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Abstract

Interferometric imaging now achieves angular resolutions as fine as ∼10 μas, probing scales that are inaccessible to
single telescopes. Traditional synthesis imaging methods require calibrated visibilities; however, interferometric
calibration is challenging, especially at high frequencies. Nevertheless, most studies present only a single image of
their data after a process of “self-calibration,” an iterative procedure where the initial image and calibration
assumptions can significantly influence the final image. We present a method for efficient interferometric imaging
directly using only closure amplitudes and closure phases, which are immune to station-based calibration errors.
Closure-only imaging provides results that are as noncommittal as possible and allows for reconstructing an image
independently from separate amplitude and phase self-calibration. While closure-only imaging eliminates some
image information (e.g., the total image flux density and the image centroid), this information can be recovered
through a small number of additional constraints. We demonstrate that closure-only imaging can produce high-
fidelity results, even for sparse arrays such as the Event Horizon Telescope, and that the resulting images are
independent of the level of systematic amplitude error. We apply closure imaging to VLBA and ALMA data and
show that it is capable of matching or exceeding the performance of traditional self-calibration and CLEAN for
these data sets.

Key words: accretion, accretion disks – black hole physics – Galaxy: center – techniques: high angular resolution –

techniques: image processing

1. Introduction

Synthesis imaging for interferometry is an ill-posed problem.
An interferometer measures a set of complex visibilities that
sample the Fourier components of an image. Standard
deconvolution approaches to imaging, such as the CLEAN
algorithm (Högbom 1974), begin with an inverse Fourier
transform of the sampled visibilities and then proceed to
deconvolve artifacts introduced by the sparse sampling in the
Fourier domain. To use CLEAN and other traditional imaging
algorithms, interferometric visibilities must be calibrated for
amplitude and phase errors. However, at high frequencies, the
atmospheric coherence time can be as short as seconds,
introducing rapid phase variations and effectively eliminating
the capability to measure the absolute interferometric phase.
Amplitude calibration also becomes more difficult at high
frequencies, and pointing errors due to small antenna beam
sizes can introduce large, time-varying errors in visibility
amplitudes. While amplitude gain errors typically have longer
characteristic timescales than phase errors, some very long
baseline interferometry (VLBI) instruments such as the Event
Horizon Telescope (EHT; Doeleman et al. 2009) use phased
arrays as single stations, which can introduce rapid amplitude
variations from fluctuations in the individual station’s phasing
efficiency.

A key simplification for interferometric calibration arises due
to the fact that most calibration errors can be decoupled into
station-based gain errors (e.g., Hamaker et al. 1996; Thompson
et al. 2017). For an interferometric array consisting of N sites,
there are N N 1 2-( ) visibilities at each time but only N

unknown gains. Hence, the calibration is overconstrained, and

combinations of visibilities can be formed that are unaffected by
calibration errors. For example, a closure phase is the phase of
a product of three visibilities around a triangle, which cancels out
the station-based phase errors on each individual visibility
(Jennison 1958; Rogers et al. 1974). Likewise, the closure
amplitude is a combination of four visibility amplitudes that
cancels out amplitude gain errors in a specified ratio (Twiss et al.
1960; Thompson et al. 2017). Both of these quantities provide
access to information about the source image that is unaffected
by calibration assumptions. Despite the challenges in absolute
calibration of a VLBI array, closure quantities provide robust
measurements of certain relative quantities, which carry
information about source structure that is only limited by the
level of thermal noise.
The standard algorithm used for interferometric imaging is

CLEAN (Högbom 1974; Clark 1980), which deconvolves a
dirty image produced by an inverse Fourier transform by
decomposing it into point sources. When the calibration is
uncertain, the usual approach is to iterate between imaging with
CLEAN and deriving new calibration solutions using informa-
tion from the previous image—a so-called “self-calibration” or
“hybrid-mapping” loop (e.g., Wilkinson et al. 1977; Readhead
& Wilkinson 1978; Readhead et al. 1980; Schwab 1980;
Cornwell & Wilkinson 1981; Pearson & Readhead 1984;
Walker 1995; Cornwell & Fomalont 1999; Thompson et al.
2017). The results and time to convergence of this approach
depend on many assumptions made in the course of this hybrid
process, including the initial source model used for self-
calibration, the choice of which regions to clean in a given
iteration, the method used for deriving complex gains from a
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given image, and the choice of how frequently to recalibrate the
data. The sensitivity of the final image to these assumptions
cannot be directly inferred from the result.

In contrast with CLEAN’s approach of deconvolving the
dirty image into point sources, another family of methods (most
famously, the maximum entropy method, or MEM; see, e.g.,
Narayan & Nityananda 1986) for interferometric imaging
directly solves the source image pixels by fitting them to data
constrained by additional convex regularization terms, such as
entropy, sparsity, or smoothness (e.g., Frieden 1972; Gull &
Daniell 1978; Cornwell & Evans 1985; Briggs 1995). Like
CLEAN, these MEM-like methods can be used to produce
images from complex visibilities in conjunction with a self-
calibration loop. In contrast to CLEAN, however, these
approaches can also be used directly with other data products
derived from complex visibilities, as they only rely on
comparing the data computed from the reconstructed image
to the specified measurements. In other words, these methods
never need to perform an inverse Fourier transform from
calibrated input data. Consequently, these approaches can use
closure quantities directly as the fundamental data product,
bypassing the self-calibration loop entirely. The field of optical
interferometry, for example, has pioneered the use of imaging
directly from the measured visibility amplitudes and closure
phases, bypassing the corrupted visibility phase (Buscher 1994;
Baron et al. 2010; Thiébaut 2013; Thiébaut & Young 2017).
Recently, several other methods have built on these techniques
in preparing imaging algorithms for EHT data, fitting some
combination of closure phases and visibility amplitudes
directly while using different regularizing functions (Bouman
et al. 2015; Akiyama et al. 2017b).

In this paper, we take the next step and present a method to
reconstruct images directly using only closure amplitudes and
closure phases. Our reconstructions require no assumptions
about absolute phase or amplitude calibration beyond stability
during the integration time used to obtain the visibilities.
However, we find that a single round of self-calibration to the
final image and reimaging with complex visibilities can
produce even better results (Section 5.2). To make closure-
only imaging computationally efficient, we derive analytic
gradients of the data χ2 terms for closure quantities, which
greatly improves the speed of our algorithm. When using these
analytic gradients, closure-only imaging of VLBI data does not
require significantly more computational time than standard
imaging with complex visibilities, and it is still feasible on a
personal computer for large data sets (e.g., those of connected-
element interferometers such as ALMA).

We begin, in Section 2, by reviewing the fundamental
properties of interferometric visibilities and closure quantities.
Next, in Section 3, we discuss imaging via regularized
maximum likelihood and demonstrate how to efficiently
implement closure-only imaging in this framework. In
Section 4, we detail our implementation of closure-only
imaging in the eht-imaging software library (Chael et al.
2018),6 our methods for simulating data with gain and phase
errors, and our techniques for evaluating the fidelity of the
reconstructed images. In Section 5, we show the results of
applying our method to both simulated EHT data and real data
sets from the VLBA and ALMA. In Section 6, we discuss the

general properties of closure-only imaging, and in Section 7,
we summarize our results.

2. Visibilities and Closure Quantities

2.1. Interferometric Visibilities

The van Cittert–Zernike theorem identifies the visibility Vij

measured by a baseline bij between stations i and j as a Fourier
component of the source image intensity distribution I x y,( )
(Thompson et al. 2017, hereafter TMS):

V I u v I x y e dx dy, , . 1ij
i ux vy2ò ò= = p- +˜( ) ( ) ( )( )

Here x and y are real space angular coordinates and u and v are the
coordinates of the given baseline vector bij projected in the plane
perpendicular to the line of sight and measured in wavelengths.
Since I x y,( ) is a real number, the visibility is conjugate-
symmetric in the Fourier plane, I u v I u v, ,*- - =˜( ) ˜ ( ). When Ns

stations can observe the source, the number of independent
instantaneous visibilities is given by the binomial coefficient

N
N N N

2

1

2
. 2

s s s
vis = =

-
⎜ ⎟
⎛
⎝

⎞
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( )
( )

To fill in samples of the Fourier plane from the small number
Nvis available at a single instant in time, interferometric
observations typically use the technique of “Earth rotation
aperture synthesis.” As the Earth rotates, the projected baseline
coordinates (u, v) trace out elliptical curves in the Fourier
domain, providing measurements of new visibilities.
The identification of measured visibilities with Fourier

components of the image is complicated by several factors.
First, thermal noise from the telescope receiver chains, Earth’s
atmosphere, and the astronomical background is added to the
measured visibility. This thermal noise, òij, is Gaussian with a
time- and baseline-dependent standard deviation, which
depends on the telescope sensitivities, bandwidth, and integra-
tion time. Second, each station transforms the measured
incoming polarized waveform according to its own (time-
dependent) 2×2 Jones matrix that adjusts the level of the
measured signal amplitude and mixes the measured polariza-
tions (e.g., Hamaker et al. 1996; TMS). For the purposes of this
paper, we ignore polarization and consider each station as
contributing a single (time-dependent) complex gain G ei

i if to
the visibility.

