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Abstract

Aims/hypothesis Three hallmarks of the pancreatic islets in
early human type 1 diabetes are overexpression of HLA class
I, endoplasmic reticulum (ER) stress and beta cell apoptosis.
The mediators of these phenomena remain to be defined. The
type I interferon IFNα is expressed in human islets from type
1 diabetes patients and mediates HLA class I overexpression.
We presently evaluated the mechanisms involved in IFNα-
induced HLA class I expression in human beta cells and de-
termined whether this cytokine contributes to ER stress and
apoptosis.
Methods IFNα-induced inflammation, ER stress and apopto-
sis were evaluated by RT-PCR, western blot, immunofluores-
cence and nuclear dyes, and proteins involved in type I inter-
feron signalling were inhibited by small interfering RNAs. All
experiments were performed in human islets or human
EndoC-βH1 cells.

Results IFNα upregulates HLA class I, inflammation and ER
stress markers in human beta cells via activation of the candi-
date gene TYK2, and the transcription factors signal transducer
and activator of transcription 2 and IFN regulatory factor 9.
Furthermore, it acts synergistically with IL-1β to induce beta
cell apoptosis.
Conclusions/interpretation The innate immune effects in-
duced by IFNαmay induce and amplify the adaptive immune
response against human beta cells, indicating that IFNα has a
central role in the early phases of diabetes.

Keywords Apoptosis . ER stress . IFNα . MHC class I .
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I IFN signalling
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TUDCA Tauroursodeoxycholic acid
USP18 Ubiquitin-specific peptidase 18
XBP1 X-box binding protein 1
XBP1s Spliced isoform of XBP1

Introduction

Three hallmarks of the pancreatic islets in early human type 1
diabetes and in mouse models of the disease are overexpres-
sion of HLA class I [1, 2], presence of markers of endoplasmic
reticulum (ER) stress [3–5] and beta cell apoptosis [6]. The
mediator(s) of these phenomena, however, remain(s) to be
defined.

The cytokine IFNα, a member of the type I IFN family, is
expressed in human islets from patients with type 1 diabetes
[7–10] and in the pancreas of NOD mice [11–13]. Children
genetically at risk for type 1 diabetes present a type I IFN-
inducible transcriptional signature that precedes the develop-
ment of autoantibodies [14, 15], and IFNα plays a major role
as mediator of HLA class overexpression in human islet cells,
a key event in early type 1 diabetes [16, 17]. Laser-captured
islets obtained from living donors with recent onset type 1
diabetes showed a significant increase in nearly 50% of the
IFN-stimulated genes (ISGs) evaluated [18]. Neutralisation of
the IFNα/β receptor (IFNAR1) with monoclonal antibodies
prevents diabetes in NOD mice [13, 19] and self-reactive an-
tibodies targeting type I IFNs—particularly IFNα—are asso-
ciated with protection against type 1 diabetes in patients with
mutations in the thymus transcription factor autoimmune reg-
ulator (AIRE) [20]. It is surprising that very few studies have
investigated the direct effects of this cytokine in pancreatic
beta cells [21–23].

We presently tested the hypothesis that IFNα is a common
mediator of HLA class I overexpression, ER stress and beta
cell apoptosis in early type 1 diabetes, and evaluated the signal
transduction mediating these effects. All experiments were
performed in human pancreatic islets and the human insulin-
producing cell line EndoC-βH1 [24], increasing their transla-
tional potential [25–28]. The data obtained indicate that IFNα
is a crucial mediator of excessive inflammation and ER stress
in the early steps of type 1 diabetes.

Methods

Culture of human EndoC-βH1 beta cells and human islets,

and cell treatments The human beta cell line EndoC-βH1
(kindly provided by R. Scharfmann, Centre de Recherche de
l’Institut du Cerveau et de la Moelle Épinière, Paris, France)
was cultured in Matrigel-fibronectin-coated plates [24].
MycoAlert Mycoplasma Detection kit (Lonza, Basel,
Switzerland) was used to test for mycoplasma infection.

EndoC-βH1 cells have been shown to be free of mycoplasma
infection.

