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ABSTRACT

Aims. In this paper, we present an innovative data reduction method for single-mode interferometry. It has been specifically developed for the
AMBER instrument, the three-beam combiner of the Very Large Telescope Interferometer, but it can be derived for any single-mode interferometer.
Methods. The algorithm is based on a direct modelling of the fringes in the detector plane. As such, it requires a preliminary calibration of the
instrument in order to obtain the calibration matrix that builds the linear relationship between the interferogram and the interferometric observable,
which is the complex visibility. Once the calibration procedure has been performed, the signal processing appears to be a classical least-square
determination of a linear inverse problem. From the estimated complex visibility, we derive the squared visibility, the closure phase, and the
spectral differential phase.

Results. The data reduction procedures have been gathered into the so-called amdlib software, now available for the community, and are presented
in this paper. Furthermore, each step in this original algorithm is illustrated and discussed from various on-sky observations conducted with the
VLTI, with a focus on the control of the data quality and the effective execution of the data reduction procedures. We point out the present limited

performances of the instrument due to VLTI instrumental vibrations which are difficult to calibrate.

Key words. technique: interferometric — methods: data analysis — instrumentation: interferometers

1. Introduction

AMBER is the first-generation near-infrared three-way beam
combiner (Petrov et al. 2007) of the Very Large Telescope
Interferometer (VLTI). This instrument simultaneously provides
spectrally dispersed visibility for three baselines and a closure
phase at three different spectral resolutions. AMBER has been
designed to investigate the milli-arcsec surrounding of astro-
physical sources like young and evolved stars or active galac-
tic nuclei, and to possibly detect exoplanet signal. The main
new feature of this instrument compared to other interferomet-
ric instruments is the simultaneous use of modal filters (optical
fibers) and a dispersed fringe combiner using spatial coding. The
AMBER team has therefore carefully investigated a data pro-
cessing strategy for this instrument and is providing a new type
of data reduction method.

Given the astonishingly quick evolution of ground based
optical interferometers in only two decades, in terms of

* Based on observations collected at the European Southern
Observatory, Paranal, Chile.

http://www.aanda.org

baseline lengths and number of recombined telescopes, the in-
terest of using the practical characteristics of single-mode fibers
to carry and recombine the light, as first proposed by Connes
et al. (1987) with his conceptual FLOAT interferometer, is now
well established. Furthermore, in the light of the FLUOR ex-
periment on the IOTA interferometer, which demonstrated the
“on-sky” feasibility of such interferometers for the first time,
Coudé Du Foresto et al. (1997) showed that making use of single
mode waveguides could also increase the performances of opti-
cal interferometry, thanks to their remarkable properties of spa-
tial filtering, which change the phase fluctuations of the atmo-
spheric turbulent wavefront into intensity fluctuations. Indeed,
by monitoring these fluctuations in real time thanks to dedicated
photometric outputs and by performing instantaneous photomet-
ric calibration, he experimentally proved that single-mode in-
terferometry could achieve visibility measurements with preci-
sions of 1% or lower. Achievement of such performance level
has since been confirmed with the IONIC integrated optic beam
combiner set up on the same interferometer (LeBouquin et al.
2004).

http://dx.doi.org/10.1051/0004-6361:20064799
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Fig. 1. Left panel: Sketch of the AMBER instrument. The light enters the instrument from the left and is propagating from left to right until the
raw data are recorded on the detector. Further details are given in the text. Right panel: AMBER reconstituted image from the raw data recorded
during the 3-telescope observation of the calibrator HD135382 in February 2005, in the medium spectral resolution mode. DK corresponds to a
dark region, Pk are the vertically dispersed spectra obtained from each telescope, and IF is the spectrally dispersed interferogram.

Surprisingly, the effect of single-mode waveguides on the in-
terferometric signal has only been studied recently from a the-
oretical point of view. Ruilier et al. (1997) used numerical sim-
ulations in the presence of partial correction by adaptive optics
to show that spatial filtering provided a gain on the visibility
signal to noise ratio. However his study was limited to the case
of a point source. The case of sources with a given spatial extent
was first theoretically addressed by Dyer & Christensen (1999)
from a geometrical point of view. They proved that the visibility
obtained from single-mode interferometry was biased, the ob-
ject being multiplied by the antenna lobe (the point spread func-
tion of one single telescope) exactly as it happens in radio in-
terferometry (Guilloteau 2001). An equivalent geometrical bias
was also characterized for the closure phase (Longueteau et al.
2002). Then Guyon (2002) noticed in his simulations that took
the presence of atmospheric turbulence into account, that inter-
ferometric observations of extended objects (resolved by one
single telescope) could not be completely corrected for atmo-
spheric perturbations, therefore lowering the performances of
single-mode interferometry. Finally, by thoroughly describing
the propagation of the electric field through single-mode waveg-
uides in the general case of partial correction by adaptive optics
and for a source with a given spatial extent, Mege et al. (2003)
unified previous studies and introduces the concept of modal
visibility, which in the general case does not equal the source
visibility V,, and exhibits a jointly geometrical and atmospheric
bias. Nevertheless they also show that for compact sources, i.e.
smaller than one Airy disk, the mutual coherence factor u could
be written in the form of a simple product u = T;T,V, where T;
and T, are, respectively, the instrumental and the atmospheric
transfer functions that can be calibrated. Recently, Tatulli et al.
(2004) deduced from an analytical approach that in the specific
case of compact objects, the benefit of single-mode waveguides
is substantial, not only in terms of the signal-to-noise ratio of the
visibility but also of the robustness of the estimator.

Hence, following the path opened by the FLUOR experi-
ment, the AMBER instrument — the three-beam combiner of
the VLTI (Petrov et al. 2007) — makes use of the filtering prop-
erties of single-mode fibers. However, in contrast to FLUOR,
PTI (Colavita 1999a) or VINCI on the VLTI (Kervella et al.
2003), where the fringes are coded temporally with a movable
piezzo-electric mirror, the interference pattern is scanned spa-
tially thanks to separated output pupils, the separation fixing
the spatial coding frequency of the fringes, as in the case of
the GI2T interferometer (Mourard et al. 2000). Thus, if data

reduction methods have already been proposed for single-mode
interferometers using temporal coding (Colavita 1999b; Kervella
et al. 2004), this paper is the first to present a signal-processing
algorithm dedicated to single-mode interferometry with spatial
beam recombination. Moreover, in the case of AMBER, the con-
figuration of the output pupils, i.e. the spatial coding frequency,
imposes a partial overlap of the in the three telescopes case
interferometric peaks in the Fourier plane. As a consequence,
data reduction based on the classical estimators in the Fourier
plane (Roddier & Lena 1984; Mourard et al. 1994) cannot be
performed. The AMBER data reduction procedure is based on
a direct analysis in the detector plane, a principle that is an
optimization of the “ABCD” estimator as derived in Colavita
(1999b). The specificity of the AMBER coding and its sub-
sequent estimation of the observables arises from the desire
to characterize and to make use of the linear relationship be-
tween the pixels (i.e. the interferograms on the detector) and the
observables (i.e. the complex visibilities). In other words, the
AMBER data reduction algorithm is based on modelling the in-
terferogram in the detector plane.

In Sect. 2, we present the AMBER experiment from a signal-
processing point of view and we introduce the interferometric
equation governing this instrument. We develop the specific data
reduction processes of AMBER in Sect. 3, and then derive the
estimators of the interferometric observables. Successive steps
in the data reduction method are given in Sect. 4, as performed
by the software provided to the community. Finally, the data-
reduction algorithm is validated in Sect. 5 through several “on-
sky” observations with the VLTI (commissioning and science
demonstration time (SDT)). Present and future performances of
this instrument are discussed.

