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Abstract— We consider beamforming in a cognitive network
with multiple primary users and secondary users sharing the
same spectrum. In particular, we assume that each secondary
transmitter has Nt antennas and transmits data to its single-
antenna receiver using beamforming. The beamformer is de-
signed to maximize the cognitive user’s signal-to-interference
ratio (SIR), defined as the ratio of the received signal power at
the desired cognitive receiver to the total interference created at
all the primary receivers. Using mathematical tools from random
matrix theory, we derive both lower and upper bounds on the
average interference at the primary receivers and the average
SIR of the cognitive user. We further analyze and prove the
convergence of these two performance measures asymptotically
as the number of antennas Nt or primary users Np increases.
Specifically, the average interference per primary receiver con-
verges to the expected value of the path loss in the network
whereas the average SIR of the secondary user decays as 1/c
when c = Np/Nt → ∞. In the special case of Nt = Np, the
average total interference approaches 0 and the average SIR
approaches ∞.

I. INTRODUCTION

The Federal Communication Commissions (FCC) frequency
allocation chart [1] indicates multiple allocations over all the
frequency bands under 3 GHz. The intense competition for
the use of spectrum at frequencies below 3 GHz creates the
conception of spectrum shortage. However, studies by FCC
show that the usage of the licensed spectrum is vastly under-
utilized [2]. This motivates research in cognitive networks for
the opportunistic use of the spectrum.

A cognitive network usually consists of the primary users
who have the legacy priority access to the spectrum and the
secondary users who use the spectrum only if communication
does not create significant interference to the licensed primary
users. Therefore, the unlicensed secondary users often employ
cognitive radios for transmission to ensure non-interfering
coexistence with the primary users [3]. This can be achieved
in several ways as discussed in [4] and references therein.
For example, the cognitive user can transmit concurrently with
the primary users under an enforced spectral mask. Another
strategy is to have the cognitive users monitor the spectrum
and access it when an unused slot is detected.

Beamforming is a well-known spatial filtering technique
which can be used for either directed transmission or reception
of energy in the presence of noise and interference [5].
In multiple-antenna systems, beamforming exploits channel
knowledge at the transmitter to maximize the signal-to-noise
ratio (SNR) at the receiver by transmitting in the direction
of the eigenvector corresponding to the largest eigenvalue of
the channel [6]. Beamforming can also be used in the uplink

or downlink of multiuser systems to maximize the signal-to-
interference-plus-noise ratio (SINR) of a particular user [7].

In this paper, we study the effect of beamforming in
cognitive networks, in which the primary and secondary users
are uniformly distributed in a circular disc. The secondary
transmitters are allowed to transmit concurrently with the
primary transmitters. To minimize the interference caused to
the primary receivers, the secondary transmitters are equipped
with multiple antennas and employ beamforming for transmis-
sion. The beamforming vector of each cognitive transmitter is
designed such that it maximizes the desired signal power at its
corresponding receiver while minimizing the total interference
caused to all primary receivers. The ratio of the received
signal power to the interference is referred to as the signal-to-
interference ratio (SIR) of the cognitive user. Since increasing
the number of antennas improves the spatial directivity of
signal energy, one would then expect a higher average SIR and
a lower average interference. On the other hand, with constant
number of antennas, increasing the number of primary users
in the network has the opposite effect. Therefore, there is an
interesting trade-off between these parameters.

We investigate this trade-off by studying the average SIR
of the cognitive users and the average interference created at
all primary receivers. In particular, by employing some known
results in random matrix theory, we provide analytical bounds
for these two performance measures. We prove that the average
interference per primary receiver converges to the average path
loss of the network. The average SIR of each cognitive user
pair, on the other hand, decays as 1/c as c = Np/Nt → ∞,
where Np and Nt denote the number of primary receivers
and the number of beamforming antennas at each cognitive
transmitter, respectively. In the extreme when Nt = Np, the
lower bound of the average total interference approaches 0
and the upper bound of the average SIR approaches ∞. This
implies that we can potentially create little to no interference
to the primary users by employing as many antennas in the
cognitive transmitter as the number of primary receivers.

