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Interference of optical beams with optical vortices is often encountered in singular optics. Since interferometry makes the phase
observable by intensity measurement, it brings out a host of applications and helps to understand the optical vortex. In this article
we present an optical vortex interferometer that can be used in optical testing and has the potential to increase the accuracy of
measurements. In an optical vortex interferometer (OVI), a lattice of vortices is formed, and the movement of the cores of these
vortices is tracked when one of the interfering beams is deformed. Instead of multiple vortices in an OVI, an isolated single vortex
also finds applications in optical testing. Finally, singularity in scalar and vector fields is presented, and the relation between them
is illustrated by the superposition of these beams.

1. Introduction

Phase singularities in light waves appear at points or lines
in a beam cross section, where the phase of the wave
changes abruptly [1–6]. When this abrupt phase change
occurs along a line, it is called edge dislocation, and when
it occurs at a point, it is called a screw dislocation. Screw
dislocation type phase singularity is also called an optical
vortex. The singular point with undefined phase and zero
amplitude forms the vortex core. A wavefront with optical
vortex (OV) has a characteristic helical geometry. As the
vortex beam propagates, this zero amplitude point draws
a curve in space. The helical wavefront winds about this
dark thread of amplitude. The helix may be left- or right-
handed, and accordingly the vortex is considered to possess
positive or negative topological charge. Optical vortices
possess a number of interesting features. On the flip side,
they can cause stagnation problems in phase retrieval where
wavefront geometry is reconstructed [7, 8] and in diffractive
optics [9, 10]. On the positive side, since the seminal work
published by Nye and Berry [1], hundreds of papers have
been published on various aspects of the OVs. Large number
of papers is devoted to optical vortex applications. In a vortex
coronagraph an optical vortex lens is used as a filter that

enables detection of a feeble star in bright background [11–
13]. Optical vortices are useful in optical tweezers with dark
traps [14–17]. They are useful in fluorescence microscopy
where the STED (stimulated emission depletion) pulse is
used for dumping the fluorescence response of the molecule
located outside the dark core of the optical vortex [18–
20]. Vortices are useful in collimation testing and in the
detection of elevation and depression of surfaces from a
single interferogram. Further vortex interferograms can be
used as signatures of vortices in the detection process.
Optical recording of these interferograms can also be used as
holograms for the generation of OVs. Vortices can be used
to generate inhomogeneously polarized beams. OVs carry
non-zero orbital angular momentum (OAM) in addition to
the momentum related to polarization [21, 22]. The OAM
arises due to the spiraling of Poynting vector in the singular
beam. This makes optical vortices stable features of the
wavefront.

In this paper we present the use of OVs in interferometry.
In part I, we present optical vortex interferometer (OVI),
which refers to interferometric system in which OV lattice
plays a crucial role in the measurement process. In part
II, we present the use of isolated single vortex in optical
metrology. In the last section of part II, we discuss the role of
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Figure 1: Six cubic beam splitters generate a set of three plane waves: A, B, C. These beams interfere and generate regular lattice of optical
vortices. ESs are electronic shutters, which enable to capture the following interferograms: A + B, A + C, B + C, A + B + C. The electronic
shutters are not necessary when using one-frame (A + B + C) measurement procedure.

Figure 2: The Intensity distribution of the interference field
obtained by three-plane waves (experiment). The position of vortex
points is marked by plus signs or crosses to distinguish between two
different topological charges.

vortex interferometry in the realization of inhomogeneously
polarized beams.

2. Part I

2.1. Optical Vortex Lattice Interferometer. When two beams
interfere in space, bright and dark surfaces due to interfer-
ence are formed in the volume of overlap. When viewed at
an observation plane, these surfaces appear as interference
fringes in a conventional interferometer. When one of the
interfering beams is modified, the fringe pattern undergoes
a change, and this is tracked in conventional optical testing.
But when three or more waves interfere, light vanishes at lines
rather than on surfaces. In 2D, these lines appear as dark

points instead of fringes. The central part of each such dark
point is a vortex point, that is, an isolated point where phase
is undetermined. The OVI focuses on the distribution and
dynamics of these dark points.

The regular lattice of optical vortices generated by wave
interference was a subject of interest prior to the work
on OVI. The first papers focused on physical questions
concerning the properties of electromagnetic field or more
specifically the phase singularity itself [23–25]. In a multiple-
beam interference, it is possible to shape and tailor the geom-
etry of these dark threads of light in the form of loops, links
and knots [26–28]. The relations between vortex lattices and
polarization singularities have also been described [29]. The
papers concerning general questions in the theory of electro-
magnetic fields have also been published in the last decade
[30, 31]. The three- or more plane waves interference can also
be used for photonics crystal manufacturing [32, 33].

Here we want to focus our attention on metrological
aspects of vortex lattice in interference fields [34–49]. Our
first goal is to show specific basic properties of the vortex
lattice formed by the interference of three-plane waves
[34, 35]. Figure 1 shows the basic optical setup for three-
plane-wave OVI, and Figure 2 shows an interference pattern
obtained in such an interferometer.

