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We report on a quantitative analysis of electrocorticography data from a study that acquired continuous ambulatory recordings in

humans over extended periods of time. The objectives were to examine patterns of seizures and spontaneous interictal spikes, their

relationship to each other, and the nature of periodic variation. The recorded data were originally acquired for the purpose of

seizure prediction, and were subsequently analysed in further detail. A detection algorithm identified potential seizure activity and a

template matched filter was used to locate spikes. Seizure events were confirmed manually and classified as either clinically

correlated, electroencephalographically identical but not clinically correlated, or subclinical. We found that spike rate was signifi-

cantly altered prior to seizure in 9 out of 15 subjects. Increased pre-ictal spike rate was linked to improved predictability; however,

spike rate was also shown to decrease before seizure (in 6 out of the 9 subjects). The probability distribution of spikes and seizures

were notably similar, i.e. at times of high seizure likelihood the probability of epileptic spiking also increased. Both spikes and

seizures showed clear evidence of circadian regulation and, for some subjects, there were also longer term patterns visible over

weeks to months. Patterns of spike and seizure occurrence were highly subject-specific. The pre-ictal decrease in spike rate is not

consistent with spikes promoting seizures. However, the fact that spikes and seizures demonstrate similar probability distributions

suggests they are not wholly independent processes. It is possible spikes actively inhibit seizures, or that a decreased spike rate is a

secondary symptom of the brain approaching seizure. If spike rate is modulated by common regulatory factors as seizures then

spikes may be useful biomarkers of cortical excitability.
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Introduction
Epilepsy is one of the most common severe neurological

diseases, and is characterized by an increased likelihood

for the brain to enter seizure states (Duncan et al., 2006).

A key goal in the treatment of epilepsy is to predict when

seizures are likely to occur. Developing prediction strategies

is extremely challenging due to the patient-specific causes of

seizures, and the difficulty in obtaining long-term data.

While much work is focused on activity at the level of

individual neurons or interacting networks over short

time periods, valuable insight about seizure dynamics may

also be gained from studying long-term, higher-level statis-

tics. The integration of all available information over a

broad range of spatial and temporal scales is vital to

achieving accurate seizure prediction.

Seizures are not sudden events, but may follow a build-

up period where the brain’s state is altered over the pre-

ceding hours to days (Litt et al., 2001; Badawy et al.,

2009). Studies of inter-seizure interval distributions also

suggest that past events influence the timing or dynamics

of future events over periods of up to weeks and months

(Osorio et al., 2009; Cook et al., 2014). For close to a

century, it has been recognized that seizure occurrence

demonstrates temporal patterns, following circadian and

ultradian cycles (Langdon-Down and Russell Brain, 1929;

Griffiths and Fox, 1938). However, surprisingly little is

known about the cause of this oscillatory behaviour, in

particular long-term rhythms that presumably have an

underlying hormonal factor. While a slow build-up to seiz-

ure onset may blur the temporal precision of prediction

algorithms, this long-range temporal dependency also pro-

vides a clear avenue for enhancing prediction using pattern

recognition and long-term recordings.

Another challenge for seizure prediction is that seizures

are difficult to define electroencephalographically. Seizures

with clinical symptoms are often only a small proportion of

all abnormal electrical activity in the brain, which includes

subclinical seizures, interictal spikes, bursts and high-

frequency oscillation. It remains unclear precisely how (or

even if) seizures are related to this broader range of epilep-

tic activity. Elucidating this relationship may provide valu-

able information for seizure prediction strategies. The

current work addresses the relationship between seizures

and interictal spikes.

