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Interferometric Phase Image Estimation via
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Abstract—This paper addresses interferometric phase image
estimation – that is, the estimation of phase modulo-2π images
from sinusoidal 2π-periodic and noisy observations. These degra-
dation mechanisms make interferometric phase image estimation
a quite challenging problem. We tackle this challenge by refor-
mulating the true estimation problem as a sparse regression,
often termed sparse coding, in the complex domain. Following
the standard procedure in patch-based image restoration, the
image is partitioned into small overlapping square patches and
the vector corresponding to each patch is modeled as a sparse
linear combination of vectors, termed atoms, taken from a set
called dictionary. Aiming at optimal sparse representations, and
thus at optimal noise removing capabilities, the dictionary is
learned from the data it represents via matrix factorization with
sparsity constraints on the code (i.e., the regression coefficients)
enforced by the ℓ1 norm. The effectiveness of the new sparse
coding based approach to interferometric phase estimation,
termed SpInPHASE, is illustrated in a series of experiments with
simulated and real data where it outperforms the state-of-the-art.

Index Terms—Phase estimation, interferometric phase estima-
tion, phase unwrapping, image similarity, dictionary learning,
sparse regression, online learning.

I. INTRODUCTION

In phase imaging applications, a physical quantity of interest

is coded in an image of phase. Phase estimation plays, there-

fore, a central role in these imaging systems. For instance, in

interferometric synthetic aperture radar/sonar (InSAR/InSAS),

the topography of a given surface is inferred from phase

differences measured by multiple radar/sonar antennas; in

magnetic resonance imaging, the phase is used, namely, to

determine magnetic field deviation maps, which are used to

correct echo-planar image geometric distortions, to determine

chemical shift based temperature, to identify veins in the

tissues, and to segment water from fat; in optical interferom-

etry, the phase is used to determine shape, deformation, and

vibration of objects; in 3D from structured light, a scene is

illuminated with spatial sinusoidal light patterns and its 3D
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shape is inferred from the intensity of the scattered light; in

X-ray phase-contrast imaging, the differential X-rays phase

shift induced by the refractive index of an object is inferred

from X-ray tomographic projections; and in phase retrieval, a

non-interferometric technique, the phase is determined from

intensity measurements.

The measurements in the phase imaging systems are noisy

and usually 2π-periodic functions of the true phase, as they

are extracted from periodic signals or waves. The periodic

nature of the measurement process yields very difficult inverse

problems, regardless the framework adopted to formulate and

solve them. For example, under the regularization framework,

and even using convex regularizers for the phase, the presence

of a periodic data term in the objective function leads to

unbearable non-convex optimization problems. (see, e.g., [1]–

[9]).

A. Related work: two-step approach

With the objective of formulating treatable phase imaging

inverse problems, most approaches follow a two-step proce-

dure: in the first step, an estimate of the true phase in the inter-

val [−π, π), the so-called principal phase values, or wrapped
phase, or interferometric phase, is inferred from noisy wrapped

observations; in the second step, the true phase1 is inferred

from the interferometric phase estimate obtained in the first

step. The latter procedure is known as phase unwrapping
and corresponds to the addition of an integer number of 2π
multiples to the estimated interferometric phase [5].

In this paper, our primary objective is the estimation of the

interferometric phase from noisy observations. This is a chal-

lenging inverse problem owing to the nonlinear (sinusoidal)

observation mechanism, as already aforementioned, in addition

the non-additive nature of the phase noise and to the spatial

undersampling2 in areas of high phase rate or discontinuities.

These degradation mechanisms can only be countered by the

use of prior information about the true phase. One of the

earliest and simpler approaches consists in assuming that the

phase is constant in small windows and compute the maximum

likelihood estimate of the interferometric phase [5] in these

windows. The assumption of constant phase in small windows,

termed local polynomial approximation (LPA) of zero order

in [10], is reasonable in areas of smooth variation. However,

in areas of large variation or of discontinuities it leads to

oversmoothing.

1In this work the term “phase” is used in the sense of absolute phase, i.e.
not wrapped, as opposed to the interferometric phase.

2Herein, undersampling means that the magnitude of the phase difference
between neighboring pixels is equal or larger than π.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. Y, 2013 2

Time–frequency analysis based on Fourier transform is a

conventional tool in the analysis and filtering of the wrapped

phase (see [11], [12] and references therein). These approaches

exploit the fact that the windowed Fourier transform (WFT)

of exp(jφ) (symbol j denotes the unit complex number) of

phase surfaces φ locally well approximated by first order poly-

nomials, i.e., by local planes, is localized in the Fourier plane.

Presently, the WFT is considered to be a promising tool among

the spatial techniques in use for phase measurement [7].

The size of the windows used under the LPA of zero order

in [5] and of first order in the WFT based methods [11], [12]

plays a key role in the quality of the interferometric estimates.

In fact, if the windows are too big, the assumption that the

phase is smooth is violated and the applied filtering is too

strong damaging the essential patterns of the phase coded in its

interferometric observations. As a result, the reconstruction of

true phase is compromised. On the other hand, if the windows

are too small, the interferometric noise is little filtered out and

the unwrapping may be impossible. A conclusion is, therefore,

that the size of the local windows should be selected very

carefully.

One way to ensure effective denoising is to adapt the size

of the local windows according to the phase smoothness

and to the noise level. This filtering adaptiveness was the

main motivation underlying the introduction of the PEARLS

algorithm [13]. PEARLS implements a two-step strategy to

phase estimation. In the first step, the interferometric phase

is inferred based on first order LPA using adaptive window

size [10]. The absolute phase is determined in the second

step by running PUMA [14] phase unwrapping algorithm on

the estimated interferometric phase. PEARLS represents a step

forward with respect to the WFT based methodologies as it

locally adapts the filtering strength according to the phase

smoothness. Its major limitation is linked with the use of first

order LPA approximation for the phase surfaces, thus unable

to represent, for example, a pure quadratic surface or surfaces

containing discontinuities.

The NL-InSAR method introduced in [15] is the state-of-

the-art in InSAR. This method uses a non-local approach

for the joint estimation of the reflectivity, the interferometric

phase, and the coherence images from an interferometric pair

of co-registered single-look complex (SLC) SAR images. The

non-local paradigm exploits the self-similarity existing in most

real world images3 [16] to find similar patches and then

reducing their noise by applying some type of averaging.

Well known examples of this approach to image denoising

are the non-local means filtering [17] and the state-of-the-art

block matching with 3D filtering (BM3D) [18]. Adopting the

non-local paradigm, NL-InSAR introduces a patch similarity

criterion suitable to SLC images and a weighted maximum

likelihood estimation of the SAR interferogram with weights

derived in a data-driven way. Both, the similarity criterion

and the weighted maximum likelihood are grounded on the

statistics of the SAR data.

3i.e., in a given image, there are many similar patches in different locations
and/or with different scales.

B. Related work: simultaneous denoising and unwrapping

In addition to the two-step based algorithms to phase

estimation, there are a few implementing interferometric phase

estimation and the phase unwrapping simultaneously. The

ZπM algorithm [19] is an iterative scheme for the computation

of the maximum a posteriori probability (MAP) absolute phase

estimate. Each iteration is composed of a discrete optimization

step (Z-step), implemented by network programming tech-

niques, and an iterative conditional modes (ICM) step (π-

step). The PhaseLa technique [20] applies LPA to the argument

of cos(·) and sin(·) to estimate the absolute phase from

noisy wrapped phase data and the intersection of confidence

interval (ICI) algorithm to adaptively select pointwise varying

window sizes. The major weakness of the ZπM and PhaseLa

algorithms is that the phase discontinuities must be supplied

or, otherwise, they are not preserved.

The matrix pencil based method [21] uses the matrix-pencil
algorithm to estimate the local frequencies by fitting locally a

complex exponential to the complex interferogram. The phase

is then inferred by integrating the local instantaneous frequen-

cies. Given that estimating a local frequency is equivalent to

fitting locally a plane to the phase, this method is interpretable

as a first order LPA for the phase. Therefore, it works well

in smooth surfaces but lacks capacity to model phase surfaces

with high order derivatives or with discontinuities.

The Half-Quadratic (HQ) regularization method [22] formu-

lates the phase inference under the regularization framework.

The phase is estimated by minimizing an objective function

containing a quadratic data term, which measures the data

misfit with respect to the wrapped local phase differences,

and a regularizer that promotes phase smoothness. In order

to model the phase discontinuities, a line field, which sig-

nals discontinuities between neighboring pixels, is introduced.

