
1.  Introduction
Turbulent flows generally exhibit spatio-temporal randomness or an “irregularity” character spanning a wide 
range of scales (Tennekes et al., 1972; Tsinober, 2009). In the ionosphere, such irregular structures are common 
(Kelley, 2009), and meso- to small-scale fluctuations in electron density (Ne) are of particular interest for space 
weather. Indeed, Ne fluctuations of the order of hundreds of meters to a few kilometers can affect Global Navi-
gation Satellite Systems signals and cause “scintillations” (rapid fluctuations in signal amplitude or phase) (Hey 
et al., 1946; Kintner et al., 2007; Yeh & Liu, 1982). Furthermore, decameter-scale structures cause high frequency 
(HF) backscatter detected by the Super Dual Auroral Radar Network (SuperDARN) (Greenwald et al., 1995). 

Abstract  We investigate the nature of small-scale irregularities observed in the cusp by the Twin Rockets to 
Investigate Cusp Electrodynamics-2 (TRICE-2) in regions of enhanced phase scintillations and high-frequency 
coherent radar backscatter. We take advantage of the fact that the irregularities were detected by spatially 
separated probes, and present an interferometric analysis of both the observed electron density and electric field 
fluctuations. We provide evidence that fluctuations spanning a few decameters to about a meter have low phase 
velocity in the plasma reference frame and are nondispersive, confirming that decameter-scale irregularities 
follow the E × B velocity. Furthermore, we show that these “spatial” structures are intermittent and prominent 
outside of regions with strongest precipitation. The observations are then discussed in the context of possible 
mechanisms for irregularity creation.

Plain Language Summary  Ionospheric plasma are known to be highly irregular, with fluctuations 
evolving both in space and time. Irregular structures can reach hundreds of kilometers to a few meters and, 
despite being common and having space weather impacts, the details of their source(s) and behavior are still 
unclear, especially at smaller scales. In this work, we investigate small-scale plasma density and electric field 
fluctuations observed by a sounding rocket where ground-based instruments also detected irregularities. To 
circumvent ambiguities of interpreting measurements made by single probes, we take advantage of the fact that 
the fluctuations were detected by spatially separated probes and use multi-point analysis techniques to separate 
the spatial and temporal scales of the observed structures. The analysis allows to estimate the phase velocities 
and wavelengths of the fluctuations and reveals spatial irregularities from tens of meters to a meter, that is, 
irregularities that are slow in the plasma frame. Additionally, we show that these small-scale structures are 
concentrated outside of regions where most electrons are precipitating downward along the Earth's magnetic 
field and discuss the observations in the context of irregularity creation. Altogether, this study provides new 
insights into the sources and behavior of high-latitude ionospheric irregularities.
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With increasing need for reliable Arctic communication and navigation systems, a detailed understanding of 
these irregular structures and their cause(s) is essential (e.g., Moen et al., 2013).

Of particular interest are the ionospheric cusp regions, where irregularities and phase scintillations peak 
(Heppner et al., 1993; Jin et al., 2015, 2019), and where SuperDARN echoes have wide and complex Doppler 
spectra (Baker et al., 1995; Moen et al., 2002; Villain et al., 2002). Processes such as the gradient-drift instability 
(GDI) (Tsunoda, 1988), particle precipitation (Dyson & Winningham, 1974; Moen et al., 2002; Ponomarenko 
et  al.,  2007), and inhomogeneous flows (Basu et  al.,  1994; Heppner et  al.,  1993; Spicher et  al.,  2020) are 
considered important. However, the dominant mechanism(s) are not yet assessed (e.g., Chisham et al., 2007; 
Moen  et al., 2013; Ponomarenko & Waters, 2006).