2. Presentation of the instrument
2.1. Image formation

The process of image formation of AMBER is sketched in Fig. 1
(left) from a signal-processing point of view. It consists of three
major steps. First, the beams from the three telescopes are fil-
tered by single-mode fibers to convert phase fluctuations of the
corrugated wavefronts into intensity fluctuations that are moni-
tored. The fraction of light entering the fiber is called the cou-
pling coeflicient (Shaklan & Roddier 1988) and it depends on
the Strehl ratio (Coudé du Foresto et al. 2000). At this point, a
pair of conjugated cylindrical mirrors compresses, by a factor
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Table 1. Detector properties.

Detector specifications

Society/Name Rockwell/HAWAIIL
Composition HgCdTe
Number of pixels 512 x 512
Pixel size 18.5 um x 18.5 um
Spectral width 0.8 um—2.5 um
Readout noise 9e”
e /ADU 4.18
Cooling Liquid nitrogen
Temperature 78 K
Autonomy of cryostat 24 h

of about 12, the individual beams exiting from fibers into one
dimensional elongated beams to be injected in the entrance slit
of the spectrograph. For each of the three beams, beam-splitters
placed inside the spectrograph select part of the light and induce
three different tilt angles so that each beam is imaged at different
locations of the detector. These are called photometric channels
and are each one relative to a corresponding incoming beam. The
remaining parts of the light of the three beams are overlapped
on the detector image plane to form fringes. The spatial coding
frequencies of the fringes f are fixed by the separation of the in-
dividual output pupils. They are f = [1,2,3]d/A, where d is the
output pupil diameter. Since the beams hit a spectral dispersing
element (a prism glued on a mirror or one of the two gratings)
in the pupil plane, the interferogram and the photometries are
spectrally dispersed perpendicularly to the spatial coding. The
dispersed interferogram arising from the beam combination, as
well as the photometric outputs are recorded on the infrared de-
tector, which characteristics are given in Table 1.

The detector consists in a 512 x 512 pixel array with the
vertical dimension aligned with the wavelength direction. The
first 20 pixels of each scanline of the detector are masked and
never receive any light, allowing us to estimate the readout noise
and bias during an exposure. The light from the two (resp. 3)
telescopes comes in three (resp. 4) beams, one “interferomet-
ric” beam where the interference fringes are located, and two
(resp. three) “photometric” beams. These 3 (resp. 4) beams are
dispersed and spread over three (resp. 4) vertical areas on the
detector. The detector is read in subwindows. Horizontally, these
subwindows are centered on the regions where the beams are dis-
persed, with a typical width of 32 to 40 pixels. Vertically, the de-
tector can be set up to read up to three subwindows (covering up
to three different wavelength ranges). The raw data format used
by AMBER records individually these subframes. However, as
sketched in the right panel of Fig. 1, the AMBER raw data can
be conceived as the grouping together of these subwindows:

— The left column (noted “DK” ) contains the masked pixels.

— The two following columns (noted “P1” and “P2”) and the
right one in the three telescope mode (noted “P3”), usu-
ally of 32 pixels wide, are the photometric outputs. They
record the photometric signal coming from the three tele-
scopes. When dealing with 2-telescope observations, only
channels P1 and P2 are lit.

— The fourth column is the interferometric output (de-
noted “IF”). it exhibits the interference fringes arising from
the recombination of the beams (that is, two or three beams,
according to the number of telescopes used). We call Ny, the
number of pixels in this column, which is usually Ny, = 32.

The individual image that is recorded during the detector inte-
gration time (DIT) is called a frame. A cube of frames obtained
during the exposure time is called an exposure.

2.2. AMBER interferometric equation

The following demonstration is given considering a generic
Ner = 2 telescope interferometer. In the specific case of
AMBER, however, Ny = 2 or N = 3. Each line of the
detector being independent of each other, we can focus our
attention on one single spectral channel', which is assumed to
be monochromatic here. The effect of a spectral bandwidth on
the interferometric equation is treated in Sect. 3.6.1.

Interferometric output: when only the ith beam is illu-
minated, the signal recorded in the interferometric channel is
the photometric flux F* spread on the Airy pattern aj(, which is
the diffraction pattern of the ith output pupil weighted by the
single-mode of the fiber, & is the pixel number on the detector,
and « is the associated angular variable. Then, F’ i results in the
total source photon flux N attenuated by the total transmission of
the ith optical train #, i.e. the product of the optical throughput
(including atmosphere and optical train of the VLTI and the
instrument) and the coupling coefficient of the single-mode
fiber:

F' =Nt ey

When beams i and j are illuminated simultaneously, the coherent
addition of both beams results in an interferometric component
superimposed on the photometric continuum. The interferomet-
ric part, i.e. the fringes, arises from the amplitude modulation
of the coherent flux F¢ at the coding frequency f. The co-
herent flux is the geometrical product of the photometric fluxes,
weighted by the visibility:

FY = aN Vi viiel(©+4) @)

where V¥/e®” is the complex modal visibility (Mage et al. 2003)

and ¢§,j takes a potential differential atmospheric piston into ac-
count. Note that, strictly speaking, the modal visibility is not the
source visibility. However, the study of the relation between the
modal visibility and the source visibility is beyond the scope of
this paper, but further information can be found in Mege et al.
(2003) and Tatulli et al. (2004). Here we consider our observ-
able to be the complex modal visibility.

Such an analysis can be done for each pair of beams arising
from the interferometer. As a result, the interferogram recorded
on the detector can be written in the general form:

N(el N(el . j i
= ), aF' + ), \aalCyRe [Fé’e’(2”“*f ), (3)
i

i<j

Here, qﬁéj is the instrumental phase taking possible misalignment

and/or differential phase between the beams af{ and ai into
account, and Cg and (Dg are, respectively, the loss of contrast
and the phase shift due to polarization mismatch between the
two beams (after the polarizers), such as the rotation of the
single-mode fibers might induce. This equation is governing

the AMBER fringe pattern, that is the interferometric channel

! In practice, there is a previous image-centering step, where each
channel is re-centered with respect to the others along the wavelength
dimension, as explained in Sect. 4.
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of the fourth column. The first sum in Eq. (3), which represents
the continuum part of the interference pattern, is called the
DC component from now on, and the second sum, which
describes the high frequency part (that is the coded fringes), is
called the AC component of the interferometric output.

Photometric outputs: thanks to the photometric channels,
the number of photoevents p'(@) coming from each telescope
can be estimated independently with

pi. = F'b, )

where b}; is the beam profile in the ith photometric channel. The
previous equation rules the photometric channels.

3. Data reduction algorithm

The AMBER data-reduction algorithm is based on the modelling
of the interferogram in the detector plane. Such a method
requires an accurate calibration of the instrument.