Human islets from 12 non-diabetic organ donors (ESM
Table 1) were isolated with the agreement of the local
Ethical Committee in Pisa, Italy and sent to Brussels for ex-
periments (see ESM Methods). Human islets or EndoC-βH1
cells were exposed to cytokines or other agents as described in
ESM Methods [23, 26].

RNA interference Conditions for small interfering RNA
(siRNA) transfection using Lipofectamine RNAiMAX lipid
reagent (Invitrogen, Carlsbad, CA, USA) and optimal siRNA
concentration (30 nmol/l) were established previously [29].
Allstars Negative Control siRNA (Qiagen, Venlo, the
Netherlands) was used as a negative control (siCTRL); see
ESM Methods for further details. siRNAs against TYK2,
STAT1, STAT2, IRF9, USP18, PTPN2, and CHOP were used
in this study (a list with further information is provided in
ESM Table 2).

Assessment of cell viability Cell viability was determined
after staining with the DNA-binding dyes Hoechst 33342
(HO) and propidium iodide (PI) as described [29, 30]. See
ESM Methods.

mRNA extraction and real-time PCR Poly(A)+ mRNA ex-
traction was performed using Dynabeads mRNADIRECT kit
(Invitrogen) in accordance with the manufacturer’s instruc-
tions; reverse transcription was carried out as described [23].
Quantitative real-time PCR was performed using SYBR
Green and the data were compared with a standard curve
[31]. Expression values were corrected by the housekeeping
gene β-actin, as its expression is not modified under the con-
ditions used in this study [23] (data not shown). A list with the
primers used in this study is provided in ESM Table 3.

Western blot analysis, immunofluorescence and flow cy-

tometry Western blotting was performed as described [23].
Briefly, cells were washed with cold PBS and lysed in
Laemmli or RIPA buffer. Immunoblot analysis was performed
with antibodies against signal transducer and activator of tran-
scription (STAT) 1–3 and their phosphorylated forms, MHC
class I, interferon regulatory factor 9 (IRF9), activating tran-
scription factor 3 (ATF3), X-box binding protein 1 (XBP1),
phosphorylated eukaryotic initiation factor 2 (p-eIF2α), bind-
ing immunoglobulin protein (BIP), insulin (all at 1:1000 dilu-
tion) and α-tubulin (1:5000; see ESM Table 4). Peroxidase-
conjugated antibodies (1:5000) were used as secondary anti-
bodies. SuperSignal West Femto chemiluminescent substrate
(Thermo Scientific, Rockford, IL, USA) and ChemiDoc
XRS+ (Bio-Rad Laboratories, Temse, Belgium) were used
to detect bands and Image Lab software (version 3.0, Bio-
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Rad Laboratories, Temse, Belgium) was used for densitome-
try analysis.

Immunofluorescence was performed as described [23].
Briefly, cells were plated on polylysine-coated coverslips,
treated with intracellular IFNα for 24 h and fixed with 4%
paraformaldehyde. Cells were permeabilised and incubated
with rabbit anti-MHC class I (W6/32) (1:1000) or mouse
monoclonal anti-insulin (1:1000). Alexa Fluor-conjugated
secondary antibodies were used (see ESM Table 4). After
nuclear staining with HO, coverslips were mounted with
fluorescent mounting medium (Dako, Carpintera, CA, USA)
and immunofluorescence was visualised on a Zeiss micro-
scope equipped with a camera (Zeiss-Vision, Munich,
Germany). Images were acquired at ×20 or ×40 magnification
and analysed using AxiVision software (version 4.7.2; Zeiss-
Vision, Munich, Germany). Images (magnification ×20) were
quantified using FIJI software (version 2.0; https://fiji.sc) and
calculated as (mean of fluorescence / number of cells) × 100.

The same protocol used for immunofluorescence, but with-
out permeabilisation, was used for flow cytometry. Cells were
detached by a mild Accutase (Sigma-Aldrich, Schnelldorf,
Germany) treatment and then suspended in 2% paraformalde-
hyde and EDTA-containing PBS and analysed by flow cytom-
etry (FacsCanto; BD Biosciences, San Jose, CA, USA).
Analysis was performed using FACSDiva software version
1.0 (BD Biosciences, San Jose, CA, USA). The cellular pop-
ulations were selected based on size and cell granularity and
were analysed for BV421 fluorescence.