To advance our understanding, it is essential to characterize properties of the fluctuations involved (e.g., Kintner 
& Seyler, 1985; LaBelle & Kintner, 1989). In this study, we investigate the nature of irregularities detected in 
the cusp by TRICE-2. While the interpretation of turbulence observations by single probes on moving spacecraft 
requires a priori assumptions about the fluctuations (Fredricks & Coroniti, 1976; Temerin, 1978), we take advan-
tage of the fact that irregularities were detected by spatially separated probes. We present interferometric analysis 
of co-existing Ne and electric field (E-field) fluctuations observed within regions of enhanced phase scintillations 
and wide SuperDARN spectra, and estimate their phase velocities and corresponding wavelength. Our analysis 
shows the first in-situ experimental evidence of such decameter-scale irregularities (reaching scales shorter than 
the oxygen gyroradius) being “frozen in” in the cusp F region, an assumption essential for SuperDARN convec-
tion maps. The observations are then discussed in the context of possible mechanisms for irregularity creation.

2.  Instrumentation
TRICE-2 was part of the Grand Challenge Initiative Cusp and consisted of two sounding rockets launched from 
Andøya, Norway, on 08 December 2018: a high-flyer (T2-H) reaching an apogee of ∼1,042 km, and a low-flyer 
(T2-L) reaching ∼757 km altitude. We focus here on the multi-needle Langmuir probe (mNLP) system (Bekkeng 
et al., 2010; Jacobsen et al., 2010) and the E-field instrument. For more information about TRICE-2, see Moser 
et al. (2021) and Sawyer et al. (2021).

The mNLP system consisted of four cylindrical Langmuir probes with diameter of 0.51 mm and length of 39 mm. 
Fixed bias voltages (3, 4.5, 6, 7.5 V) were applied to the probes, allowing Ne determination at a cadence of 10 kHz 
(Clausen, 2022). The interferometry analysis presented below relies on probes mNLP2 (4.5 V) and mNLP3 (6 
V) located on opposite sides of the payload and separated by d = 1 m. Results using other probe pairs generally 
agree. For Ne calculations, the spin frequency and two harmonics were removed using band-pass filters (Jacobsen 
et al., 2010), and it was assumed that the probes did not act as infinitely long cylinders (assumptions: β = 0.8 and 
temperature Te = 3500 K, see Hoang et al. (2018); Marholm and Marchand (2020)).

The DC E-field instrument consisted of four spherical probes mounted d = 6.5 m apart on booms deployed 
perpendicular to the payload axis. With this configuration the probe to probe E-field and the probe to payload 
potential (ΔΦ) were determined at a cadence of 2.5 kHz.

Data from ground-based instruments provide geophysical context. We show the 630  nm auroral emis-
sion obtained from an all-sky imager located in Ny-Ålesund, Norway, as well as phase scintillations indices 
(Fremouw et al., 1978) calculated using 1 s raw carrier phase data obtained from four receivers on Svalbard 
(Oksavik, 2020a, 2020b). The 1 s index (σϕ1s) is calculated using a sixth-order Butterworth high-pass filter with 
conventional 0.1  Hz cut-off frequency (Van Dierendonck et  al.,  1993). To minimize errors, data with eleva-
tion angle >25° are used (Jin et al., 2015). We also show spectral width data from the SuperDARN (Chisham 
et al., 2007; Greenwald et al., 1995) radar at Hankasalmi, Finland. These data use the range-finding algorithm 
with corrections for 1.5 hop ionospheric backscatter (Yeoman et al., 2008, 2012).

3.  Background Observations
Context is provided in Figure 1. Figures 1a and 1b show 630 nm emissions at t = 08:38 UT and t = 08:40 UT, 
as well as σϕ1s ≥ 0.25 rad calculated for t ± 1 min. The latter is displayed as large and small circles for strong 
(σϕ1s ≥ 0.4 rad) and medium (0.25 ≤ σϕ1s < 0.4 rad) indices, respectively, with circle centers corresponding to the 
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pierce point projected at 350 km altitude. Parts of the payload trajectories are shown using magenta lines with the 
thicker portions corresponding to the payload locations during t ± 1 min.

Both payloads were launched into active dayside aurora. Enhanced σϕ1s, suggesting the presence of Ne irregular-
ities ranging from a few kilometers to hundreds of meters (Jin et al., 2017; Kintner et al., 2007), occurred on the 
edges of the strongest aurora, especially close to T2-L. Consequently, we focus here on observations from T2-L.