The phase error fi results from uncorrected propagation
delays and clock errors. In particular, atmospheric turbulence
contributes a rapidly varying stochastic term to each fi, which
generally varies more quickly than the amplitude gain term, Gi,
which arises from uncertainty in the conversion of the
correlation coefficients measured on each baseline to units of
flux density. In effect, the visibility amplitude is first measured
in the units of the noise and then scaled to physical units from
knowledge of the telescope noise properties.
Including all of these corrupting factors, the full complex

visibility is

V G G e I u v, , 3ij i j
i

iji j = +f f- ( ˜( ) ) ( )( )

where the gain amplitudes, phases, and thermal noise all vary
in time.6 Codebase: https://github.com/achael/eht-imaging.
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Note that Equation (3) represents all systematic errors (e.g.,
those other than thermal noise) as station-based effects. In
practice, effects such as polarization leakage and bandpass
errors will also contribute small baseline-based effects that can
bias closure quantities. However, these errors are generally
slowly varying and can be removed with a priori calibration.

2.2. Closure Phases and Closure Amplitudes

Two types of “closure quantities” can be formed from
complex visibilities that are insensitive to the particular station-
based complex gain terms. While these quantities are robust to
the presence of arbitrarily large complex gains on the
visibilities, they contain less information about the source than
the full set of complex visibilities. Furthermore, because
closure quantities mix different Fourier components, they can
be difficult to interpret physically.

First, multiplying three complex visibilities around a triangle
of baselines eliminates the complex gain phase terms (Jennison
1958; Rogers et al. 1974; TMS). For any three stations, the
visibility bispectrum is

V V e V V V . 4i
B B 12 23 31º =y∣ ∣ ( )

While the bispectral amplitude VB∣ ∣ is affected by the amplitude
gain terms in Equation (3), the phase of the bispectrum, or
closure phase ψ, is preserved under any choice of station-based
phase error. The closure phase is a robust interferometric
observable: apart from thermal noise, the measured closure
phase is the same as the closure phase of the observed image.
In the limit of low signal-to-noise ratio (S/N), both the
bispectrum amplitude and the phase are biased by thermal noise
and should be debiased before use in imaging (Wirnitzer 1985;
Gordon & Buscher 2012).

The total number of closure phases at a moment in time is
equal to the number of triangles that can be formed from sites
in the array, N

3

s( ). However, not all of these closure phases are
independent, as some can be formed by adding or subtracting
other closure phases in the set. The total set of independent
closure phases can be obtained by selecting an antenna as a
reference and choosing only the triangles that include that
antenna (Twiss et al. 1960; TMS). The total number of such
independent closure phases is

N
N N N1

2

1 2

2
. 5

s s s
cl phase =

-
=

- -
⎜ ⎟
⎛

⎝

⎞

⎠
( )( )

( )

Here Ncl phase is less than the number of visibilities at a given
time, Equation (2), by the fraction N1 2 s– .

Second, on any set of four stations, closure amplitudes are
formed by taking ratios of visibility amplitudes so as to cancel
all the amplitude gain terms in Equation (3). Up to inverses, the
baselines among any set of four stations can form three
quadrangles with three corresponding closure amplitudes:

V
V V

V V
V

V V

V V

V
V V

V V

, ,

. 6

C a C b

C c

12 34

13 24

13 24

14 23

14 23

12 34

= =

=

∣ ∣ ∣ ∣

∣ ∣ ( )

Since the product of the three closure amplitudes in
Equation (6) is unity, only two of the set are independent.

The total number of closure quadrangles is 3
N

4

s( ), but the

number of independent closure amplitudes is (TMS)

N
N N 3

2
. 7

s s
cl amp =

-( )
( )

Here Ncl amp is equal to the total number of visibilities minus the
number of unknown station gains. At any given time, the
number of closure amplitudes is less than the number of
visibilities by a fraction N1 2 1s -– ( ). Like the visibility
amplitude and bispectrum, closure amplitudes are biased by
thermal noise (TMS).
The robustness of closure phases and amplitudes to

calibration errors comes with the loss of some information
about the source. For instance, closure phases are insensitive to
the absolute position of the image centroid, and closure
amplitudes are insensitive to the total flux density. These can be
constrained separately, either through arbitrary choices (e.g.,
centering the reconstructed image) or through additional data
constraints (e.g., specifying the total image flux density through
a separate measurement).

2.3. Redundant and Trivial Closure Quantities

Some VLBI arrays include multiple stations that are
geographically colocated. For instance, the EHT includes
multiple sites on Maunakea (the SMA and the JCMT), as well
as multiple sites in the Atacama desert in Chile (the ALMA
array and the APEX telescope). Practically, any two sites that
form a baseline that does not appreciably resolve any source
structure can be considered colocated.
These “redundant” sites can be used to form closure

quantities. In the case of closure phase, the added triangles
provide no new source information. Specifically, any triangle
b b b, ,12 23 31{ } that includes two colocated sites {1, 2} will
include one leg that measures the zero-baseline visibility,
which has zero phase: V I 0, 012 = ˜( ) is the integrated flux
density of the source (see Equation (1)). The remaining two
long legs from the pair of colocated sites to the third site will
have b b23 31= - and, consequently, V V23 31*= . Thus,
the bispectrum will be a positive real number, and the closure
phase must be zero, regardless of the source structure.
These trivial triangles are not useful for imaging but provide
valuable tests of the closure-phase statistics and systematic bias
(see, e.g., Fish et al. 2016). In short, redundant sites can
provide additional redundant closure-phase triangles, which
can be averaged to reduce thermal noise, but they do not give
new measurements of source structure.
Redundant sites also give rise to trivial closure amplitudes,

which have a value of unity regardless of the source. However,
redundant sites also yield new closure amplitudes that are
nontrivial and provide additional information on the source
structure. For instance, one can measure the normalized
visibility amplitude, uV V 0∣ ( ) ( )∣, as a closure quantity on
any baseline joining two sets of colocated sites (Johnson et al.
2015). In the limiting case where every site in an array has a
redundant companion, the complete source visibility amplitude
information could be recovered through closure amplitudes,
except for a single degree of freedom for the total flux density.
Figure 1 shows examples of the trivial and nontrivial closure

amplitudes for an array with partial redundancy. As these
examples illustrate, redundant sites can significantly inform and
improve calibration and imaging. Figure 2 shows the number of
closure amplitudes and phases for the EHT with and without
redundant sites, both including and excluding trivial additions.

3
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The two redundant sites of the 2017 EHT array more than
double the amount of information contained in the set of
closure amplitudes over the same array without these sites.

2.4. Thermal Noise on Closure Quantities

The thermal noise ij on the baseline i–j in Equation (3) is a
circularly symmetric complex Gaussian random variable with
zero mean that is independently sampled for each visibility
measurement. The standard deviation ijs of the thermal noise on
this baseline is determined according to the standard radiometer
equation (TMS):

t

1 SEFD SEFD

2
. 8ij

i js
h n

=
´

D D
( )

In Equation (8), SEFDi and SEFDj are the “system equivalent
flux densities” of the two telescopes, where, for a telescope

with system temperature Tsys and effective area Aeff, the SEFD
is k T A2 B sys eff , with kB as the Boltzmann constant. The
observing bandwidth of the visibility measurement is Δν,
andΔt is the integration time. The factor of 1/η in Equation (8)
is due to quantization losses in the signal digitization; for two-
bit quantization, η=0.88 (TMS).
When the S/N is high, the visibility amplitudes will also be

Gaussian-distributed with a standard deviation σ given
by Equation (8). At lower S/N>1, the distribution of the
amplitude becomes non-Gaussian, and the estimate of
the visibility amplitude taken directly from the norm of the
complex visibility is biased upward by the noise. To first order,
we debias the amplitudes with the equation (TMS)

V V . 9debiased meas
2 2s= -∣ ∣ ∣ ∣ ( )

Figure 1. Example closure amplitudes for a portion of the EHT. Solid red lines connecting sites denote visibilities in the numerator of the closure amplitude; dashed
blue lines denote visibilities in the denominator. An array containing redundant sites (such as SMA/JCMT and ALMA/APEX in the EHT) will produce new trivial
closure amplitudes, which are equal to unity (plus thermal noise), and new nontrivial closure amplitudes, which yield new information about the source. Without
redundant sites, there would be no closure amplitudes from this portion of the array.