Antibodies have been previously validated by our group.

Statistical analysis Data are shown as means ± SEM or pre-
sented as box plots indicating lower quartile, median and
higher quartile, with whiskers representing the range of the
remaining data points. Comparisons were performed by two-
tailed paired t test or by ANOVA followed by paired t test with
Bonferroni correction, as indicated. Results with p<0.05 were
considered significant.

Results

IFNα activates STAT pathways that increase expression of

MHC class I protein and inflammatorymarkers in human

beta cells IFNα activated STAT1, STAT2 and STAT3; the
maximum effect was observed at 1–2 h post treatment and
returned to baseline by 24 h (Fig. 1a). At later time points (8
and 24 h), IFNα induced the expression of IRF9, an essential
protein for IFNα signal transduction [32] (Fig. 1a), and of
MHC class I expression at mRNA and protein levels in
EndoC-βH1 cells and dispersed human islets (Fig. 1b–d, g).
IFNα also increased, at 4–8 h, expression of mRNAs
encoding for the chemokine C-X-C motif chemokine ligand
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Fig. 1 IFNα activates STAT pathways and increases inflammatory and
innate immune response markers and MHC class I expression in human
beta cells. EndoC-βH1 (a–f) or dispersed human islets (g) were left un-
treated or were treated with IFNα (2000 U/ml) for 1–24 h (a–f) or 24 h
(g). (a) Protein expression was measured by western blot. Images are
representative of three independent experiments. (b, c) MHC class I pro-
tein expression was analysed by immunocytochemistry (ICC).
Representative images of three independent experiments (magnification
×40) (b) and quantification (c) is shown. (d–f) mRNA expression of
HLA-ABC (d), CXCL10 (e) and MX1 (f) was analysed by RT-PCR and
normalised by β-actin. In (d), values were normalised by control (0 h),
considered as 1. In (e) and (f), values were normalised by the highest
value of each experiment (considered as 1). Results are means ± SEM of
three to six independent experiments. *p < 0.05, **p < 0.01 and
***p < 0.001 vs untreated (ANOVA). (g) ICC of MHC class I (red),
insulin (green) and HO (blue) was performed to confirm MHC class I
expression in two dispersed human islet preparations (magnification ×40)
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10 (CXCL10) and the antiviral protein MX dynamin like
GTPase 1 (MX1) (Fig. 1e, f).

IFNα and IFNγ similarly induced MHC class I expression
(around 15-fold increase above basal), while IL-1β showed
no effect (ESM Fig. 1b, c) and polyinosinic-polycytidylic acid
(PIC) only a twofold-increased effect. Expression of MHC
class I was not associated with apoptosis in EndoC-βH1 cells
(ESM Fig. 1a).

Flow cytometry analysis showed that IFNα induced a
dose-dependent (starting at 2 U/ml) increase in MHC class I
surface expression (ESM Fig. 2a–c) and HLA-ABC and
CXCL10 (ESM Fig. 2d, e) mRNA expression.

IFNα increases ER stress markers in human beta cells

Exposure of EndoC-βH1 cells to IFNα for 24 h upregulated
expression ofmRNAs and proteins for the following ER stress
markers (an outline of the evaluated ER stress markers is
depicted in Fig. 2a): DNA damage inducible transcript 3
(encoded by CHOP, also known as DDIT3) (Fig. 2b), ATF3
(Fig. 2c, f, h), heat shock protein family A (Hsp70) member 5

(encoded by BIP, also known asHSPA5) (Fig. 2d, f, i), spliced
isoform of XBP1 (XBP1s, encoded by XBP1s; Fig. 2e, f, j)
and phosphorylated eIF2α (Fig. 2f, g). Expression of CHOP
was also induced in EndoC-βH1 cells by 20–200 U/ml of
IFNα (ESM Fig. 3). There was an early (1 h) and transitory
increase in phosphorylated EIF2α and its downstream protein
ATF3 (Fig. 2f–h). In contrast, XBP1s and BIP protein expres-
sion was augmented after 4 h and remained increased until
24 h (Fig. 2f, i, j).