3.1. Modelling the interferogram

In order to model the interferogram, we distinguish between the
astrophysical and instrumental parts in the interferometric
equation. It becomes:

Nlel . . Nlel R P
i =) @ F + > [cRY + a1 )
i i<j
with
ij ij a;;a‘]i ij ij ij
¢/ =¢y —————=cos (27Takf + ¢ + CDB) R (6)
2k a;ﬂ;ﬁ
aal
.. L. Kk . . ii ii
d]’(/ = Cgf sin (27rakf” + ¢ + d)’B’) , (7
2k a;(ai
and

R = \/%Re[w]’ 7l = \/%Im[ﬂ?]. ®)
% k

As an analogy with telecom data processing, ¢}/ and d;’ are called
the carrying waves of the signal at the coding frequency f/,
since they carry (in terms of amplitude modulation) R”/ and I/,
which are directly linked to the complex coherent flux (as shown
by Eq. (8)). '

The estimated photometric fluxes P’ are computed from the
photometric channels (see Eq. (4)):

P =F Z bi. )
k

If we know the ratio v;; — which only depends of the instrumental
configuration — between the measured photometric fluxes P and
the corresponding DC components of the interferogram, we can
have an estimation of the latter thanks to the following formula:

a F' = P'v,. (10)

Table 2. Acquisition sequence of calibration files.

Step Sh1 Sh2 Sh3 Phasevy, DPR key
1 (¢} X X NO 2P2V, 3P2V
2 X o X NO 2P2V, 3P2V
3 0] (6} X NO 2P2V, 3P2V
4 (0) (¢} X YES 2P2V, 3P2V
5 X X o NO 3P2V
6 (0] X o NO 3pP2V
7 0] X (6} YES 3P2V
8 X o o NO 3pP2V
9 X O O YES 3P2V

Sh = Shutter; O = Open; X = Closed.

We then can compute the DC continuum corrected interfero-
gram my,

Nlel

my = iy — Z Pivf, (11)
i=1

which can be rewritten:

my = /R - a1V, (12)

This equation defines a system of Ny linear equations with
2Np = Nie1(NVie] — 1) unknowns (i.e. twice the number of base-
lines). It characterizes the linear link between the pixels on the
detector and the complex visibility:

Ny Ny
m Ll dl | R R
= L N - |=vepMm| : [ (13)
M . cxpix T d;\],pix | 1Y I

The V2PM matrix (namely visibility to pixel matrix), which con-
tains the carrying waves, holds the information about the inter-

@
instrumental differential phases ¢§j . Together with the vf{, they
entirely describe the instrument from a signal processing point
of view. These quantities, namely cj(j s d]i(j ,and vf{, have, however,
to be calibrated.

ferometric beams the coding frequencies f/, and the

3.2. Calibration procedure

The calibration procedure is performed thanks to an internal
source located in the Calibration and Alignment Unit (CAU) of
AMBER (Petrov et al. 2007). It consists of acquiring a sequence
of high signal-to-noise ratio calibration files, whose successive
configurations are summarized in Table 2 and explained below.
Since the calibration is done in laboratory, the desired level of
accuracy for the measurements is insured by choosing the appro-
priate integration time. As an example, typical integration times
in “average accuracy” mode are (for the full calibration process)
T =175, 30 s, 800 s for, respectively, low, medium, and high
spectral resolution modes in the K band and 100 times higher for
the “high accuracy” calibration mode.

The sequence of calibration files has been chosen to ac-
commodate both two and three-telescope operations. For a two-
telescope operation, only the 4 first steps are needed. Raw data
FITS files produced by the ESO instruments bear no identifiable
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Fig. 2. Outputs of the calibration procedures. Examples have been chosen for one given wavelength: A = 2.2 um. Left: the v} functions. Middle:
the matrix containing the carrying waves; the first three columns are the ¢} functions for each baseline, and the three last columns are the

respective d,’;j functions. One can see that for each baseline cii and dii are in quadrature. Right: another representation of the carrying waves. From
top to bottom, both sinusoidal functions correspond to columns 1—-4, 2—-5, and 3—6 of the calibration matrix.

name and can only be identified as, e.g., files relevant to the cal-
ibration of the V2PM matrix, by the presence of dedicated FITS
keywords (ESO’s pipeline Data PRoduct keys or “DPR keys”)
in their header. The DPR keys used are listed in Table 2.

First (steps 1 and 2 — and 5 when in 3-telescope mode), for
each telescope beam, an image is recorded with only this shut-
ter opened. The fraction of flux measured between the interfer-
ometric channel and the illuminated photometric channel leads
to an accurate estimation of the v;'( functions. Then, in order to

compute the carrying waves ck and d J_ one needs to have two
independent (in terms of algebra) measurements of the interfer-
ogram since there are two unknowns (per baseline) to compute.
The principle is the following: two shutters are opened simul-
taneously (steps 3/4, 6/7, and 8/9) and for each pair of beams,
then the interferogram is recorded on the detector. Such an in-
terferogram corrected for its DC component and calibrated by
the photometry yields the knowledge of the c;(’ carrying wave.
To obtain its quadratic counterpart, the previous procedure is
repeated by introducing a known phase shift close to 90 de-
gree yo using piezoelectric mirrors at the entrance of beams 2
and 3. Computlng the d; Y function from the knowledge of c
and 7y is stralghtforward Note that by construction: (i) the car—
rying waves are computed with the unknown system phase ®¢
(possible phase of the internal source, differential optical path
difference introduced at the CAU level, etc.), and (ii) since the
internal source in the CAU is slightly resolved by the largest
baseline (1-3) of the output pupils, the carrying waves for this
specific baseline are weighted by the visibility V, of the internal
source. Hence, at this point, the carrying waves are following ex-
pressions that are slightly different from their original definition
given by Eqgs. (6) and (7):

ij _

lJ
kk
\/ kak

¢ = C”V” cos 27mkf” +¢Y + CD” + CDU) (14)
N aal o
d) = ———CJvsin2narf7 + ¢ + O + @¥).  (15)
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Fig. 3. Contrast loss due to polarization effects and partial resolution
of the internal source as a function of the wavelength. The 3-telescope
P2VM used is the same as the one presented in Fig. 2. The errors bars
are roughly at the level of the contrast loss rms along the wavelength.
In other words, the contrast loss is constant over the wavelength range.

However, since c;;j and d,i(j are shifted by n/2, they insure the
following relation:

Npix

Dt +di=CpV2.
k

(16)

Hence, the conjugated loss of visibility due to the internal source
and the polarization effects can be known and calibrated' by
computing the previous formula. Unfortunately, since it is not
possible to disentangle both contrast losses, and since the V, fac-
tor only affects the interferograms arising from the calibration
procedure, and not from the observation, the visibility estimated
on a star will be affected from this factor as well, as shown in
Sect. 3.5.1.

Figure 3 illustrates Eq. (16). For the baselines (1,2)
and (2,3), the contrast loss arises from polarization effects,
since the internal source is unresolved. We find C}f ~ 0.9 and
CZ ~ 0.8, respectively. For the third baseline (1, 3), the internal
source is partially resolved, which explains an higher contrast
loss, C}f VC13 ~(0.7.

! This step is not yet provided in the amdlib software described
in Sect. 4.
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3.3. Fringe fitting

To estimate the coherent fluxes R/ and I/, which are at the ba-
sis of the computation of the whole AMBER observables, one
has to solve the inverse problem described by Eq. (13), i.e. one
has to perform an y? linear fit of the fringes, with the coherent
fluxes being the unknown parameters. The solution is given by
the following equation

[RY, 1] = P2VM[my], an
where
P2VM = [V2PM'Cy/ V2PM]_1 V2PM'Cy/ (18)

is the generalized inverse of the V2PM matrix, Cy being the
covariance matrix of the measurements my, and X7 denoting
the transpose of the X matrix. P2VM means Pixel to Visibility
Matrix since it allows estimation of the complex visibility from
the interferogram recorded on the detector. Assuming that the
pixels on the detector are uncorrelated, the Cy matrix is diag-
onal, with each term of the diagonal defined by the variance of
the DC-corrected interferogram o%(m;). The fundamental error
on the DC corrected interferogram arises from the photon noise
and detector noise (of variance o) corrupting the measurements,
that is, each pixel of the interferogram i; and the estimated pho-
tometric fluxes P, It becomes:

N(el
F2me) =T+ 0% + 3" [Py + Noix? | ()2,

i=1

19)

3.4. Fringe detection

Positive detection of fringes in the measurements requires, at
the same time, enough flux entering the fibers and high enough
fringe contrast, so that the fringes rise with the noise level. As
a result, the computation of the signal-to-noise ratio of the co-
herent flux, which takes both of the parameters into account,
appears naturally as the relevant criterion to use.