Figures 1c and 1d shows SuperDARN spectral width with the TRICE-2 trajectories superimposed. The payloads 
intersected regions of large spectral width. Coherent scattering from SuperDARN is expected when irregularities 
have wavelength (λ) matching half of the radar wavelength (Ponomarenko et al., 2007; Vallières et al., 2003), 
which for the current observations corresponds to λ ≈ 15 m. Combining ground-based observations, we expect 
T2-L to observe density structures ranging from several km to λ ≈ 15 m.

Figure 2 shows data from T2-L with respect to preliminary time of flight and latitude between 752 and 770 s 
(08:40:32–08:40:50 UT), that is, when T2-L was located in the region with the large σϕ1s on the poleward side 
of the aurora (northernmost circles in Figures 1a and 1b). Figure 2a shows Ne and the altitude of the payload. 
A large-scale density decrease with strong fluctuations occurs along the trajectory. These fluctuations reach 
frequencies >1  kHz, as seen from their wavelet power spectral density (wPSD) (Torrence & Compo,  1998) 
in Figures 2b. Figure 2c shows the eastward (EE) and northward (EN) components of the E-field. A channel of 
enhanced EN is observed between 760 and 763 s, roughly in the center of the Ne fluctuations. Additionally, shorter 
time-scale E-field fluctuations are observed. These coincide with steep density variations/cavities and exhibit 
enhanced irregularity power at a few hundred Hz. This is better seen in Figure 2d showing the wPSD of ΔEE. Sun 

Figure 1.  (a and b) 630 nm All-Sky imager data projected to 250 km altitude at t = 08:38 UT and t = 08:40 UT (color-coded) 
and enhanced 1 s phase scintillation indices (black circles) during t ± 1 min. Payload trajectories (T2-H: high-flyer, T2-L: 
low-flyer) are shown in magenta, with thicker lines for t ± 1 min. (c and d) Super Dual Auroral Radar Network spectral width 
with trajectories (black lines) and payload location (black crosses).
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spikes and possibly short wavelengths attenuation effects may contribute to the periodic modulations of broad-
band E-field data visible in Figure 2d.

Figures 2b and 2d show the presence of Ne and E-field fluctuations reaching >1 kHz, with enhancements in 
irregularity power at a few hundred Hertz close to large Ne-variations. While measured in the time-domain, in 
the following, we use the fact that fluctuations were measured by spatially separated probes to assess their phase 
velocity and corresponding wavelengths.

4.  Interferometry Analysis of Density and Electric Field Fluctuations
4.1.  Cross-Correlation

The phase velocity and wavelengths of Ne and E-field fluctuations along a rocket-borne interferometer axis are 
calculated from the cross-correlation function (Xcor) (LaBelle et al., 1986; Pécseli et al., 1989). We computed 
Xcor for normalized current fluctuations measured by mNLP2 and mNLP3 over intervals of 0.1 s, which is much 
shorter than the payload spin period of about 1.78 s. Figure 2e shows the non-zero time delays Δτ of maximum 
Xcor for current fluctuations that are significantly correlated. Results using two different current normalization are 
shown: by removing the mean (Normaliz. 1) and a cubic spline (Normaliz. 2).

Δτ follows a periodic pattern consistent with the payload spin, as seen from variations in the measured magnetic 
field (minus its mean value) at the spin period (ΔBN in Figure 2e). This pattern means that mNLP2 observes the 
fluctuations before mNLP3 during half a rotation, and vice-versa during the second half of the rotation. This 
sequencing is consistent with the response expected for two probes spinning in field-aligned structures propagat-
ing from one direction perpendicular to the payload axis (LaBelle et al., 1986). From Δτ and the probe separation, 
one can estimate the apparent velocity vϕ along the interferometer axis (LaBelle et al., 1986; Pécseli et al., 1989). 
For instance, Case A and B highlight features that exhibited clear small-scale density fluctuations during different 
spin periods. For A, vE×B ≈ 3,650 m/s and vϕ ≈ 3,333 m/s, while for B, vE×B ≈ 1,900 m/s and vϕ ≈ 2,500 m/s. 
These features are discussed below.