Organization: This paper is organized as follows. In Section
II, we introduce the system model of the proposed trans-
mission scheme. We formulate the beamforming optimization
problem in Section III. In Section IV, we study the average
total interference and the average SIR and derive bounds for
these two terms. We present simulation and numerical results
in Section V, and draw some conclusions in Section VI.
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II. NETWORK AND CHANNEL MODELS

A. Network Model

Consider a cognitive network in which Np primary users
and Nc cognitive (secondary) users are uniformly distributed
in a circular disc with radius R. A primary user has a transmit-
ter Pi

T and a receiver Pi
R, 1 ≤ i ≤ Np. Similarly, a cognitive

user has a transmitter Ck
T and a receiver Ck

R, 1 ≤ k ≤ Nc.
Furthermore, we assume that each receiver (either primary or
secondary) has a protected radius of ε > 0 without any other
interfering transmitter inside. This assumption inhibits infinite
interference at any receiver. Fig. 1 shows an example of a
network in which a CT is located at the center of the disc.

ε

R CT

CR

Pi
T

Pi
R

Fig. 1. Network model with Nc = 1 and Np = 20. CT is located at the
center of the disc.

In such a multi-user network, there will be interference at
both the primary and cognitive receivers. In this paper, we are
mainly concerned with the interference at the primary receivers
created by the cognitive transmitters. Define the average total
interference created by the kth cognitive transmitter Ck

T as1

E[Ik] = E


 Np∑

i=1

∣∣Interference at Pi
R

∣∣2 |Ck
T transmits


 , (1)

and the average SIR of the cognitive user pair Ck
T-Ck

R as2

E[SIRk] = E

[∣∣Desired signal at Ck
R

∣∣2
Ik

|Ck
Ttransmits

]
, (2)

where the expectation is taken over the spatial distribution of
Ck

T, Ck
R, and Pi

R, ∀ i. We observe that E[Ik] and E[SIRk] are
independent of k because Ck

T and Ck
R are uniformly distributed

in the disc and have the same statistical properties. Therefore,
we can drop the dependent of k in (1) and (2) and consider
only the simplified model of Nc = 1 and an arbitrary Np. As
a consequence, increasing the density of the cognitive users
would only increase E[I] linearly by a factor of Nc.

1In this paper, bold upper case and lower case letters denote matrices and
vectors, respectively. [·]H , E[·], δ(·), j � √−1, | · |, ln(·), Im(·), ⇔,
and diag{x} denote Hermitian transposition, statistical expectation, the Dirac
delta function, the imaginary unit, the absolute value of a scaler, the natural
logarithm, the imaginary part of a complex number, mathematical equivalence,
and a diagonal matrix with the elements of x in its main diagonal, respectively.
In addition, IN , [X]i,j , λmin(X), and λmax(X) refer to the N×N identity
matrix, the element in row i and column j of matrix X, and the minimum
and maximum eigenvalue of matrix X, respectively.

2Ik and SIRk will be formally defined in (6) and (8).

B. Channel and Signal Models

We assume that the cognitive transmitter CT is equipped
with Nt uncorrelated antennas whereas the cognitive receiver
CR and the primary receivers Pi

R, 1 ≤ i ≤ Np are equipped
with only a single antenna3. Denote the Nt×1 channel vector
from CT to Pi

R as hi and from CT to CR as g. The elements
of hi and g are modeled as

hn
i =

1

d
α/2
i

h̃n
i , 1 ≤ i ≤ Np, 1 ≤ n ≤ Nt, (3)

and

gn =
1

dα/2
g̃n, 1 ≤ n ≤ Nt, (4)

respectively, where α is the path loss exponent and h̃n
i and

g̃n are independent and identically distributed (i.i.d.) zero-
mean complex Gaussian random variables with unit variance
(Rayleigh fading).