Figure 2. (Left) Number of independent closure phases for the 2017 EHT over 24 hr GMST while observing Sgr A*. The blue line shows the total number of
independent closure phases in the array containing redundant stations, the black line shows the number of independent closure phases that measure source structure,
and the red line shows the number of independent closure phases in the array when the redundant sites are excluded. Redundant sites do not add any closure-phase
information to the array apart from decreasing the overall thermal noise. (Right) Total independent (blue) and nontrivial (black) closure amplitudes over 24 hr for the
EHT, including redundant sites. Unlike for closure phases, adding only two redundant sites significantly increases the amount of information contained in the set of
independent closure amplitudes compared to the same array without these sites (red), because not all closure amplitudes containing a baseline between two colocated
sites are trivial (see Figure 1).
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For the purposes of this paper, whenever measured visibility
amplitudes are used, e.g., in the computation of a closure
amplitude or χ2 statistic, we assume that they have already
been debiased by Equation (9).

Turning to the closure quantities, in the high-S/N limit, the
baseline-based thermal noise on the closure amplitudes and
phases introduced in Section 2 will also be Gaussian-
distributed. To first order, the standard deviation of the
complex noise on the bispectrum V V V VB 1 2 3= due to the
thermal noise on the three-component visibilities (σ1, σ2, σ3) is

V
V V V

. 10B B
1
2

1
2

2
2

2
2

3
2

3
2

s
s s s

= + +∣ ∣
∣ ∣ ∣ ∣ ∣ ∣

( )

Then, in the high-S/N regime, the standard deviation on the
closure phase, σψ, is

V
. 11

B

B

s
s

=y
∣ ∣

( )

Similarly, the standard deviation σC of the thermal noise of the
closure amplitude V V V V VC 1 2 3 4=∣ ∣ ∣ ∣ ∣ ∣ is, to leading order in the
inverse S/N,

V
V V V V

. 12C C
1
2

1
2

2
2

2
2

3
2

3
2

4
2

4
2

s
s s s s

= + + +∣ ∣
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

( )

Note that the expressions for σψ and σC depend only on the
measured S/Ns of the visibilities, and so they too are
independent of calibration.

At moderately low S/N, the Gaussianity of the thermal noise
on phase and amplitude breaks down, as does the appropriateness
of using the measured S/N Vi is∣ ∣ as an estimate of the true S/N
when estimating σψ and σC. Because the measured phase is
unbiased by thermal noise and wraps at 2π, the true σψ is smaller
than the estimate in Equation (11) in the low-S/N limit. While
the χ2 approach above could be extended to the exact log-
likelihood for closure phases with low S/N, low-S/N closure
phases are not prone to extreme outliers, so the Gaussian
approximation is reasonable to use over a broad range of S/N.

The distribution for the reciprocal visibility amplitude, which
appears in the denominator of Equation (12) for σC, takes on an
extreme tail at low S/N that extends to positive infinity. This
tail causes a large positive bias in the measured closure
amplitudes, as well as a severely non-Gaussian distribution.
Fitting to log closure amplitudes has the dual benefits of
mitigating the tail of the reciprocal amplitude distribution and
symmetrizing the numerator and denominator. In this case,
where the numerator and denominator of the closure amplitude
are symmetric, debiasing the component amplitudes with
Equation (9) corrects the estimate of the closure amplitude
to first order. While detailed analysis of the statistics of
closure quantities will be explored in a forthcoming work
(L. Blackburn et al. 2018, in preparation), we have generally
found log closure amplitudes to be more robust observables for
imaging (see Section 5).

3. Imaging with Regularized Maximum Likelihood

3.1. Imaging Framework

The standard methods of interferometric imaging are based
on the CLEAN algorithm (Högbom 1974; Clark 1980).
CLEAN operates on the so-called “dirty image” obtained by

directly taking the Fourier transform of the sparsely sampled
visibilities and attempts to deconvolve the “dirty beam” that
results from the incomplete sampling of the Fourier domain. To
perform the initial transform, CLEAN requires well-calibrated
complex visibilities. When a priori calibration is ineffective,
which is often the case at high frequencies when atmospheric
phase terms vary rapidly, the visibilities must be “self-
calibrated.” Although self-calibration is used most frequently
with CLEAN, it can be used in conjunction with any imaging
method that requires calibrated complex visibilities (such
as MEM).
The self-calibration procedure starts from an initial model

image and solves for the set of time-dependent complex gains
in Equation (3), either by fixing a sufficient set of amplitudes or
phases directly from the image and solving for the rest
analytically (Wilkinson et al. 1977; Readhead et al. 1980) or by
finding a set that minimizes the sum of the squares of the
differences between the measured and model visibilities
(Schwab 1980; Cornwell & Wilkinson 1981). Self-calibration
is often performed by first solving only for the phases of the
complex gains and correcting the amplitudes at a later stage
(Walker 1995; Cornwell & Fomalont 1999). At each round of
self-calibration, the estimated inverse gain terms are then
applied to the measured visibilities, and the imager (usually
CLEAN) is run again to obtain a new source model. These
steps are repeated many times until convergence. There are
several assumptions in this procedure that may affect the final
image or the time to convergence of the algorithm. Most critical
are the choice of the initial source model (often taken as a point
source) and of where to clean the image in each iteration (the
so-called “clean boxes”). These choices enforce assumptions
about the source flux distribution early on in the self-calibration
process that then propagate to later rounds via the self-
calibrated complex visibilities.
In contrast, the various methods of interferometric imaging

explored in this paper all fall under the category of regularized
maximum-likelihood algorithms. Regularized maximum-like-
lihood methods search for some image that maximizes the sum
of a −χ2

“data term” and a “regularizer” function that prefers
images with certain features when the data are not sufficient to
constrain the structure by themselves. These methods can often
be interpreted in a Bayesian framework, where the data term is
identified with a log-likelihood and the regularizer term with a
log-prior. Regularized maximum-likelihood methods require
only a forward Fourier transform from trial images to the
visibility domain. Consequently, they can fit directly to data
terms derived from the visibilities even if the visibilities are
corrupted by gain and phase errors.
In astronomy, the most familiar of these methods is MEM

(see, e.g., Frieden 1972; Gull & Daniell 1978; Cornwell &
Evans 1985; Narayan & Nityananda 1986). While traditional
MEM uses calibrated complex visibilities as its fundamental
data product, MEM and other, more general regularized
maximum-likelihood methods have been developed using
other regularizers, such as the ℓ1 norm (Honma et al. 2014)
or a Gaussian patch prior (Bouman et al. 2015). Other
algorithms have gone beyond complex visibilities as the
fundamental data product to produce images directly from the
image bispectrum. Development of imaging algorithms that use
different fundamental data products from complex visibilities
has been particularly fruitful in optical interferometry, where
the absolute visibility phase is almost never accessible (e.g.,
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Buscher 1994; Baron et al. 2010; Thiébaut 2013; Thiébaut &
Young 2017), although it has also been explored in the context
of VLBI (Lu et al. 2014; Bouman et al. 2015; Akiyama et al.
2017b). Regularized maximum-likelihood methods have also
been extended to polarization (Ponsonby 1973; Nityananda &
Narayan 1983; Holdaway & Wardle 1990; Chael et al. 2016;
Coughlan & Gabuzda 2016; Akiyama et al. 2017a), mitigation
of interstellar scattering (Johnson 2016), and dynamical imaging
to reconstruct movies of time-variable sources (Bouman et al.
2017; Johnson et al. 2017).

To make our discussion concrete, image reconstruction via
regularized maximum likelihood seeks to find an image I that
minimizes an objective function IJ ( ). In this paper, we
consider only square images of dimension m×m. We
represent the image I as a one-dimensional vector of length
M=m2. If we consider N observed visibilities, the corresp-
onding sampled Fourier components, or trial image visibilities,
Ṽ , of the trial image vector I are V AI¢ = , where A is an
N×M matrix with entries

A e . 13ij
i u x v y2 i j i j= p- + ( )( )

Here x y,j j( ) are the angular coordinates (in rad) of the jth pixel,
and u v,i i( ) are the angular frequencies of the ith visibility
measurement. The direct-time Fourier transform (DTFT)

represented by Equation (13) is often the fastest way to
compute trial visibilities for sparse arrays observing with
narrow fields of view, like the EHT. For large images or large
numbers of visibilities, the DTFT is slow and prohibitively
expensive in terms of computer memory. In this regime,
we must use the fast Fourier transform (FFT) to obtain the
trial visibilities. Algorithms like the nonequispaced fast
Fourier transform (NFFT; e.g., Readhead & Wilkinson 2009)
are particularly useful for this purpose. In its simplest form,
the NFFT takes the FFT of the trial image and interpolates the
result to the irregularly sampled (u, v) points. To compensate
for inaccuracies in the interpolation procedure, the NFFT both
zero-pads the input image and multiplies the pixels by a scaling
function (the inverse Fourier transform of a convolution kernel
in the Fourier domain).