Interictal spikes arise from the synchronous firing of a

hyperexcitable population of neurons and are considered

an abnormal electrical phenomenon. Spikes are associated

with epilepsy (Ward, 1959; Ayala et al., 1973; Schulze-

Bonhage, 2011); however, there is conflicting evidence re-

garding the relationship between spiking and ictogenesis

(Gotman, 1991; De Curtis and Avanzini, 2001; Avoli et

al., 2006). One hypothesis is that increased neural excit-

ability promotes epileptic spikes, which may reach a critical

spatial or temporal density and lead to seizure (Jensen and

Yaari, 1988; De Curtis and Avanzini, 2001). Previous

results have suggested there is a predictive or causal rela-

tionship between interictal spikes and ictogenesis (Ayala et

al., 1973; Avoli et al., 2002; Uva et al., 2005). However,

there is relatively little experimental evidence supporting

the conjecture that spikes precede ictal onset, in particular

from studies based on human tissue recordings (De Curtis

and Avanzini, 2001; Avoli et al., 2006).

In contrast with the aforementioned studies, there are

also reports showing that spike rate is largely unchanged

or even reduced prior to seizures (Engel and Ackermann,

1980; Gotman and Marciani, 1985; Librizzi and de Curtis,

2003). This suggests that spikes may provide some protect-

ive benefit against seizures. The spike is often followed by a

period of hyper-polarization, which may contribute to lim-

iting the frequency of periodic interictal activity

(Matsumoto and Marsan, 1964). Alternatively, spontan-

eous interictal discharge may provide regulatory, low-level

excitation to forestall the transition to seizure (De Curtis

and Avanzini, 2001; Avoli et al., 2006). There may also be

a secondary mechanism that influences patterns of both

spikes and seizures.

The conflicting reports regarding the interaction between

epileptic spikes and seizures indicates a complex relation-

ship. This study investigates patterns of activity of seizures,

spikes, and the relationship between the two. Data for the

study were obtained from intracranial EEG from humans

that were acquired during a clinical trial for an implanta-

ble, advance warning system for seizure (Cook et al.,

2013). The data were recorded over time periods ranging

from 6 months to 2 years and covered tens to thousands of

seizures per subject (both clinical and subclinical). This

study represents the first analysis of interictal spike activity

over such a long period in humans and the first opportun-

ity to understand the relationship between interictal epilep-

tic spikes and seizures.

Materials and methods

Data

For a more detailed account of the data collection procedures
and demographics of the 15 subjects, the reader is referred to
Cook et al. (2013). In short, two electrode arrays with a total
of 16 platinum iridium contacts in moulded silicone carriers
were implanted on the cortical surface. The arrays were placed
over the region assumed to contain the epileptogenic zone
based on prior imaging or clinical history. Electrode leads
were tunnelled to an implanted telemetry unit located under
the clavicle. The telemetry unit sampled 16 channels of EEG at
a rate of 400Hz that was wirelessly relayed to an external,
portable personal advisory device. The personal advisory
device stored the EEG for later analysis and was also capable
of creating audio recordings that were used in subsequent seiz-
ure detection.
Seizure detection was initially undertaken by clinical staff

then verified by expert investigators with the aid of the sub-
jects’ seizure diaries, device audio recordings, and a previously
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validated automated seizure detection algorithm (Gardner et
al., 2006). Ictal events were classified as either being present
in the EEG and associated with clinical symptoms (type 1), not
clinically evident but located using the EEG recording and
electroencephalographically indistinguishable from clinical
seizures (type 2), or having no clinical correlation (either symp-
tomatic or electrographic) but appearing as abnormal events in
the EEG (type 3). Events that were clinically reported but not
demonstrated in the EEG were discounted from the analysis.
Every detected event was reviewed by study investigators in
order to eliminate false positives.