The minimization alternates between the phase and the line

process. The major weaknesses of the HQ approach is that

the underlying objective function is non-convex, thus yielding

solutions highly dependent on the initialization, and that the

data term does not capture the statistics of the observation

mechanism.

The combinatorial absolute phase estimation (CAPE) algo-

rithm [23] assumes a first-order Markov random field prior

and a maximum a posteriori probability (MAP) viewpoint.

A combinatorial suboptimal algorithm that involves the com-

putation of a multiprecision sequence is introduced to solve

the MAP problem. The PUMA algorithm [14] is used in

the coarser precision to unwrap the phase and to detect the

discontinuities; each piecewise smooth unwrapped region is

denoised in the subsequent iterations with increasing precision

based on a graph min-cuts algorithm. The success of CAPE

relies on the detection of the phase discontinuities by PUMA

in the first iteration the algorithm. This detection is however

compromised if the observed phase is too noisy.

The stochastic filtering based approaches estimate the phase

sequentially and recursively according to some ordering of

the image pixels or groups of pixels. Various forms of

stochastic filtering have been exploited such as Kalman or

extended Kalman filtering [24]–[26], grid-based filtering [27],
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particle filters [28], and combinations of ideas from particle

filters, local slope estimation based on matrix-pencil, and opti-

mized region-growing techniques [29]. The stochastic filtering

methods enable for an accurate modeling of the observation

mechanism. This is not the case, however, regarding the

prior information about the phase surfaces, such as piecewise

smoothness, which is hard to encode within the stochastic

filtering framework. In addition, stochastic filtering is a recur-

sive technique which is a significant disadvantage compared

with the batch processing, as, in the former case, the phase

estimates are computed just from a subset of the available

observations (i.e., past plus current observations), whereas the

phase estimates in the batch methods depend on the complete

image of observations.

C. Proposed Approach

In this paper, we attack the estimation of interferometric

phase by replacing the original problem by the estimation

of exp(jφ). While these problems are equivalent in a given

statistical sense, the latter opens the door to the development

of sparse coding [30], [31] techniques adapted to the complex

field.

Following the standard procedure in patch-based image

restoration, the image is partitioned into small overlapping

square patches and the vector corresponding to each patch

is modeled as a sparse linear combination of vectors, termed

atoms, taken from a set called dictionary. The process of

finding the coefficients of the linear combination is termed

sparse coding [30], [32]. Assuming that the sparse coding

uses a quadratic data term, usually linked to the assumption

of Gaussian noise, then the representation for a given data

vector corresponds to an orthogonal projection on the subspace

spanned by the active atoms (those with non-zero weights

in the linear combination) of the dictionary. Therefore, the

additive noise term present in data vector is projected onto that

subspace. Assuming zero-mean independent and identically

distributed (iid) noise, the power of the projected noise is pro-

portional to the dimension of the subspace; hence the relevance

of sparse coding in the considered denoising problem as a way

to identify low dimensional subspaces.

Aiming at optimal sparse representations, and thus at opti-

mal noise removing capabilities, the dictionary is learned from

the data it represents. The sparse decomposition of a signal on

dictionaries learned from the data underlies a series of state-

of-the-art results, for example, in image processing tasks such

as denoising, inpainting, and demosaicking [30], [32] and in

classification [33], [34].

We formulate the dictionary learning (DL) as a basis pursuit

denoising (BPDN) [35] optimization in the complex domain.

In this optimization, the objective function is the sum of the

quadratic norm of the representation error plus a sparsity pro-

moting term, the ℓ1 norm of the linear regression coefficients.

The number of overlapping patches of an image of size

N is of the order of N . This means that the learning of the

dictionary yields a large scale optimization, even considering

small images, for example of size N = 10000. To cope with

this computational complexity, we adopt the online dictionary

learning algorithm (ODL) introduced in [36] adapted to our

application. In addition, and also for faster computation, we

implement the sparse coding step with an instance of the

split augmented Lagrangian shrinkage algorithm (SALSA)

introduced in [37].

As already referred to, this paper is mainly devoted to inter-

ferometric phase estimation. However, because the objective of

the interferometric phase estimation is often to serve as input

to a phase unwrapping algorithm, we will run unwrapping

experiments illustrating the impact of interferometric filtering

in the final estimate of the true phase. For phase unwrapping,

we use PUMA [14], which is an exact integer optimization

solver for convex pairwise potentials and is state-of-the-art

for discontinuity preserving ones.

D. Contributions

The paper introduces the following contributions:

1) A reformulation of the interferometric estimation prob-

lem as a sparse regression in the complex domain.

2) An interferometric phase image estimation algorithm,

termed SpInPHASE, exploiting sparse coding in the

complex domain.

In addition, and also for faster implementation of the ODL

algorithm [36], we replace the Least Angle Regression (LARS)

[38] originally proposed to implement the BPDN problem

sparse coding step with an instance of the split augmented
Lagrangian shrinkage algorithm (SALSA) introduced in [37],

herein termed sparse regression by variable splitting and
augmented Lagrangian (SpaRSAL).

The paper is organized as follows. Section II introduces

the interferometric phase problem and gives the rationale for

sparse coding approach. Section III addresses the reconstruc-

tion of the interferometric image. Section IV is devoted to

the dictionary learning algorithm. Section V presents a series

of results with real and simulated data. Finally, Section VI

finishes the paper with a few concluding remarks.

II. PROBLEM FORMULATION

The details of the observation models relating the noisy in-

terferometric phase with the true phase depend on the imaging

system under consideration. For an account of observation

models in different coherent imaging systems see, e.g., [5],

[15], [19], [20], [39]. Let us assume, for now, that the observed

data at a given image pixel is given by

z = a exp(jφ) + n, (1)

where a ≥ 0, n = nI + jnQ is complex-valued zero-mean

Gaussian circular white noise of variance σ2 (i.e., nI and

nQ are zero-mean independent Gaussian random variables

with variance σ2/2). The observation model (1) captures the

essential features of the interferometric phase estimation and

is a good approximation for magnetic resonance imaging,

for 3D surface shape from sinusoidal light patterns, and for

all optical interferometric techniques operating in Poissonian

noise regimes well approximated by Gaussian densities. It

does not apply, however, to InSAR/InSAS and to low count

regime in Poissonian noise. In order to deal with InSAR/SAR
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statistics, we will introduce, in Section V, a modification to

SpInPHASE yielding state-of-the-art results.

Let us assume that we are dealing with images defined on a

grid of size N := N1 ×N2 and that z := [zi, i = 1, . . . , N ]T

holds the observed image arranged into a column vector

according to the lexicographical order of the set {1, . . . , N1}×
{1, . . . , N2}. By the same token, let φ := [φi, i = 1, . . . , N ]T ,

a := [ai, i = 1, . . . , N ]T , and n := [ni, i = 1, . . . , N ]T

hold, respectively, the true phase image, the true amplitude

image, and the noise image. We define the true complex

image as x := a ⊙ ejφ, where ⊙ stands for componentwise

multiplication and ejφ is to be understood componentwise.

Given the phase φ, the corresponding interferometric phase

is defined as

φ2π := W(φ),

where

W : R −→ [−π, π) (2)

φ 7→ mod (φ + π, 2π)− π, (3)

where mod(·) is the modulus after division by 2π. With these

definitions in place, the interferometric phase estimation prob-

lem is to estimate the image φ2π := [φ2π,i, i = 1, . . . , N ]T

from the observed image z given by

z = x+ n.

Our approach consists in computing x̂, an estimate of x,

and then computing φ̂2π := arg(x̂), where arg(·) is to

be understood componentwise and arg(x) ∈ [−π, π) is the

argument of the complex x. Later, we will elaborate more on

this criterion.

A. Patch decomposition and composition of an image

Consider a noisy image z ∈ CN and the patch zi ∈ Cm

containing the pixels located inside a square window of size√
m × √

m centered at the i-th pixel. The total number of

overlapping patches is Np = (N1 −
√
m+1)(N2 −

√
m+1).

Let xi ∈ Cm and ni ∈ Cm denote two vectors holding,

respectively, the elements of x and of n corresponding to the

i-th patch. We have then

zi = xi + ni, i = 1, . . . , Np. (4)

Let x̂i denote an estimate of xi and write

x̂i = xi + εi, (5)

where εi is the estimation error for the i-th patch. Of course,

our denoising scheme makes sense if the “size” of εi is smaller

than the “size” of ni.

In order to produce an estimate of x from the estimates x̂i,

for i = 1, . . . , Np, we introduce the selection matrices Mi

such that xi = Mix, (i.e., each row of Mi contains just one

non-null element of value 1), and the following matrix and

vectors:

M := [MT
1 , . . . ,M

T
Np

]T

x̂P := [x̂T1 , . . . , x̂
T
Np

]T

εP := [εT1 , . . . , ε
T
Np

]T .