In the most general case, where we may have multiple data
terms and regularizers informing our reconstruction, the
objective function IJ ( ) to be minimized is

I I d IJ S, . 14D D R R

data terms

2

regularizers

å åa c b= -( ) ( ) ( ) ( )

In the above expression,
D
2c are the data terms or χ2 goodness-

of-fit functions corresponding to the data product d. If the data
product d is normally distributed, these are proportional to the
log-likelihoods representing the log probability that the data
could be observed given an underlying image I. For data
products whose distributions are not Gaussian (like closure
phases and amplitudes), χ2

D is usually an approximation to the
likelihood. The SR are regularizing functions (which we want to
maximize), which provide missing information on the image
characteristics to constrain the space of possible images given
our measured data. While relatively new to radio interferometry
and VLBI, reconstructions using Equation (14) with multiple
data terms and regularizers are common in optical interferometry

(see, e.g., Buscher 1994; Baron et al. 2010; Thiébaut 2013;
Thiébaut & Young 2017).
The “hyperparameters” αD and βR control the relative

weighting of the different data and regularizer terms. Because
the location of the global minimum of J(I) is unaffected by
changes of scale, one hyperparameter can be set to unity or
some other arbitrary value without changing the solution.
Furthermore, when interpreting the

D
2c data terms as log-

likelihoods, the data term weights αD should ideally be
determined by the number of data points of each type. For
example, using the reduced χ2 we define in Section 3.2, if we
set one data term with N1 measurements to α1, the remaining
data terms i>1 with Ni measurements should all be set as

N

N
. 15i i

i
1

1

a a=> ( )

In practice, we find that with multiple rounds of imaging, heavily
weighting a single data term away from the log-likelihood
weighting in Equation (15) can aid initial convergence. We then
restore the ideal weighting in Equation (15) in later rounds of
imaging.

In practice, the hyperparameters αD and βR are usually
adjusted manually to yield reconstructions that converge to the
expected values of χ2

(Cornwell & Evans 1985). Recently,
Akiyama et al. (2017b) determined hyperparameters self-
consistently using cross-validation. In this method, images are
reconstructed with different combinations of the hyperpara-
meters using different data sets where a portion of the data is
held in reserve. The set of hyperparameters that produces the
image most compatible with the data held in reserve is then
used in the final reconstruction.

3.2. Data Terms for Robust Imaging

Having defined the general form of the objective function,
we turn now to the different choices of the data χ2 term that can
be used in interferometric (total intensity) imaging. The
simplest choice is the χ2 of the measured visibilities V . If
there are N total measured visibilities Vj, with associated (real)
thermal noise rms values σj, then the reduced χ2 is

I
N

V V1

2
, 16

j

j j

j
vis
2

2

2åc
s

=
- ¢

( )
∣ ∣

( )

where Vj¢ are the sampled visibilities corresponding to the trial
image I.
If the visibility phases are significantly corrupted by

atmospheric turbulence, a χ2 term that uses only the visibility
amplitudes can be used:

I
N

V V1
. 17

j

j j

j
amp
2

2

2åc
s

=
- ¢

( )
(∣ ∣ ∣ ∣)

( )

Because the closure phase is robust to station-based phase
errors such as those introduced by atmospheric turbulence, a χ2

defined on the bispectrum can be used instead of Equation (16).
We define NB as the number of independent bispectrum
measurements and B

2s as the estimate of the variance on each

6

The Astrophysical Journal, 857:23 (18pp), 2018 April 10 Chael et al.



complex bispectrum measurement (Equation (10)). Then,

I
N

V V1

2
, 18

j

j j

j
bispec
2

B

B B
2

B
2åc
s

=
- ¢

( )
∣ ∣

( )

whereV jB
¢ is the sampled bispectrum value corresponding to the

trial image I.
We can also define a data term purely using Nψ measured

closure phases, ψ (typically Nψ=NB, but we may, e.g., drop
trivial closure phases from the fit). Defining 2sy as their
estimated closure-phase variances using Equation (11), a
natural choice of a χ2 term that automatically respects 2π
phase wraps in the difference of measured and trial image
closure phases ψ is

I
N

e e

N

1

2 1 cos
, 19

j

i i

j

j

j j

j
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2

2

2
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å
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s

=
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=
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y
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y

y y

¢
( )

∣ ∣
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( )

where the jy¢ are the sampled closure phases corresponding to
the trial image.

Similarly, a data term that uses only the closure amplitudes
VC∣ ∣ is

N

V V1
, 20

C j

Cj Cj

Cj
cl amp
2

2

2åc
s

=
- ¢(∣ ∣ ∣ ∣)

( )

where there are a total of NC measured independent closure
amplitudes VCj∣ ∣, VCj¢∣ ∣ are the corresponding sampled closure

amplitudes of the trial image, and Cj
2s are the estimated

variances of the measured closure amplitudes from
Equation (12).

As discussed in Section 2.4, because closure amplitudes are
formed from the quotient of visibility amplitudes, the noise on
the closure amplitudes (Equation (6)) may be highly non-
Gaussian. The logarithm of the closure amplitude will remain
approximately Gaussian at lower S/N, so the χ2 of the
logarithm of the closure amplitudes may be a better choice than
Equation (20) in practice. In this case, the χ2 term is

N

V V

V

1
log , 21

C j

Cj

Cj

Cj

Cj
log cl amp
2

2

2

2

åc
s

=
¢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∣ ∣ ∣ ∣

∣ ∣
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where we used the fact that, to lowest order, the variance on the
logarithm of a quantity x is xx xlog

2 2 2s s=( ) .

3.3. Data Term Gradients

When using gradient descent algorithms to minimize the
objective function (Equation (14)), providing an analytic
expression for the gradient of the objective function with
respect to the image pixel values greatly increases the speed of
the algorithm by bypassing the expensive step of estimating
gradients numerically. When using a DTFT, the number of
computations to evaluate the gradient of a χ2 term numerically
via finite differences is roughly M N2 ´( ) (where M is the
total number of image pixels and N is the number of
measurements). When using an FFT, the scaling is roughly
M M M Nlog ´ +( ( )). In contrast, when using the analytic

gradients that we derive below, the corresponding scalings for
DTFT and FFT are M N ´( ) and M M Nlog +( ),

respectively. In practice, for typical reconstructions, such as
those we will show later, analytic gradients improve the
imaging speed by a factor comparable to the number of free
parameters.
The gradient of the simplest χ2 term, using complex

visibilities (Equation (16)), is

I N
A

V V1
Re . 22

i j

ij

j j

j
vis
2

2åc
s

¶
¶

= -
- ¢⎡

⎣

⎢
⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎤

⎦

⎥
⎥

( )†

The gradients for the other χ2 terms given in Section 3.2 are
presented in the Appendix.
Note that the visibility χ2 gradient, Equation (22), is the

adjoint DTFT of the weighted data residuals. In fact, all of the
data term gradients considered here can be written as an adjoint
DTFT of appropriately weighted residual quantities (see
Appendix).

3.4. Regularizer Terms

To facilitate comparisons across the different data terms in
Section 3.2, we fixed the regularizer terms SR in the objective
function, Equation (14), to be identical for all the reconstruc-
tions displayed in this paper. For each reconstruction, we chose
to use four regularizer terms.
The first regularizer is a simple “entropy” (Frieden 1972;

Gull & Daniell 1978; Narayan & Nityananda 1986) that
rewards pixel-to-pixel similarity to a “prior image” with pixel
values Pi:

S I
I

P
log . 23

i

n

i
i

i

entropy

1

å= -
=

⎛

⎝
⎜

⎞

⎠
⎟ ( )

For the second regularizer, we use one of two forms of a
“smoothness” constraint that pushes the final image to favor
pixel-to-pixel smoothness. The first is an isotropic total
variation regularizer (TV) (or ℓ2 norm on the image gradient)
that favors piecewise-smooth images with flat regions separated
by sharp edges (Rudin et al. 1992),

S I I I I , 24
l m

l m l m l m l mTV 1, ,
2

, 1 ,
2 1 2åå= - - + -+ +[( ) ( ) ] ( )

where the two sums are taken over the two image dimensions
and the image pixels Il m, are now indexed by their position
(l, m) in the 2D m×m grid. It should be noted that the total
variation in Equation (24) is not everywhere differentiable, so
care must be taken when using it in imaging. Thiébaut &
Young (2017) presented a differentiable hyperbolic form of an
edge-preserving smoothness regularizer (Charbonnier et al.
1997) that approximates TV when the image is far from being
smooth (STV is large).
In the reconstructions in Section 5.1, however, we instead

use a “total squared variation” regularizer that favors smooth
edges and may be more appropriate for astronomical image
reconstruction (see the forthcoming work by Kuramochi et al.
2017):