Automated spike detection

There are many reported methods that are applied to the prob-
lem of automated spike detection in intracranial EEG data and
no consensus on the most reliable method exists (Wilson and
Emerson, 2002). In this study, a template matching algorithm
was applied. The spike template was set to a fixed length of
0.3 s and the template window was advanced through the EEG
by one sample (2.5ms). The initial spike template was set for
each subject by hand-selecting and averaging 10–20 spikes.
New spikes could then be detected and added to the initial
template.
The match between the template, x, and each 300ms of

intracranial EEG, y, was defined as the magnitude of the
sample correlation, jrxyj, where

rxy ¼

Xn

i¼1
ðxi � xÞðyi � yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i¼1
xi � xð Þ2

Xn

i¼1
yi � yð Þ2

r

and n is the number of samples in the window (n ¼ 120 for a
sampling rate of 400Hz).
To add to the initial, hand-selected template, a first pass over

the data was performed at a high threshold (rxy ¼ 0:96 to 0:98
depending on the subject). The first pass was terminated when
a final template containing 100 spikes was obtained. This pro-
cess of creating a final template was repeated at semi-regular
intervals of days to weeks (dependent on the size of the stored
data epochs) throughout the trial, to capture long-term vari-
ation in spike shape. The final template was used in the detec-
tion algorithm. A spike was detected when rxy >0:85 and the
spike amplitude exceeded the background mean by a sufficient
amount. The background mean was defined as the channel
average over the previous 1 s window. Candidate spikes were
required to be within � (0.5� final template height) of the
background mean. The background threshold helped minimize
the false positive rate due to artefact or other oscillations that
contained smaller but similar shapes. A graphical representa-
tion of the detection algorithm is shown in Fig. 1. The figure
shows that tuning the detection threshold gives the same
output pattern but alters the balance of false positives and
false negatives. There is no way to eliminate these errors, how-
ever, as this study was investigating long-term patterns of ac-
tivity the detection method is appropriate. Detection was
carried out separately for each channel and spikes were time
stamped (according to UTC/GMT) to the nearest 0.1 s. Ictal
periods were excluded from spike detection.
Automated spike detection was validated by comparing the

algorithm output to expert annotation in randomly selected,
1 h data segments. Data segments were selected to evenly cover

periods that were interictal, pre-ictal, and during night and
day. The total spike count, true positive rate (TPR) and false
positive rate (FPR) were evaluated. True positive rate was the
number of marked spikes that were also detected by the algo-
rithm, divided by the total marked spikes. False positive rate
was the number of detected but unmarked spikes, divided by
the total detected spikes.
There is no clear definition that can enable different experts

to reliably identify interictal spikes in EEG. A recent study to
validate a spike detection algorithm found that two expert
detections showed only 41% agreement (Gaspard et al.,
2014). We designed our detection algorithm to err on the
side of over-counting spikes, under the assumption that false
positives would be evenly distributed, or at least would not
strongly bias the distribution of true positives. The benefit of
using a template-matching algorithm is that false positives are
quantifiably ‘spike-like’ in morphology. Therefore, false detec-
tions may still reflect epileptic activity of interest (such as
bursting).

Statistical analysis

Except where otherwise indicated, statistical analyses were car-
ried out using MATLAB (version 7.10.0, R2013b, The
Mathworks Inc., MA, USA). Spike data were analysed in
terms of the rate over various time intervals, from minutes
to days. Due to the automated detection algorithm, all ex-
tracted spike epochs were the same duration (300ms).
A number of approaches were used to investigate the peri-

odicity of spike rate and seizures. Colour-coded raster plots
were used to display every seizure for each patient over the
trial duration for easy visualization. Due to the density of
spike occurrence, raster plots were not constructed for
spikes. Circadian rhythms of spike and seizure rate were inves-
tigated graphically. Hourly rates were averaged over days, and
then normalized to be between zero and the maximum rate.
This provided an approximation to the probability distribution
of spike and seizure occurrences conditioned on time of day.
Sample autocorrelation (Box et al., 1994) was calculated to
establish the significance of repeating patterns observed in
the data. Significant autocorrelation indicates that the level
of predictability (using an autoregressive model) of spike or
seizure rate was sufficiently unlikely to be observed by
chance alone. For spike rate, autocorrelation lag times of 1 h
to 24 h and 1 day to 30 days were used to enable infradian and
ultradian rhythms to be investigated. The autocorrelation of
the seizure rate with a 30-day lag was also calculated (due to
the low average hourly seizure rate it was not possible to cal-
culate autocorrelation over 24 h).
The relationship between interictal spikes and seizures