Using the above definitions, we have

x̂P = Mx+ εP , (6)

and compute

x̂ = M
♯
x̂P , (7)

where M
♯ := (MT

M)−1
M

T . Given that M
T
xi places the

patch number i at its position in the image and that (MT
M)

is a diagonal matrix whose i-th diagonal element holds the

number of times pixel i appears in any patch, then the estimate

for the i-th pixel is the average of all its estimates, one per

patch containing thereof. This conclusion implies that matrix

M
T
M is invertible as far as any pixel belong at least to one

patch.

Assuming that εP is zero-mean and iid, thus having covari-

ance matrix proportional to the identity matrix, i.e., Cε ∝ I,

then (7) is the best linear unbiased estimator (BLUE) for x

[40]. Due to the overlapping structure of the patches, Cε is

not proportional to I and thus (7) is not BLUE. However,

because, it is very difficult to accurately compute Cε, we adopt

the suboptimal estimate (7) that, nevertheless, yields state-

of-the-art results, namely regarding the interferometric phase

estimation, as widely illustrated in the experiments shown in

Section V. The connection between the interferometric phase

estimate and the complex image estimate (7) is addressed in

Section III-B.

III. INTERFEROMETRIC PHASE ESTIMATION VIA SPARSE

REGRESSION

The topic of sparse and redundant representations of real

world images has attracted tremendous interest from the re-

search community in the last ten years [41], [31]. This interest

stems from the fundamental role that low dimensional models

play in many signal and image areas such as compression,

restoration, classification, and design of priors and regulariz-

ers, just to name a few. To add yet more interest to this topic,

the dictionaries yielding sparse representations may be learned

from the data they represent [30], [32]. Dictionary learning is

currently one of the hottest research topics in this area.

A representation is said to be sparse if the images, or patches

of them, are well approximated by linear combinations of a

few atoms taken from a dictionary. It happens that the real

world images (and signals) admit sparse representations in

suitable dictionaries. This characteristic is a consequence of

the high level of self-similarity of real world images (and

signals); i.e., given an image patch, there is a high likelihood

of finding similar patches at different locations and scales.

Herein, we explore the sparse and redundant representation

framework to compute estimates of the complex image patches

xi, for i = 1, . . . , NP , from the noisy image z. A key element

for the success of this approach is that those patches admit a

sparse representation on a given dictionary. Let ai and ejφi

denote, respectively, the amplitude and the complex phase

patches corresponding to xi (i.e., xi = ai⊙ ejφi ). Assuming

that ai and ejφi admit sparse representations and using the

fact that |ejφi − ejφk | ≤ |W(φi − φk)| ≤ |φi − φk|, it can

be qualitatively concluded that the xi also admit a sparse

representation. A deep study of the this issue is, however, out
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of the scope of the paper. Nevertheless, we will give strong

experimental evidence that the patches of x admit highly

sparse representations when a and φ are real world images.

Suppose we are given a dictionary D ≡ [d1, . . . ,dk] ∈
Cm×k with respect to which the patches of x admit a sparse

representation. Following the standard formulation in synthesis

based approaches to sparse regression, the estimate of a given

patch xi = Mix, for a given i ∈ {1, . . . , Np}, is given by

x̂i = Dα̂, where α̂ ∈ Ck, often termed code, is the solution

of the constrained optimization

min
α

‖α‖0 subject to: ‖Dα− zi‖22 ≤ δ, (8)

where zi = Miz is the observed patch corresponding to the

true patch xi and ‖α‖0 is the number of nonzero elements

of vector α, often termed abusively ℓ0 norm, and δ ≥ 0 is a

parameter controlling the reconstruction error.

Given that Dα̂ = x̂i = xi + εi, then if the norm of

εi is much smaller that the norm of the observation noise

ni = zi − xi, it follows that ‖Dα̂ − zi‖22 ≃ ‖ni‖22 and then

that the parameter δ should be closely related with ‖ni‖22.

As in [32], [42], we use the criterion P (‖ni‖22 ≤ δ) = γ.

Assuming that ni is zero-mean Gaussian complex-valued with

covariance σ2
I, then ‖ni‖22/(σ2/2) follows a chi-squared

distribution χ2(2m) with 2m degrees of freedom. We have

then δ = (σ2/2)F−1
χ2(2m)(γ), where F−1

χ2(2m)(·) is the inverse

of the cumulative distribution function of χ2(2m). In the

experiments presented in Section V, we set γ = 0.96 which

we have empirically observed to yield very good results.

A. Sparse representation and noise reduction

The patch estimate error εi = x̂i − xi, with x̂i = Dα̂ and

α̂ given by (8), is strongly related with the level of sparsity

of α̂ given by p := ‖α̂‖0. To shed light into this issue, let

us define S := supp (α̂) as the set of indexes of those non-

zero elements of α̂, DS as a matrix holding the atoms of D

indexed by S, and P as the projection matrix onto the range

of DS . Assuming that xi is in the range of DS and that the

feasible set of the optimization (8) is not empty, then we have

δ ≥ min
β∈Cp

‖DSβ − zi‖22 = ‖(I−P)ni‖22,

and the minimum residual is obtained for

DSβ = Pzi = P(xi + ni) = xi +Pni. (9)

Since x̂i := DSβ, we conclude therefore that the patch

estimation error corresponding to the minimum residual is

εi = Pni. Assuming that the noise is zero-mean and has

covariance σ2
I, we have

E[‖ε‖22] = σ2trace
(
P
)
= pσ2,

yielding the relative attenuation of the noise

E[‖εi‖22]
E[‖ni‖22]

=
p

m
. (10)

Expression (10) reflects an important aspect of the sparse

representations: the estimation error is proportional to the

sparsity level of signal.

In practice, the ratio (10) is hardly achieved mainly owing

to errors in α̂ with impact in S. These errors are linked

to the intrinsic difficulty of the optimization problem (8),

which is NP-hard [43], to the possible non-uniqueness of the

solutions thereof, namely when the atoms of the dictionary are

strongly correlated, which is generally the case in dictionaries

learned from real world image, and to the noise present

in the observation z, which further degrades the quality of

the solutions. In spite of these shortcomings, the sparse and

redundant representations are in the heart of many state-of-

the-art applications namely in signal and image processing,

statistical inference, and machine learning fields.

B. Interferometric phase estimation

We recall that the main objective of this work is the

estimation of the interferometric phase via sparse coding. Our

approach consists in first computing the patch estimates x̂i,

for i = 1, . . . , Np, and from them the interferometric phase

image φ̂2π. Consider a given pixel where the true complex

data is x = aejφ. Let i1, . . . , iq be the indexes of the patches

that contain this pixel and x̂k the estimate of x in the patch

ik. We may then write x̂k = x+εk where εk is the respective

estimation error. Assuming that the vector [ε1, . . . , εq]
T is

zero-mean Gaussian with covariance matrix C, it follows that

the maximum likelihood estimate of a and φ2π is

φ̂2π = arg

( q∑

k=1

x̂kγk

)
(11)

â =

∣∣∑q
k=1 x̂kγk

∣∣
∑q

k=1 γk
(12)

where γk :=
∑q

l=1[C
−1]kl.

In practice, matrix C is very hard to compute because it

depends on the statistics of the noise and on the estimated

code for the patches. So, we take the pragmatic option of

setting γk constant in (11) and (12), originating the estimates

φ̂2π = arg
(∑q

k=1 x̂k
)

and â = (1/q)
∣∣∑q

k=1 x̂k
∣∣. The

estimated images are then given by

φ̂2π = arg(x̂) (13)

â = abs (x̂), (14)

where arg(·) and abs (·) are to be understood componentwise

and the complex image estimate x̂ is given by (7). The setting

of γk constant, compared with the use of the correct γk,

increases slightly the variance of the corresponding estimates.

However, this disadvantage is largely compensated by the

gains in the computational complexity.