Ny N;

b2 b2
3l P R e

7 Ogo P

11
SNR*(f) = — —
@] NN 2

b being for sake of simplicity the baseline number that describes
each pair of telescopes (i, j), N, the number of baselines, and N;
the number of spectral channels. In the absence of fringes, the

-, 2 2 .
quantities R*” and I~ tend toward o'zzeb and o-?b , respectively, thus
driving the fringe criterion toward 0. In contrast, the presence

. . . 2
of fringes above the noise level, that is, when R"(,1) > o7,

and/or Ibz(l, 1 > 0'?,, imposes the fringe criterion to be strictly
superior to 0 and is directly linked to the quality of the frames.
It thus allows us to operate a fringe selection prior to the proper
estimation of the observables, a step that can be useful for sets
of data recorded in bad observational conditions, as shown in
Sect. 5.2.

The values o2, and 0'?,,, the bias part of R? and I?, can be
easily computed from the definition of the real and imaginary
part of the coherent fluxes, which are linear combinations of the
DC continuum-corrected interferograms my. If £ ,f and .f,f are the

coefficients of the P2VM matrix, R’ and I” verify the respective
following equations:

Npix Npix
b b b b
R’ = k§—1 Lme, I = k§—1 &my. 21

It is then straightforward that

T = Y @GP m); o = D (€ o m). (22)
k k

3.5. Estimation of the observables

For each spectral channel, the squared visibility and closure
phase (in the three telescope case) can be estimated from the in-
terferogram. Taking advantage of the spectral dispersion, the dif-
ferential phase can be computed as well. In the following para-
graphs, we denote with (...) the ensemble average of the different
quantities. This average can be performed either on the frames
within an exposure and/or on the wavelengths.

3.5.1. The squared visibility

Theoretically speaking, the squared visibility is given by com-
puting the ratio between the squared coherent flux and the pho-
tometric fluxes. Following Eqs. (1), (2), (8) and (9) it becomes:

|Fé]|2 B R 4 [ B |Vlj|2‘

AFIFI 4pipiy, il il

(23)

Note that, thanks to the calibration process, the computed visibil-
ity is free of the instrumental contrast, which is the loss of con-
trast due to the instrument; but as mentioned in Sect. 3.2, the ob-
ject visibility is weighted by the visibility of the internal source.

However, this factor (V¢ 2) automatically disappears when doing
the necessary atmospheric calibration (see Sect. 3.6.2).

As a result the visibility — atmospheric issues apart — has still
to be calibrated by observing a reference source. In practice, be-
cause data are noisy, we perform an ensemble average on the
frames that compose the data cube (see Sect. 2.1) to estimate the
expected values of the square coherent flux and the photometric
fluxes, respectively. Taking the average of the squared modulus
of the coherent flux, i.e. doing a quadratic estimation, allows us
to handle the problem of the random differential piston ¢, but
introduces a quadratic bias due to the zero-mean photon and de-
tector noises (Perrin 2003). The expression of the squared visi-
bility estimator, unbiased by fundamental noises is therefore:

i (R +17%) - Bias{R'? + I
— = — — : (24)
Vélz 4(PPIy Y, viv]

The quadratic bias of the squared amplitude of the coherent flux
writes as the quadratic sum of the biases of R* and I°. From
Eq. (22), we get:

Bias{R"” + [} = Z [(g“,ij)z + (f,ij)z] o (my).

k

(25)

The previous equation is nothing but the mathematical expres-
sion that describes the bias as the quadratic sum of the errors of
the measurements o(my) (as defined by Eq. (19)) projected on
the real and imaginary axis of the coherent flux.

Using the squared visibility estimator of Eq. (24), the theo-
retical error bars on the squared visibility can be computed from
its second-order Taylor expansion (Papoulis 1984; Kervella et al.
2004):

1
M

2

o> (CIP) | (PP
+ 2

(VP = .
|Cijl?

Vil (26)

Pipi
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where |[CUP = R/* + /% — Bias{R/* + I'/*} is the unbiased
squared coherent flux. In practice, the expected value and the
variance of the squared coherent flux and the photometric fluxes
are computed empirically from the M available measurements.
We then get the following semi-empirical formula:

_ Ici®y  —{|ciip 2
U?tat(|vij|2) = i < >M < >M

M <|Cij|2>i4
) .2
pPpJ —(P'P/ —
< >“.“ S >M VIR @7
(PP )y

Note finally that, although quadratic estimation of the visibility
has been computed, the squared visibility will be systematically
decreased by the atmosphere jitter during the frame integration
time. We focus on this effect in Sect. 3.6.

3.5.2. The closure phase

By definition, the closure phase is the phase of the so-called bis-
pectrum B'?3. The bispectrum results in the ensemble average of
the coherent flux triple product and then estimated as

EIB — <C12C23Cl3*> (28)

where C'/ = R/ +iI'/. The closure phase then is straightforward:

R123
;m:m[@gJ} (29)
Re(B'23)

The closure phase presents the advantage of being independent
of the atmosphere (e.g. Roddier 1986). However in the case of
AMBER, the closure phase of the image might not coincide with
the one of the object and might be biased because of the calibra-
tion process. If the so-called system phase presents a non-zero
closure phase ®!2 + ®2* — @3, this bias must be calibrated by
observing a point source or at least a centro-symmetrical object.
So far, no theoretical computation of the error of the closure
phase has been provided for the AMBER data-reduction algo-
rithm. Thus, closure-phase internal error bars (i.e. that does not
include systematics errors) are computed statistically by taking
the root mean square of all the individual frames, then divid-
ing by the square root of the number of frames, as illustrated
in Sect. 5.5.

3.5.3. The differential phase

The differential phase is the phase of the so-called cross spec-
trum Wy,. For each baseline, the latter is estimated from the com-
plex coherent flux taken at two different wavelengths A; and A;:

wi = (¢l (30)

And the differential phase is:

— 1m (W)

A¢', = atan — | (€29)
Re (W)

3.5.4. The piston

The interferometric phase induced by the achromatic piston term
takes the form

216
A

=260

¢ = (32)
where ¢"/ is the achromatic differential piston between tele-

scope i and j, A is the wavelength, and o is the wavenumber
(i.e.o =1/A2).

First order Taylor expansion: at first order, the estimated
differential phase of Eq. (31) is a linear function that takes the
generic form A¢j, = ¢ + 21 (0 — 01) 8. Its slope ¢ depends on
the sum of atmospheric piston ¢,,, which varies frame by frame,
and of the linear component of the object differential phase J,.
A good estimate of this slope in the presence of noise is the
argument of the average cross spectrum along the wavelengths:

ij
i j i j Aot Ao >
6y +04 = —

2n <0-/121+1 - 0-/121>l

arg(W 33)

Estimation of the piston is unbiased when the wave number
varies linearly with the spectral pixel index (linear grating dis-
persion law). This can be true with an excellent approximation
at medium spectral resolution and high spectral resolution in the
AMBER case. However, for the low spectral resolution, biases
as high as 5% in the estimation of piston can occur.