4.2.  Cross-Spectral Density Analysis

The velocities calculated using Xcor are unambiguous estimates of vϕ if the coherent frequency components are 
phase-shifted proportionally for each frequency (Pécseli et  al.,  1989). Cross-power spectral density (CPSD) 

Figure 2.  (a) Ne and payload altitude. (b) Wavelet spectrogram of Ne fluctuations. (c) Eastward (EE) and Northward (EN) components of the E-field. Periodic spikes 
occur when an antenna probe enters the rocket's shadow. (d) Wavelet spectrogram of ΔEE. (e) Time shifts Δτ of maximum cross-correlation between currents 
fluctuations measured by two multi-needle Langmuir probes. The red curve exhibits (median-filtered) magnetic field fluctuations reflecting the payload spin.
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analysis in this section provides information about the phase-shift with respect to frequencies (e.g., Kintner 
et al., 1984).

Four examples are shown in Figure  3, where the left and right columns correspond to features A and B, 
respectively. CPSDs were computed using Matlab's build-in function with a Tukey window with 50% overlap 
(Welch, 1967). Figures 3a and 3b show the magnitude-squared coherence of the current fluctuations (shown in 
inlet) and Figures 3c and 3d the corresponding phase angles θ. Coherent frequency components are shown as 
filled dots. θ for coherent components follows a linear trend, suggesting that the structures are nondispersive 
(Holmgren & Kintner, 1990). The opposite sign of the slopes for each case is again consistent with Case A and B 
occurring in different periods of the spin.

For CPSD of Ne fluctuations with λ > d, the wavenumber k and θ can be related through θ(ω) = k ⋅ d (LaBelle & 
Kintner, 1989). Thus, for a linear dispersion relation with constant vϕ = ω/k, the velocity along the interferometer 
axis is given by (Bonnell et al., 1996; Holmgren & Kintner, 1990)

�� = 2��
(

��
��

)−1

.� (1)

In Figures 3c and 3d, the solid black lines exhibit θ expected from a time-shift due to vϕ = vE×B, and the magenta 
lines result from linear fits, with corresponding velocities shown in the legend. For case A, vϕ ≈ vE×B, while for B, 
vϕ ≈ vE×B + 500 m/s, which is consistent with results using Xcorr. Additionally, the wrap-arounds at f ≈ 1,750 Hz 
(Case A) and f ≈ 1,250 Hz (Case B) provide direct estimates of the wavelengths (Pfaff et al., 1997). Here, they 
occur for λ = 2d and using the frequencies above-mentioned and vϕ from the fits, the estimated interferometric 
baselines are 1.1 and 0.97 m, which is close to the mNLP separation d = 1 m.

Figures 3e and 3f show the PSDs of mNLP fluctuations. Coherent frequencies can be converted to wavenum-
bers since from panels (c and d), the conversion appears linear. For A, enhanced coherent PSD is seen between 
k ≈ 1 m −1 and k ≈ 3 m −1, and for Case B, enhancement is seen around k ≈ [0.5 − 1] m −1, that is, close to λ = 15 m 
(vertical dashed line). Analysis suggests the presence of irregular structures reaching λ comparable to and shorter 
than the cold (Ti = 1000 K) oxygen ion gyroradius 𝐴𝐴 𝐴𝐴𝑂𝑂+ ≈ 2.9  m.

Figures 3g–3l show similar analysis performed for the E-field using ΔΦ3 and ΔΦ4 measured on opposite sides 
of the payload. During the intervals shown, ΔΦ's intersects suggest that d was roughly aligned with vE×B. The 
time intervals are offset by about 0.2 s compared to Ne intervals (rotation of ∼45°) since the instruments were 
not aligned. As for Ne, the relation between θ and the frequencies is linear with opposite slope signs for each 
case, but with origins shifted by π. This is consistent with the response expected from an E-field perturbation 
where θ and k are related through �(�) = � ⋅ �

2
+ � (Kintner et al., 1984; LaBelle & Kintner, 1989). Using this 

equation and d/2  =  3.25  m, vϕ obtained along the E-field interferometer are consistent with the ones calcu-
lated using the mNLPs. Estimated wrap-arounds at f ≈ 1,100 Hz (Case A) f ≈ 750 Hz (Case B) confirm the 
baseline of λ = d/2 = 3.25 m. Furthermore, for both cases shown, enhanced coherent PSD is seen in the range 
k ≈ [0.2 − 1.5] m −1 with maxima close to k ≈ 0.5 m −1 or λ = 15 m.