We assume that α = 2 in this paper. The distances di

and d are i.i.d. random variables which represent the distance
from CT to Pi

R and to CR, respectively. By the receiver-
protected radius assumption, d, di > ε. Finally, in order to
provide theoretical bounds for the considered network, it is
assumed that CT has global channel state information (CSI)
of the network, i.e., complete knowledge of hi and g.

The cognitive transmitter CT employs a beamforming vec-
tor w with dimension Nt × 1 for transmission of its data
symbol x. The corresponding received signal at CR and Pi

R
are given by

rC = wHgx and ri
P = wHhix, (5)

respectively.

III. BEAMFORMING FORMULATION

As previously mentioned, in this paper, we focus on the
interference created by the cognitive transmitter to the primary
receivers and noise is not considered. However, it is straight-
forward to incorporate noise into our channel model and study
the SINR instead.

We assume that the data symbols x in (5) are i.i.d. taken
from an M -ary symbol alphabet with unit energy. Therefore,
the instantaneous total interference is given by

I =
Np∑
i=1

∣∣ri
P

∣∣2 =
Np∑
i=1

wHhih
H
i w = wHHTHHw = wHRw,

(6)
where [H]n,i = h̃n

i ,

T = diag{d−2
1 , . . . , d−2

Np
}, (7)

and R � HTHH . The instantaneous SIR of CT-CR is given
by

SIR =
|rC|2∑Np

i=1

∣∣ri
P

∣∣2 =
wHGw

wHRw
, (8)

3Note that for the problem under consideration, the number of antennas at
Pi

T is not important, cf. (1) and (2).
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where the definition G � ggH is used. Therefore, the
maximum SIR beamformer can be obtained formally from the
following optimization problem

wopt = argmax
wHw=1

{SIR} . (9)

The optimal solution to the above optimization problem is the
eigenvector corresponding to the maximum eigenvalue of the
following generalized eigenvalue problem [7]

Gw = λRw ⇔ R−1Gw = λw. (10)

It is assumed that Nt ≤ Np and therefore, R is invertible.
If this condition is not imposed, there will be Nt − Np zero
eigenvalues and it is theoretically possible for CT to form
a null in all the direction where Pi

R are located resulting
in I = 0. We note that the above optimization problem (9)
is closely related to the uplink and downlink beamforming
problem considered in [7]. Finally, with the beamforming
vector in (9), the instantaneous SIR in (8) becomes

SIR = λmax{R−1G}, (11)

and the corresponding instantaneous total interference in (6)
becomes

I = wH
optRwopt. (12)

Since G is a rank 1 matrix, R−1G has only one nonzero
eigenvalue. Next, we turn our attention to E[SIR] and E[I] and
provide bounds for these two average performance measures.

IV. INTERFERENCE AND SIR ANALYSIS

We analyze the average interference and average SIR in
this section and derive the upper and lower bounds. These
two measures depend on the path loss matrix T in (7). We
first study E[I] for a special case of T , then for a general T ,
by using some known random matrix results in the literature.
At the end of this section, we provide some discussion on the
implication of the results.

A. Interference Analysis: Special Case: T = INp

Recall that the entries of H are i.i.d. Gaussian random
variables with zero mean and unit variance. Therefore, if T is
an identity matrix4, the Nt × Nt matrix R̃ � (1/Nt)HHH

is a complex Wishart matrix with Np degrees of freedom
and covariance matrix Np

Nt
I . We note that it is a customary

practice to consider the matrix R̃ instead of R = HHH in
the literature. We shall apply the results obtained for R̃ to R
at the end of this subsection.