IFNα-induced inflammation and ER stress response is

abolished by tyrosine kinase 2 knockdown in human beta

cells TYK2, a candidate gene for type 1 diabetes, contributes to
the activation of the type I IFN pathway and regulation of
MHC class I expression in human beta cells [23]. Tyrosine
kinase 2 (TYK2) knockdown prevented IFNα-induced MHC
class I protein expression in EndoC-βH1 cells (ESM
Fig. 4a, c) and dispersed human islets (ESM Fig. 4b, d) and
also partially or completely prevented induction of CXCL10
(Fig. 3a, g),MX1 (Fig. 3b, h) and the ER stress markersCHOP
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Fig. 2 IFNα increases ER stress
markers in EndoC-βH1 cells. (a)
Schematic representation of the
ER stress markers measured.
IRE1, inositol-requiring protein 1;
PERK, protein kinase RNA-like
endoplasmic reticulum kinase.
(b–j) EndoC-βH1 cells were left
untreated or were treated with
IFNα (2000 U/ml). mRNA
expression of CHOP (b), ATF3
(c), BIP (d) and XBP1s (e) was
analysed by RT-PCR, normalised
byβ-actin and then by the highest
value of each experiment
(considered as 1). Protein
expression was measured by
western blotting and
representative images of four
independent experiments are
shown (f). Densitometry results
are shown for p-EIF2α (g), ATF3
(h), BIP (i) and XBP1s (j). Values
were normalised by α-tubulin (α-
tub), and then by the highest value
of each experiment (considered as
1). Results are means ± SEM of
four to six independent
experiments. *p< 0.05,
**p< 0.01 and ***p < 0.001 vs
untreated (ANOVA)
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(Fig. 3c, i), ATF3 (Fig. 3d, j) BIP (Fig. 3e, k) and XBP1s

(Fig. 3f, l) by IFNα.

STAT2 and IRF9, but not STAT1, are important mediators

of IFNα-induced inflammation and ER stress markers in

human beta cells Type I IFN binding to its receptor activates
TYK2, which in turn phosphorylates STAT1 and STAT2 [32].
Surprisingly, STAT1 knockdown (≥70% at mRNA and pro-
tein levels; Fig. 4a, l and ESM Fig. 5a, b) failed to decrease
IFNα-induced MHC class I expression at mRNA or protein
levels in EndoC-βH1 cells (Fig. 4c–e). This was paralleled by
increased expression of CXCL10 (Fig. 4f),MX1 (Fig. 4g) and
ER stress markers (Fig. 4h–k), especially CHOP and ATF3.
STAT1 knockdown, however, prevented IFNγ-induced HLA
class I and CXCL10 expression (ESM Fig. 5d, e), indicating
that the level of STAT1 inhibition reached was sufficient to
block its downstream effects.

Knockdown of STAT2 and double knockdown of STAT1
and 2 (≥60% and ≥70%, respectively; Fig. 4a, b, l), almost
completely prevented IFNα-induced expression of MHC
class I (Fig. 4c–e), CXCL10 (Fig. 4f) and MX1 (Fig. 4g),

and ER stress markers (Fig. 4h–k). STAT2 knockdown led
to STAT1 overactivation, and vice versa, suggesting a com-
pensatory effect between them (Fig. 4l). This may explain the
observed increment in CXCL10 and MX1 mRNA expression
after STAT1 knockdown. These results were confirmed in
dispersed human islets (Fig. 5), where only STAT2 knock-
down (≥80% at mRNA and ≥50% at protein level;
Fig. 5b, i) decreased IFNα-induced inflammatory and ER
stress markers (Fig. 5f–h), whereas STAT1 knockdown
(≥80% at mRNA and protein levels; Fig. 5a, i) increased ex-
pression of CXCL10 (Fig. 5d) and MX1 (Fig. 5e) mRNA.