Fitting the complex phasor: the achromatic piston can
also be estimated from a least-square fit of the complex coherent
flux. If we define the complex phasor as

ii 2imot)
Y, =C]xe™, (34)
6" can be retrieved by minimizing the phase of such complex
phasoror, equivalently, by minimizing the tangent of the phase.
The 2 is then defined as:
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This y? is highly non-linear and simple techniques such as gra-
dient fitting cannot be used here. On the contrary, non-linear
fitting techniques such as genetic or simulated annealing algo-
rithms (Kirkpatrick et al. 1983) must be used instead.

Note that, in order to distinguish between the atmospheric
piston ¢, and the linear component of the differential phase 6,
the fitting techniques described above can be performed by only
using spectral channels corresponding to the continuum of the
source (i.e. outside spectral features) where its differential phase
of the object is assumed to be zero.

3.6. Biases of the visibility
3.6.1. Loss of spectral coherence

The above derivation of the interferometric equation assumes a
monochromatic spectral channel. In practice, the spectral width
of one spectral channel is non zero and depends on the reso-
lution R of the spectrograph. As a consequence the coherence
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length L. of the interferogram is finite and equals £. = ApR,
where Ay is the reference wavelength in the spectral channel.
Assuming a linear decomposition of the phase of the interfero-
gram and neglecting higher orders, the interferogram is attenu-
ated by a factor p;, which can be written

A( 6k+6p+50)
g— P70

Pr = IT 7 ; (36)

where ¥ is the Fourier transform of the spectral filter function,
O 1s the spatial sampling of the interferogram (that is, the pixel
coordinates expressed in optical path difference (OPD) units),
0p and J, the atmospheric piston and the slope of the object
spectral differential phase, respectively, as defined in Sect. 3.5.4.
Note that for a square filter, the attenuation coefficient takes the
well-known form of the sinc function:

Ok +0p + 0,
L

In the low-resolution mode where R = 35, the attenuation coef-
ficient strongly depends on the pixel position 0y, which is cali-
bratable quantity. Nonetheless, the compensation for this effect
requires an iterative process in two steps where (i) the estimation
of op + 0, is performed as described in Sect. 3.5.4 and (ii) the
P attenuation correction is applied directly to the DC corrected
interferograms my. The loop is then repeated until convergence.
This algorithm, which has not yet been implemented in the soft-
ware, will be described in greater detail in a forthcoming paper.

In the medium and high resolutions (where R = 1500 and
R = 10000, respectively), however, the OPD 6 due the spa-
tial sampling of AMBER can be neglected. Indeed this approx-
imation leads to a relative error of the coefficient below 1073
and 1075, respectively, which is within the specified error bars
of the visibility. In such a case, the loss of spectral coherence
simply results in biasing the visibility frame to frame by a fac-
tor p(dp + o). This bias can be corrected by knowing the shape
of the spectral filter and by estimating the piston dp + J, thanks
to Eq. (33).

o = |sine (77 . (37)

3.6.2. Atmospheric jitter

Although a quadratic estimation of the visibility has been per-
formed to avoid the differential piston to completely cancel out
the fringes, the high frequency variations of the latter during the
integration time — so called high-pass jitter — nevertheless blur
the fringes. As a result, the coherent flux, thus the visibility, is at-
tenuated. On average, the attenuation coefficient I of the squared
visibility is given by Colavita (1999b):

r= exp(—o-ip ) (38)
hf

2 . . . .
where o PR the variance of the high-pass jitter ¢£ p

h,

For thé time being, this atmospheric effect is compensated by
calibrating the source visibility with a reference source observed
shortly before and after the scientific target to insure similar at-
mospheric conditions. We have also planned in the near future to
provide a more accurate calibration of this effect, based on com-
puting the variance of the so-called “first difference phase jit-
ter”, which is the difference of the average piston taken between
two successive exposures, as proposed by Colavita (1999b) for
the PTT interferometer and successfully applied by Malbet et al.
(1998). However, jitter analysis (as illustrated in Sect. 5.2) can-
not be tested and validated as long as the extra-sources of vibra-
tions due to VLTI instabilities (delay lines, adaptive optics, etc.),

hardly calibratable, are clearly identified and suppressed. Note
as well that the use of the accurate fringe tracker FINITO (Gai
et al. 2002), soon expected to operate on the VLTI, should drasti-
cally reduce the jitter attenuation, hence allowing integration on
much longer times than the coherence time of the atmosphere in
order to reach fainter stars.

4. The amdlib data reduction software

A dedicated software to reduce AMBER observations has been
developed by the AMBER consortium. This consists of a li-
brary of C functions, called amdlib, plus high-level interface pro-
grams. The amdlib functions are used at all stages of AMBER
data acquisition and reduction: in the observation software (OS)
for wavelength calibration and fringe acquisition, in the (quasi)
real time display program used during the observations, in the
online data reduction pipeline customary for ESO instruments,
and in various offline front end applications, noticeably a Yorick
implementation (AmmYorick). The amdlib library is meant to in-
corporate all the expertise on AMBER data reduction and cali-
bration acquired throughout the life of the instrument, which are
bound to evolve with time.

The data obtained with AMBER (“raw data’) consist of an
exposure, i.e., a time series of frames read on the infrared cam-
era, plus all relevant information from AMBER sensors, ob-
served object, VLTI setup, etc., stored in FITS TABLE format,
according to ESO interface document VLT-ICD-ESO-15000-
1826. Saving the raw, uncalibrated data, although more space-
consuming, permits us to benefit afterwards, by replaying the
calibration sequences and the data reduction anew, from all
the improvements that could have been deposited in amdlib in
the meantime.

The library contains a set of “software filters” that refine the
raw data sets to obtain calibrated “science data frames”. This
treatment is performed on all of the raw data frames, irrespective
of their future use (calibration or observation). A second set of
functions performs high-level data extraction on these calibrated
frames, either to compute the V2PM (see Sect. 4.3) from a set of
calibration data or to extract the visibilities from a set of science
target observations, the end product in this case being a reduced
set of visibilities per object, stored in the optical interferometry
standard OI_FITS format (Pauls et al. 2005).

4.1. Detector calibration

First, all frames pixels are tagged valid if not present in the cur-
rently available bad pixel list of the AMBER detector. Then they
are converted to photoevent counts. This step necessitates, for
each frame, precisely modelling of the spatially and temporar-
ily variable bias added by the electronics. The detector exhibits
a pixel-to-pixel (high frequency) bias whose pattern is constant
in time but which depends on the detector integration time (DIT)
and the size and location of the subwindows read on the detector.
Thus, after each change in the detector setup, a new pixel bias
map (PBM) is measured prior to the observations by averaging a
large number of frames acquired with the detector facing a cold
shutter?. This PBM is then simply removed from all frames prior
to any other treatment.

Once this fixed pattern has been removed, the detector may
still be affected by a time-variable “line” bias, i.e., a variable

2 Due to mechanical overheads, “hot dark™ observations, i.e., using
only an ambient temperature beam shutter external to the dewar of the
detector, are currently used to compute the PBM.
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offset for each detector line. This bias is estimated for each scan
line and each frame as the mean value of the corresponding line
of masked pixels (“DK” column in Fig. 1) and then substracted
from the rest of the line of pixels. The detector has an image
persistence of ~10%; consequently, all frames are corrected for
this effect before calibration. Pixels are then converted to pho-
toevent counts by multiplying by the pixel’s gain. Currently the
map of the pixel gains used is simply a constant e”/ADU value
(see Table 1) multiplied by a “flat field” map acquired during lab-
oratory tests. Finally, the rms of the values in the masked pixel
set, which were calibrated as the rest of the detector, gives the
frame’s detector noise.