The resultant field, due to the interference, consists of
vortices arranged in a regular fashion. The net charge in
the pattern is zero, which means that there is an equal
number of positive and negative charges in the lattice. The
vortex lattice can be decomposed into two sublattices each
consisting of vortex points having the same topological
charge (Figure 2). It is useful to use phasors and constant
angle lines (CALs) [37, 38] to have better understanding
on vortex lattice creation and properties. The CALs of two
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Figure 3: (a) A set of CALs (dashed lines) of two interfering waves B and C. By adding the third wave—wave A—a regular vortex lattice is
generated. The arrows a, b, and c are phasors of wave A, B, and C, respectively. The OVs appear at points where the three phasors form a
triangle. The whole pattern can be divided into two subsequently appearing regions: the region with positive vortices and the region with
negative vortices, respectively. The CALsBC representing angle value 0 and π (bold lines) are borders between these two regions. Vortex points
are marked by black dots. The four neighboring vortices of the same topological charge form an equilateral basic cell (dash dotted blue line).
(b) The ends of three non-collinear wave vectors define the OVI plane. The optical vortex generated by the three-plane waves moves along
the straight line (dashed line) perpendicular to the OVI plane. When adding one more wavevector (blue in this Figure) the OVI plane cannot
be defined, but in very specific cases.

waves B and C (CALsBC) is a line of constant phase angle
between these two waves. The CALs are defined at the plane
at which interference pattern is observed. Figure 3 explains
why the regular vortex lattice is created when three-plane
waves interfere [34, 35, 37–39].

The vortex lattice shown in Figure 2 has a number of
interesting properties, which result from two facts [38]. First,
the ends of three non collinear wave vectors determine a
plane uniquely (OVI plane (Figure 3(b)), and, second, the
relative phases between interfering waves are defined by
their amplitudes (at vortex points). It can be concluded
from the above that (a) the vortex lattice moves as a rigid
body, when the phase of one or more of three waves is
changed, (b) changing the amplitude of the interfering waves
has no influence on the vortex positive (negative) sublattice
geometry; however, both sublattices change their relative
positions, (c) in space optical vortices travel along lines
perpendicular to the OVI plane (Figure 3(b)), and (d) it is
easy to determine formulas for vortex points positions [38]
as follows:

xP =
(
−δAB + π − γAB + 2πl

)
k′yC

k′xBk
′
yC − k′xCk

′
yB

+

(
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)
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′
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,
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(
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′
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k′xBk
′
yC − k′xCk

′
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.

(1)

In the above formulas, index N and P indicate negative
and positive sublattices, respectively. δQR is a relative phase
difference between waves Q and R at the origin of the
reference frame, γqr is a triangle angle between phasor q and
r; q, r ∈ [a, b, c] (see Figure 3), kµQ is the µ-coordinate of the
wavevector of wave Q,µ ∈ [x, y, z], Q,R ∈ [A,B,C], and

k′xQ = kxQ − kxA,

k′yQ = kyQ − kyA.
(2)

The y-coordinates may be expressed by x-coordinates as
follows:

yP =
−k′xB
k′yB

xP +
δA − δB + π − γab + 2πl

k′yB
,

yN =
−k′xC
k′yC

xN +
δA − δC + π + γac + 2πm

k′yB
.

(3)

When placing subsequent integer numbers m and l into
formulas (1) and (3), the position of the same vortex point
may be obtained many times, especially for highly sym-
metrical arrangement of interfering waves. Special reduction
procedures must be applied to avoid such a multiplication.
Vortex points move along straight lines perpendicular to the
OVI plane. The direction of this path can be determined by
formulas [37, 38]

∆x =
k′zCk

′
yB − k′yCk

′
zB

k′xBk
′
yC − k′xCk

′
yB

∆z,
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′
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′
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k′xBk
′
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′
yB

∆z.

(4)
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Adding more than three-plane waves results in a less regular
vortex lattice, and the special properties described above
are no longer valid [38]. More precisely, the regular vortex
lattice can still be generated but only in case of very specific
wavevector configurations (for example, when the ends of
wavevectors touch the same plane).

After presenting the specific basic properties of the vortex
lattice formed by the interference of three-plane waves, let
us present how OVI is useful in optical testing. The sample
under measurement is introduced in one or more beams of
the OVI. This in turn disturbs the vortex lattice geometry.
These changes can be related to the value of the physical
quantity being measured. The most basic example is wave tilt
measurement [39–43]. The direction of propagation of the
wave A, for example, can be changed by inserting an optical
wedge. Figure 4 shows the response of the vortex lattice due
to wedge insertion in wave A [42].

Using the properties listed above, we can derive formulas
for the wave tilt through x and y axes separately. Only one
measurement step is necessary for that. Instead of calculating
these two angles, we can calculate the wedge angle and its
orientation.

Two methods have been proposed to analyze vortex
lattice dynamics. The first method is based on the analysis
of vortex triplet geometry. Vortex triplet consists of three
vortex points which do not lie along a single line [37, 40–
42]. Having 300–400 vortex points, we can find about one
million vortex triplets. The second method uses elementary
cells [42] as shown in Figure 5.

Both methods are compared, and proper formulas for
computing wave tilt are derived in [42]. The interesting point
is that OVI enables a sound statistical analysis of the mea-
surement, which usually is not possible in interferometric
measurements. Figure 6 shows these results.

Promising versions of the OVI are compact setups using
one [44, 45] or two Wollaston prisms (one-way OVI) [46].
They support a limited access to the interfering waves but are
smaller and more stable. Simple and compact one-way OVI
is equivalent to a four-wave OVI. As was mentioned above,
the four-wave system generates less regular vortex lattice.
However, this two Wollaston prism setup generates waves at
very symmetrical distribution. As a result, the vortex lattice
is more regular. The one-way OVI can be used for tracing the
dynamic changes of light polarization or briefirngent sample
properties [47, 48]. In a single measurement, both azimuth
angle and ellipticity or ellipticity and phase difference
between fast and slow axes of the birefringent medium can
be determined. Figure 7 shows exemplary results of such a
measurement.