As it may be concluded from the previous sections, and

particularly from the expressions (13) and (14), SpInPHASE

provides estimates of both the amplitude, a, and of the

interferometric phase, φ2π. We make, however, the following

remarks:

1) In many applications, the noise variance is spatially

variant, thus violating the hypothesis taken in the obser-

vation model (1). A simple strategy to circumvent this

model mismatch consists in dividing the observations

zi, for i = 1, . . . , N , by a local estimate of the noise
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standard deviation, say by σ̂i. In this case, we obtain an

estimate of the normalized amplitude ai/σ̂i.
2) Often, only the noisy interferometric phase ejψ :=

ej(φ+ε), (ε is a phase perturbation) is available or,

although we may have more information, it does not

fit the model (1), as it is the case of InSAR. In this

case, and assuming that |ε| ≪ π, we may consider the

pseudo observation model

z ≃ ejφ + ejφε︸ ︷︷ ︸
n

, (15)

which is formally equivalent to the observation model

(1) and where n plays the role of the additive per-

turbation. In Section V, we sketch a justification for

this procedure and, in the case of InSAR data, give

experimental evidence that it yields result competitive

with the state-of-the-art.

In conclusion, although SpInPHASE deals with amplitude

information, the relation of this amplitude with the true one

is not straightforward deserving research which is beyond

the scope of this paper, as we are mainly focused in the

interferometric phase estimation.

C. Computing sparse codes

The only case in which the solution of the optimization

(8) is easy to compute, assuming that there is one, is when

δ = 0 and the dictionary is full column range. This is not

the scenario we systematically have in sparse coding of noisy

signals, where the dictionaries are often overcomplete and,

due to noise, δ > 0. In these circumstances the optimization

(8) is NP-hard [43] meaning that there is little hope to solve

it exactly in a straightforward way. Two different strategies

have been followed to compute approximate solutions. One

consists in replacing the ℓ0 norm with a convex approximation,

most often the ℓ1 norm yielding the so-called least absolute

shrinkage and selection operator (LASSO) [44], which is

equivalent to BPDN [35]. The other strategy consists in

attacking directly the original problem using greedy algorithms

such as the orthogonal basis pursuit (OMP) [45], iterative hard

thresholding (IHT), [46], Hard Thresholding Pursuit [47], or

approximate message passing (MP) [48].

The quality of the approximations provided by all the above

algorithms is linked with the degree of sparseness of the

patches, with the observation noise, and with the coherence

of the dictionary atoms, measured e.g., in terms of the so-

called mutual coherence [49] or of the restricted isometric

constants [50]. Qualitatively, the higher the mutual coherence,

the lower the degree of sparseness ensuring perfect unmixing.

In our application, the mutual coherence is often very high thus

imposing stringent limits on the minimum degree sparsity that

a patch may have in order to be recovered. This drawback is

somehow mitigated by the very low degree of sparseness of

most image patches, implying that all the algorithms referred

to above produce useful results.

Herein, we adopt the OMP tailored to the complex field.

The reason for this choice stems from the lower computational

complexity of this algorithm compared with the others and also

because we have experimentally observed a slight advantage,

namely in comparison with the BPDN algorithm. This finding

is in line with that of [36].

Algorithm 1 shows the pseudo code for the OMP. We

initialize e := ∞ to ensure that S := supp (α) contains at

least one element. This constraint stems from the fact that

in interferometric phase applications the amplitude is seldom

zero implying that |S| ≥ 1. In line 8, D
♯
S denotes the pseudo

inverse of DS and, in line 11, α(S) denotes the components

of α with indexes in S.

Algorithm 1: Orthogonal Matching Pursuit (OMP)

Input: D ∈ Cm×k (dictionary), z ∈ Cm (patch), δ > 0
(tolerance)

Output: α ∈ Ck (code).

1 begin

2 S := ∅, α := 0, e := ∞
3 r := z
4 while e > δ do

5 u := r
H
D

6 i := argmaxk
∣∣uk

∣∣
7 S := S ∪ {i}
8 β := D

♯
Sz

9 r := z −DSβ

10 e := ‖r‖2
11 end

12 α(S) := β
13 end

IV. DICTIONARY LEARNING IN THE COMPLEX DOMAIN

So far, we have assumed that a dictionary D ∈ C
m×k,

regarding to which the image patches admit sparse represen-

tations, is available. Various types of predefined dictionaries

have been used in the past adapted to different classes of

signals (e.g., based on wavelets for real world images and

based on sinusoids for bandlimited signals). The demand for

“good” dictionaries, in the sense of sparse representation,

has stimulated active research in dictionary learning aiming

at adapting the dictionaries to the data they represent [34],

[36], [51]–[54]. As a result of this research, DL is in the

core of many state-of-the-art methodologies and algorithms,

for example, in image processing tasks such as denoising,

inpainting, and demosaicking [30], [32] and in classification

[33], [34].

Given a set of patches from an image, the objective of DL

is to find a dictionary able to accurately represent the patches

with the smallest possible number of atoms. A formulation of

this idea under the regularization framework is as follows:

min
D∈C,α1,··· ,αNp

Np∑

i=1

(1/2)
∥∥zi −Dαi

∥∥2
2
+ λ‖αi‖1, (16)

where C :=
{
D ∈ Cm×k :

∣∣dHl dl

∣∣ ≤ 1, l = 1, . . . , k
}

. The

quadratic terms account for the representation errors and the

ℓ1 norm promotes sparse codes. The relative weight between

the two terms is established by the regularization parameter
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λ > 0. The constraint D ∈ C prevents D from being arbitrarily

large.

In (16), the optimization with respect to αi is a BPDN

problem. We could have used other sparsity inducing regular-

izers based, for example, in the ℓ0 norm as in (8), to compute

the sparse code given the dictionary. We have experimentally

observed, however, that the ℓ1 regularizer yields slightly better

dictionaries than the ℓ0 one. This behavior may be linked with

difficulties in obtaining exact solutions based on the ℓ0 norm,

which does not happen with the ℓ1 norm.

Optimization problem (16) is an instance of the matrix

factorization class (see, e.g., [36] and references therein).

Alternating optimization with respect to D and α1, · · · ,αNp

is the usual way of attacking these problems (16) [51], [53]–

[56]. The optimization with respect to D is a quadratic

problem with convex constraints and the optimization with re-

spect to α1, · · · ,αNp
is convex and decoupled. However, the

optimization with respect to all variables is non-convex, and

therefore there is no guarantee of finding the global minimum.

However, in a large class of problems, the obtained stationary

points have shown to produce state-of-the-art results.

In a typical image scenario, we have Np = 100000,

m = 100, and k = 200. This means that the optimization

with respect to D is relatively light but the optimization

with respect to α1, · · · ,αNp
is extremely heavy. To cope

with this shortcoming, we adopt the online learning approach

introduced in [36]. We generate a random sequence of patches

(or groups of patches), zt, for t = 1, . . . , sampled from the

set z1, . . . , zNp
and process them sequentially. For each new

element in the sequence, we compute the respective code (or

codes) via BPDN and then update the dictionary by decreasing

the objective function

gt(D) =
1

t

t∑

k=1

(1/2)
∥∥zk −Dαk

∥∥2
2
+ λ‖αk‖1, (17)

where the codes αi for i := 1, . . . , t− 1 have been computed

in the previous iterations.

For completeness, the pseudo code for the online dictionary

(ODL) learning method [36], adapted to the complex field,

is shown in Algorithm 2. Line 6 computes the sparse code

for the group of η patches z
t via BPDN and lines 9 to 13

decrease the objective function (17) with respect to D. The

Least Angle Regression (LARS) [38] was used in [36] to solve

the BPDN problem. Herein, we introduce the sparse regression
by variable splitting and augmented Lagrangian (SpaRSAL)

(see details below), which is much faster than LARS, at least

for the problem in hand.

The optimization with respect to the dictionary D imple-

ments a projected block-coordinate descent method to update

the columns of the dictionary. As justified in [36], just one

iteration per column is enough owing to the high concentration

of the elements of matrix A along its diagonal motivated

by the high level of sparsity of codes αi. The dictionary

obtained in the previous iteration is used as a warm restart

for computing the dictionary in the current iteration.

In lines 7 and 8, if 0 < βt < 1, the weight of the information

accumulated in A and B with respect to a given time instant

Algorithm 2: Online Dictionary Learning (ODL) [36].

Input: zi ∈ Cm, i = 1, . . .Np (training set)

T ∈ N (iterations)

η ∈ N (patches per iteration)

λ > 0 (BPDN regularization parameter)

βt (damping sequence)

D0 ∈ C
m×k(initial dictionary)

Output: D ∈ Cm×k (dictionary).

