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Abstract
Interference techniques in digital holography are discussed and experimental
results from each technique are presented. Numerical reconstruction
algorithms for digital holography are reviewed. The angular spectrum
method is seen to be particularly advantageous, with the ability to remove
noise and unwanted holographic terms. The dual wavelength optical
unwrapping technique offers an unambiguous method of removing 2π phase
discontinuity. Application of wavelength-scanning digital interference
holography is used to obtain tomographic images with synthesized short
coherence length.
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1. Introduction

Digital holography has been experiencing rapid development

in recent years because of many technical advantages,

including a number of interference techniques that are

unavailable or difficult and cumbersome in conventional

holography. The principle of holography was first suggested

by Gabor in 1948, as a method of recording complete three-

dimensional information of an object wave [1]. With the

later invention of the laser and the introduction of the off-axis

technique in 1962 [2], holography quickly gained scientific

recognition. The advances in digital imaging and computation

technologies have now made it feasible and advantageous

to replace the photochemical processing of conventional

holography with CCD arrays and numerical computation.

A digital hologram is created by the interference between

a coherent object and reference beam, which is digitally

recorded by a CCD camera and processed by computational

methods to obtain the holographic images [3–5]. The digital

hologram contains not only amplitude information of the

object, but also phase [6, 7]. Moreover, the ability of the

CCD camera to quantify the recorded light gives rise to a

number of post-processing methods that can for instance be

used to calculate optical thickness or refractive index variations

of an object provided knowledge of one or the other is

available. Digital holography has been applied in diverse

fields including metrology [8], deformation measurement [9],

vibrational analysis [10] and more recently biological

microscopy [11–14]. The applications to microscopy

are particularly advantageous. Conventional bright-field

microscopes have difficulty in observing transparent samples

which exhibit little intensity contrast. The phase contrast

microscopy technique of Zernike and differential interference

contrast (DIC) microscopy of Nomarksi do not offer direct

quantitative evaluation of the phase information. The

unavailability of this information in these techniques presents a

difficulty in observing and interpreting morphological changes

and properties of a sample.

Digital holography not only offers quantitative phase

information but high fidelity and high resolution images

with precision of optical thickness on the order of tens of

nanometres [15]. Another appealing aspect of the technique

is numerical focusing, emulating the focusing control of

conventional microscopes. In particular, the use of the angular

spectrum reconstruction algorithm provides a significant

advantage in focusing and reconstruction [16]. It has no

minimum distance requirement from the object to the hologram

plane and allows for flexible and effective filtering and control

of the zero order and spurious noise components from sources

such as stray reflections. A common presumption is that

coherent imaging suffers from the image degrading effect of

coherent noise; however, through careful control of the laser
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Figure 1. Digital holography experiments using transmission (a) and
reflective (b) geometries.

beam and other optical quality, remarkably clean images can

be obtained. This is especially true with phase imaging digital

holography because of its relative immunity to amplitude or

phase noise of the laser profile.

2. Numerical diffraction: theory

The digital holography experiments are performed in both

transmission and reflective geometries as depicted in figure 1.

The output from the laser, spatially filtered and collimated, is

split into an object and reference beam in an interferometer

based on the Mach–Zehnder configuration. The object

specimen, mounted on an xyz-translation stage, is placed at

a distance z from the hologram plane H , which is imaged

and magnified by the lens L1 and projected onto the CCD

array. The reference beam is similarly magnified by lens L2

and the interference between the object and reference beams

is recorded and stored onto a computer. Once the hologram

has been recorded, it remains to reconstruct the optical field by

computationally simulating diffraction using one of a number

of numerical methods.

2.1. Huygens convolution method

The convolution approach represents a computationally

heaviest form of holographic reconstruction with modest

degree of accuracy [17]. The reconstructed complex wavefield

E(x, y) is found by

E(x, y; z) = −
ik

2π

∫ ∫

�

E0(x0, y0)

× exp
[

ik
√

(x − x0)
2 + (y − y0)

2 + z2
]

dx0 dy0. (1)

This is a convolution:

E(x, y; z) = E0(x, y) ∗ SH(x, y, z) (2)

= F−1[F(E0) · F(SH)]

where SH is the Huygens PSF

SH(x, y, z) = −
ik

2πz
exp

[

ik
√

x2 + y2 + z2
]

. (3)

The whole process requires three Fourier transforms, which

are carried out using the FFT algorithm. The pixel sizes

kx

kz

k

z

E0(x0,y0) E(x,y)

Figure 2. Coordinate system for reconstruction of the hologram in
the angular spectrum method.

of the images reconstructed by the convolution approach are

equal to that of the hologram. In order to achieve as high a

lateral resolution as possible, one keeps the object–hologram

distance as short as possible, but the discrete Fourier transform

necessitates a minimum distance such that

zmin =
a2

x

nxλ
, (4)

where ax = nx�x is the size of the hologram and nx

and �x are the number and size of pixels. At too close a

distance, the spatial frequency of the hologram is too low and

aliasing occurs. Normally the object is placed just outside this

minimum distance.