A more sophisticated setup is shown in Figure 8. One
version of these systems generates a rectangular table of all
polarization states of light [36]. Along the horizontal line,
the polarization states of subsequent points differ in their
azimuth while going along the vertical line they differ in
their ellipticity. Using the system in the reverse way, the
optical vortex is generated in the observation plane. The
coordinates of this vortex point identify the polarization
state of the incoming light (i.e., azimuth angle and ellip-
ticity). Joining the two one-way setups, a compact spatial

polarimeter has been proposed. In a single measurement,
this instrument allows the measurement of azimuth and
ellipticity of the fast and slow beams and also the retardation
introduced by the birefringent medium. When applying
the carrier frequency method for interferogram analysis all
these parameters can be determined at each pixel of the
camera. This is the most ascetic polarimetric system ever
proposed.

The OVI was also applied for the wavefront reconstruc-
tion [37, 39, 49]. By knowing the charge of the vortices
in the vortex lattice, we can reconstruct the wavefront
geometry without any ambiguities, for instance, the phase
unwrapping problem, which is a characteristic of classical
interferometry. There are many methods available to identify
optical vortex charge for a single beam [50–53]. The methods
for determining the charge sign distribution at vortex lattice
are described in [54–56]. These methods can be used before
measurement (as system calibration methods), and as such
do not change the results of the measurements.

The accuracy and resolution of the OVI strongly depends
on the accuracy of vortex point’s localization. A few local-
ization methods have been specifically designed for the
OVI. The most basic is the one which searches intensity
minima [57]. When supported by modern image processing
techniques, this minima method can result in precise vortex
localization. Moreover, more advanced methods too begin
with the minima method. When compared with classical
interferometry, minima method has a resolution of around
λ/30. Nevertheless, we realize that by applying a more
professional approach, this resolution can be improved. The
big advantage of the minima method is that it works on
a single interferogram. More precise methods require more
than one interferogram, which means that the optical system
must be stable [58]. The “triangle” method described in
[57] requires four interferograms: A + B, A + C, B + C, and
A + B + C, so the OVI must be equipped with fast shutters.
The triangle methods result in a resolution twice as good
as the minima method. An even more precise method is
the phase-shifting method [59]. This method needs an extra
reference wave with a phase shifter. This ensures that the
vortex lattice remains undisturbed during the process. Since
the topic is new, we hope that remarkable progress is still
possible.

2.2. Vortex Lattices from Spherical Waves. Other ways of
vortex lattice generation are also possible. We describe
here the use of amplitude splitting and wavefront splitting
interferometers for the same. Three pinholes on an opaque
screen are illuminated by a plane wave, or a spherical wave
and the diffracted waves behind the pinholes interfere to
form the vortex lattice. The schematic of the experimental
setup is shown in Figure 9. If the distance between the xy
plane and the observation plane (x1, y1 plane) is large enough
to treat the diffraction as Fraunhofer, the spherical waves
from the three pinholes will be seen as plane waves in the
observation plane which interfere to form the vortex lattice.
The geometry of the lattice is decided by the relative positions
of the pinholes. The positions of the vortices in the lattices
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Figure 4: The position of the vortex points (expressed in pixel number) as measured without the wedge (circles) and with the wedge
(crosses), (a) wedge inserted horizontally, (b) wedge inserted at β = 45◦, (c) wedge inserted vertically as presented in the right corners.
Deflection angle α = 20 arcsec.

have been derived both in far- and near-field approximations
and presented by Masajada et al. [60]. When the distance
z between the two planes is small or when spherical waves
are involved, the formation of vortex lattice still occurs and
has been dealt with by Masajada et al. [60] and Ruben
and Paganin [61]. Finding of analytical expression for the

position of vortex points in the lattice becomes complicated
when one more pinhole is added. Technically the three
pinholes setup is the simplest version of OVI interferometers.
The three pinholes experiment can be considered as an
extension of the classical Young’s double-slit experiment. We
can derive formulas for the intensity minima in a simple way
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Figure 5: The vortex lattice consists of two sublattices which are
marked by plus signs and circles. The CALs of wave pairs A and
B, B and C, A and C are marked by dashed blue lines and are
parallel to the corresponding A+B, B+C, and A+C fringe systems.
Figure shows an example of two cells, whose sides are determined by
CALs and one triplet (red dashed-dot line). The vortex cells must be
occupied by the vortex points having the same topological charge,
while the triplets can be composed of any three vortex points, which
are not collinear.

as in case of the later. Adding one more pinhole makes the
whole problem complex.

Diffraction through the pinhole arrangement falls under
the category of interference by wavefront splitting. It is also
possible to generate vortex lattices by shear interferometers in
which amplitude splitting of spherical waves is employed [62,
63]. In a lateral shear interferometer, interference is obtained
between a test wavefront and its displaced replica. The most
common configuration of lateral shear interferometer uses
a plane parallel plate also called shear plate. When a test
wavefront is incident on the plane parallel plate at an oblique
angle, the beams reflected from the front and back surfaces
of the plate are laterally displaced (sheared). The sheared
wavefronts form an interference pattern in the region of
overlap in the observation plane, as shown in Figure 10.