The CPSDs shown in Figure 3 suggest that the fluctuations have low phase velocity in the plasma. Such irregular-
ities have been termed “spatial irregularities” (e.g., Holmgren & Kintner, 1990; Kintner et al., 1987; Stasiewicz 
& Khotyaintsev, 2001). To investigate a larger part of the flight, the procedure was automated for the 500–780 s 
interval. CPSDs were computed every 0.02 s using the same method as for Figure 3. For each CPSD, a linear 
regression was fitted to θ for f = [150, 1,000] Hz (mNLP) and f = [100, 600] Hz (ΔΦ) (based on Figure 3 and 
testing). vϕ was calculated for θs exhibiting reasonably linear trends, that is, fits with more than 20 variables and 
an adjusted coefficient of determination R 2 > 0.7 (mNLP) and R 2 > 0.9 (ΔΦ). Structures are highly intermittent 
and these adjustable parameters (length of interval, frequency range, goodness of fit, threshold for fluctuations 
being “coherent,” etc.), as well as an unknown exact angle between the interferometer baselines and the struc-
tures give rise to uncertainties in the velocity calculations: as seen in Figure 3, significant spread in θ exist, and 
automatized fits may not always capture the trend adequately. Further developing robust interferometric methods 
is however left for future work.

Results are presented in Figure 4. Panel (a) shows Ne and the eastward component of the magnetic field (BEast). 
Positive slopes in BEast are expected to correspond to downward currents (Lühr et al., 1996). Figure 4b shows vϕ 
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with confidence intervals (±2σ on the regression coefficients) obtained from the automated method applied to 
mNLP (magenta) and different E-field probe pairs (blue/cyan). The black line shows vE×B. Calculated vϕs are rela-
tively noisy and it is easier to obtain linearity for the E-field probes; however, values appear generally consistent 
with vE×B suggesting low phase velocities in the plasma. Most of the structures with θ exhibiting linear trends for 

Figure 3.  (a and b) Magnitude squared coherence (Cxy) of relative multi-needle Langmuir probe current fluctuations. (c and d) Relative phase angles θ of the current 
fluctuations. The black and magenta lines show θ obtained assuming Doppler shift due to vE×B and from a fit, respectively. (e and f) PSD of the current fluctuations. 
(g–l) Similar analysis for the E-field. Filled dots are used for frequency components with Cxy > 0.8.
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both Ne and E are clustered between about 725 and 765 s. Significant E-field and some sparse Ne fluctuations are 
also observed at other times, for example, at about 505–530 s and around 610 s.

To investigate Ne inhomogeneities, we applied Local Intermittency Analysis (LIM), which accentuates times and 
frequencies at which the power is intensified compared to the average power in the fluctuations (Farge, 1992; 
Tam et al., 2005). The LIM was calculated using Morlet wavelets (Torrence & Compo, 1998), and results for 
mNLP3 are shown in Figure 4c. Several intervals with significant LIM are observed, with the most prominent 
highlighted with the gray boxes and encompassing where most nondispersive Ne irregularities are detected. For 
these, frequencies can be translated to wavelengths (Holmgren & Kintner, 1990) and, to guide the eye, the elec-
tron inertial length λe and the characteristic λ ≈ 15 m for SuperDARN backscatter are shown. Several intervals 
exhibit intermittent structures with λ < λe and λ ≤ 15 m.

Panels (d and e) exhibit the parallel (±10° with respect to B) electron and omnidirectional ion number 
fluxes, respectively. Most electron precipitation has energies below 1 keV, as expected for cusp aurora (e.g., 
Vontrat-Reberac et al., 2001). In panel (d), the number flux sum is also shown as a black line for visualization 
purposes. From Figure 4, it appears that most spatial and nondispersive small-scale irregularities are detected 
outside of regions with the strongest precipitation, and within intervals where BEast has roughly positive slope. 
Also, many of the 15 m Ne irregularities coincide with ion upflows around 720–760 s (pitch angle of about 135°, 
not shown).