STAT2 dimerises with IRF9 in the absence of STAT1; this
dimer subsequently binds to the IFN-stimulated response ele-
ment (ISRE) and mediates downstream signal transduction
[33]. Knockdown of IRF9 (≥60% at mRNA and ≥80% at
protein level; Fig. 6b, ESM Fig. 6) and double knockdown
of STAT2 and IRF9 (Fig. 6a, b and ESM Fig. 6) decreased
IFNα-induced HLA-ABC, CXCL10 and MX1 (Fig. 6c–e) and
ER stress markers (Fig. 6f–i) mRNA levels to the same extent
as STAT2 knockdown alone, indicating that both are part of
the same signalling pathway. No change in apoptotic rate was

Fig. 3 TYK2 inhibition prevents
IFNα-induced inflammation and
ER stress markers in human beta
cells. EndoC-βH1 cells (a–f) and
dispersed human islets (g–l) were
transfected with siCTRL (black
bars) or with siRNA targeting
TYK2 (white bars). Cells were left
untreated or were treated with
IFNα (2000 U/ml) for 24 h
(EndoC-βH1 cells) or 24 and 48 h
(dispersed human islets). mRNA
expression of CXCL10 (a, g),
MX1 (b, h), CHOP (c, i), ATF3
(d, j), BIP (e, k) and XBP1s (f, l)
was analysed by RT-PCR and
normalised by β-actin. In (a–h),
values were normalised by the
highest value of each experiment
(considered as 1). In (i–l), values
were normalised by siCTRL
(black bars, non-treated),
considered as 1. Results are
means ± SEM of three or four
independent experiments.
*p< 0.05, **p< 0.01 and
***p< 0.001 vs untreated and
transfected with the same siRNA;
†p < 0.05, ††p< 0.01 and
†††p< 0.001, as indicated by bars
(ANOVA)
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observed after knockdown of STAT1, STAT2 or IRF9 (or
combinations of them) in EndoC-βH1 cells, or after knock-
down of STAT1 or STAT2 in dispersed human islets treated
(or not) with IFNα (data not shown).

Inhibition of ubiquitin-specific peptidase 18 overstimulates

type I IFN signalling and increases ER stress and inflamma-

tion markers in beta cells Inhibition of ubiquitin-specific

peptidase 18 (USP18) induces beta cell inflammation and ap-
optosis upon IFNα treatment by exacerbating IFN-induced
phosphorylation of STATs [34]. To determine whether this
would also augment IFN-induced ER stress, we knocked
down USP18 in EndoC-βH1 cells. USP18-silenced cells
(≥50% at mRNA level; Fig. 7a) treated with IFNα had in-
creased levels of p-STAT2 and p-STAT1 (five- and twofold,
respectively) (Fig. 7b–d), higher prevalence of apoptosis
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grey bars) and STAT1/2 (dark-
grey bars). Cells were left
untreated or were treated with
IFNα (2000 U/ml) for 24 h (a–k)
or for different lengths of time (l).
mRNA expression of STAT1 (a),
STAT2 (b), HLA-ABC (c),
CXCL10 (f),MX1 (g), CHOP (h),
ATF3 (i), BIP (j) and XBP1s (k)
was analysed by RT-PCR and
normalised by β-actin. In (f, j, k),
values were normalised by
siCTRL (black bars treated with
IFNα), considered as 1. (d, e)
immunocytochemistry (ICC) of
MHC class I (red) and HO (blue)
in EndoC-βH1 cells
(magnification ×40);
representative images of four
independent experiments (d) and
quantification (e) are shown.
Results are means ± SEM of three
or four independent experiments.
**p< 0.01 and ***p < 0.001 vs
untreated and transfected with the
same siRNA; †p< 0.05, ††p< 0.01
and †††p< 0.001, as indicated by
bars (ANOVA). In (l), protein
expression was measured by
western blot; representative
images of three independent
experiments are shown
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(Fig. 7e) and increased mRNA expression of HLA-ABC
(threefold, Fig. 7f), CXCL10 (50-fold, Fig. 7g) and MX1

(threefold, Fig. 7h) and at least threefold higher ER stress
markers (Fig. 7i–l), compared with control cells.

On the other hand, PTPN2 (a candidate gene for type 1
diabetes), which encodes protein tyrosine phosphatase, non-
receptor type 2, a protein phosphatase that dephosphorylates
members of the Janus kinase (JAK)/STAT family but not
TYK2 or STAT2 [23], did not affect IFNα-induced HLA-

ABC, inflammation and ER stress marker mRNA expression
in EndoC-βH1 cells (ESM Fig. 7).