4.2. Image alignment and science data production

Once the cosmetics on the pixels is done, amdlib corrects the
data from the spatial distortions present in the image. Presently,
the only corrected effect is a displacement of the spectra acquired
in the “photometric channels” (labeled P1, P2, P3 in Fig. 1) with
regards to the fringed spectrum in the interferometric channel.
This displacement of a few pixels in the spectral dispersion di-
rection is due to a slight misalignment of the beam-splitters de-
scribed in Sect. 2.1, and correcting for this effect is mandatory
for computing the DC continuum interferogram (Eq. (11)). The
calibration of this displacement is performed by amdlib during
the spectral calibration procedure, one of the first calibration se-
quences to be performed prior to observations.

Finally, each frame is converted to the handier “science data”
structure, which contains only the calibrated image of the “in-
terferometric channel” and (up to) three 1D vectors, the corre-
sponding instantaneous photometry of each beam, corrected for
the above-mentioned spectral displacement.

4.3. Calibration matrix computation

Computation of the V2PM matrix is performed by the function
amdlibComputeP2vm(). This function processes the 4 or 9 files
described in Sect. 3.2 applying by each of them the detector cal-
ibration, image alignment, and conversion to “science data” de-
scribed above, then computing the vj( (Eq. (10)) and the carrying

waves ¢ and d of the V2PM matrix (Eq. (13)). The result is
stored in a FITS file, improperly called, for historical reasons,
“the P2VM™3.

The P2VM matrix is the most important set of calibration
values needed to retrieve visibilities. The shape of the carrying
waves (the ¢;s and d;s ) and, in lesser measure, the associated v;s
are the imprints of all the changes in intensity and phase that the
beams suffer between the output of each fiber and detection on
the infrared camera. Any change in the AMBER optics situated
in this zone, either by moving, e.g., a grating, or just thermal
long-term effects, render the P2VM unusable. Thus, the P2VM
matrix must be recalibrated each time a new spectral setup is
called that involves changing the optical path behind the fibers.

All the instrument observing strategies and operations are
governed by the need to avoid unnecessary optical changes, and
care is taken at the operating system level to assure a recali-
bration of the P2VM whenever a “critical” motor affecting the
optical path is set in action. To satisfy these needs, the P2VM
computation has been made mandatory prior to science observa-
tions and is given an unique ID number. All the science data files
produced after the P2VM file inherit this ID, which associates

3 Actually “the V2PM” should be the proper name.

them with their “governing” calibration matrix. The amdlib li-
brary takes the opportunity of the P2VM file being pivotal to
the data reduction, and unique, to make it a placeholder for all
the other calibration tables needed to reduce the science data,
namely the spectral calibration, bad pixels, and flat field tables.

4.4. From science data to visibilities

The computation of visibilities is performed by the
amdlibExtractVisibilities() function, using a valid
P2VM file. Then amdlibExtractVisibilities() is able to
perform visibility estimates on a frame-by-frame basis, or over
a group of frames, called bin.

The amdlibExtractVisibilities() function, in se-
quence is

invert the V2PM calibration matrix;

extract raw visibilities;

correct for biases, compute debiased V2 visibilities;
compute phase closures;

compute cross spectra;

fit piston values from cross spectra;

write the OI-FITS output file.

Nounkw =

A typical data reduction process will first process all
raw data files related to the calibration procedures per-
formed before acquiring the science data, thus perform-
ing spectral calibration (e.g., using the command line pro-
gram amdlibComputeSpectralCalibration), then P2VM
file computation (e.g., using the command line program
amdlibComputeP2vm). Once the P2VM file is computed, it con-
tains all the calibration quantities needed to process science
object observations. One then uses the amdlibExtractVis
program on a science data set to get the final OI-FITS file con-
taining the measured science object visibilities.

5. lllustrations and discussions

This section aims to present, step-by-step, the data reduction
procedures performed on real interferometric measurements
arising from VLTI observations. Results are discussed, focusing
on key points in the process.

5.1. Fringe fitting

Assuming the calibration process has been properly performed
following Sect. 3.2, the first step in the derivation of the observ-
ables is to estimate the real and imaginary parts of the coherent
flux. This is done by inverting the calibration matrix and obtain-
ing the P2VM matrix, shown by Egs. (17) and (18). Figure 4
gives an example of the fringe fitting process for an observation
of the calibrator star HD135382 with three telescopes.

However, before going further in the data reduction process,
it might be worthwhile for the users to check the validity of the
fit and then to detect any potential problems in the data. Such a
step can be easily done by computing the residual y2 between
the measurements m1; and the model

(] = V2PM[RY, TV (39)
and
Xoos = [ — mi]"Cyf [y — mye]. (40)
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Chi2 residual = 1.21628

# pixels

Fig.4. Example of fringe-fitting by the carrying waves in the
3-telescope case. The DC-corrected interferogram is plotted (dashdot
line) with the error bars. The result of the fit is overplotted (solid line).

Using this checking procedure, the user can verify two critical
points of the data processing:

— the correct subtraction of the DC component (see Eq. (11)):
if such a condition is not fulfilled, the computed visibility
will inevitably be biased since the fringe fitting by the car-
rying waves supposes the only presence of specific frequen-
cies, that is, the spatial coding frequencies of the instrument.
A wrong DC subtraction might occur with sudden atmo-
spheric changes between the recording of the interferometric
channel and the associated photometric ones, as these chan-
nels are not on the same line of the detector, as mentioned
in Sect. 4.2.

— the use of a correct bad pixel map: if not, the presence of bad
pixels induces high frequencies in the fringes, which cannot
be taken into account by the carrying waves, driving one to
compute biased visibility, as well. Note that the bad pixel
map is computed every time a detector calibration is per-
formed in the maintenance procedure.

5.2. Fringe criterion and fringe selection

For each frame of the set of data, Eq. (20) provides an es-
timation of the fringe signal-to-noise ratio. As an example,
Fig. 5 presents 100 fringes recorded on the detector during the
2-telescope observation of the calibrator € Sco in July 2005, first
in the order they appeared during the observation and then after
re-ordering them following the fringe criterion.

The aim of computing this criterion can be twofold: (i) dur-
ing the observations, as mentioned in Sect. 3.4, it allows us to
detect the fringes and therefore to initiate the recording of the
data only when it is meaningful; and (ii) calculated a posteriori
during the data reduction phase, it enables us to select the best
frames (in terms of SNR) before estimating the observables. This
second point is especially important where frames are recorded
in the presence of strong and variable fringe jitter.

In the ideal and unrealistic case where the fringes are not
moving during the integration time, the fringe contrast is not at-
tenuated by vibrations, and the frame-by-frame estimated visi-
bility is constant, no matter what the photometric flux level is
in each arm of the interferometer. As a result, the visibility as
a function the function of the fringe SNR is constant, with the
error bars increasing as the fringe SNR decreases. This is illus-
trated in Fig. 6 (left). To obtain this set of jitter-free data, we
have built interferograms using the carrying waves of the cal-
ibration matrix that simulate perfectly stable AMBER fringes.