1 begin

2 D := [d1, . . . ,dk] = D0

3 A := [a1, . . . , ak] = 0, B := [b1, . . . ,bk] = 0

4 for t ≤ T do

5 Select randomly z
t ≡ [zti i = 1, . . . η] from z

/* Sparse coding: BPDN problems */
6 αt := arg min

α∈Ck×η
(1/2)‖zt −Dα‖2F + λ‖α‖1

7 A := βtA+
∑η

i=1α
t
i(α

t
i)
H

8 B := βtB+
∑η
i=1 z

t
i(α

t
i)
H

/* Optimize wrt D ------------- */
9 repeat

10 for l = 1 to l = k do

11 ul :=
1

A(l, l)
(bl −Dal) + dl

12 dl := ul/max{‖ul‖2, 1}
13 end

14 until convergence
15 end

16 end

t0 decreases with t. This is an usual procedure in online

learning, whose objective is to give more relevance to the

newer information which is expected to be more accurate. In

our implementation, we have used the schedule proposed in

[36], given by

βt =
(
1− 1

t

)ρ
, t = 1, 2, . . . (18)

in which ρ > 0.

A proof of convergence of the sequence Dt generated by

the Algorithm 2 to the a stationary point of (16) is given in the

Proposition 4 of [36] under the hypothesis that i) the observed

data has a finite support, ii) the objective functions gt(D), for

t = 1, . . . , in (17) are strictly convex with lower-bounded

Hessians, and iii) the solution of the BPDN optimization

shown in line 6 of Algorithm (2) is unique. In our case, as in

[36], hypothesis iii) cannot be guaranteed for matrices D ∈ C.

However, this hypothesis can be enforced by including a very

small quadratic term in the BPDN objective function which,

from a practical point of view does not modify the solutions.

A. Solving the BPDN optimization with SpaRSAL

We now introduce the SpaRSAL algorithm to solve the

BPDN optimization step in DL Algorithm (2). SparSAL is

based on the split augmented Lagrangian shrinkage algorithm
(SALSA) developed in [37]. The core idea is to replace the
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BPDN optimization by the constrained version

min
α∈Ck×η

(1/2)‖zt −Dα‖2F + λ‖u‖1 (19)

subject to: α = u

and then build the Lagrangian of (19) augmented by the

quadratic term ‖α−u‖22. The algorithm implements alternating

minimization with respect to the primal variables α and u

and maximization with respect to the dual variables (a scaled

version of the Lagrange multipliers). See, e.g., [37], for details.

The SpaRSAL pseudo-code is shown in Algorithm 3. We also

remark the SpaRSAL is closely related [56] and has the same

structure of the SUnSAL algorithm [57], developed to solve

sparse unmixing regression problems, where the non-negative

constraint was removed.

The computational complexity of SpaRSAL to code a set of

η patches using the same dictionary is O(km2+ηkm)). Hence

it is much lighter coding groups of patches using the same

dictionary than coding the same number of patches with the

different dictionaries; if η > k, the gain is about k. In [36] the

least angle regression (LARS) [38] is used to solve the BPDN

optimization based on a similar rationale. Our preference for

the SparSAL stems from the experimental observation that it

is much faster than LARS.

Algorithm 3: SpaRSAL algorithm

Input: D ∈ Cm×k, zt ∈ Cm×η, µ > 0 ADMM parameter

λ > 0 (regularized parameter)

Output: αt ∈ Ck×η .

1 begin

2 αt := D
H
z
t

3 u
t := αt, vt := 0

4 F = (DH
D+ µI)−1

5 while not converge do

6 u
t := soft(αt − v

t, λ/µ)
7 αt := F(DH

z
t + µ(ut + v

t))
8 v

t := v
t − (αt − u

t)
9 end

10 end

The function soft(x, τ) := max{0, |x| − τ} (x/|x|) (to be

understood componentwise) is to the soft-threshold Moreau

proximity operator for ℓ1 norm. For large values of η, step

7 is the heaviest step with a complexity of O(k2). It can be

computed with complexity O(km) based on the left singular

vectors and on the singular values of D
H . The algorithm

converges regardless of the value of µ > 0, although it affects

the convergence speed. We have implemented the selection

rule discussed in [58, Ch. 3.4] and therein formalized in

expression (3.13).

V. RESULTS

In this section, we present a series of experimental results

using real and simulated data to illustrate the competitiveness

and effectiveness of SpInPHASE. Based on the true phase φ2π

and on the estimated interferometric phase estimate φ̂2π, we

10
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Fig. 1. Left: dictionary learned from the six simulated images without noise,
shown in false color. Right: evolution of the batch and online objective
functions given, respectively, by the expressions (16) and (17).

define the peak signal-to-noise ratio (PSNR) as

PSNR := 10 log10
4Nπ2

‖W(φ̂2π − φ2π)‖2F
[dB], (20)

where W is the wrapping operator introduced in (2).

As already mentioned, we also unwrap the estimated in-

terferometric phase with the PUMA algorithm [14]. From the

estimated phase φ̂ of the true phase φ, define the set of image

pixels with error no larger than π, i.e., I := {i : |φ̂i − φi| ≤
π, i = 1, . . . , N} and, based on this set, define the number
of errors larger than π (NELP) and the peak signal-to-noise
ratio (PSNRa) as

NELP := N − |I| (21)

PSNRa := 10 log10
4Nπ2

‖φ̂I − φI‖2F
[dB], (22)

where the notation φI stands for the restriction of φ to I .

That is, PSNRa is computed with respect to the set I . Because

the unwrapping is defined apart from a constant 2π multiple,

when computing the set I , we identify the constant 2π multiple

that minimizes |I|. We remark that the performance indicators

NELP and PSNRa, in addition to the information they give

about the quality of the estimated true phase, are also a

characterization of the denoising algorithm, as the success

of the unwrapping depends crucially on the quality of the

interferometric phase.

SpInPHASE has two parts: the ODL Algorithm 2, to learn

the dictionary, and the OMP Algorithm 1, to compute the

sparse codes. The OMP algorithm can also be used with pre-

learned dictionaries learned, for example, from an image data

base. The setting of the ODL parameters is the following:

regularization parameter λ = 0.11 for all the surfaces; size of

groups of patches processed simultaneously η = 0.0064×N ;

exponent of the damping sequence ρ = 2; number of iterations

T = 500. OMP has just one parameter, the tolerance δ, which,

as justified in Section III, is set to δ = (σ2/2)F−1
χ2(2m)(0.96).

The stop criteria for SpaRSAL is i ) a primal and a dual

residual less than
√
kη tol, with tol = 10−3, or ii) the number

of iterations reaches t = 100.

The patch size is 10×10 (m = 100) in all experiments. We

consider two types of dictionaries: i) learned from the noisy

data with a number of atoms of k = 256 and ii) pre-learned

from six clean synthetic images with a number of atoms of

k = 512. The images are shown in the first row of Fig. 2.
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We stress that this setting was determined heuristically and

therefore is not optimal in any sense. Nevertheless, it yields

state-of-the-art results in a wide variety of scenarios regarding

the phase surface shape and the amount and type of noise.

SpInPHASE is compared with WFT [11] and with NL-

InSAR [15], in the case of InSAR observations, using the

codes publicly available4. WFT has two modes: i) the win-
dow Fourier Filtering (WFF), which computes the windowed

Fourier transform of ejφ, hard thresholds the computed coef-

ficients, and applies the inverse windowed Fourier transform

to the thresholded coefficients; and ii) the window Fourier
Rigdes (WFR), which, for each window, computes the larger

windowed Fourier coefficient, and, based on it, estimates the

wrapped phase of the pixel in the center of the window.

Coincidentally, there is a strong connection between WFR

and PEARLS [13]: for a fixed window, WFR and PEARLS

are equal, although derived on rather different principles.

However, PEARLS does more: for each pixel, it computes

the phase estimates using a set of different window sizes

and optimally selects the best estimate using the intersec-

tion confidence interval methodology [10]. Because of these

adaptiveness, PEARLS yields better results than WFT in

WFR mode. We have observed, however, that WFT in WFF

mode yields in many cases better results than PEARLS and,

consequently, for Gaussian noise, we do comparisons only

with WFT in WFF mode.

WFT estimates were obtained with the following parame-

ters: WFF mode; size of the windows σx = σy = 4; threshold

for the windowed Fourier transform th = 3σ; frequency

interval [−π, π]; and sampling interval 0.1. This setting was

determined experimentally aiming at optimal performance for

the set of experiments considered. We remark that this setting

yields considerable better results than that recommended in

[11] (i.e, σx = σy = 10 and [−π/2, π/2]). All the algorithms

ran on a personal computer equipped with a Core i7-3770 CPU

and 8.00GB RAM. All the results presented in this section can

be reproduced by running the publicly available demos5.

The results presented in the next sections are organized

into simulated data with iid Gaussian noise (Section V-A),

simulated data with independent but spatially variant Gaussian

noise (Section V-B), real MRI data (Section V-C), and InSAR

data (Section V-D).