S I I I I . 25
l m

l m l m l m l mTSV 1, ,
2

, 1 ,
2åå= - - + -+ +[( ) ( ) ] ( )

The third and fourth regularizers constrain image-averaged
properties. First, because closure amplitudes are independent of
the normalization of the image, we include a constraint on the
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total image flux density,

S I F , 26
i

itot flux

2

å= - -
⎛

⎝
⎜

⎞

⎠
⎟ ( )

where the sum is over the M pixels in the image and F is the
total source flux density, considered to be known a priori (e.g.,
by a simultaneous measurement of the source by a flux-
calibrated single station). Next, because the closure phase does
not constrain the position of the image centroid, we also
include a regularizing constraint to center the image in the
chosen field of view,

S I x F I y F , 27
i

i i x

i

i i ycentroid

2 2

å åd d= - - + -
⎛

⎝
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⎞
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⎠
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where x y,i i( ) is the coordinate of the ith pixel and the desired
image centroid position is ,x yd d( ). In this paper, we use
coordinates where x y, 0, 0i i =( ) ( ) is in the center of the frame
and set , 0, 0x yd d =( ) ( ). When only closure phases and closure
amplitudes are used in the reconstruction, both the centroid and
the total flux density are completely unconstrained by data.
Thus, in this case, almost any amount of weight on Stot flux and
Scentroid should guide the final image to a centered image with
the specified total flux, and the precise weighting of these terms
relative to the data is not as significant in informing the final
image as the relative weighting of STV or STSV and Sentropy.

While the four above regularizers are used for all of the data
sets imaged in this paper, we adjusted their relative weighting
(the βR terms in Equation (14)), as well as the prior image used
in Equation (23), based on the data set considered. However,
when comparing images produced with different data terms
from Section 3.2, we were consistent in using the same prior
image and relative regularizer weightings in the different
reconstructions to produce fair comparisons. Furthermore,
when imaging synthetic data sets in Section 5.1, we used the
same combination of regularizer weights (see Table 3). The
prior images in Equation (23) are different from data set to data
set in this section, but in every case, we use a relatively
uninformative prior consisting of a Gaussian with a size of
roughly half of the reconstruction field of view, and the
weighting of Equation (23) is small.

4. Implementation

4.1. Imaging Methods

We implemented the imaging framework described in
Section 3, including all of the data terms introduced in
Section 3.2 in the eht-imaging software library (Chael et al.
2018), originally developed for polarimetric VLBI imaging
(Chael et al. 2016). To minimize the objective function,
Equation (14), using different combinations of data terms and
regularizers, the imaging routines in eht-imaging use the
limited-memory BFGS algorithm (Byrd et al. 1995) as
implemented in the Scipy package (Jones et al. 2001). The
L-BFGS algorithm is a quasi-Newton gradient descent method
that uses the analytic forms of the data term gradients presented
in Section 3.3 to progress toward a minimum in the objective
function.
As described in Chael et al. (2016), our imaging algorithm

ensures a positive flux in each pixel by performing a change of
variables I expi ix= , where ix-¥ < < ¥. When imaging in
the log intensity domain, the gradients in Section 3.3 must be
multiplied by exp ix . We also use the continuous image
representation introduced in Bouman et al. (2015), where each
array of pixel intensities is taken to represent a continuous
function formed by convolving a comb of Dirac delta functions
with a pixel “pulse” function. Introducing a continuous image
representation multiplies the visibilities of the discrete image
array by a taper given by the Fourier transform of the pulse
function, removing spurious high-frequency structure intro-
duced by the regular pixel spacing. For this paper, we used a
triangular pulse function in both dimensions with width 2Δ,
where Δ is the image pixel spacing.
Finally, to aid in convergence and help the minimizer avoid

local minima in the objective function, we run each imager
multiple times for each data set, substituting a blurred version
produced by convolving the result of the previous run with a
circular Gaussian as the next initial image. This procedure
smooths out initial spurious high-frequency artifacts that the
imager will not remove on its own, given a lack of data
constraints. Each time we restart the imager, we also adjust the
various hyperparameters αD and βR in Equation (14). The
prescriptions for each data set are presented below, but in
general, our approach is to generally increase the weight on the
smoothness regularizer term to suppress the emergence of
spurious high-frequency artifacts. We also usually begin by
weighting the closure-phase data term more heavily in the
reconstruction than is supported by the log-likelihood

Table 1

EHT 2017 Station Parameters

Facility Location Diameter (m) SEFD (Jy) X (m) Y (m) Z (m)

JCMT Maunakea, USA 15 6000 −5464584.68 −2493001.17 2150653.98
SMA Maunakea, USA 7(×6) 4900 −5464555.49 −2492927.99 2150797.18
SMT Arizona, USA 10 5000 −1828796.2 −5054406.8 3427865.2
APEX Atacama Desert, Chile 12 3500 2225039.53 −5441197.63 −2479303.36
ALMA Atacama Desert, Chile 40(×12) 90 2225061.164 −5440057.37 −2481681.15
SPT South Pole 10 5000 0.01 0.01 −6359609.7
LMT Sierra Negra, Mexico 50 600 −768715.63 −5988507.07 2063354.85
IRAM Pico Veleta, Spain 30 1400 5088967.75 −301681.186 3825012.206

Note. Current EHT sites are the Atacama Large Millimeter/Submillimeter Array (ALMA), the Large Millimeter Telescope (LMT), the Submillimeter Array (SMA),
the Submillimeter Telescope (SMT), the Institut de Radioastronomie Millimétrique (IRAM) telescope on Pico Veleta (PV), the IRAM Plateau de Bure Interferometer
(PdB), and the South Pole Telescope (SPT). Note that the PdB did not participate in the 2017 EHT observations.
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interpretation (Equation (15)), since we find that minimizing
the closure-phase χ2 is more helpful in constraining the overall
image structure in early rounds of imaging. As we progress to
later rounds, we restore the relative data term weighting to that
given by Equation (15).

On small data sets or reconstructions with a small field of
view, as is the case for simulated EHT data (Section 5.1),
DTFTs are sufficient to compute the data terms in Section 3.2.
For larger data sets, such as those produced by the VLBA and
especially ALMA (Section 5.2), the DTFT matrix Aij becomes
prohibitively large to store in memory and prohibitively slow at
extracting visibilities from the trial image at each step. In this
regime, we use the NFFT package (Readhead & Wilkinson
2009) accessible in Python via the pyNFFT wrapper. 7 The
forward NFFT is used for the computation of the irregularly
sampled visibilities from the regularly sampled input image,
and the adjoint NFFT is used to compute image domain
gradient components from data term residuals (see the
Appendix).

4.2. Simulated Data

To test the effects of using the different data terms in
Section 3.2 in VLBI imaging, we simulated VLBI observations
from model images and applied different amounts of
uncertainty in the complex station gains G ei

i if (Equation (3)).
We then produced images using different data term combina-
tions and the regularizers as described in Section 4.1 and
compared our results with the true source images.

To generate synthetic data with different degrees of gain
error, we generated time-dependent station-based complex
gains sampled from known underlying distributions. Because
the atmospheric coherence time, which determines the addi-
tional phase fi added at each station, is much shorter than a
typical observing cadence at 1.3 mm, we sampled these phases

from a uniform distribution over −π<fi<π at each time,
independent of the uncertainty in the amplitude.
Our prescription for the amplitude gain terms consisted of a

random time-independent offset and a fluctuating part,

G X Y t1 1 , 28i i i= + +∣ ∣ ( )( ( )) ( )

where Xi and Yi are real Gaussian random variables with zero
mean, but Xi is drawn only once per telescope per observation
and Yi is drawn independently at each time when u, v points are
sampled. For simplicity, we chose to use identical standard
deviations for the underlying Gaussian distributions of Xi and
Yi and call this standard deviation our level of gain error.
We applied our different sampled sets of station-based gains

computed at different levels of amplitude error to the ideal
visibilities plus identical Gaussian thermal noise using
Equation (3). To preserve the S/N, the reported noise standard
deviation terms ijs from Equation (8) were multiplied by the
same gain factors Gi and Gj.
We also included the effects of varying elevation and opacity

τ on our S/N at each site. The opacity attenuates the measured
perfect visibility Vij (before adding thermal noise) by a factor
e esin sini i j jt q t q- - , where θi and θj are the elevation angles of

the source at the different telescopes. This reduces the S/N by
the same factor e esin sini i j jt q t q- - . This factor can be
corrected for by multiplying the measured visibility (including
thermal noise) by its inverse using the measured opacity,

Figure 3. (Left) EHT 2017 u v, coverage for SgrA*. The “redundant” (JCMT and APEX) sites make practically no unique contributions to the u v, coverage or
nominal resolution aside from adding an effective zero baseline. However, these sites add closure amplitudes that are essential for closure-amplitude imaging to
approach the fidelity of imaging with visibility amplitudes. (Right) EHT 2017 u v, coverage for M87.