The fringes in the interference pattern represent phase
gradients of the test wavefront. If the test wavefront has
a small curvature, the interference pattern exhibits straight
fringes, perpendicular to the direction of shear. The number
of fringes in the interference pattern is a function of both the
curvature and magnitude of shear.

In the vortex lattice generation by interference of three-
plane waves, the phase difference between any two waves
at the observation plane is found to vary in a linear way.
Linearly varying phase difference leads to straight fringes.
Hence, for a given interference pattern I(x, y) involving
two waves with constant amplitude distribution, we have
absolute freedom on choosing the phase ψ(x, y) of the first
wave as long as we are able to realize the other interfering
wave, which can produce the required phase difference ∆ψ

(which is linear) at the interference plane. This can be verified
for any two-plane waves or spherical waves:

∣∣1 + exp
(
−i2πµx

)∣∣2

=
∣∣∣∣exp

(
ik

2R

(
x2 + y2

))
+ exp

(
ik

2R

(
(x + ∆x)2 + y2

))∣∣∣∣
2

(5)

provided (∆x)2 is negligible and 2πµ = (k/R)∆x. Here R is
the radius of curvature of the beam. In this example, the
first term on the left hand side is the complex amplitude
distribution at the z plane for an on-axis plane wave, and
the second term is for a plane wave with tilt to the z axis
at an angle given by θ = sin−1(µλ) where µ is the spatial
frequency and λ is the wavelength of the light. On the
right hand side of (5), the first term is a spherical wave
under quadratic phase approximation, and the second term
is the spherical wave which is sheared in the x direction by
∆x. Hence, in case of the interference of spherical waves,
the linear phase difference variations ∆ψ in the x and y
directions are brought about by shears in the x and y
directions, respectively. The amplitude of the interfering
waves is kept constant, and this provides a better contrast
of fringes. It is important to note that when the beam is
perfectly collimated, parallel plate will not give any fringes.
Fringes are formed only when the lens is decollimated and
spherical wavefronts are formed [63]. Another striking and
interesting aspect observed is that while interference fringes
are described by phase differences, the phase distribution of
the resultant field is completely different when compared
with the case of vortex generation by plane wave interference.
But, a regular grid of vortex dipoles is generated in both the
cases. One possible configuration of the interferometer for
vortex lattice generation is given in Figure 11. The observed
intensity pattern at the output of the interferometer is shown
in Figure 12(a). To reveal the vortex lattice in the interference
pattern, a fourth beam is superposed to obtain fork fringes at
the vortex points as shown in Figure 12(b).

There is also another area of research, namely, the vortex
metrology. In vortex metrology [64–67], vortices which
are randomly distributed in a speckle field, are tracked
for metrological applications. This is different from OVI,
because in OVI the regular grid of vortices act as a reference
and the movement of vortex cores upon deformation of
one of the interfering beams is tracked. This method has
been used for measuring small displacements and also in
fluid dynamics. In the [68], a similar problem for a laser
beam probing the atmosphere was solved. The obtained
speckle pattern was investigated through the optical vortex
localization.

The study of optical vortices in microscopy was started
with Tychynsky [69–72]. He proposed to measure the phase
dislocations propagating in the zero-order diffraction beam.
The beam was highly magnified (up to 10000 times) and
interfered with a reference beam whose phase was controlled
by moving mirror (phase-shifting interferometry). The other
approach was to introduce the vortex into a scanning micro-
scope and analyze the behavior of vortex after reflection
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Figure 6: The angle of wave tilt (wave rotation) determined for x and y axes by analyzing the vortex triplets geometry. The expected values
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Figure 7: The trajectory of vortex points measured when a quarter wave plate is inserted between the Wollaston prism and rotated (a). The
same situation applies but the quarter wave plate is wedge-like. Figure on the right shows part of the whole image.

from the sample. Since the OV may be identified by means
of interference with reference beam this solution can be
considered as a kind of vortex interference microscopy. This
new solution has been presented in [73–79].

3. Part II

3.1. Interferometry in Polar Coordinates. The interference
fringes obtained in an interferometer represent contour

lines of phase difference between a test and a reference
wave. By using suitable reference waves in conventional
interferometers, interference fringes that are functions of
polar coordinates can be obtained [80]. Such interferograms
are useful since most optical elements for imaging are
rotational symmetric, and it is valuable if the data is directly
presented in polar coordinates. When the phase of the test
wavefront varies in the radial direction, radial interferograms
are advantageous, and, when the phase variation occurs
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Figure 9: Schematic of the three pinholes arrangement for vortex
lattice generation.

in the azimuthal direction, circular fringe interferograms
are useful. It is much similar to the use of an appropriate
coordinate system depending upon a variable in the problem
which is also a function of some coordinate system.

Shear Incident wave Plane wave Spherical wave

Sheared waves

(a) (b) (c)

Figure 10: (a) Lateral shear interferometer in which the incident
wave is split into two and sheared. (b) Schematic showing that
the phase difference between sheared plane waves is constant. (c)
Schematic showing the phase difference between sheared spherical
waves is not constant and varies linearly in the direction of shear.