A. Simulated data with iid Gaussian noise

We have simulated six data sets according to the observation

model (1) with a = 1 and the phase images shown in Fig. 2:

first column – truncated Gaussian shaped, size 100 × 100;

second column – sinusoidal surface, size 100 × 100; third

column – discontinuous sinusoidal surface , size 100 × 100;

fourth column – mountains, size 100 × 100; fifth column

– shear planes, size 100 × 100; and sixth column - Long’s

Peak, size 152 × 458. In latter phase image, corresponding

to the digital terrain elevation model of mountainous terrain

around Long’s Peak, Colorado distributed with book [5], the

4WFT - WFT-http://www.mathworks.fr/matlabcentral/fileexchange/24892
InSAR - InSAR-http://www.math.u-bordeaux1.fr/∼cdeledal/nlinsar.php

5SpInPHASE - http://www.lx.it.pt/∼bioucas/code/SpInPHASE.zip

estimation is carried out only in set the pixels signaled in the

quality mask supplied with the data set.

In all the experiments presented in this section, we ran

SpInPHASE using the dictionary learned from the noisy data

and the dictionary learned from the six clean images. Fig. 1,

left hand side, shows a false color image of the patches

learned from the six images. The real and imaginary parts

are mapped into red and green colors, respectively. Although

a detailed characterization of the dictionary is beyond the

scope of the paper, there are, clearly, patches with different

spatial frequencies and orientations and patches adapted to

discontinuities. The right hand side of Fig. 1 plots the evolution

of the batch and online objective functions (4 Monte Carlo

runs) given by (16) and (17), respectively, as a function of

time6 . The online version reaches values close to the minimum

two orders of magnitude faster than the batch version.

Fig. 2 displays from the top row to the bottom row,

the true surface, the true interferometric phase, the noisy

interferometric phase for σ = 0.7, the SpInPHASE estimate

using the learned dictionary, the unwrapped phase from the

SpInPHASE estimation, and the SpInPHASE interferometric

estimation error φ̂2π − φ2π.

Table I shows the performance indicators for the six surfaces

and noise variances σ ∈ {0.3, 0.5, 0.7, 0.9} corresponding to

increasing levels of difficulty from moderate to very hard. The

three values shown for each row and indicator correspond,

from left to right, to SpInPHASE with learned dictionary (Sp

(ld)), SpInPHASE with pre-learned dictionary (Sp (pd)), and

WFT (W). SpInPHASE yields uniformly the best PSNR and

PSNRa results. The advantage of SpInPHASE over WFT is

substantial whenever the surfaces have discontinuities or have

non-negligible n-order derivatives with n > 1; i.e., when the

surfaces locally deviate from planes. We stress the very low

values of NELP yielded by SpInPHASE and WFT, being exact

zero in most cases. Apart from Long’s Peaks and the Shear

Planes for σ = 0.3, SpInPHASE with pre-learned dictionary

displays the lowest computation time. Due to time spent in

learning the dictionary, SpInPHASE with learned dictionary

displays the highest computation time. Concerning the use or

learned or pre-learned dictionaries, there is no clear advantage

of one strategy over the other, being the results given by both

comparable for most cases.

Fig. 3 shows, in left hand side, the complex valued learned

dictionary for the truncated Gaussian surface with σ = 0.7,

and, in right hand side, plots the histogram of the number non-

zero coefficients in the code vectors α̂i , for i = 1, . . . , Np.

From the histogram, we conclude, as expected, that the patches

are represented by the linear combination of a very small

number of atoms, most of them just by one atom. It gives

evidence that the patch approximations (recall that the patch

size is m = 100) are indeed very sparse.

B. Simulated data with spatially variant Gaussian noise

SpInPHASE was conceived to work with iid noise. There-

fore, when the noise variable is spatially variant, SpInPHASE

6The batch algorithm consists in applying alternating optimization to (16)
with respect to D and A.
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Fig. 2. Experimental results. From top to bottom: the true phase surface, the true interferometric phase, the noisy interferometric phase for σ = 0.7, the
SpInPHASE estimate using the learned dictionary, the unwrapped phase from the SpInPHASE estimate, and the SpInPHASE interferometric estimation error.
From the left to the right: truncated Gaussian, Sinusoidal, discontinuous Sinusoidal, Mountains, Shear Planes, and Long’s Peak.
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Fig. 3. Gaussian shaped surface. Left: complex valued dictionary. Right:
histogram of the number of nonzero elements in the code for a patch.

can not be applied. It is however trivial converting spatially

variant into identically distributed noise, provided that the

variance is known: it amounts to divide the observations zi,
for i = 1, . . . , N , by the variance σi producing equivalent

observations with unit variance. Fig. 4 illustrates the result

of such procedure. The true image is the truncated Gaussian

Fig. 4. Truncated Gaussian surface observed under independent but spatial
variant Gaussian noise: the noise standard deviation varies linearly along the
left-right directions from 0.3 to 0.9. Top and from left to right: true, noisy, and
SpInPHASE estimate using the learned dictionary. Bottom and from the left
to the right: true phase, unwrapped phase, and the SpInPHASE interferometric

error φ̂
2π

− φ
2π

.
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and the noise standard deviation varies linearly along the left-

right direction from 0.3 to 0.9, as it can be perceived from the

noisy interferometric phase shown in part (b). The estimated

interferometric phase shown in part (c) is qualitatively of very

good quality in terms of denoising and detail preservation

yielding PSNR = 37.15 dB, PSNRa = 37.15 dB, NELP = 0, and

TIME =76 sec, which are between values shown in Table I for

σ ≃ 0.5 and σ ≃ 0.7. Moreover, although the noise increases

from the left to right of the image, the perceived quality of the

interferometric estimate is almost constant along the left-right

direction. We have applied WFT to the same noisy data having

obtained PSNR = 36.10 dB, PSNRa = 36.40 dB, NELP = 10,

and TIME =10 sec.

C. Real MRI data

Fig. 5 shows in the top three MRI interferometric phase

images of a bottle filled with liquid. The exterior of the bottle

is meaningless and was set to zero. The MRI images, of size

512×228, were acquired using decreasing scan times from the

left to right. Given that the noise level increases as the scan

times decreases, the noise increases from the left to right.

The observation mechanism in MRI is well described by

model (1) (see, e.g., [5]). The noise was estimated from the

first order horizontal and vertical differences, under the as-

sumption that that the complex valued signal varies smoothly.

The obtained noise variances were, from the left to the

right 0.156, 0.382, and 0.728. The SpInPHASE estimates

corresponding to the top images are in the bottom. In the

three cases shown in Fig. 5 the noise was removed without

Fig. 5. Top: MRI interferometric phase images of the same bottle with
increasing noise level from left to right. Bottom: Corresponding SpInPHASE
estimates.

damaging the tinny fringes (image regions corresponding to a

phase excursion of 2π) in the right hand side, bottom, and top

of the bottle.

Since the left hand side image in Fig. 5 has very low level of

noise compared with the right hand side one, we use it as a true

image to compute the performance indicators corresponding

latter. We obtained PSNR= 32.53 dB. We have also computed

these performance indicators for WFT having obtained PSNR

= 31.58 dB.

The unwrapped phase corresponding to the three noise

levels of Fig. 5 are shown in Fig. 6. The phase surface is well

unwrapped in the three cases even in the most difficult areas

corresponding to the higher phase variations in the right hand

side, bottom and top of the bottle. Underlying the quality of the

TABLE I
PERFORMANCE INDICATORS FOR SURFACES SHOWN IN FIG. 2. SPINPHASE WITH LEARNED DICTIONARY (SP (LD)), SPINPHASE WITH PRE-LEARNED

DICTIONARY (SP (PD)), AND WFT.

PSNR (dB) PSNRa (dB) NELP TIME (s)
Surf. σ Sp(ld) Sp(pd) W Sp(ld) Sp(pd) W Sp(ld) Sp(pd) W Sp(ld) Sp(pd) W

Trunc.
Gauss.

0.3 42.51 42.88 40.29 42.51 42.88 40.29 0 0 0 69 6 10
0.5 39.63 39.95 36.71 39.63 39.95 36.71 0 0 0 74 4 10
0.7 35.69 36.96 34.26 35.85 36.98 34.37 8 3 10 72 3 10
0.9 33.52 36.04 32.79 33.52 36.23 32.79 0 7 0 72 3 10

Sinu.

0.3 48.94 47.77 35.76 48.94 47.77 35.76 0 0 0 61 2 10
0.5 41.91 43.50 31.48 41.91 43.50 31.48 0 0 0 65 2 10
0.7 38.44 41.20 28.90 38.44 41.20 28.90 0 0 0 65 2 10
0.9 36.42 39.30 26.36 36.42 39.30 26.36 0 0 0 63 2 10

Sinu.
discon.