Figure 4.  (a) Ne and BEast. (b) Velocities obtained using Cross-spectral density analysis on multi-needle Langmuir probe 
(magenta) and E-field (blue/cyan) data for different probe pairs. (c) Local intermittency Analysis of mNLP3 current with the 
electron inertial length λe and λ ≈ 15 m superimposed. (d) Electron number flux parallel to B (color) and total number flux 
(black line, a.u.). (e) Omnidirectional ion number flux. Times from Figure 1 are annotated at the top.
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5.  Summary and Interpretation
This work presents a detailed investigation of Ne and E-field fluctuations in the polar ionosphere. While inter-
preting in-situ “single-point” observations of irregularities and turbulence is generally ambiguous (Fredricks 
& Coroniti,  1976; Guio & Pécseli,  2021; Temerin,  1978), interferometry techniques separate the spatial and 
temporal scales of F region irregularities in the cusp. The analysis revealed nondispersive irregularities with low 
phase velocity in the plasma frame, allowing to estimate irregularity power in wavenumber domain, which is 
essential to interpret observations with respect to turbulence theories (Kintner & Seyler, 1985). Analysis shows 
the presence of enhanced spatial oscillations around k ∼ 0.5 m −1, that is, close to the characteristic λ = 15 m 
for SuperDARN backscatter, as well as extending down to 𝐴𝐴 𝐴𝐴𝐴𝐴𝑂𝑂+ ≥ 1 . This provides in-situ confirmation of 
decameter-scale Ne irregularities moving with the E × B, an essential hypothesis to derive line-of-sight veloci-
ties from HF radars and large-scale convection patterns from SuperDARN (e.g., Makarevich & Bristow, 2014; 
Ruohoniemi et al., 1989, 1987; Villain et al., 1985).

This study supplements previous detection of spatial irregularities, see reviews by LaBelle et  al.  (1986) and 
Temerin and Kintner  (1989) and references therein. In the upper polar ionosphere, examples include E-field 
inhomogeneities detected by Kelley and Mozer (1972) and zero-frequency turbulence commonly identified from 
“fingerprint” patterns (for λ < d) (Temerin, 1978, 1979). Also, cusp E-field waves above 5,700 km have been 
shown to have low vϕ (Angelopoulos et al., 2001). For Ne, spatial irregularities were frequently observed at higher 
altitudes using satellites (Holmgren & Kintner, 1990; Kintner et al., 1987; Reiniusson et al., 2006; Stasiewicz & 
Gustafsson, 2000; Stasiewicz et al., 2000); however, our high-resolution observations of coinciding Ne and E-field 
fluctuations for which the phase velocities (and consequently wavenumbers/wavelengths) could be assessed are 
unique, especially in the cusp F region where scintillations and wide HF spectra are also observed.

Decameter-scale E-field and Ne fluctuations are identified and velocities obtained for both quantities are consist-
ent, suggesting they are locked. Poleward of the aurora (Figure 2), they coincide with larger-scale (hectome-
ters) steep Ne-variations, suggesting they result as secondary processes (Moen et al., 2012). 10-m F region Ne 
structures have previously been suggested to spawn down from km-scale gradients (Moen et al., 2012; Spicher 
et al., 2014) and, for T2-L, observations of intermittent fluctuations at specific wavenumber ranges are shown 
(especially clear for E-field). Drift-waves (e.g., Pécseli,  2015) and GDI can be excited on density gradients. 
GDI is often regarded as dominant in the F region (Lamarche et al., 2020; Tsunoda, 1988) and can indeed cause 
decameter-scale structures directly, provided favorable conditions exist (Makarevich, 2017). While the flow was 
dominantly perpendicular to the rocket motion, the ∼11 m structures seen in Figure 3f) may result from GDI 
on the larger-scale Ne-variation since vE×B exhibited a southward component (anti-parallel to the along-track 
variation). In fact, Makarevich  (2017) showed that, for strong convection in the F region, the most favorable 
conditions for GDI occurred when ∇Ne and vE×B are not exactly aligned. Observations of decameter-scale struc-
tures on Ne-variations with opposite signs when the flow exhibited a northward component (not shown) further 
support GDI. Moreover, linear kinetic theory also suggests GDI grows at kρi > 1 for typical ionospheric condi-
tions for large vE×B, but additional theoretical developments are needed (Gary & Cole, 1983), also to assess the 
E-field oscillations at k ≈ 0.5 m −1. Note that our cusp observations of intermittent fluctuations are in line with 
findings from Tam et al. (2005), who showed the presence of highly intermittent E-field fluctuations lasting a 
few milliseconds in the auroral oval. Tam et al. (2005) suggested this to be indications that broadband extremely 
low frequency fluctuations were caused by sporadic and localized coherent structures interacting nonlinearly 
(Chang, 2001).