2.2. Fresnel transform method

The Fresnel transformation [3] is the most commonly

used method in holographic reconstruction, because of the

computational efficiency. The approximation of a spherical

Huygens wavelet by a parabolic surface allows the calculation

of the diffraction integral using a single Fourier transform. The

PSF can be simplified by the Fresnel approximation as

S(x, y; z) = −
ik

2πz
exp

[

ikz + i
k

2z
(x2 + y2)

]

(5)

and the reconstructed wavefield is

E(x, y; z) = −
ik

2πz
exp

[

ikz +
ik

2z
(x2 + y2)

]

×

∫ ∫

E0(x0, y0) exp

[

ik

2z
(x2

0 + y2
0)

]

× exp

[

−
ik

z
(xx0 + yy0)

]

dx0 dy0

= exp

[

ik

2z
(x2 + y2)

]

F[E0 · S]. (6)

The resolution �x of the reconstructed images determined

directly from the Fresnel diffraction formula will vary as a

function of the reconstruction distance z as

�α =
λz

N�x0

(7)

where N is the number of pixels and �x0 is the pixel width

of the CCD camera. As with the Huygens convolution method

there is a minimum z distance requirement set by equation (4).
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Figure 3. Numerical focusing in digital holography of an element of a USAF 1951 resolution target from a single hologram. Images are of a
30 × 30 µm2 area (360 × 360 pixels) with z scanned from 1 to 15 µm in steps of 2 µm.

Figure 4. Holography of a SKOV ovarian cancer cell. The image area is 60 × 60 (424 × 424 pixels) and the image is at z = 1.0 µm from the
hologram: (a) hologram; (b) angular spectrum; (c) amplitude and (d) phase images by the angular spectrum method; (e) unwrapped phase
image of (d); (f) amplitude and (g) phase images by the Huygens convolution method. (h) 3D perspective rendering of (e).

2.3. Angular spectrum method

The angular spectrum method [16] is seen to be fairly efficient

computationally but with the highest degree of accuracy.

Refering to figure 2, if E0(x0, y0; 0) is the wavefield at plane

z = 0, the angular spectrum A(kx , ky; 0) at this plane is

obtained by taking the Fourier transform:

A(kx , ky; 0) =

∫ ∫

E0(x0, y0; 0)

× exp[−i(kx x0 + ky y0)] dx0 dy0 (8)

where kx and ky are corresponding spatial frequencies of x and

y. Fourier-domain filtering can be applied to the spectrum to

block unwanted spectral terms in the hologram and select a

region of interest corresponding only to the object spectrum. A

modified wavefield Ē0(x0, y0; 0) can be written as the inverse

Fourier transform of the filtered angular spectrum Ā(kx , ky; 0),

Ē0(x0, y0; 0) =

∫ ∫

Ā(kx , ky; 0) exp[i(kx x0+ky y0)] dkx dky.

(9)

The angular spectrum at plane z, A(kx , ky; z) is calculated

from Ā(kx , ky; 0), with kz =

√

k2 − k2
x − k2

y

A(kx , ky; z) = Ā(kx , ky; 0) exp[ikzz]. (10)

The reconstructed complex wavefield of any plane perpendic-

ular to the propagating z axis is found by

E(x, y; z) =

∫ ∫

A(kx , ky; z) exp[i(kx x + ky y)] dkx dky

= F−1{filter[F{E0}] exp[ikzz]}. (11)

Here ‘filter’ represents filtering in the spectral domain.

Two Fourier transforms are needed for the calculation in

comparison to the one needed by the Fresnel transform.

However, once the field is known at any one plane, only one

additional Fourier transform is needed to calculate the field at

different values of z. This method allows frequency-domain

spectrum filtering to be applied, which for example can be

used to block or remove the disturbance of the zero order and

twin image component. A significant advantage of the angular

spectrum is that there is no minimum z distance requirement.
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Figure 5. Holography of an onion nucleus. The image area is
30 × 30 µm2 (436 × 436 pixels) and the image is at z = 22 µm from
the hologram: (a) hologram; (b) holographic amplitude and (c) phase
images; (d) unwrapped phase image; (e) 3D pseudo-colour rendering
of (d).