Then, we have added the photometry taken on the € Sco data,
which allowed us to keep realistic photometric realizations tak-
ing the correct transmissions of the instrument into account. In
that case, selecting the best fringes has no other goal than to im-
prove the SNR of the observables by excluding the data with
poor flux.

In the presence of atmospheric turbulence and lack of a
fringe tracker, the fringes are moving during the integration time,
leading to lower the visibility. On average, the squared visibility
is attenuated by a factor exp(—o-> o ), where o p is the variance

of the atmospheric high pass _]1tter as explalned in Sect. 3.6.2.
The frame-by-frame visibility, though, undergoes a random at-
tenuation around this average loss of contrast. An example of the
effect of the atmospheric jitter is given in Fig. 6 (middle), where
a previous set of simulated data has been used, adding a frame-
by-frame random attenuation taking the T = 25 ms integration
time of the € Sco observation into account. Once again, fringe
selection only enables us to increase the SNR of the observables
here.

However, when we look at the real set of data obtained from
the observation of € Sco, we obtain the plot displayed in Fig. 6
(right). The dispersion of the visibility, especially for low fringe
SNR is unexpectedly large and can definitively not be explained
by pure atmospheric OPD vibrations. As a matter of fact, these
variations are due to the present strong vibrations along the
VLTI instrumentation (adaptive optics, delay lines, etc.), as this
effect was previously revealed by the VINCI recombiner. These
vibrations strongly reduce the fringe contrast and subsequently
the value of the estimated visibilities, which explains the behav-
ior of the visibilities as a function of the fringe SNR. Indeed,
when the visibility tends toward 0, because of severe jitter atten-
uation, the fringe criterion tends toward O as well. In contrast,
the visibility plotted as a function of the fringe SNR saturates
for high values of the latter.

The major issue is that such an effect is hardly calibratable
because potentially non stationary. Hence, one convenient way
to overcome the problem, beside increasing the error bars artifi-
cially to take this phenomenon into account, is to only select the
fringes that are less affected by the vibrations, that is, the fringes
with the highest fringe SNR. One can then choose the percentage
of selected frames from which the visibility will be estimated.
The threshold must be chosen according to the following trade-
off: reducing the number of frames considered allows to get rid
of most of the jitter attenuation, but, from a certain number when
the sample is not large enough to perform statistics, it increases
the noise on the visibility. Furthermore, it leads to mis-estimate
the quadratic bias (see Eq. (25)), which is by essence a statisti-
cal quantity, and consequently drives to introduce a bias in the
visibility.

Obviously, such a selection process must be handled with
care, and its robustness with regard to the selection level has to
be established for any given observation. In other words, for this
method to be valid, the expected value for the calibrated visi-
bility must remain the same, with only the error bars changing
and eventually reaching a minimum at some specific selection
level. In particular, this method seems well adapted, above all,
to cases where the calibrator exhibits a magnitude close to the
source’s one, where the visibility distribution versus the SNR is
expected to behave similarly. Going into further details af this
point is nevertheless beyond the scope of this paper as it will
be deeply developed in Millour et al. (2007). However note that
we experimentally found this procedure to be generally robust,
and for typical observations performed until now with the VLTI,
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Before SNR re—ordering

39

After SNR re-ordering

Fig. 5. Left: sample of 100 successive interferograms as recorded during the observation with two telescopes of € Sco in the low spectral-resolution
mode. Right: Re-ordering of this sample using the fringe SNR criterion (from left to right, bottom to top). Note that some frames that are on the
bottom of the right panel (that is, with relatively low SNR) appear to be brighter than some above them (that is, the flux is higher). However these

frames do not exhibit fringes, which explains their positions.
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Fig. 6. Visibility as a function of the fringe SNR criterion. Left: for jitter-free simulated data, using the real photometry observed on € Sco. The
fringe contrast was set to 1. Middle: same as the previous one, but atmospheric jitter attenuation has been added, corresponding to an integration
time of T = 25 ms. Right: real € Sco observation. The encircled data point on the plot, well above the other ones, is typical of a bad fit of the
associated fringe, as explained in Sect. 5.1. Note that in the first two cases, the maximum of the fringe SNR is higher than in the real case. Indeed,
in the simulated data, the noise on the coherent flux only arises from the photometry P'. In the real case, however it also depends on the noise on

the interferograms i; (see Eq. (19)).

choosing 20% of the frames as the final sample appeared to be a
good compromise.

Note that, in order to produce the curve of Fig. 6, visibilities
were computed frame by frame (i.e. M = 1). Thus, the semi-
empirical calculation of the error bars given below in Sect. 5.3
does not work, and one has to use a full theoretical expression of
the noise. From an analysis in Fourier space, Petrov et al. (2003)
show that the theoretical error on the frame-by-frame visibility
could be written:

n+nl+ NpiXO'Z

a2 (Vi = — 41)
n'‘n/
where ni(f) = kN"“ vl P'(t) is the total flux in the ith beam. This

computation is not fully adapted to the AMBER data processing
using 3 telescopes, since in that case the Fourier peaks are over-
lapping. Nevertheless, it gives a rough estimation of the noise
level, within a factor of 2, which is sufficient for the analysis
discussed here.

Finally, despite fringe selection has been performed to deal
at best with the uncalibratable VLTI vibrations, the dispersion of
the selected visibilities still has to be quadratically added to the
error bar arising from the fundamental noises (as computed in

Sect. 5.3), in order to account for the reminiscent jitter attenua-
tion, which has been reduced but not totally canceled out.

5.3. Visibilities and associated errors

The raw squared visibility (that is biased by the atmosphere) and
its associated error bar were estimated from the ensemble av-
erage of M exposures, using Eqs. (24) and (27), respectively.
Figure 7 gives an example of the computed squared visibility
in the low resolution mode, arising from the observation of the
calibrator € Sco. For the example considered above, we find
V2 = 0.2721 + 0.0152 after averaging the spectrally dispersed
visibilities.

In order to validate the computation of the error bars, we
used bootstrapping techniques (Efron & Tibshirani 1993). By
making sampling with replacement, such a method constructs a
large population of N elements (N estimated squared visibility)
from the original measurements (M coherent and photometric
fluxes). If N is large enough, the statistical parameters, i.e. the
mean value and the dispersion of this population are converg-
ing toward the expected value and the root mean square of the
estimated parameters, respectively. N large enough, these quan-
tities can be calculated by fitting a Gaussian distribution p(V?)
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Fig.7. Estimation of the raw squared visibility and its error-bars as a
function of the wavelength for the observed calibrator € Sco in low
resolution mode. Visibility crosses and corresponding errors bars are
computed thanks to Egs. (24) and (27), respectively. Circles and cor-
responding errors bars arise from the bootstrapping technique. For the
sake of clarity, visibilities have been slightly shifted to the right and to
the left of the corresponding wavelengths.
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Fig. 8. Histogram of the bootstrapped population of estimated squared
visibilities for a given wavelength. The fit of this histogram by a
Gaussian function is superimposed. The mean value and the root mean
square of the Gaussian distribution give the statistics of the estimated
visibility.

to the histogram of the bootstrapped population. Figure 8 gives
an example of the histogram and the resulting Gaussian fit.
Using this method with N = 500, we find for the same set of
data V2 = 0.2719 £0.0149, which is in excellent agreement with
previous computation.