Not all small-scale Ne fluctuations were co-located with larger-scale Ne-variations (see Figure  3e) and other 
mechanisms were likely at play during the flight. Particle precipitation is believed to be important at high lati-
tudes and for HF backscatter (e.g., Dyson & Winningham, 1974; Moen et al., 2002; Ponomarenko et al., 2007). 
Here, the largest occurrence of Ne irregularities was detected poleward of the cusp, adjacent to regions with 
intense electron fluxes. Precipitation was thus unlikely a dominant direct driver of decameter-scale structures, 
but it may have caused “seed” irregularities for secondary processes (Moen et al., 2012; Oksavik et al., 2012).

As seen in Figure 2c, a flow shear was observed at about 762 s. The shear scale-size matches that used in numer-
ical simulations showing that KHI could quickly cause irregularities at scintillation scales in the cusp (Spicher 
et al., 2020). However, KHI is mostly a long-wavelength, low-frequency, instability and therefore it fails to explain 
direct creation of 𝐴𝐴 𝐴𝐴𝐴𝐴𝑂𝑂+ ≥ 1 structures (Ganguli et al., 1994). Secondary processes such as the inhomogeneous 
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energy density driven instability (Ganguli et  al.,  1985) could operate; however, the shear frequency (∼1 Hz) 
is low compared to the O + gyrofrequency (∼40 Hz), suggesting that this instability is not dominant (Ganguli 
et al., 1994).

Alternatively, the coincidence between positive slopes in BEast, ion upflows and the largest concentration of 
spatial structures is intriguing. Upper F region Ne enhancements and the presence of larger-scale fluctuations in 
the return current (as seen poleward of the cusp in Figure 4) are consistent with simulations and observations 
associated with the ionospheric Alfvén resonator (Cohen et  al.,  2013; Streltsov & Lotko,  2008). Especially, 
dispersive Alfvén waves (Stasiewicz et al., 2000) and electrostatic slow ion cyclotron/acoustic waves (for hot 
ions) have been suggested as processes with low phase velocity and broadband low-frequency E-field fluctuations 
(Seyler & Wahlund, 1996; Seyler et al., 1998; Wahlund et al., 1998). Altogether, this study provides new insights 
into the behavior of small-scales Ne and E-field irregularities as well as physical context for what causes wide 
SuperDARN spectra in the cusp, and further analysis will hopefully help resolve the exact mechanism(s) taking 
place.

Data Availability Statement
Data from the TRICE-2 missions can be found at: https://phi.physics.uiowa.edu/science/tau/data0/rocket/
SCIENCE/TRICEII_Mission/. mNLP data is available at https://archive.sigma2.no/pages/public/dataset-
Detail.jsf?id=10.11582/2022.00032 (Clausen,  2022). Super Dual Auroral Radar Network data is available at 
https://www.frdr-dfdr.ca/repo/collection/superdarn with basic data analysis software at https://zenodo.org/
record/4435297. The imager data are available at http://tid.uio.no/plasma/aurora/. The wavelet analysis is based 
on an adapted version of a (Morlet) wavelet software provided by C. Torrence and G. Compo (Torrence & 
Compo, 1998, latest version is available at URL: http://atoc.colorado.edu/research/wavelets/). The panel showing 
ion data was obtained using SPEDAS V3.2 (Angelopoulos et al., 2019).
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