Optical vortices play a crucial role in obtaining interfer-
ograms that are radial or spiral. The reference wave used in
these interferometers consists of vortex-like phase variation.
To obtain radial interferograms, reference wave consisting of
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Figure 11: Experimental setup for the Mach-Zehnder interferome-
ter configuration with shear plate inducted in one arm.

an optical vortex of multiple charge is useful. The reference
wave that is used to get radial interferogram is given by φr1 =
mθ. To obtain spiral fringe interferograms, the reference
wave phase distribution is of the form φr2 = mθ + Cr, where
m is the charge and C is a constant. The reference wave
here is a conical wave in which vortex phase distribution is
embedded. Figures 13(a) and 13(b) show the reference beams
where optical vortices are used. Figures 13(c) and 13(d)
are two test wavefronts in which the phase variations are
azimuthal and radial respectively. In the phase distributions,
dark represents zero phase, and white represents 2π phase
with grey levels representing other intermediate phase values.

The phase variations of the two simulated test wavefronts
are φt1 = π sin(6θ) and φt2 = π cos(αr3), respectively.

The interferogram of Figure 14(b) is useful as the test
wavefront φt1 has an azimuthal phase variation. The spiral
interferogram that would have resulted in an interference
with a plane wave has a constant period in the radial
direction. The fringe shift in the radial direction is a function
of phase variation of the test wavefront.

The interferogram of Figure 15(a) is useful as in this
case the test wavefront φt2 has radial phase variation and the
shift in the radial fringes depends on this phase variation.
The advantages of polar interferograms are reported by
Bryngdahl [80].

3.2. Shear Interferometry in Polar Coordinates. Shear inter-
ferometer eliminates the need for a known reference as the
interference is between the test wavefront and a sheared copy
of it. The fringes obtained give the phase gradient of the
wavefront if the test wavefront is appropriately sheared.

While the lateral shear interferometer reveals phase
gradients in Cartesian coordinates, it is essential to modify
the way shear is applied for obtaining gradient in polar
coordinates. The gradient of the complex amplitude u in
polar coordinates is given by

∇u = ∂u

∂r
r̂ +

1

r

∂u

∂ϕ
ϕ̂. (6)

Thus, to study gradients with shearing interferometers, we
need to introduce wavefront displacements that are constant
in both the radial and azimuthal directions. In order to
realize a shearing interferometer that displays gradients in

the azimuthal direction, all of the object points in one of the
wavefronts need to be displaced by the same distance relative
to the corresponding points in the other, along circular arcs,
with the origin as center. Thus, rotation of the wavefront,
with the amount of rotation dependent on the radius, is
required. Points near to the origin are rotated by larger
amount where as points away from the origin are rotated by
less amount, but, in each case, the displacement along the
circular arc is of equal length.

Bryngdahl and Lee [81] have used computer-generated
gratings as shown in Figures 16 and 17 to achieve con-
stant azimuthal and constant radial displacements to the
wavefronts. These gratings have spiral and segmented spiral
grating elements that are associated with optical vortices.

In the grating shown in Figure 16, the superimposed
red arrows are indicating the directions of the local grating
vectors at two different locations. The diffracted orders of
the wavefront behind the grating will be shifted in the
radial direction. This way, radial shear between the diffracted
beams can be achieved.

For constant azimuthal displacement, simple rotation
about the centre of the beam will not suffice as in, simple
rotation, the azimuthal displacement is different at different
radial locations. In the grating shown in Figure 17, the
superimposed red arrows indicate the local grating vector
directions. Each of these shows that the grating vector has
both radial and angular components. For the points on a
circle of constant radius, the rate of change of rotation of
the grating vector is faster (with respect to θ) than those
points on a circle of larger radius. It can be seen that the
component of the grating vector in the azimuth direction
between two vectors in the same segment is the same which
ensures that the diffracted light from the grating acquires a
constant azimuthal shear. The segmentation has been done
to reduce distortion in the sheared wavefronts.

3.3. Interferograms of Various Wavefronts with Vortex Beam.
Knowledge about the nature of interferograms formed by
the interference of various types of wavefronts with vortex
beams is useful in many situations. Fringes obtained by
the interference of vortex beams are characterized by the
birth of new fringes from the middle of the interferogram.
In conventional interferograms, extrema are surrounded by
closed fringes, and no fringe terminates or originates at the
centre of the interferogram.

When the vortex-bearing wavefronts are plane and their
vortex cores coincide, purely radial fringes occur as in
Figure 18(a). The number of new fringes that originate is
indicative of the charges present in the interfering beams.
When the locations of the vortices in the interfering beams
coincide, star like, fringes are obtained [82]. The number
of new fringes indicates the difference between the vortex
charges in the individual interfering beams (Figures 18(a)
and 18(b)). Hence, a fringe-free pattern results when both
interfering beams have equal number of charges with the
same polarity. The interference pattern between a tilted plane
wave and a vortex results in fork fringes (Figure 18(c)). Fork
fringes are commonly used in the detection of vortices. If



10 International Journal of Optics

(a) (b)

Figure 12: (a). Interferogram recorded with the Mach-Zehnder interferometer configuration, (b) Formation of fork fringe pattern when
fourth beam is added, indicating the presence of vortex dipole arrays.

(a) (b) (c) (d)

Figure 13: The phase distributions of (a) reference wave φr1 = mθ and (b) reference wave φr2 = mθ+Cr. (c) Test wave with azimuthal phase
variation. (d) Test wave with radial phase variation.

r1

(a)

r2

(b)

Figure 14: Interferogram when the test wave φt1 of Figure 13(c) interferes with (a) reference wave φr1 = mθ and (b) reference wave φr2 =
mθ + Cr.

r1

(a)

r2

(b)

Figure 15: Interferogram when the test wave φt2 of Figure 13(d) interferes with (a) reference wave φr1 = mθ (b) reference wave φr2 = mθ+Cr.
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Figure 16: Grating that introduces a constant radial displacement
between sheared wavefronts [81].