was also explored using measures of cross-correlation.
Spearman’s rank correlation (Spearman, 1904) and Wilcoxon
rank-sum (Wilcoxon, 1945) values were calculated between
spike rate and seizure rate. These particular non-parametric
correlation methods were used because the data for spike
rates of many subjects departed from the normal distribution,
demonstrated using the Shapiro-Wilk test (Shaphiro and Wilk,
1965).
A possible source of error in the data analysis was telemetry

dropouts, where the electrical recording was temporarily inter-
rupted. The majority of dropouts had durations of5 2 s and
so did not limit our ability to record seizures, although the
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recorded spike rate may have been altered. To determine any

relationship between the ability to record epileptic activity and

the time spent in dropouts, we tested correlation between (time

in dropout)/day and (time in seizure)/day. For seizures, statis-

tical significance (P 5 0.05) was found in the resulting correl-

ation coefficients for three of the subjects. However, all of

these demonstrated positive correlation, which is inconsistent

with dropouts hindering seizure detection (where increased

dropouts would result in reduced time in seizure), and was

more likely to have been caused by coincidentally low rates

of both seizures and dropouts. Therefore, it was unlikely that

the dropouts affected the detection of seizures. For spike rates,

correlation was tested between dropouts/hour and spikes/hour.

Significant correlation (P 5 0.05) was found between spike

rate and dropout rate for all but two subjects. This is to be

expected as clearly the more dropouts there are, the fewer

spikes that will be detected, particularly for subjects with sus-

tained spiking. However, in every case, the coefficient of cor-

relation was low (r50.1), indicating that the observed spike

rate was not overly affected by the dropout rate. In general, as

results were obtained over very long-term averages (up to 2

years) and the majority of days in the trial contain no (or very

few) telemetry dropouts, data were assumed to be sufficient to

draw conclusions with low biases.

Figure 1 Example spike detection. A template is made by averaging similar spike patterns. A 1 s sliding window of 16-channel intracranial

EEG (iEEG) is used to determine background amplitude. The final 300ms (shaded region) is matched with the template. The absolute correlation

coefficient between EEG and template, |rxy| is thresholded for spike detection. Spikes are rejected if amplitude is not within an acceptable range of

the background. The right-hand panel shows example detection output (summed over all 16 channels) for different threshold values.
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Results

Spike rate

The mean and standard deviations for spike rate (per min)

for each subject are given in Table 1. Overall, the spike

rate showed greater variance than mean across all sub-

jects, which indicates that using a Poisson distribution to

model spike count would not be appropriate. It would not

be expected that a homogeneous Poisson distribution

would describe the spike count well over an extended

period of time, as there are most likely multiple, time-

varying factors underlying spike generation. The average

spike rate for most subjects was around one spike per

minute, although there were extremes of low and high

spike rate.

Figure 2 shows the median hourly spike rate obtained

during pre-ictal periods compared to interictal periods.

The pre-ictal period was defined as 1 h prior to a leading,

clinical or clinically equivalent seizure, with 8 h used as a

lead time. Interictal periods were defined as being at least

8 h before any seizure and more than 8 h after a seizure. Of

the five subjects with the best seizure prediction perform-

ance in the original clinical trial (Subjects 1, 2, 4, 14, and

15) (Table 1), three showed significantly increased spike

rate pre-ictally (P 5 0.05, Wilcoxon rank-sum test) and

the other two showed this trend, but not significantly.

The remaining six subjects, who had significant (P 5

0.05) changes in pre-ictal spike rate, all showed decreased

spiking prior to seizure. See the online Supplementary ma-

terial for test values and exact P-values.