The Wishart matrix has been studied extensively in the
literature and in particular, it is known that the empirical
distribution function (e.d.f.) of its eigenvalues defined as

FNt

R̃
(x) =

Number of eigenvalues of R̃ ≤ x

Nt
(13)

4This corresponds to the case where all primary receivers have the same
distance from the secondary transmitter.

converges almost surely, as Np/Nt → c > 0 as Nt → ∞, to
a nonrandom distribution function5

FR̃(x) = limNt→∞E[FNt

R̃
(x)] (14)

whose probability density function (p.d.f.) is the famous
Marčenko-Pastur law [8]

dFR̃(x)
dx

= fc(x) = (1 − c)+δ(x) +

√
(x − a)+(b − x)+

2πx
,

(15)
where (z)+ = max(0, z), a = (1−√

c)2, and b = (1 +
√

c)2.
Clearly, the region of support associated with (15) is simply

the region where fc(x) �= 0. By inspection, we can see that
the support is (

√
c − 1)2 ≤ x ≤ (

√
c + 1)2. Invoking the

Rayleigh’s principle [9], we have

λmin(R̃) ≤ wHR̃w

wHw
≤ λmax(R̃). (16)

The bulk limit in (15) suggests λmin(R̃) ≈ (
√

c − 1)2 and
λmax(R̃) ≈ (

√
c + 1)2. Indeed, if the entries in H has finite

fourth moment, it has been proven in [10] that

lim
Nt→∞

λmax(R̃) = (
√

c + 1)2, (17)

whereas [11] has results on the smallest eigenvalue

lim
Nt→∞

λmin(R̃) = (
√

c − 1)2. (18)

Therefore, the average total interference E[I] = E[wHRw]
can be bounded by [12]

Nt(
√

c − 1)2 ≤ E[I] ≤ Nt(
√

c + 1)2, (19)

where the factor Nt comes from the fact that R = NtR̃.

B. Interference Analysis: T with Known Distribution

Recall that T is a diagonal matrix whose diagonal entries
are given by [T ]i,i = d−2

i and di (di > ε) is the distance from
CT to Pi

R. Since the location of CT and Pi
R are both uniformly

distributed in a circular disc, the distribution of the distance di

cannot be obtained trivially in closed-form expression. Here,
we make a simplified assumption that CT is always located
at the center of the disc whereas Pi

R are uniformly distributed
in the circular disc. We claim that this always results in a
larger average total interference E[I] and therefore, serves as
an upper bound for E[I] where CT is random. Due to space
limitation, the proof is omitted and can be found in [13].

Similar to the last subsection, we bound the eigenvalues of
R̃ = (1/Nt)HTHH (and therefore, also the interference:
wHRw, R = NtR̃) by the support of its limiting e.d.f.
(cf. (14)). An efficient tool to determine the limiting distri-
bution is the so-called Stieltjes transform. Specifically, the
Stieltjes transform of a distribution function FR̃(x) is given
by

mR̃(z) =
∫

1
x − z

dFR̃(x), z ∈ D ≡ {z ∈ C, Im z > 0}.
(20)

5Note that c > 0 can be trivially satisfied because 1 ≤ c is valid for our
problem as we assume Nt ≤ Np.
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The above integral is over the support of FR̃(x) which will
be on x ≥ 0 in our case because R̃ is a positive semidefinite
matrix with all of its eigenvalues being non-negative. The p.d.f.
can be uniquely determined by the Stieltjes-Perron inversion
formula [14]

dFR̃(x)
dx

=
1
π

lim
η→0

Im mR̃(ξ + jη). (21)

It has been shown in [15] (see also [8]) that if the matrices
H and T satisfy the following four conditions6:

1) H is a Nt ×Np matrix whose entries are i.i.d. complex
random variables with zero mean and unit variance.

2) Np is a function of Nt with Np/Nt → c > 0 as Nt →
∞.

3) T is a diagonal matrix with real random entries and
the e.d.f. of the entries {τ1, . . . , τNp

} converges almost
surely in distribution to a probability distribution func-
tion FT (τ) as Nt → ∞.