Note that, although we observed this object in the low reso-
lution mode with reasonably high flux, we find a relative error on
the order of 6%. Such a large error bar is due to the atmospheric
and intrumental jitter that, in the absence of fringe tracking, pre-
vents an integration time from being longer than a few tenth of
milliseconds. When this latter device will be available, we ex-
pect to lower this error below the 1% level, down to 0.01% for
the brightest cases (assuming perfect fringe tracking, see Malbet
et al. 1998; Petrov et al. 2007). But it is not possible to achieve
AMBER’s ultimate performances at that time.

5.4. Notion of instrumental contrast in AMBER

Given the calibration of the instrument described in Sect. 3.2
and its subsequent use for the estimation of the visibility in
Sect. 3.5.1, the instrumental contrast of AMBER is self cali-
brated. In other words, the response of the AMBER/VLTI in-
strument to the observation of a point source — in the ab-
sence of atmospheric turbulence — does not depend on the
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Fig. 9. Example of differential phases and closure phase computation
on an observed object with a rotating feature in the Bry emission line
(@ Arae, see Meilland et al. (2007) for a complete description and inter-
pretation of these phases).

instrumental contrast but only on the visibility of the internal
source (see Eq. (24)). Thus, if one wants to characterize the in-
strumental contrast, that is, the total loss of contrast due to the
instrumentation, one needs to use another estimator in which the
calibration part (the use of the knowledge of the instrument char-
acteristics) is skipped. We thus can use the classical definition of
contrast in the image plane, directly measured “by eye” from
the interferograms iy, recorded by pair of telescopes (as for the
computation of the carrying waves). In spatial coding, this can be
done for each pixel of the interferogram. Using Eqgs. (3) and (10),
we get:

ivi Pl
ci = cli 1 szkaPlvk'

- — — (42)
B Moix 4 Pivi + Piv]

Such an equation says that the instrumental contrast loss de-
pends on two separate effects: (i) the polarization mismatch be-
tween the beams after the polarizers (vectorial effect) and (ii) the
misalignment of the interfering beams (taken into account in

the product v;{vi), together with the photometric inbalance be-
tween the two beams (scalar effect). Both effects are compen-
sated when computing the visibility from the P2VM.

5.5. Closure phase

In the current situation, closure phases are computed using the
estimator of Eq. (28), but a previous frame selection is performed
before making the ensemble average of the bispectrum, because
in all the data available there was a very low amount of frames
that simultaneously presented three fringe patterns. We chose an
empirical selection criterion as the product of the three individ-
ual fringe SNR criteria (as defined by Eq. (20)). Internal error
bars the closure phases are computed statistically, taking the root
mean square of all the individual frames divided by the square
root of the number of frames (assuming statistical independence
of the frames), since the estimations of the tested theoretical er-
ror bars do not give satisfactory results up to now.

An example of closure phase and closure phase error bars is
given in Fig. 9. The object is @ Arae, which contains a rotating
feature in the Bry emission line (Meilland et al. 2007). A full
description of how the closure phase and closure phase errors
are computed will be part of the second paper on the AMBER
data reduction (Millour et al. 2007).
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Fig. 10. Piston estimation from the fringe pattern. From left to right is (i) the raw fringe pattern, the corresponding phase; (ii) the estimated linear
component of the phase from the least square fit; and (iii) a piston time-sequence over 250 s. Note that the piston rms is around 15 um, which
agrees with the average atmospheric conditions recorded in Paranal (Martin et al. 2000).

5.6. Differential phase and piston

An example of differential phases is given in Fig. 9. It is com-
puted from the ensemble average of the cross spectrum as de-
fined in the estimator of Eq. (30). Frame-by-frame correction of
its linear part (i.e. unwrapping) has been performed. The result-
ing differential phase shows a typical rotation signal that is fully
described in Meilland et al. (2007). Currently, like the closure
phase, the internal error bars are computed statistically assuming
that the differential phases are statistically independent frame to
frame. An extensive description of the data processing and of
the informations that can bring the differential phases will be
described in our second paper (Millour et al. 2007).

The computation of the linear component of the differential
phase; that is, the piston estimation is done on each spectral band
separately (J, H, or K), using the least-square method described
in Sect. 3.5.4. This algorithm was extensively tested on the sky
and validated as a part of the observing software of the AMBER
instrument. An example of the fitting process, as well as of the
piston estimate is given in Fig. 10.

6. Conclusions

We have described the data reduction formalism of the
AMBER/VLTI instrument, that is, the principles of the algo-
rithm that lead to the computation of the AMBER observables.
This innovative signal processing is performed in three main
steps: (i) the calibration of the instrument, which provides the
calibration matrix that gives the linear relationship between the
interferogram and the complex visibility; (ii) the inversion of the
calibration matrix to obtain the so-called P2VM matrix and then
the complex visibility; and (iii) the estimation of the AMBER
observables from the complex visibility, namely the squared vis-
ibility, the closure phase, and the differential phase.

Note that this analysis requires the calibration matrix to be
both perfectly stable in time and very precise, i.e. recorded with
a much higher SNR than the SNR of the interferograms. If the
instrument is not stable between the calibration procedures and
the observations, the P2VM will drift and, as a result, the esti-
mated observables will be biased. And if the calibration is not
precise enough, it will be the limiting factor for the SNR of the
observables. For the latter problem, it is thus recommended to

set, during the calibration process, an integration time that in-
sures a P2VM accuracy at least a factor of 10 higher than the
accuracy expected on the measurements. To check the former
problem of stability, it is advised to record one P2VM before and
one P2VM directly after the observation. This procedure allows
us to quantify the drift of the instrument along the observations
and to potentially reject the data if the drift appears to be signif-
icant. Note, however, that stability measurements in laboratory
have shown the AMBER instrument to be generally stable on the
hour scale at least.

Regarding the closure phase and the differential phase, we
have produced the theoretical estimators arising from the spe-
cific technique of AMBER data reduction, as well as brief il-
lustrations from real observations. A thorough analysis, includ-
ing practical issues and performances, of these two observables,
which deal the phase of the complex visibility, will be given in a
forthcoming paper (Millour et al. 2007)

For the squared visibility, we have defined an estimator that
is self-calibrated from the instrumental contrast and we have
investigated its biases. The quadratic bias, which is an addi-
tive quantity and results in the quadratic estimation in the pres-
ence of zero-mean value additive noise, can be easily corrected,
providing the computation of the error of the fringe measure-
ments. Atmospheric and instrumental biases, which attenuate
the visibility through multiplicative attenuation factors, come
from (i) the high frequency fringe motion during the integra-
tion time — namely the jitter — and (ii) from the loss of spectral
coherence when the fringes are not centered at the zero optical
path difference — namely the atmospheric differential piston. The
latter can be estimated from the differential phase and its con-
secutive attenuation can be corrected by knowing the shape of
the spectral filter and the resolution of the spectrograph. When
strictly arising from atmospheric turbulence, The former can
be calibrated by a reference source, provided it has been ob-
served shortly before/after the object of interest. When instru-
mental, hardly calibratable vibrations accumulate in the jitter
phenomenon, as presently the case for the VLTI, we propose
a method based on sample selection that allows reduction of the
attenuation and the associated dispersion on the visibilities.

However at this point, because of the presence of these in-
strumental vibrations and because of the absence of the FINITO
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fringe tracker, it is possible neither to develop an optimized tool
for identifying and calibrating the biases coming from the atmo-
spheric turbulence nor to present an analysis of the ultimate per-
formances of the AMBER/VLTI instrument. These points will
be developed in our next paper on the AMBER data reduction
methods, once the problems mentioned above, which are inde-
pendent of the AMBER instrument, would have been resolved.
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