Table 2

Initial/Prior Image Parameters

Image u v, Coverage
FOV
(μas)

Gaussian
FWHM

Flux
(Jy)(μas)

Figure 4 SgrA* 135 60 2
Figure 5 M87 155 60 2
Figure 6 SgrA* 255 80 2
Figure 7 SgrA* 375 25 2

7 https://pypi.python.org/pypi/pyNFFT

9

The Astrophysical Journal, 857:23 (18pp), 2018 April 10 Chael et al.

https://pypi.python.org/pypi/pyNFFT


keeping the reduced S/N constant. In general, the imperfect
measurement of opacities introduces an additional source of
amplitude gain error. For the purposes of this paper, when we
simulate data, we assume the perfect measurement of opacities
and set all zenith opacities τi=0.15.

4.3. Image Evaluation

To evaluate the fidelity of images reconstructed from the
data, we followed Chael et al. (2016) and Akiyama et al.
(2017b) in using a simple normalized root-mean-square error
(NRMSE) fidelity metric. The NRMSE is a point-to-point

metric that evaluates images based on pixel-to-pixel similarities
rather than common large-scale features. Given two images A
and B with M pixels each, the NRMSE of image A relative
to B is

A B

A B

B

NRMSE , . 29
i

M
i i

i

M

i

1
2

1

2

å

å
=

-
=

=

( )
( )

( )

Several factors complicate the simple application of
Equation (29) in evaluating our reconstructed images. First,
often the true source image will contain fine-scale features that

Table 3

Imaging Parameters

Round fblur entropyb TSVb tot fluxb centroidb 1a f 2a Niter conv

1 N/A 1 1 100 100 100 2 50 10−10

2 0.75 1 50 50 50 100 0.75 150 10−10

3 0.5 1 100 10 10 100 0.5 200 10−10

4 0.33 1 500 1 1 100 1 200 10−10

Figure 4. (Top left) The 230 GHz image from a GRMHD simulation of SgrA*
(Gold et al. 2017). (Top middle) Same image blurred with the effective beam

(filled ellipse), 1/3 the size of the fitted CLEAN beam (open ellipse). The image was observed at the sky location of SgrA* using EHT 2017 baselines, and
images were reconstructed with each method using the parameters in Table 3. (Top right) Curves of NRMSE (Equation (29)) vs. gain error for each
reconstruction method. (Bottom) Individual reconstructions from each method (y-axis) at each level of gain error (x-axis), blurred with the same beam as the
model in the top middle panel. The images and NRMSE curves show that, except at the lowest levels of amplitude gain error, the closure-only results are as
faithful to the model as the reconstructions that use either the bispectrum or visibility amplitudes and closure phases. Furthermore, the results of the closure-only
methods are insensitive to the level of amplitude gain error, while the reconstructions using visibility amplitude information fail completely starting at the 25%
level of gain error.
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are at too high a resolution for any image reconstruction
algorithm to capture given the longest projected baseline in the
u, v plane. To prevent NRMSE from unduly penalizing
reconstructions that successfully reconstruct the lower-resolution
features in the data, we convolve both the true and reconstructed
image with a Gaussian kernel to blur out high-frequency
structure. Since we expect our algorithms to provide some
“super-resolution” above the scale corresponding to the longest
projected baseline, we choose to blur the images with a Gaussian
that has the same proportions as the interferometer “clean” beam
—the Gaussian fitted to the central lobe of the Fourier transform
of the u, v coverage—but we scale the beam size by a factor
of 1/3.

A second complication arises because images reconstructed
without calibrated visibility phases are not sensitive to the true
position of the image centroid in the field of view, so
reconstructed images may be offset from the true source
location. In addition, the number of pixels and field of view in
the reconstructed image may be different from those in the true
source image. Therefore, when comparing images, we first
resample our reconstructions onto the same grid as the model
image using cubic spline interpolation and then find the overall
centroid shift of the reconstruction that produces the maximal
cross-correlation before computing the NRMSE with
Equation (29).

5. Results

5.1. Results: Simulated EHT Images

We simulated data on EHT baselines from several 230GHz
model images at the positions of the EHT’s primary science
targets: SgrA*

(R.A.: 17h45m40 04, decl.:−29°0′28 12) and M87
(R.A.: 12h30m49 42, decl.: +12°23′28 04). Our model images
were generated by performing general relativistic ray tracing and
radiative transfer on the density and temperature distributions from
general relativistic magnetohydrodynamic (GRMHD) simulations
of hot supermassive black hole accretion disks (Chan et al. 2015;
Mościbrodzka et al. 2016; Gold et al. 2017). We also simulated
data from a 7mm VLBA image of the quasar 3C273 (Jorstad &
Marscher 2016) rescaled to a smaller field of view of 250μas,
which we placed at the sky location of SgrA*.
The EHT’s station parameters are listed in Table 1. In

addition to the full EHT array described in Table 1, we also
generated data on a reduced array without the “redundant” sites
—JCMT and APEX—that are located at the same location as
the more sensitive SMA and ALMA, respectively. The u v,
coverage maps for the 2017 EHT when observing SgrA* and
M87 are displayed in Figure 3.
In all cases, we use an integration time Δt=30 s and a

bandwidth Δν=2 GHz, with scans taken every 5 minutes for
a full 24 hr rotation of the Earth. The zenith opacity was set to

Figure 5. Reconstructions of a 230 GHz image from a GRMHD simulation of the M87 jet (Mościbrodzka et al. 2016). As in the SgrA* image in Figure 4, closure-
only methods produce results that are as good or better than the bispectrum or visibility amplitude + closure-phase methods in all but the zero gain error case, and the
closure-only results are consistent at all levels of gain error.
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τ=0.15 at all sites with no uncertainties in the opacity
calibration. We did not include the effects of either refractive or
diffractive interstellar scattering in our simulated SgrA* data
(see, e.g., Fish et al. 2014; Johnson 2016).

To test the quality of our different imaging methods with
different levels of gain uncertainty, we produced one data set
for each image with only thermal noise, then generated random
gain terms at seven different levels of uncertainty—0%, 5%,
10%, 25%, 50%, 75%, and 100%—as described in Section 4.2.

We reconstructed each data set on a 128×128 pixel
grid using four different data term combinations: bispectrum
(Equation (18)), visibility amplitude and closure phase
(Equations (17) and (19)), closure amplitude and closure phase
(Equations ((19) and 20)), and log closure amplitude and closure
phase (Equations (21) and (19)). In all of our reconstructions, we
used all four regularizer terms introduced in Section 3.4 (using
“total squared variation” as our smoothness regularizer;
Equation (25)). To ensure consistency in our comparisons, we
followed the same imaging procedure for all images, arrays, and
methods. For each data set, we only changed the image field of
view and corresponding initial image, which is also used as the
prior in the Sentropy regularizer. The initial/prior image was a
circular Gaussian in all cases. The total fluxes, fields of view, and
initial image FWHMs are given in Table 2.

The parameters that specify our imaging procedure are listed
in Table 3. As mentioned in Section 4.1, we image each data
set in multiple rounds, blurring out the final image from a given
round to serve as the initial image in the next. The FWHM of
the circular Gaussian blurring kernel used is given as a fraction
fblur of the nominal array resolution. The other imaging
parameters listed in Table 3 include the data term and
regularizer hyperparameters, αD and βR. For the data terms,
in each case, α1 refers to the amplitude term (bispectrum,
visibility amplitude, closure amplitude, or log closure ampl-
itude), and α2 is the hyperparameter for the closure-phase term,
if present (all methods except bispectrum). We parameterize α2

by stating its ratio fα2 with the correct log-likelihood ratio given
by Equation (15). That is, if there are N1 measurements of the
first (amplitude) data product and N2 measurements of the
second (phase) data product,

f
N

N
. 302 2 1

2

1

a a= a ( )

Finally, we also list the maximum number of imager steps
allowed in each round, Niter, and the convergence criterion,
òconv, for the minimum allowed fractional change in
the objective function and gradient magnitude between
imager steps.

Figure 6. Reconstructions of a 230 GHz image from a GRMHD simulation of the SgrA* accretion flow (Chan et al. 2015). Both the closure amplitude and log closure
amplitude reconstructions performed consistently at all levels of gain error.
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Our results are displayed in Figures 4–7. In each figure, we
show the initial model image, the initial model image blurred
with a “clean” beam scaled to 1/3 of its fitted value, and the
reconstructions from each method for each level of gain
uncertainty, all blurred with the same beam. We also display a
plot showing the NRMSE (Equation (29)) for each method as a
function of the level of gain error in the underlying data set.