Ultradian rhythms

Figure 3 shows patterns in seizure onset times relative to

time of day over the duration of the recording period. Each

seizure is displayed as a colour-coded (by seizure type, i.e.

clinical, electroencephalographically identical, and subclin-

ical) dot at the time of occurrence, with the horizontal axis

extending for two consecutive days to display periodic vari-

ation. The grey shading in the panels indicates hours be-

tween 10 pm and 6 am. The consistency of seizure onset

times at particular times of day is pronounced for some

Table 1 Subject demographics and spike rate

Subject Sex Age Seizure

prediction

sensitivity

Spike rate/min No. of seizures

Mean SD Type 1 Type 2 Type 3

1 M 26 0.86 1.45 2.27 63 82 6

2 M 44 1.00 0.02 0.20 31 1 0

3 F 22 0.56 1.41 3.31 160 138 1272

4 M 61 0.71 7.58 10.85 17 5 0

5 F 20 E 0.08 0.57 6 3 2

6 M 62 NS 6.89 10.02 35 36 71

7 M 52 NS 0.56 1.91 93 243 260

8 M 48 0.63 1.11 1.86 210 233 3

9 F 51 0.18 4.22 7.09 135 22 592

10 F 50 0.54 1.39 2.49 258 146 688

11 F 53 0.56 0.94 1.65 177 288 14

12 M 43 NS 2.01 3.14 9 6 4558

13 M 50 0.57 15.79 12.03 140 335 514

14 F 49 1.00 4.12 6.72 10 1 0

15 M 36 0.71 42.16 15.74 53 12 10

Spike rate as spikes/min (SD = standard deviation). Prediction sensitivity refers to prediction of type 1 and type 2 seizures during the clinical trial. E = explanted; NS = initial phase

performance not satisfactory to continue trial.

Figure 2 Comparison of average spike rate during inter-

ictal and pre-ictal periods. The hourly spike rate during pre-ictal

windows was compared with the hourly spike rate during interictal

windows. The pre-ictal window was defined as a 5 h seizure-free

window preceding seizure. Significance was tested using the

Wilcoxon rank sum test (*P 5 0.05, **P 5 0.01). Plot bars rep-

resent the median spike rate obtained over the entire pre-ictal

(open squares) and interictal (filled circles) data. Error bars indicate

the 95% confidence interval. For each subject, the spike rate was

normalized to the range [0 1].
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subjects even over many days to months. A relationship

between time of day and seizure onset is demonstrated by

the clear vertical arrangement of data in Fig. 3 (Subjects 4,

8, 9, and 11 are good examples of this).

There is evidence of a persistent relationship between

seizure onset times and the day-night cycle. It is likely

that this pattern is related to sleep. However, times of the

sleep-wake cycle were not recorded during the trial.

Nevertheless, Subject 8 demonstrates two times of day

where seizures are clustered (vertical bands in the plot),

and these occur at times where transitions to or from

sleep are likely to occur. Subject 4 is also noteworthy in

the same regard; although few seizures were recorded for

this subject, they appear to be well aligned within a time

span between 6 pm to 9 pm. It is possible that these seizures

are also related to the transition to sleep.

Figure 3 Seizure times by subject. Each subplot is a raster plot representation of the time of every seizure for a given subject. Plot colours

indicate seizure type: purple, clinically recognized events; orange, electroencephalographically identical but unrecognized events; blue, electro-

encephalographically distinct subclinical events. The x-axis shows hour of day (AEST) for two consecutive days (i.e. the rows of the raster plot

contain: row1 = [day1 day2], row2 = [day2 day3], . . . rowN-1 = [dayN-1 dayN]). The y-axis represents N–1 consecutive days of the trial, where N is

different for each subject (between 6 months and 2 years). Note that different subjects were enrolled from different start dates, and that

horizontal lines locate 1 January. The grey shaded regions represent the hours between 10 pm and 6 am.
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There are other patterns evident in Fig. 3 although these

are patient-specific and as such, are difficult to characterize.

However, these patterns hint at a level of predictability in

the temporal organization of seizures for certain subjects.