Figure 17: Segmented spiral grating that can used to introduce a
constant azimuthal displacement between sheared wavefronts [81].

the interferogram consists of a fork pattern anywhere in the
field of view, it is inferred that one of the interfering waves
has a singularity. Diffraction phenomenon can also be used
for the detection of vortices [83]. When the cores of the
vortices of the interfering waves do not coincide, the total
number of fringes obtained is different in the cases of beams
with opposite and similar polarity. In the former case, it is
exactly equal to the charge of the beam with the higher charge
value (Figure 18(d)), whereas, in the latter case, it equals the
sum of the charges of the two (Figure 18(e)). Interferograms
shown in Figure 18(d) are due to interference of two singular
beams having charges +8 and −2, respectively, where as in
Figure 18(e), the interfering beams have charges +8 and +2,
respectively.

The radial fringes shown in Figure 18(b) start to spiral
in the anticlockwise direction when the interfering beam
acquires a positive curvature (Figure 19(a)) and spiral
clockwise direction (Figure 19(b)) when the interfering beam
acquires a negative curvature. This phenomenon can be used
to detect beam collimation. At collimation, radial fringes

can be obtained [82]. Interference of spherical beam with a
plane reference wave gives rise to concentric circular fringes
irrespective of the sign of the curvature of the spherical
wave. If the plane reference beam is replaced by a vortex
beam, spiral interferograms can be obtained. This enables
us to distinguish the extremum between peak and valley
[84]. When the interfering wave is a conical wave, the
resulting spiral interferogram will have a fringe spacing
that is constant in the radial direction (Figure 19(c)). Such
interferogram can be recorded to make gratings that are
useful in obtaining radial shear [80]. When the extrema
(in the phase map) of the spiral wavefront do not coincide
with the core of the vortex during interference, fringes as
shown in Figure 19(d) are obtained [85]. One of the circular
fringes at the vortex point branches (forks). As a result
fringes start to spiral only from this point, and we see
both circular and spiral fringes in the same interferogram.
Thus, we see, in Figure 19(d), two circular fringes at the
center of the interferogram and spiral fringes thereafter.
Such recorded interferograms can be used as holograms,
which reconstruct the vortex beam when illuminated by
a beam free of vortices. When sinusoidal amplitude fork
grating (with charge +m) is illuminated by a plane wave,
the different diffraction orders −1, 0, and +1 produce beams
with topological charge −m, 0 and +m, respectively. If the
fork grating (with charge +m) is a binary amplitude or a
phase grating, beams in each of the multiple diffraction
orders contain vortices of charge mp, where p is the integral
diffraction order number. Recordings of the interferograms
shown in Figures 19(a) and 19(b) yield spiral zone plates
[86], and recording of interferogram shown in Figure 18(c)
yields fork grating. These elements are commonly used for
vortex generation. In the recording of Figure 19(b), if the
signs of the curvature of the spherical beam and the charge of
the vortex are simultaneously reversed, interferogram shown
in Figure 19(e) can be obtained. Equivalently, we can say that
a fork grating with its fork up can be generated either by the
interference of a singular beam with a positive vortex and an
off-axes beam with positive tilt or by the interference of a
singular beam with a negative vortex and an off-axis beam
with a negative tilt.

3.4. Vortex Interferometry with Orthogonally Polarized Light
Waves. In this section, we show the synthesis of a vortex
beam by a superposition of beams with a polarization
singularity using an interferometer. In other words, scalar
beams with a phase singularity and vector beams with a
polarization singularity can be mutually converted.

3.4.1. Laguerre-Gaussian Beams. The optical beam generated
in an optical resonator is a solution of the wave equation.
When the scalar wave equation, commonly referred to as
the Helmholtz equation, is solved, the solution is a linearly
polarized optical beam with homogeneous spatial distribu-
tion across the beam cross section. Hermite-Gaussian (HG)
beams are the typical paraxial solutions obtained in the
orthogonal coordinate system. In the cylindrical coordinate
system, Laguerre-Gaussian (LG) and Bessel-Gaussian (BG)
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(a) (b) (c) (d) (e)

Figure 18: Fringes obtained due to interference between a vortex of charge +3 with (a) another beam with charge −3 (b) an on-axis plane
wave (c) an off-axis plane wave. Interferograms obtained when both the interfering beams have off centred vortices of (d) opposite unequal
charges (e) same signed unequal charges.