4) H and T are independent.
Then, almost surely, the e.d.f. of R̃ = (1/Nt)HTHH ,
namely FNt

R̃
(x), converges in distribution to a nonrandom

distribution function FR̃(x) whose Stieltjes transform m =
mR̃(z) is the unique solution to the following equation

m = −
(

z − c

∫
τdFT (τ)
1 + τm

)−1

. (22)

The above equation has a unique inverse, given by

zR̃(m) = − 1
m

+ c

∫
τdFT (τ)
1 + τm

, m ∈ mR̃(D). (23)

For the problem at hand, the e.d.f. of the entries in T converges
to a nonrandom distribution function, namely, the distribution
of the random variable τ = d−2 where d is the distance
between the center of a disc with radius R and a random
location in the disc. It is straightforward to show that the p.d.f.
of τ is

dFT (τ)
dτ

=
1

(R2 − ε2)τ2
,

1
R2

≤ τ ≤ 1
ε2

. (24)

Substituting (24) into (23) yields

zR̃(m) = − 1
m

+
c

R2 − ε2
ln

(
m + R2

m + ε2

)
. (25)

To determine the spectral density of R̃ using (21), m =
mR̃(z) in (25) has to be solved explicitly. It is generally
difficult, if not impossible, to obtain an analytical or even
an easy numerical solution for the density of an arbitrary
distribution. However, as shown in [16], much of the analytic
behavior of FR̃(x) can be inferred from (22)-(23) and in
particular, the methodology presented in [16] can be used
to find the support of FR̃(x) and can be summarized in the
following four steps:

1) Define B ≡ {m ∈ R : m �= 0,−m−1 ∈ Sc
T } where Sc

T
denotes the complement of the support of FT (τ).

6We note that the original proof in [15], [8] considers matrix in the general
form B = A + HTHH and there are 5 conditions with an additional
condition concerning the requirement of the matrix A.

2) Plot (25) on B, i.e., zR̃(m), m ∈ B.
3) Delete the range of values where the derivative z′

R̃
(m) ≥

0.
4) The remaining range of values is the support of FR̃(x).

Since ST = {1/R2 ≤ m ≤ 1/ε2}, B = {m ∈ R :
m �= 0,m < −R2,m > −ε2}. As mentioned before, R̃ is
a positive semidefinite matrix with non-negative eigenvalues
and therefore, we only need to consider the positive range of
zR̃(m), i.e., zR̃(m) ≥ 0. It can be shown that zR̃(m) < 0
holds for m ≤ −R2 and the proof can be found in [13].
As a consequence, for our problem, we only have to plot
(25) on B ≡ {m > −ε2}. A typical zR̃(m) plot is shown
in Fig. 2. For this figure, we assume R = 10, ε = 3, and
c = 50. We choose a relatively large ε in this example for
illustrative purpose only. In our simulations to be presented in
Section V, we pick ε = 0.05. In Fig. 2, we can see that for
m > −ε2, there is a vertical asymptote at m = 0 and there
is a local minimum and a local maximum on the left and on
the right of the vertical asymptote, respectively. These critical
points serve as the boundary points of the support of FR̃(x)
highlighted in bold line in the vertical axis given by zR̃(m1)
and zR̃(m2) (zR̃(m1) > zR̃(m2), m1 < m2), where m1 and
m2 are the two zeros of the derivative of zR̃(m). By removing
the irrelevant terms in z′

R̃
(m), the zeros can be obtained by

solving the following second-order polynomial,

z′
R̃

(m) = 0 ⇔ (1 − c)m2 + (R2 + ε2)m + ε2R2 = 0. (26)

In general, convergence in distribution of FNt

R̃
(x) does not

imply that the extreme eigenvalues of R̃, i.e., λmin(R̃) and
λmax(R̃), converge to the minimum and maximum of the
support of FR̃(x). However, it has been shown that if the
maximum (minimum) eigenvalue of T converges to the largest
(smallest) number in the support of FT (τ), then the largest
(smallest) eigenvalue of R̃ converges almost surely to the
largest (smallest) number in the support of FR̃(x) [17].
Clearly, the eigenvalues of T are bounded by the support
of FT (τ) in our case, cf. (24). Consequently, by recalling
R = NtR̃, the average total interference E[I] = E[wHRw]
may be bounded by NtzR̃(m2) ≤ E[I] ≤ NtzR̃(m1). For
performance comparison, it is more insightful to consider the
average interference per primary receiver defined as Ea[I] �
E[I]/Np,

zR̃(m2)
c

≤ Ea[I] ≤ zR̃(m1)
c

. (27)