Our results indicate that, as long as some redundant sites are
included to constrain the reconstruction with “trivial” closure
phases and amplitudes, closure-only imaging of EHT data can
achieve fidelities nearly as good as bispectral or amplitude +
closure phase imaging. As the level of amplitude gain error
increases, the fidelity of the results produced using the
bispectrum or visibility amplitudes drops quickly, while
closure-only imaging is completely insensitive to gain error.

Figures 4–6 show that imaging with closure amplitudes
directly can produce results that are more faithful to the
underlying image than reconstructing the image with log
closure amplitudes. However, we have found that imaging with
the closure amplitudes often takes much longer to converge and
is more sensitive to the particular choices of data term weight
and initial field of view.

Finally, for the narrow, high dynamic range scaled 3C273
image in Figure 7, we computed the NRMSE using the logarithm

of the image. This results in a range of NRMSE values for the
bispectrum and visibility amplitude + closure phase images that
is substantially lower than those in Figures 4–6; however, visual
inspection of the images shows that in this case, as in Figures 4
and 5, imaging methods that rely on calibrated amplitudes
perform significantly worse with increasing gain error and
completely fail with amplitude gain error levels >25%. In
contrast, the closure-only methods have consistent performance at
all levels of amplitude gain. However, the final dynamic range
achieved in the closure-only reconstructions is worse than in the
images produced with visibility amplitudes with zero gain error,
as is evident from the spurious low-luminosity features in the
closure-only reconstructions in Figure 7. These features parallel to
the jet axis result from being trapped in a local minimum of the
objective function, which is invariant to overall image shifts.
Since there are no data constraints on certain spatial frequencies
due to sparse coverage, these Fourier components can be made
large through periodic structure without increasing χ2. Defining a
masked region along the jet axis outside which the flux is zero
(analogous to a CLEAN box) may help remove these features.
We also compared reconstructions using data from the full

EHT 2017 array and the 2017 array without “redundant” sites.
Figure 8 shows that in both cases, closure-only methods
converge to the same reconstruction for all values of systematic

Figure 7. The 43 GHz VLBA image of 3C273 from Jorstad & Marscher (2016), rotated and scaled to a 250 μas field of view. Simulated data were generated using the
230 GHz EHT 2017 SgrA*

u v, coordinates and sensitivities (Figure 3). Unlike the other images in this section, this image is displayed with a log scale, and the
NRMSE was computed from the log of the image. The closure-only reconstructions again capture the overall jet structure at all levels of amplitude gain error. With no
gain error, imaging directly with closure amplitudes (or log closure amplitudes) instead of visibility amplitudes provides less dynamic range, as is evident from the
spurious low-luminosity off-axis features in the closure-only reconstructions, likely resulting from a local minimum in the objective function.
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gain error. However, without redundant sites, the results are
substantially less accurate, while the closure-only reconstruc-
tions with redundant sites included in the data set approach the
fidelity of images produced with gain-calibrated amplitudes.
“Redundant” sites contribute important short baselines that
combine into nontrivial closure amplitudes and act to further
constrain the underlying image (Section 2.3). In other words,
the closure-only images approach the bispectrum/amplitude +
closure phase images in quality as the number of closure
amplitudes increases, even if some of those closure quantities
contain zero baselines from colocated sites.

5.2. Results: VLBA and ALMA Images

To test its performance on real observations, we applied our
closure-only imaging algorithms to millimeter-wavelength
interferometric data sets from the VLBA and ALMA. In both
cases, the number of visibilities and closure quantities greatly
exceeds the number produced by the sparse EHT 2017 array, so
we used NFFTs to speed up the imaging procedure. Our first
example is a VLBA observation of M87 at 7 mm wavelength.
In this case, and for other images with jets or narrow structure
(see Figure 7), we have found that the major difficulty in
closure-only imaging is convergence in the minimization of the
objective function (Equation 14). When we initialize to an
uninformative image, the algorithm has difficulty converging to
an image that has a reduced χ2 near 1 in either the closure
phases or the log closure amplitudes.

To mitigate this problem while still preserving the benefits of
only using closure quantities, we have found that initially
including the visibility amplitudes in the minimization, even
with a low weight and no calibration, can significantly aid the
initial convergence. To avoid any bias from self-calibration in
the data, we first applied a “null” calibration to the M87 data by

assuming a single, constant SEFD (see Equation (8)) for all sites
and times. Next, we imaged the data using closure quantities and
visibility amplitudes, which were down-weighted by a factor of
10 relative to the closure quantities. We then performed another
two rounds toward convergence, initializing to the previous
image convolved with a circular Gaussian matching the nominal
array resolution but with visibility amplitudes this time down-
weighted by a factor of 100. Finally, we performed two
additional rounds of imaging using only closure quantities.
Figure 9 compares the reconstructed image to an image

reconstructed using CLEAN and iterative self-calibration
(Walker et al. 2016, 2018). We also derived a table of complex
gains from a single iteration of self-calibration to the final
closure image to test how different our self-calibration solution
would be from that obtained with CLEAN. The self-calibrated
gains are significantly different than our initialized “null”
calibration solution; after normalizing to the median gain
(effectively fixing the total flux density), although 50% of the
visibilities had residual gain corrections of less than 3%, 10%
of the visibilities had residual gain corrections of more than
30%. This result justifies post hoc our choice to use visibility
amplitudes in the initial minimization steps. The majority of
uncalibrated amplitudes have low errors compared to the final
self-calibrated set, so they are useful in aiding convergence;
however, relying primarily on closure amplitudes ensures a
final image that is less affected by the large gain errors present
on some baselines.
For comparison, we also applied our self-calibration solution

to the data and produced an image with self-calibrated complex
visibilities, minimizing Equation (14) with a standard complex
visibility χ2 term (Equation (16)). The result is displayed in the
third panel of Figure 9. All three methods in Figure 9 give
results that are broadly consistent, demonstrating the potential
of closure imaging to obtain images that are comparable to
those obtained by multiple rounds of finely tuned CLEAN and
self-calibration from an expert user.
A general characteristic of closure imaging is its tendency to

avoid high-frequency artifacts when highly converged; by
removing spurious features from CLEAN images, closure
methods could be useful in aiding in the physical interpretation
of VLBI images. However, note that the CLEAN reconstruc-
tion in Figure 9 recovers more extended structure along the jet.
This is likely because the CLEAN reconstructions were done
using a multiscale approach (Wakker & Schwarz 1988;
Cornwell 2008); a similar multiscale approach could likewise
be used to improve closure imaging and is a key goal for
improving the methods presented in this paper and applying
them to further data sets.
With 64 telescopes, ALMA has baseline coverage that much

more densely fills the u, v plane than the EHT and VLBA
observations considered above. We imaged a 2014 ALMA
observation of HL Tau taken at 1.3 and 0.87 mm (ALMA
Partnership et al. 2015) using our log closure amplitude and
closure phase method, described in Sections 3.2 and 4.1. We
first averaged the data in 5 minute intervals. As in Figure 9, we
used down-weighted visibility amplitudes in the initial steps of
the minimization to aid in convergence and removed them in
the final runs of the imager.
The results are displayed in Figure 10. Closure imaging is

able to replicate the overall structure of the published CLEAN
images, including all of the gaps in the protoplanetary disk

Figure 8. (Top) Image fidelity with the EHT 2017 array. The left panel shows
NRMSE curves of image fidelity for reconstructions of the model in Figure 4
with different levels of gain error. The curves are styled consistently with those
in Figures 4–7. The right image is the log closure amplitude + closure phase
reconstruction produced at 100% gain error. (Bottom) Image fidelity with the
EHT 2017 array without redundant stations (JCMT, APEX). The reconstruc-
tions from the data without including the redundant stations are still insensitive
to different levels of gain error, but their overall fidelity is worse compared with
those produced from data including these redundant stations.
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identified by the original reconstruction. Critically, our closure-
imaging algorithm does not yet include multiscale imaging
(Wakker & Schwarz 1988; Cornwell 2008), which was
necessary to produce the ALMA CLEAN image. After
producing an image from closure quantities, we self-calibrated
the data to the resulting image (center panel of Figure 10) and
imaged the data again directly using the resulting complex
visibilities (minimizing Equation (14) with Equation (16)). The
resulting image has a higher resolution than the closure-only
image alone, with sharper and more distinct gaps apparent in
the disk (right panel of Figure 10). Furthermore, particularly in

the 0.87 mm image, the final reconstruction lacks the prominent
periodic dark spots present in the CLEAN image that are likely
caused by prominent dirty-beam sidelobes, which were also
ameliorated in recently reprocessed CLEAN + self-calibration
images by Akiyama et al. (2016).