(a) (b) (c) (d) (e)

Figure 19: Fringes obtained due to interference between a vortex of charge 3 with (a) Spherical beam of positive curvature (b) spherical
beam of negative curvature (c) conical beam. (d) Interference between an off centred vortex and a spherical wave (e) Interference between
negatively charged vortex and a spherical beam with positive curvature.

beams are derived and are well known as vortex beams. The
electric field of scalar LG beam of degree p and order m is
expressed by

E
(s)
p,m

(
r,φ, z

)
∝ Yp,m

(
r,φ, z

)
exp
(
imφ

)
, (7)
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(
r,φ, z

)
= ω0

ω(z)

[ √
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ω(z)

]|m|
L|m|p

[
2r2

w2(z)

]

× exp
[
ikz − i

(
2p + |m| + 1

)
ψ(z)

]

× exp

{
−r2

[
1

ω2(z)
−

ik

2R(z)

]}
,

(8)

where r is the radius, φ is the azimuthal angle, z is the
distance from the beam waist, ω0 is the minimum beam
radius at z = 0, R = (z2 + z0

2)/z is the radius of curvature
of the wave front, k is the wave number, (2p + |m| + 1)ψ(z)
is the Gouy phase shift with ψ(z) = arctan(z/z0), and ω(z) is

the Gaussian beam width defined as ω(z) = ω0

√
1 + (z/z0)2

with z0 = kω0
2/2. Lmp (t) is the Laguerre polynomial of

degree p and order m. The beam is assumed to propagate
in the z direction. The last term of (7), exp(imφ), indicates
that the beams have a spiral phase shift with m revolutions
about the axis of the optical beam. The number m is the
topological charge and is indicative of the beam carrying an
orbital angular momentum [21]. This equation implies that
beams with m ≥ 1 have an intensity null on the beam axis,
which corresponds to a point phase singularity. The Bessel-
Gaussian beams also have a spiral phase shift and, hence, a
point phase singularity.

If the polarization of the optical beam is inhomogeneous,
optical beams must be derived by solving the vector wave
equation. The solutions of this equation are different from
those of the Helmholtz equation. LG [87], BG [88], and
modified BG [89] beams are the solutions in the cylindrical
coordinate system. The electric field of vector LG beam of
degree p and order m± 1 is expressed by

E
(v)
p,m±1

(
r,φ, z

)

∝ Yp,m±1

(
r,φ, z

){∓ sin
(
mφ
)
ρ + cos

(
mφ
)
ϕ

cos
(
mφ
)
ρ ± sin

(
mφ
)
ϕ

}
,

(9)

where ρ and ϕ are the unit vectors of the electric field for the
radial and azimuthal directions, respectively. Equation (9)
shows that these beams do not have a spiral phase shift but
a complicated distribution of polarization as shown by the
last term. All beams also have an intensity null on the beam
axis due to the presence of a point singularity. Note that this
is not a phase singularity but a singularity of polarization.
Thus, there is an inherent difference of singularities between
scalar and vector LG beams.

The lowest-order mode of vector LG beams is obtained
for m = 0. In this case, the beam carries pure azimuthal
and radial polarizations for upper and lower rows of (9),
respectively. The temporal electric field distributions of these
two lowest order LG beams are depicted in Figure 20. An
azimuthally polarized beam is shown in Figure 20(a), which
is called TE01 mode because there is no electric field in
the direction of beam propagation. The other beam shown
in Figure 20(b) is a radially polarized beam, which has no
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TE01

(a)

TM01

(b)

Figure 20: The lowest-order vector LG beams. (a) Azimuthally (TE01) and (b) radially (TM01) polarized, respectively. The arrows indicate
the direction of the temporal electric field.

+ −

LG01(l)HG01(x) HG10(y) LG01(r)TE01

(a)

++

HG10(x) HG01(y) LG01(l)LG01(r)

−

TM01

(b)

Figure 21: The conversion between scalar and vector LG beams. (a) Azimuthally and (b) radially polarized beams. x and y in the parentheses
for linearly polarized HG beams indicate the polarization direction. r and l in the parentheses for circularly polarized LG beams indicate
right- and left-hand polarizations, respectively. HG: Hermite-Gaussian beam, LG: Laguerre-Gaussian beam.

magnetic field in the direction of propagation (TM01 mode).
The small circle in the center is the dark area due to the
polarization singularity on the beam axis. In what follows,
we will show that these beams can also be synthesized by a
superposition of scalar beams with a phase singularity.

As shown in Figure 21(a), an azimuthally polarized beam
can be expressed by a superposition of two linearly polarized
HG beams with orthogonal polarizations, that is, HG01 mode
with x-polarization and HG10 mode with y-polarization.
Note that these HG beams have a line phase singularity.
Similarly, a radially polarized beam can be expressed by a
superposition of HG10 mode with x-polarization and HG01

mode with y-polarization as shown in Figure 21(b). Another
superposition is possible as shown in the right-hand side of
Figure 21. In these cases, radially and azimuthally polarized
beams are superpositions of circularly polarized LG01 beams
with inverse handedness of both spin and orbital angular
momenta, that is, right- and left-hand circularly polarized
LG01 beams superposed with beams carrying left- and right-
hand orbital angular momenta, respectively. Note that there
is π, phase shift between two left-handed circularly polarized
LG01 beams, namely, subtraction and addition in Figures
21(a) and 21(b), respectively.