C. SIR Analysis

The upper and lower bounds for E[SIR] are readily available
by making use of the results obtained from the last sub-
section. In particular, the average SIR given by E[SIR] =
E[λmax(R−1G)] can be bounded by

E[λmin(R−1)]E[λ(G)] ≤ E[SIR] ≤ E[λmax(R−1)]E[λ(G)].
(28)

We use λ(G) to indicate the only nonzero eigenvalue of G.
In particular, E[λ(G)] is equal to NtE[d−2] where E[d−2] is
given by

E[d−2] =
∫ ε−2

R−2

τ

(R2 − ε2)τ2
dτ =

ln(R2/ε2)
R2 − ε2

. (29)
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Fig. 2. zR̃(m) vs. m for R = 10, ε = 3, and c = 50. Support of FR̃(x)
is highlighted in bold line on the vertical axis where zR̃(m1) = 1.859 and
zR̃(m2) = 0.9086.

We note that E[λmin(R−1)] and E[λmax(R−1)] are equivalent
respectively to E

[
(λmax(R))−1

]
and E

[
(λmin(R))−1

]
. As

mentioned in the previous subsection, λmax(R) and λmin(R)
converge almost surely to the maximum and the minimum
support of FR(x), respectively. Therefore, we arrive at the
following bounds for E[SIR]

ln(R2/ε2)
(R2 − ε2)zR̃(m1)

≤ E[SIR] ≤ ln(R2/ε2)
(R2 − ε2)zR̃(m2)

. (30)

In the next subsection, we shall present results on Ea[I] and
E[SIR] as c → 1 and c → ∞. They correspond respectively
to the two extreme cases where Np = Nt and Np � Nt.

D. Discussion

Clearly, Ea[I] and E[SIR] are both functions of R, ε, and
c = Np/Nt. In this subsection, we provide some insights on
how the two performance measures scale as c → 1 and c → ∞
for a given R and ε. For c → 1, we note that (26) reduces to
a linear function and has only one root. This root corresponds
to the upper bound of (27). Therefore, for large Nt, it is
theoretically possible to achieve Ea[I] = 0 and E[SIR] = ∞
if there are as many antennas at the cognitive transmitter as
the primary receivers, i.e., Nt = Np.

In the other extreme where the number of antennas at the
cognitive transmitter is much less than the number of primary
receivers, i.e., c → ∞, the roots of (26) are approximately
m1,m2 ≈ ±εR

√
c−1. Substituting the resulting root into (25),

it can be shown that the maximum and minimum support of
FR̃(x) given by zR̃(m1) and zR̃(m2) converges to

zR̃(m1) ≈ zR̃(m2) ≈ c
ln(R2/ε2)
R2 − ε2

= cE[d−2]. (31)

Applying the above result to (27) and (30), immediately, we
see that for c → ∞

Ea[I] ≈ E[d−2] and E[SIR] ≈ 1
c
. (32)

The above result can be also obtained by considering E[I]
directly. By applying the law of large numbers for large
Np, R = HTHH is approximately a diagonal matrix with
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Fig. 3. Upper and lower bounds of Ea[I] and E[SIR] for 1 ≤ c ≤ 108.
R = 10 and ε = 0.05.

[R]n,n =
∑Np

i=1 |h̃n
i |2d−2

i . Consequently, 1
Np

∑Np

i=1 |h̃n
i |2d−2

i

approaches its expected value given by E[d−2] as Np → ∞.
The above results suggest that for very dense network, the
average interference per primary receiver depends only on
the average path loss from CT to Pi

R and the average SIR
decreases exponentially with increasing Np. In Fig. (3), we
plot the lower and upper bounds of (27) and (30) for 1 ≤ c ≤
108, R = 10 and ε = 0.05. As expected, the lower and upper
bounds for both (27) and (30) converge according to (32) as
c → ∞. Note also that for c = 1, the lower bound of (27) and
the upper bound of (30) are 0 and ∞, respectively.