IFNα sensitises human beta cells against IL-1β-induced

apoptosis at least in part via increased ER stress Mild ER
stress increases the expression of inflammatory mediators and
sensitises rat beta cells to IL-1β-induced apoptosis [35]. As
previously observed (ESM Fig. 1), neither IFNα nor IL-1β
alone induced apoptosis. The combination of both cytokines,
however, increased cell death in a dose-dependent manner
(Fig. 8a). IFNα alone, but not IL-1β, induced the expression
of HLA-ABC,MX1 and CXCL10 mRNA, even at low concen-
trations (200 U/ml) (Fig. 8b–d). The two cytokines only acted
synergistically in the case of CXCL10 (Fig. 8c). The combina-
tion of cytokines, mainly at their highest concentrations, led to
a significant increase in ER stress markers when compared with
IFNα or IL-1β alone (Fig. 8e–h). Similarly to the observations
made in EndoC-βH1 cells, treatment with IFNα or IL-1β sep-
arately did not induce apoptosis in dispersed human islets,
while treatment with IFNα plus IL-1β doubled beta cell death
after treatment for 24 h (Fig. 8i).

Silencing of CHOP or pre-treatment with the chemical chap-
erone tauroursodeoxycholic acid (TUDCA) partially prevented
apoptosis induced by a combination of IFNα and IL-1β in
EndoC-βH1 cells, suggesting that IFNα+IL-1β-induced apo-
ptosis is at least in part mediated by ER stress (ESM Fig. 8).

Discussion

Type 1 diabetes is a multifactorial autoimmune disease in
which an individual’s genetic background interacts with envi-
ronmental cues, leading to islet inflammation (insulitis), am-
plification of this early innate immune response and, in some
cases, transition to a long-term adaptive autoimmune attack
against the beta cells [6]. The nature of the first components of
the innate immune response and their contribution towards the
transition to a full autoimmune response remains to be deter-
mined [6, 36].

Type I IFNs may be key links between environmental and
genetic risk factors in type 1 diabetes and the triggering/
amplification of insulitis [36]. Thus, pathway analysis of type
1 diabetes candidate genes expressed in human pancreatic
islets identified ‘interferon signalling’, ‘role of JAK1, JAK2
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and TYK2 in IFN signalling’ and ‘role of pattern recognition
receptors in recognition of bacteria and virus’ as the three top
canonical pathways [23]. TYK2, a candidate gene for type 1
diabetes, regulates both PIC- (a mimic of double-stranded
RNA produced during viral infection) and IFNα-induced
MHC class I expression and inflammation in human beta cells
[23]. Furthermore, histological analysis and other approaches
have identified higher expression of type I IFNs in islets from
patients with type 1 diabetes [7–10], and self-reactive antibod-
ies targeting type I IFNs are associated with protection against
type 1 diabetes in patients with an autoimmune syndrome
[20].

Three hallmarks of the pancreatic islets in early human type
1 diabetes are overexpression of HLA class I [1, 2], ER stress
[3, 37] and beta cell apoptosis [6], and we presently show that
IFNα induces or contributes to these three phenomena in hu-
man beta cells.

Combinations of the pro-inflammatory cytokines IL-1β,
TNFα and IFNγ, which probably appear later in the progres-
sion of islet inflammation as compared with IFNα, induce ER
stress in beta cells. ER stress might contribute to the magnifi-
cation of apoptotic pathways, exacerbation of inflammation
and increased antigen presentation in the context of type 1

diabetes [26, 37, 38]. Here, we report for the first time that
IFNα alone upregulates expression of several ER stress
markers, including p-EIF2α, XBP1s, BIP, C/EBP homolo-
gous protein (CHOP) and ATF3. Although not sufficient by
itself to induce beta cell death, ER stress contributes to human
beta cell death when these cells are exposed to IFNα plus IL-
1β, as demonstrated by the partial protection afforded by
knockdown of the pro-apoptotic transcription factor CHOP
or co-culture of the cells with the chemical chaperone
TUDCA (present data). Importantly, TUDCA administration
was found to provide protection against diabetes in twomouse
models of the disease [5].

Data from other tissues have already indicated a possible
crosstalk between type I IFNs and ER stress: ER stress en-
hances IFNβ induction in PIC-treated macrophages [39] and
potentiates PIC-induced expression of IFNβ and other inflam-
matory cytokines in dendritic cells [40]. Furthermore, PIC-
induced overexpression of ISGs triggers ER stress in HeLa
cells [41].

