system, Edel.

Computations carried out using B3LYP/6-311+G(d,p)
and MP2/aug-cc-pVDZ levels of theory lead to equivalent
results.
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