V. NUMERICAL AND SIMULATION RESULTS

In this section, we present some numerical and simulation
results. For all results shown we assume R = 10 and ε = 0.05.

In Fig. 4, the simulated Ea[I] and E[SIR] are plotted as
a function of Nt for Np = 100 and 1000. We have shown
the results for both random CT and fixed CT (where CT is
placed at the center of the disc). For comparison, the lower
bound of Ea[I] (27) and the upper bound of E[SIR] (30) are
also depicted. Clearly, the average interference is smaller for
random CT which is in accordance with our discussion in
Section IV-B. Also as expected, increasing Np increases Ea[I]
and results in a lower E[SIR]. On the other hand, increasing
the number of antennas at CT has the opposite effect. The
simulation results are quite close to the theoretical limits
given by the lower bound of Ea[I] and the upper bound of
E[SIR]. The results for the upper bound of Ea[I] and the
lower bound of E[SIR] are not shown because the objective of
the beamformer is to minimize the interference and maximize
the SIR, cf. (9). In fact, the upper bound of Ea[I] and the
lower bound of E[SIR] are quite loose for the relatively small
c considered in this figure. This is a good indication that
the beamforming vectors are performing well in the small
region of c. As we have seen in Fig. 3, as c increases, the
system becomes saturated and the upper and lower bounds of
Ea[I] and E[SIR] converge to the same value. In other words,
choosing a random beamforming vector is as good as using
the optimal one obtained from (9) for c → ∞.

In general, the bounds obtained for Ea[I] and E[SIR] in
(27) and (30) are asymptotic bounds for Np/Nt → c > 0 as
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Nt → ∞. Therefore, a natural question to ask is how well
these bounds perform in finite region of Nt. This question
is answered in Fig. 5. In particular, the simulated Ea[I] and
E[SIR] are plotted as a function of Nt for c = 10 and 100
(c is kept fixed by varying Np for different Nt’s). Again, we
consider both random and fixed CT. For reference, we have
also plotted the lower bound of Ea[I] (27) and the upper bound
of E[SIR] (30). Note that the bounds are constant for fixed
value of c because they depend only on the ratio c = Np/Nt

and not the actual values of Np and Nt, cf. (26), (27), and
(30). The simulation results for E[SIR] do not deviate much
with fixed c and varying Nt and the bounds work well also
for small values of Nt. On the other hand, for c = 10 and
Nt < 6, the simulation results for Ea[I] depend on the actual
values of Nt and Np because they deviate even if the ratio c =
Np/Nt is fixed to a constant. This is not surprising, because
the asymptotic bounds assume large Nt. Nevertheless, when
Nt ≥ 6, Ea[I] becomes also dependent only on the ratio c =
Np/Nt and not the actual values of Np and Nt. In general,
we find that when c is large enough, the simulation results for
Ea[I] depend also only on the ratio c even for small values of
Nt, cf. the Ea[I] curves for c = 100.

VI. CONCLUSION

In this paper, we consider a cognitive network which
consists of multiple primary users and multiple cognitive
users. The secondary cognitive transmitters are allowed to
transmit concurrently with the primary licensed transmitters.
To mitigate interference, the secondary users transmit signals
using multiple antennas with a beamforming vector. The
beamforming vector is designed to maximize the SIR of the
secondary user. We derive bounds and provide asymptotic
analyses for the average SIR and the average interference
caused to all primary receivers. In particular, we have shown
that if the number of antennas at the secondary transmitters
can be of the same as the number of primary receivers, the
interference caused to the primary receivers can be made zero,
creating an infinite SIR at the cognitive user. On the other
hand, if the number of primary receivers outgrows the number
of antennas at the secondary transmitter, then both the average
interference and the average SIR approach fixed limits. These
analyses can be useful in deciding the number of antennas to
deploy in the secondary transmitters.
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