6. Discussion

The results in Sections 5.1 and 5.2 demonstrate that closure
amplitudes and phases can be directly used in interferometric
imaging to produce images that are insensitive to phase and
amplitude calibration errors. Traditional self-calibration and

Figure 9. Application of closure-only imaging to a VLBA observation of M87 at 7 mm wavelength observed on 2007 May 9 (for details, see Walker et al. 2016,
2018). (Left) CLEAN image made using iterative imaging and self-calibration. (Center) Image reconstructed using closure-only imaging with a weak visibility
amplitude constraint to aid initial convergence. (Right) Image reconstructed using complex visibilities after self-calibrating to the closure-only image. To simplify the
comparison between these approaches, each image has been convolved with the same CLEAN restoring beam and is rescaled to have the same total flux density as the
CLEAN image. Contours in all panels are at equal levels, starting at 9.7 mJy mas−2

(=1 mJy beam−1
) and increasing by factors of 2.

Figure 10. (Top) The 1.3 mm band 6 ALMA image of the protoplanetary disk around HL Tau, comparing the CLEAN reconstruction from ALMA Partnership et al.
(2015) with our reconstructions. The left panel shows the CLEAN image with a field of view of 1 8. The center panel shows an image of the same data produced by
directly fitting to log closure amplitudes and closure phases, with down-weighted visibility amplitudes used in the initial steps to aid convergence. Closure-only
imaging produces an image that is consistent with the CLEAN result, despite not using any multiscale imaging, but the overall resolution is lower. The right panel
shows an image produced from complex visibilities using a strong total variation regularizer after self-calibrating the data to the center closure-only image. After self-
calibration, complex visibility imaging with total variation produces a sharp image with distinct disk gaps. (Bottom) The 0.87 mm band 7 ALMA images, produced
using the same imaging parameters as the 1.3 mm images. The 0.87 mm image obtained after closure-only imaging and one round of self-calibration eliminates
prominent CLEAN artifacts (dark spots) present in the original image. Our 0.87 mm image is similar to recently reprocessed images using CLEAN and a modified
self-calibration loop (Akiyama et al. 2016).
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imaging loops require many iterations of CLEAN imaging and
fitting complex gains to visibilities (e.g., Wilkinson et al. 1977;
Readhead & Wilkinson 1978; Readhead et al. 1980; Schwab
1980; Cornwell & Wilkinson 1981; Pearson & Readhead 1984;
Walker 1995; Cornwell & Fomalont 1999). These loops
contain many tunable parameters, including the choice of
initial source model, the strategy for independent or concurrent
calibration of amplitude and phase gains, the CLEAN
convergence criterion, the choice of taper and weighting for
the CLEAN visibilities, and the scales and regions to clean in
each CLEAN iteration.

Our closure-imaging method does not remove all tunable
parameters from the model, but imaging with closure quantities
alone necessarily produces results that are less biased by
calibration assumptions. Images from closure imaging can
stand on their own as minimal-assumption estimates of the
source structure; alternatively, results from closure-only
imaging may be used as a well-motivated self-calibration
model or initial source image for other imaging pipelines using
calibrated data. On the ALMA and VLBA data sets in
Section 5.2, we found that just one round of self-calibration
to an image produced with closure quantities can be used to
produce smooth high-resolution images from the resulting
complex visibilities that match the best iterative, multiscale
CLEAN + self-calibration results.

The most significant challenge that we have encountered in
closure-only imaging is difficulty in the early convergence and
a tendency to quickly get stuck in wildly incorrect local
minima. Counterintuitively, this tendency seems to be more of
a problem in data sets with more interferometric baselines. This
limitation may arise because the energy landscape represented
by the closure amplitude terms (Equations (20) and (36))
becomes increasingly complicated with more correlated closure
data. When using simulated data from the sparse EHT array
(Section 5.1), using closure quantities alone with a reasonable
Gaussian prior and several imaging iterations is enough to
guide the algorithm to converge on a reasonable image.
However, imaging the real data sets from ALMA and the
VLBA in Section 5.2 using closure quantities alone with an
uninformative initial model was difficult. For these cases, we
found that adding a weak data constraint using uncalibrated
visibility amplitudes (Equation (17)) helped guide the mini-
mizer to the region of a good local minimum. This constraint
can be as low as 1%–10% of the closure amplitude χ2 term and
still produce excellent results; in practice, the amplitude error
bars can also be increased to represent an estimate of the
systematic amplitude error and further down-weight this term
(K. Akiyama et al. 2018, in preparation). As the imaging
proceeds, we remove the amplitude constraint and ultimately
allow the final image to be guided only by the closure
amplitudes and phases. Given the robustness of the results in
Figures 9 and 10 to different choices of regularizer and data
weights in the presence of a weak amplitude constraint, we see
significant promise for this method to eventually allow for
unsupervised closure imaging that can blindly produce a
calibration-free image from decent initial data without user
intervention.

In the eht-imaging library, we have developed a flexible
framework where images can be easily produced from the same
data set using different data and regularizer terms. We can also
use eht-imaging to self-calibrate data, to generate synthetic
data from images with realistic thermal errors and calibration

uncertainties, and for the general plotting, analysis, and
comparison of interferometer data. Within this framework, it
is easy to experiment with different arbitrary combinations of
data terms and implement new imaging methods, such as
polarimetric imaging (Chael et al. 2016), imaging in the
presence of refractive scattering (Johnson 2016), and producing
continuous movies from multi-epoch observations (Johnson
et al. 2017).

7. Conclusions

We have presented a framework for interferometric imaging
using regularized maximum likelihood with arbitrary data
products and its implementation in the software library eht-

imaging. This work builds on decades of past work in
applying regularized maximum-likelihood approaches to inter-
ferometric imaging and is particularly inspired by the simulta-
neous minimization of multiple data terms pioneered in optical
interferometric imaging (see, e.g., Thiébaut 2013; Thiébaut &
Young 2017). This work extends that framework by imaging
data directly with closure amplitudes (or their logarithms) for the
first time, rather than relying on amplitude self-calibration.
In Section 3.3 and the Appendix, we give analytic

expressions for the gradients of various data χ2 terms,
including those for closure phases, closure amplitudes, and
log closure amplitudes. The most powerful feature of this
framework is its ability to produce images using closure
quantities directly, making it possible to produce images
directly from uncalibrated data.
Using our method of closure-only imaging, self-calibration

in imaging can be bypassed entirely, producing an image that
will contain minimal calibration assumptions and will not
depend on the choice of initial self-calibration model or other
assumptions made in the self-calibration loop. In Section 5.1,
we showed that this strategy performs well on simulated EHT
data of SgrA* and M87. Images produced using only closure
quantities have consistent fidelity at all levels of amplitude gain
or miscalibration. Furthermore, when redundant sites are
included in the array, the overall fidelity of the results
approaches that of images made with perfectly calibrated data
using conventional algorithms.
In Section 5.2, we showed that closure imaging can also

produce high-quality images for VLBA and ALMA data sets at
millimeter wavelengths, giving results that are of comparable
quality to expert reconstructions with multiscale CLEAN and
self-calibration. Results from closure-only imaging can also be
used to self-calibrate data and initialize additional imaging. We
found that for the ALMA data sets considered, just one round of
self-calibration and complex visibility imaging after closure-only
imaging produces further refined results with fewer suspicious
features that may be attributable to artifacts from CLEAN.
Techniques involving calibration-insensitive closure quan-

tities like those presented in this paper can help push
interferometric imaging to more and more challenging regimes,
including higher frequencies. While applicable to all interfero-
metric astronomical data, our techniques are especially
valuable at millimeter and submillimeter wavelengths, where
calibration uncertainties are a large and variable component of
the error budget. In Section 5.2, we found that including a soft
constraint from uncalibrated visibility amplitudes can drama-
tically aid in the convergence of closure imaging. Adding more
data terms, this method can be easily generalized for
polarimetric imaging (Chael et al. 2016; Akiyama et al.
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2017a), spectral index maps, simultaneous multiband images,
scattering mitigation (Johnson 2016), and dynamical movies of
multi-epoch data (Bouman et al. 2017; Johnson et al. 2017).
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Appendix

We present here the expressions for the gradients of the
various data terms presented in Section 3.2 that we use in our
imaging software. The equations below assume a DTFT matrix
Aij (see Equation (13)); the conjugate transpose matrix Aij

† gives
the adjoint DTFT matrix. (Note that since the visibility data is
sparsely sampled, A A 1¹† .)

The gradient of the complex visibility χ2 term
(Equation (16)), already presented in the main text as
Equation (22), is
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The gradient of the visibility amplitude χ2
(Equation (17)) is
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For the bispectrum 2c (Equation (18)), the gradient is
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The closure-phase χ2
(Equation (19)) has a gradient
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And finally, the gradient of the closure amplitude χ2 term
(Equation (20)) is
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and for the log closure amplitudes (Equation (21)), it is
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