2.4. Numerical focusing

The optical field can be calculated at any number of image

planes from a single hologram, emulating the mechanical

focusing control of a conventional microscope. To illustrate

this focusing ability we show a sequence of eight images in

figure 3 calculated in the range of z = 1–15 µm in steps of

2 µm. Each image is a 30×30 µm2 area of a resolution target.

As the focus is scanned, one observes the bars move into focus

as it passes through the various image planes.

3. Quantitative phase imaging

Figure 4 illustrates the implementation of the numerical

algorithms in the reconstruction of a SKOV3 ovarian cancer

cell. The area is 60×60 µm2 with 424×424 pixels. Figure 4(a)

is the holographic interference pattern recorded by the CCD

camera, and its Fourier transform in figure 4(b) is the angular

spectrum. It contains both the zero order and twin images,

as well as artifact due to stray interference components. The

virtual image component, the highlighted circular area, is

selected. A propagation phase factor (z = 1.0 µm) is

multiplied, and finally inverse-Fourier transformed to obtain

the amplitude image in figure 4(c) and the phase image in

figure 4(d). The physical thickness of the cell can be calculated

from

d = λ(�ϕ/2π)/(n − n0) (12)

where λ is the wavelength, �ϕ is the phase step and (n −n0) is

the index difference between the film and air. For example, the

layer of lamellipodia around the edge of the cell is found to be

about 110 nm, assuming n = 1.375 for the cell. The phase map

is rendered in pseudo-coloured 3D perspective in figure 4(h).

Especially notable in the phase map is the lack of the coherent

noise conspicuous in the amplitude image and prevalent in

most other holographic imaging methods. The amplitude and

phase images obtained from the Huygens convolution method

Figure 6. Holography of a living SKOV ovarian cancer cell. The
image area is 70 × 70 µm2 (448 × 448 pixels) and the image is at
z = 12 µm from the hologram: (a) hologram; (b) amplitude and
(c) phase images; (d) unwrapped phase image; (e) 3D perspective
rendering of (d).

are shown in figures 4(f) and (g), while those obtained from

the Fresnel method are omitted because they are completely

scrambled. The main reason for the obvious degradation of

these images is the insufficient off-axis angle at such short z

distance to separate out the zero-order component.

Figure 5 shows digital holography of an onion nucleus.

The panels display the (a) hologram, (b) amplitude image, (c)

phase image, and (d) phase image unwrapped by a software

algorithm. Pseudo-colour 3D rendering of (d) is shown in (e).

The image size is 30 × 30 µm2 with 436 × 436 pixels. The

phase image is a clear view of the optical thickness variation of

the nucleus in the middle of the body of the cell. In figure 6 we

show digital holography of a living SKOV ovarian cancer cell.

The image demonstrates the high quality that can be obtained,

displaying the nuclear membrane. The lamellipodia of the cell

are seen to extend out in order to occupy a large area as it

attempts to migrate.

4. Dual-wavelength imaging

A difficulty in both interferometry and phase imaging is the

2π ambiguity. A number of phase unwrapping algorithms

have been developed to remove these and improve the quality

and interpretation of the image. However, these often require

both substantial user intervention and the level of phase noise

and phase discontinuity to lie within strict limits. It has been

demonstrated that the wavelength can be extended to that of a

synthetic or beat wavelength �12 = λ1λ2/|λ1 − λ2|, by the

use of two wavelengths at λ1 and λ2 [18]. By generation and

combination of two phase maps using two or more separate

wavelengths, the phase ambiguities and discontinuities which

exist in the image can be removed. The procedure involves

subtraction of two phase maps φ1 and φ2 derived from λ1 and

λ2, such that φ12 = φ1 − φ2. Adding 2π wherever φ12 < 0

yields a new ‘coarse’ phase map with a longer range free of
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Figure 7. (a) The wrapped phase map reconstructed from the
hologram at the green wavelength λ1 = 0.532 µm and (b) the red
wavelength at λ2 = 0.633 µm; (c) the fine map obtained by the
phase maps shown in (a) and (b); (d) is the unwrapped phase map by
a software program.

discontinuities and extended axial range. By proper choice of

two wavelengths it can be seen that the axial range �12 can be

adjusted to any value that would fit the axial size of the object

being imaged. However, a drawback is that any phase noise

in each single-wavelength phase map is amplified by a factor

equal to the magnification of the wavelengths. The final step

in the procedure is to reduce the noise back to that of the level

of the single-wavelength phase maps. This is performed by

dividing the coarse map by integer multiples of λ1 and pasting

on the single-wavelength phase map to obtain the fine map.