To better understand the mechanisms underlying IFNα-
mediated signalling in human beta cells, we silenced the dif-
ferent proteins involved in the type I IFN pathway (Fig. 8j),
including TYK2, STATs, and IRF9. Inhibition of TYK2, a key
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link between the type I IFN receptor and its downstream sig-
nalling, decreased IFNα-induced expression of ER stress
marker genes, mainly CHOP and ATF3, and prevented
CXCL10 and MX1 expression. Inhibition of the transcription
factors STAT2 and IRF9 prevented IFNα-induced expression
of HLA class I, and inflammation and ER stress markers,
suggesting that these two proteins are critical for the activity
of IFNα in beta cells. Unexpectedly, STAT1 inhibition not
only failed to decrease the expression of these markers but
also actually increased the expression of CXCL10, MX1 and
ATF3. STAT1-silenced cells presented higher p-STAT2 ex-
pression, suggesting a compensatory activation of STAT2
once STAT1 is blocked, apparently increasing markers of in-
flammation and ER stress. The same was the case when
STAT2 was blocked: there was an increase in STAT1 activa-
tion but in this case upregulation of STAT1 did not prevent
inhibition of the downstream effects of IFNα (Figs 3 and 4).
Primary murine macrophages deficient in STAT1, when

exposed to Legionella pneumophila in the presence of type I
IFNs, induce a complex between STAT2 and IRF9 that trig-
gers a potent but delayed IFN response against the bacteria
[33]. This indicates that both STATs are functionally redun-
dant in macrophages [33]. Our present data, however, suggest
that the roles of STAT1 and STAT2 are not redundant in beta
cells, as the observed increase in STAT1 activation is not suf-
ficient to compensate for the lack of STAT2.

A very recent study has shown that HLA hyperexpression is
strongly correlated with STAT1 expression in beta cell-
containing islets from type 1 diabetes patients [1]. STAT2 was
not investigated in this study. The present data suggest that
STAT1 is important for IFNγ-inducedHLA class I upregulation,
but not for IFNα, which acts mainly via STAT2. Collectively,
these observations suggest that HLA overexpression in the islets
of patients developing type 1 diabetes may be regulated by dif-
ferent mechanisms at different stages of the disease. In the early
stage, IFNα-induced HLA upregulation may require mostly the
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TYK2–STAT2–IRF9 axis, while at a later stage there may be a
second wave of induction promoted by immune-cell-produced
IFNγ via STAT1 and downstream mediators.

Taken together, the above observations indicate that the
following steps are crucial for IFNα signalling in beta cells
(Fig. 8j). Upon exposure to ‘danger signals’ (e.g. viral

infection or other exogenous or endogenous mediators that
remain to be determined; [10, 36, 42, 43]), production and
release of type I IFNs (IFNα/β) is triggered in beta cells and
neighbour cells, exerting both autocrine and paracrine effects.
IFNα binds to the IFNAR1 and activates the type I IFN path-
way, in which the TYK2–STAT2–IRF9 axis plays a critical
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role. This activation induces a massive expression of ISGs,
hyperexpression of MHC class I proteins and an increase in
the chemokine CXCL10. Conjunction of these factors with a
genetic predisposition to type 1 diabetes (for instance, in-
creased expression of TYK2) places the beta cells in a delicate
situation: on one hand, the increase in CXCL10 expression
attracts monocytes, T lymphocytes and natural killer cells [6],
and on the other, upregulation ofMHC class I and the putative
induction of modified autoantigens by ER stress increases the
efficiency of presentation of beta cell antigens to the immune
cells [44]. All these effects may be secondary to local release
of IFNα. Importantly, IFNα also sensitises beta cells to IL-1β
released by activated macrophages during early insulitis, in-
creasing beta cell death and consequent antigen presentation.
This places IFNα as a central modulator of excessive inflam-
matory and ER stress responses in the early stages of type 1
diabetes, contributing to the progressive destruction of pan-
creatic beta cells and to the triggering of autoimmunity in
genetically predisposed individuals. Thus, targeting IFNα in
type 1 diabetes may be a promising adjuvant therapy in the
very early stages of the disease.
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