These transformations between scalar and vector LG
beams have been experimentally demonstrated by Tidwell et
al. [90] using a Mach-Zehnder interferometer and a linearly
polarized Ar ion laser beam with a Gaussian intensity profile
(TEM00 mode). Although the manipulation of polarization is
not difficult, the production of higher transverse modes such
as HG01 and LG01 modes needed the use of unconventional
phase elements. For the HG01 mode, a half part of a TEM00

mode beam was passed through a tilted glass plate, whose
angle was adjusted to obtain a π phase shift between the
two semicircular parts of the beam. LG01 mode beams were

produced by passing a TEM00 mode beam through a spiral
phase delay plate, which had a spiral ramp made from thin-
film-coated glass plate resulting in the relative phase shift
of π. Although the synthesis of radially and azimuthally
polarized beams has been verified, there have still been some
drawbacks. The first method using two linearly polarized
HG01 beams was sensitive to the intensity profile error of
an input TEM00 mode beam. The second one using LG01

beams had a low conversion efficiency (<50%) because two
circularly polarized beams were combined by a conventional
polarization beam splitter for linear polarization. These
problems have been solved based on the fact that a linearly
polarized HG01 mode is a superposition of two linearly
polarized LG01 modes carrying inverse orbital angular
momenta [91]. Figure 22 shows the case for the generation
of an azimuthally polarized beam shown in Figure 20(a). In
Figure 22(a), a HG01 mode is expressed by a superposition
of two LG01 modes with inverse orbital angular momenta
and π-phase shift (subtraction). In the same manner, a
HG10 mode is expressed by an addition of two LG01 modes.
Since the polarizations are linear and the intensity patterns
are doughnut, the drawbacks in the previous methods are
improved. In addition, this method implies that vector LG01

beams with a polarization singularity on the beam axis can be
converted from scalar LG01 beams with a phase singularity
on the beam axis similar to the conversion shown on the
right-hand side of Figure 21. Some improvements based on
a similar principle have been demonstrated using a simpler
phase element [92] and a Sagnac’s interferometer [93].

The generation of pure radially and azimuthally polar-
ized beams directly from a laser cavity has also been
demonstrated [94] based on the same principle as shown
in Figure 21(b). In this experiment, HG01 and HG10 beams
are generated and combined in a laser cavity using linear
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−

LG01(x)LG01(x)HG01(x)

(a)

+

LG01(y)LG01(y)HG10(y)

(b)

Figure 22: Conversion between linearly polarized HG and LG modes.

polarization optics and a π-phase shifter. Recent progresses
on vector beams are reviewed [95].

In the following, we show that the conversion between
scalar and vector LG beams mentioned above is generally
concluded. The upper row of (9) can be expressed by a
superposition of two LG01 modes with opposite spin and
orbital angular momenta in the following way:
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where x and y are the unit vectors of the electric field for
the x and y directions in the orthogonal coordinate system,
respectively. In the same way, the lower row of (9) can be
expressed as
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The relation, x ± iy = (ρ cosφ − ϕ sinφ) ± i(ρ sinφ +
ϕ cosφ) = exp(±iφ)(ρ ± iϕ), played an important role in
the above conversion. The expression is indicative that a spin
angular momentum can be represented by an orbital angular
momentum, in other words, a polarization singularity is
related to a phase singularity. While (10) and (11) are the
derivation of a vector LG mode from scalar LG modes, the
derivation in the opposite way is also possible as shown in
the following:
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In the above expressions, circularly polarized LG modes are
derived by a superposition of two vector LG modes.

3.4.2. Bessel-Gaussian Beams. The electric fields of scalar
and vector BG beams, Es−BG

m (r,φ, z) and Ev−BG
m (r,φ, z),

respectively, are expressed by
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where β is a constant, Jm(u) is the Bessel function of the first
kind of order m, and u = βr/(1 + iz/z0). Tm(r,φ, z) has two
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families transverse electric field solutions TEm and transverse
magnetic field solution TMm [88], expressed by
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Equation (13) shows that a scalar BG beam with the Bessel
function of order m has a topological charge of m and
a point phase singularity on the beam axis except for
m = 0. On the other hand, vector BG beams have a
point polarization singularity on the beam axis except for
m = 1, where the order of the Bessel function is zero,
and the beam has a finite intensity on the beam axis.
Although the intensity distribution of vector BG beams is
more complicated compared to that of a vector LG beam,
the conversion between scalar and vector BG beams is also
possible. For example, the equation in the upper row of TEm

is derived by a superposition of four scalar BG beams with
circular polarization as mentioned below.
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Here we used the relation,

Es−BG
−m

(
r,φ, z

)
∝ Z

(
r,φ, z

)
i−mJ

−m(u) exp
(
−imφ

)

= Z
(
r,φ, z

)
imJm(u) exp

(
−imφ

)
.

(18)

In the similar way, other components of TEm and TMm are
represented by
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For m = 0, vector BG beams have pure azimuthal and radial
polarizations corresponding to TE0 and TM0 components,
respectively. In this case, the electric fields of both scalar
and vector BG beams include J1(u) only. Experimental
demonstration has been reported by a superposition of two
scalar BG beams with orthogonal polarization generated by
using a spatial light modulator [93].

4. Conclusion

In this paper we present a detailed analysis about the
interferograms that form optical vortex lattices and also
how these vortex lattices are used in the measurement
process. An example of the displacement of the vortex
cores in the lattice by the introduction of a wedge plate in
the interferometer is illustrated. The various vortex lattice
generation methods including the one based on multiple
pinhole diffraction and another using a shear interferometer
are presented. As far as beams with single optical vortex are
concerned, the role played by a single vortex in realizing
interferograms in polar coordinates and shear interferometry
in polar coordinates are dealt with. Interferograms of vortex-
infested beams with plane, spherical, and conical beams
and their applications are discussed. Finally, scalar beams
with phase singularity and vector beams with polarization
singularity are presented. The conversion between scalar
and vector LG beams and the conversion between linearly
polarized HG and LG modes are also illustrated. Realization
of radial and azimuthal polarization states by superposition
of orthogonally polarized beams are also discussed.
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