An example of dual-wavelength phase imaging digital

holography is illustrated in figure 7. The combination of

the phase maps by the green wavelength λ1 = 0.532 µm

figure 7(a), and the red wavelength λ2 = 0.633 µm,

figure 7(b), produces a fine map with a new larger beat

wavelength �12 = 3.33 µm, figure 7(c). Some discontinuities

still remain in the image as the bars contain a large fluctuation

of phase due to the small amount of signal that is obtained from

these areas. The software implemented phase unwrapping

algorithm in figure 7(d) has a defect that propagates beyond

the noisy regions.

5. Wavelength-scanning digital interference
holography (WSDIH)

In wavelength-scanning digital interference holography, a

number of holograms are recorded using a range of sequential

intervals of wavelength [19]. The holograms are subsequently

reconstructed and the numerical superposition of reconstructed

holographic images results in a tomographic image with

a synthesized short coherence length and corresponding

axial resolution of around 10 nm. In contrast to

the application of other commonly used three-dimensional

imaging techniques such as confocal microscopy and optical

coherence tomography, WSDIH does not involve mechanical

scanning of the three-dimensional volume and still achieves a

comparable resolution.

For N different wavelengths, the reconstructed fields are

all superposed. The resultant wavefield at r is

E(r) ∼
∑

k

∫

A(rP) exp(ik|r − rP|) d3rP

∼

∫

A(rP)δ(r − rP) d3rP

∼ A(r) (13)

where rp represents the position of a point P which scatters

the illuminating beam and A(r) is the wavefield at the

object position. For N number of wavelengths at regular

intervals �(1/λ), the object field A(r) repeats itself with beat

wavelength � = [�(1/λ)]−1 and axial resolution δ = �/N .

By choosing appropriate values of �(1/λ) and N , the beat

wavelength � can be matched to the axial extent of the object,

and δ to the desired level of axial resolution.

Figure 8 illustrates the increase in axial resolution by

numerical superposition of the reconstructed holographic

images using a sequential number of wavelengths in the range

of 575.0–605.0 nm in 20 steps. The five frames in the figure

are with one, two, four, eight, and 20 wavelengths superposed.

As the synthesized coherence length decreases to δ = 12 µm

the contour widths become narrower. Figure 9 is the result

of a DIH imaging experiment on a 2.62 × 2.62 mm2 area

of a piece of beef tissue. Here we have used wavelengths

in the range of 585.0–599.0 nm at 31 steps so that the axial

range is � = 750 µm and the axial resolution δ = 25 µm.

The specimen is a thin layer of beef tissue pressed to about

1.5 mm thickness on a slide glass and otherwise exposed to

air. The images in figure 9(a) show tissue layers at several

depths up to about 500 µm below the surface. Much of the

reflection signal is apparently from the tissue–air and tissue–

glass interface. One can discern the striation of muscle fibre

bundles. Figure 9(b) shows variations of the tissue layers in a

few x–z cross-sectional images.

6. Conclusion

Interference techniques in digital holography are discussed

and experimental results from each technique are presented.

Numerical reconstruction algorithms commonly used in digital

holography are reviewed and their application to a test object

is investigated. The angular spectrum algorithm is seen

to be a particularly advantageous method of holographic

reconstruction. Frequency-domain spectrum filtering can be

applied, which can for example be used to remove noise

and background terms. Also, there is no requirement for

a minimum z distance, as in the commonly used Huygens

convolution and Fresnel transform reconstruction methods.

Furthermore, we demonstrate the application of the angular

spectrum in obtaining high quality images of biological objects

with quantitative phase analysis. On the other hand, a

common problem in phase imaging digital holography is

the 2π ambiguity. The dual-wavelength technique offers

a convenient and attractive alternative to using a software

based phase unwrapping algorithm. The advantage of the

multi-wavelength technique is clearly demonstrated when

unwrapping an object that does not fulfil the strict requirements

of the unwrapping algorithm. Finally, we show the application

of wavelength-scanning digital interference holography in
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Figure 8. Build-up of axial resolution by superposition of holographic images of a penny using a range of wavelengths with N = 1, 2, 4, 8,
and 20.

Figure 9. WSDIH tomography of beef tissue. The image volume is 2.62 mm × 2.62 mm × 750 µm, λ = 585.0–599.0 nm and N = 31, so
that � = 750 µm and δ = 25 µm. (a) x–y transverse images at several depths. (b) x–z cross-sectional images displaying variations of tissue
layers across the field.

obtaining tomographic images with a synthesized short

coherence length and axial resolution of around 10 µm.

The techniques presented in this paper demonstrate the

effectiveness of digital holography for biomedical microscopy

applications. In particular, the phase imaging digital

holography has great potential to provide quantitative phase

images of transparent biological specimens with nanometre

resolution of optical thickness variations. The wavelength-

scanning digital interference holography is being developed for

tomographic imaging of epithelial tissues.
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