0.3 44.45 42.29 35.91 44.45 42.29 35.91 0 0 0 63 6 10
0.5 39.41 38.61 31.86 39.41 38.61 31.86 0 0 0 72 3 10
0.7 37.09 35.95 29.86 37.09 35.95 29.95 0 0 1 71 2 10
0.9 34.17 34.00 27.64 34.17 34.00 27.71 0 0 6 66 2 10

Mount.

0.3 40.66 38.90 40.00 40.66 38.90 40.00 0 0 0 57 10 10
0.5 37.20 35.66 36.55 37.20 35.66 36.55 0 0 0 60 6 10
0.7 34.35 33.29 34.17 34.35 33.29 34.17 0 0 0 62 5 10
0.9 32.55 31.66 32.31 32.70 31.79 32.31 1 1 0 60 4 10

Shear
plane

0.3 49.36 47.01 40.67 49.36 47.01 40.67 0 0 0 57 23 10
0.5 42.95 44.05 37.07 42.95 44.05 37.07 0 0 0 63 2 10
0.7 38.39 39.58 34.13 38.39 39.58 34.13 0 0 0 68 2 10
0.9 33.53 38.72 33.24 33.53 38.72 33.24 0 0 0 72 2 10

Long’s
Peak

0.3 35.49 35.68 35.40 35.51 35.69 35.41 28 28 28 515 179 31
0.5 33.05 33.19 32.89 33.08 33.24 32.93 32 33 31 357 77 30
0.7 31.32 31.46 31.19 31.46 31.53 31.28 26 48 32 326 42 30
0.9 29.97 30.17 29.90 30.09 30.26 29.99 34 32 35 308 27 30
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Fig. 6. Unwrapping result of denoised real MRI image. (a), (b), and (c)
were obtained from the estimates shown in Fig. 5, parts (b), (d), and (f),
respectively.

unwrapping is the ability of SpInPHASE to remove the noise

without damaging the tinny fringes present in the referred to

areas.

D. Interferometric SAR data (InSAR)

In InSAR, for each pixel, we are given two complex valued

measurements, say x1 and x2, of the electromagnetic field

acquired by two SAR sensors flying along parallel and slightly

displaced trajectories. Quite often x1 and x2 are complex zero-

mean circular Gaussian distributed random variables [39], thus

completely characterized by covariance matrix with elements

c11 := E[|x1|2], c22 := E[|x2|2], c12 := E[x1x
∗
2], c21 := c∗12.

The cross covariance factor c12/
√
c11c22 may be written as

γejφ, where φ is the propagation phase difference between

the sensors and the pixel and 0 ≤ γ ≤ 1 is the so-called

coherence [59].

The objective of InSAR is the estimation of the phase

φ from the measurements x1 and x2 by first computing

a denoised estimate from the noisy interferometric phase

ψ = arg(x1x
∗
2) and then applying phase unwrapping. From

the estimated phase φ̂, the elevation of the terrain is inferred

based on simple trigonometric arguments.

The probability density function of the InSAR phase noise

ε := ψ − φ2π in the interval [−π, π) is symmetric about the

origin with variance given by (see , e.g., [39])

σ2
ε(γ) =

π3

3
− π arcsin (γ) + arcsin2 (γ) +

Li2(γ)

2
, (23)

where Li2 is Euler’s dilogarithm. If γ approaches zero, the

density tends to a flat shape and there is no information about

φ2π in ψ. If γ = 1, the density is a Dirac at the origin and

φ2π = ψ.

Although SpInPHASE was not conceived to operate with

InSAR/InSAS data, we now give strong experimental evidence

that it yields state-of-the-art InSAR/InSAS interferometric

phase estimates, provided that a light preprocessing step is

applied to the observed data.

In a given pixel, from the interferometric noisy phase ψ =
arg(x1x

∗
2), define the complex valued data

z = ejψ (24)

= ej(φ+ε). (25)

The perturbation ε in (25) is not additive. However, when

|ε| ≪ π, which in a probabilistic sense is equivalent to say

TABLE II
PERFORMANCE INDICATORS FOR THE TRUNCATED GAUSSIAN SURFACE

AND INSAR NOISE.

coherence
Indicator Algorithm 0.95 0.9 0.85 0.8

PSNR
(dB)

NL-InSAR 31.70 31.69 31.68 28.97
SpInPHASE 38.00 35.57 33.48 31.74

PSNRa

(dB)
NL-InSAR 32.09 32.49 32.82 31.52
SpInPHASE 38.00 36.05 33.67 32.99

NELP
NL-InSAR 23 45 24 202
SpInPHASE 0 24 12 95

TIME
(s)

NL-InSAR 34.07 33.43 32.60 32.07
SpInPHASE 368.63 362.56 380.97 365.11

Fig. 7. Estimation results for the truncated Gaussian elevation with InSAR
noise generated by a constant coherence of 0.9. (a) Original wrapped phase
image,(b) Noisy phase image, (c) SpInPHASE estimate, (d) SpInPHASE
estimation error, (e) NL-InSAR estimate, (f) NL-InSAR estimation error.

that the coherence is not too small, the observation model is

approximately given by

z ≃ ejφ + jejφε. (26)

That is, the perturbation ε is additive, in addition to being zero-

mean, as in (1). However, given that the coherence γ varies

across the image, so does the variance as the latter is a function

of the former. In order to obtain constant variance across the

image pixels, as assumed in (1), we compute z/σ(γ) and run

SpInPHASE on the obtained data. Given that SpInPHASE was

designed to operate with additive and identically distributed

independent noise across the image pixels, the very good

results obtained with this strategy are certainly linked with the

fact that the noise term ejφε/σ(γ), although non-Gaussian, is

approximately additive, zero-mean, and of constant variance.

Table. II shows the performance indicators for SpInPHASE

and for NL-InSAR [15] algorithms, for different values of

γ, in the estimation interferometric phase associated with

the truncated Gaussian shaped surface shown in Fig. 7. The

noise observations were generated according to the InSAR

observation model described above with c11 = c22 = 1 and

c12 = γejφ. SpInPHASE parameters are as in Section V-A

apart from the window size which we set to 12×12. NL-InSAR

parameters are as described in paper [15]: search window size

= 21×21, patch size = 7×7, minimum equivalent number of

looks L = 10, h = 12, T = 0.2× (7× 7), and the number of

iterations = 10. Since the publicly available NL-InSAR code7

7http://www.math.u-bordeaux1.fr/∼cdeledal/nlinsar
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is for 32 bit machines with Windows system, all the results

presented in this section are based on a machine with Core

2 Duo CPU E6550 and 2 GB. SpInPHASE shows a clear

advantage over NL-InSAR with respect to PSNR, PSNRa,

and NELP. Regarding time, SpInPHASE is about 10 times

slower than NL-InSAR. Fig. 7 shows the denoised result when

coherence is 0.9. Although both estimates are similar at the

naked eye, a detailed analysis of the estimation errors reveals

a higher NL-InSAR error with a high frequency component

not present in the SpInPHASE estimation error and a slightly

better discontinuity preservation in the SpInPHASE estimate,

underlying lower values of the NELP performance indicator.

The next two experiments are based on the InSAR data

distributed with the book [5]. The data sets were generated

based on a real digital elevation model of mountainous terrain

around Long’s Peak and Isolation Peak, Colorado, using a

high-fidelity InSAR simulator that models the SAR point

spread function, the InSAR geometry, the speckle noise, and

the layover and shadow phenomena. For a detailed description

of the simulator, see [5, Ch. 3] and the references therein. In

order to make the estimation problem more challenging, we

have regenerated the data according to the InSAR statistics

presented in the beginning of this section using the supplied

phase and coherence images and setting the power of the two

complex images to c1 = c2 = 1+γ. In this way, we force the

image discontinuities to be co-located in the amplitude, coher-

ence, and in the interferometric phase, rendering a challenging

inference problem.

To apply SpInPHASE to InSAR data, we need an estimate

of the coherence. We have observed that the estimate need not

be very accurate in order to get useful interferometric phase

results. Herein, we have adopted the estimator proposed in [5]

given by

γ̂i =

√
(
∑

j∈wi
cosφj)2 + (

∑
j∈wi

sinφj)2

K2
, (27)

where wi is a K×K window centered at pixel i. To preserve

the coherence details, we use K = 3, which is a small window,

thus enforcing little lowpass filtering. The downside of using

such a small window is a relatively large variance. Aiming

at a cleaner estimate, we denoise it with the state-of-the-art

BM3D algorithm [18], which, in real world images, preserves

the details and is extremely fast.

The first experiment regards the Long’s Peak data set. The

noisy phase and the denoised results with true coherence are

shown in Fig. 8. The obtained performance indexes for SpIn-

PHASE, WFT and NL-InSAR are, by the same order, PSNR =
(25.99, 24.71, 21.99) dB, PSNRa = (26.29, 25.51, 23.44) dB,

and NELP = (142, 3082, 3414). With estimated coherence,

SpInPHASE yields PSNR=26.11dB, PSNRa=26.41dB, and

NELP=164, which are close to those obtained with known

coherence. SpInPHASE yields the best results with respect

to the three indicators. Fig. 8 shows (a) the original wrapped

phase, (b) the coherence estimate provided in [5], (c) the noisy

phase, (d) the SpInPHASE estimate, (e) the WFF estimate, (f)

the NL-InSAR estimate. Fig. 9 shows the estimation errors

for the three algorithms. The SpInPHASE advantage over

NL-InSAR is evident. Compared with WFF, SpInHASE is

(a) (c) (e)
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Fig. 8. Estimation results for the real digital elevation model data around
Long’s Peak with InSAR noise. (a) Original wrapped phase from the digital
elevation model, (b) coherence, (c) noisy phase,(d) SpInPHASE estimate, (e)
WFF estimate, (f) NL-InSAR estimate.
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Fig. 9. Estimation errors for the real digital elevation model data around
Long’s Peak with InSAR noise: (a) SpInPHASE,(b) WFT, (c) NL-InSAR.

performing better as well, although the advantage is more

subtle. A careful analysis of Fig. 9 leads to the conclusion

that SpInPHASE advantage is mainly located in areas of dis-

continuities, which explains its lower NELP values compared

with the competitors.

We now do as above for the Isolation Peak data set.

The estimation results and estimation errors with true

coherence are shown in Fig. 10 and Fig. 11, respec-

tively. The obtained performance indexes for SpInPHASE,

WFT and NL-InSAR are, by the same order, PSNR =
(24.00, 22.83, 23.14) dB, PSNRa = (24.73, 23.12, 24.03) dB,

and NELP = (1990, 19427, 7597). With estimated coherence,

SpInPHASE yields PSNR = 23.69 dB, PSNRa = 24.44 dB

and NELP = 1755. The conclusions are inline with those of

the Long’s Peak data set.

In the above two experiments, we highlight the small PSNR

differences obtained with the true coherence and with the

estimated one: −0.12 dB and +0.31 dB for the, respectively,

Long’s Peak and the Isolation Peak data sets. This proximity

of the two estimates provides experimental support for the

proposed InSAR variance normalization. The fact that we got

a negative number in the fist dataset is probably due to the

K ×K window present in (27), which is yields an estimated

of the coherence image smoother than the original one. Nev-

ertheless, we highlight the SpInPHASE ability to preserve the

interferometric information coded in discontinuities and areas

of high phase rate, which is an essential requirement for the

success of phase unwrapping.

Our final experiment is based on a subset of a real ERS-

1/ESR-2 InSAR pair distributed8 by the European Space

Agency (ESA). The area is from near Evaggelistria, Greece

8http://eo-virtual-archive4.esa.int
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Fig. 10. Estimation results for the real digital elevation model data around
Isolation Peak with InSAR noise: (a) Original wrapped phase from the digital
elevation model, (b) coherence, (c) noisy phase, (d) SpInPHASE estimate, (e)
WFF estimate, (f) NL-InSAR estimate.
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Fig. 11. Estimation error for the real digital elevation model data around
Isolation Peak with InSAR noise: (a) SpInPHASE,(b) WFT, (c) NL-InSAR.

(from 38◦18′30′′N to 38◦19′32′′N and from 23◦01′15′′E to

23◦04′24′′E). The master and slave images were acquired,

respectively, by ESR-1 on 29th April 1996 (orbit 25045,

track 7) and by ERS-2 on 30th April 1996 (orbit 5372, track

7). The size of the processed subset is 250 (along track) ×
200 (across track) and the resolution is about 25m in both

dimensions.

The coherence is estimated as described above. This data

set is quite challenging as it can be perceived from the highly

noisy interferometric phase shown in the left hand of Fig. 12

and from the low values of the estimated coherence shown in

the right hand of Fig. 12.

The estimates produced by SpInPHASE, WFT, and NL-

InSAR and the corresponding errors between the estimate and

the noisy phase are shown in Fig. 13. Given that we do not

have the true surface, our analysis is mostly qualitative. WFT

produces the smoother results, but washes out the disconti-

nuities present along the direction connecting the top of the

mountain towards the top of the image. On the contrary, NL-

InSAR preserves the discontinuities but retains a considerable
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Fig. 12. Real Interferometric phase near Evaggelistria, Greece. Left: noisy
phase. Right: estimated coherence.
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Fig. 13. Denoised results and errors between the estimate and the noisy phase
of real Interferometric phase near city Evaggelistria, Greece: (a) SpInPHASE,
(b) WFT (c) NL-InSAR, and (d),(e),(f) are the corresponding errors to the
noisy phase

amount of noise. SpInPHASE yields the best balance between

discontinuity preservation and noise reduction. To further

assess the quality the estimates, we display the images of

φ̂2π−ψ = (φ̂2π−φ2π)+ε. If a given estimator oversmooths

the discontinuities, then its estimation error (φ̂2π − φ2π)
displays larger values in the areas of discontinuities, which

in turn are perceived in the images of (φ̂2π − φ2π) + ε, as ε

is uncorrelated. Comparing the images (d), (e), and (f) in Fig.

13, we conclude that SpInPHASE yields the less structured

error and then the smallest bias.

In order to further illustrate SpInPHASE performance in

real InSAR data, we have applied it to an InSAR much

larger data set corresponding to an area centered at Etan

volcano, Sicily, Italy (from 37◦33′32′′N to 37◦40′41′′N and

from 14◦43′55′′E to 15◦14′31′′E). The master and slave

images were acquired, respectively, by ESR-1 on 2/8/1995

(orbit 21159, track 129) and by ERS-2 on 2/8/1995 (or-

bit 1486, track 129). The size of the processed subset is

4800 (azimuth)×2400 (range) pixels and the spatial resolution

is about 4m in azimuth and 8m in range.

Given that that paper is already too big, we present the

results in a complementary report9. Although this data set is

even more challenging than the previous one, the conclusions

we may take from results displayed in the complementary

report are as before; SpInPHASE yields the best balance

between discontinuity/hight phase rate preservation and noise

reduction.

VI. CONCLUDING REMARKS

This paper introduced SpInPHASE, an effective algorithm

for interferometric phase image estimation, that is, the es-

timation of phase modulo-2π images from sinusoidal 2π-

periodic and noisy observations. The true problem was recast

as the estimation of the true complex valued image via

sparse representation of the complex image patches on learned

synthesis dictionaries. The sparse representations, also termed

sparse coding, are computed by the orthogonal matching

pursuit (OML) algorithm in the complex domain. The syn-

thesis dictionaries are learned via matrix factorization with

9http://www.lx.it.pt/∼bioucas/files/ieee tgrs SpInPHASE extended 2014.
pdf
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sparsity constraints promoted by the ℓ1 norm regularizer.

With the objective of reducing the dictionary learning time, a

recently introduced online dictionary learning (ODL) version

of the matrix factorization was adapted to our problem. The

ℓ2− ℓ1 sparse coding optimization is implemented with an in-

stance of the split augmented Lagrangian shrinkage algorithm
(SALSA). The obtained online dictionary learning algorithm

allows to learn dictionaries of the order of 150 × 250 in the

complex domain from images of 512 × 512 in times of the

order of 4 minutes, which is orders of magnitude faster than

the batch version and much faster than the version without

SALSA.

In a series of experiences with simulated data, SpInPHASE

produced systematically better estimates than the state-of-

the-art, in most cases with a significant advantage. The first

results obtained with real MRI and InSAR data are equally

encouraging. We highlight SpInPHASE ability to preserve the

interferometric information coded in discontinuities and areas

of high phase rate, which is an essential requirement for the

success of phase unwrapping.

As future work, we will develop research efforts to decrease

the estimation time. We are convinced that a suitable coding

of the ODL and of the OMP steps, for example in C++, will

reduce the time the algorithm takes by an order of magnitude.

Another area where we will develop efforts is dictionary learn-

ing under more complex observations mechanisms in which

we do not have direct access to the noisy interferometric phase

as it is the case for example in various optical interferometric

applications.
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