For instance, Subject 9 shows a consistent pattern, where a

cluster of subclinical events precede clinically-relevant seiz-

ures. This is also the case for Subjects 3, 7, and 13, al-

though Subject 7 has reported clinical events preceded by

clusters of unreported but electroencephalographically iden-

tical events. Subject 6 shows a series of subclinical events

before clinically-relevant seizures and, interestingly this pat-

tern does not manifest early on in the trial (towards the

bottom of the panel). Subjects 7, 10 and 12 also show signs

of long-term variability in patterns of seizure occurrence,

indicated by inconsistency in the vertical direction. Note

that Subject 12 is unusual in that thousands of subclinical

events were detected. It is also worth noting that subjects

with high rates of seizure do not necessarily demonstrate

the highest rate of interictal spiking. For instance, Subject

15 does not show many seizure events but recorded almost

continuous spiking (averaging 42 spikes/min, see Table 1).

Figure 4 shows an empirical approximation of the prob-

ability density for spikes and seizures (only clinical, type 1

or clinically equivalent, type 2 seizures were included) con-

ditioned on time of day. The peaked shape of these distri-

butions provides evidence that both spikes and seizures

occur with circadian rhythm, as spike or seizure likelihood

is enhanced at particular times of day. Note that the plot

values are repeated on the x-axis in order to visualize peaks

that cross midnight. Some subjects do not demonstrate such

obvious cyclic rhythms, which may be due to insufficient

data, particularly with regard to the number of recorded

seizures. The phase of circadian oscillation is shifted for

different subjects, with evidence of peaks during the day

and night, although diurnal peaks are more common.

Typically, the peak times for both spike and seizure

peaks are well aligned or at least are not antiphasic

(Subjects 2, 6 and 11 are the possible exceptions here).

This synchrony suggests that, on average subjects show a

higher probability of epileptic events at particular times of

day. Note that although subclinical (type 3) seizures were

not included in the analysis in Fig. 4, spike detection was

not performed during subclinical seizures; therefore the dis-

tribution of subclinical seizures may alter the distribution of

spikes. It can be seen in Fig. 3 that only Subjects 3, 9 and

10 demonstrate temporally aligned subclinical seizures.

Figure 5 shows the autocorrelation function for the

hourly spike rate with a 24 h lag time. The autocorrelation

can be interpreted as the level of predictability inherent in

spiking or seizure rate. For instance, increased correlation

at a lag of 24 h indicates that to predict current spike rate,

it is useful to know the spike rate from 24h ago. This was

found to be the case for most subjects, indicating a repeat-

ing pattern with a 24-h period. Subjects that did not dem-

onstrate a clear cycle (Subjects 7, 10 and 12) showed

consistently high autocorrelation over the entire 24 h

cycle, indicating that the history of the whole preceding

day was relevant to predicting the current spike rate.

Infradian rhythms

Cyclic behaviour over longer time scales was also investi-

gated. Figure 6A shows the autocorrelation function for

daily spike rate over 0 to 30 days (the age and sex of

each subject is presented in Table 1). There is less evidence

of cyclic behaviour compared with the circadian autocor-

relation plots. However, Subject 6 (male) showed evidence

of a monthly cycle in spike rate (clear increase at a lag of

30 days). There are signs of periodicity over less than a

month, for instance Subjects 9, 10, 11 and 14 (all female)

show peaks at lag times approximately between 1 to 3

weeks. Subject 12 also shows a high autocorrelation over

the entire month, indicating their daily spike rate was con-

sistent over a long term.

Figure 6B shows the autocorrelation of seizures per day

over a 30-day period. Although there are no obvious 30-

day cycles, there is evidence of shorter term periods in sub-

jects with significant correlations at lags between 1 week to

1 month (Subjects 3, 6, 8 and 9–12). These also showed

significant correlation in spike rate over a 30-day period,

with the exception of Subjects 3 and 8. It should be noted

that these two subjects have similarly located peaks in the

spike rate autocorrelation function (Fig. 6A), which were

not considered significant. Subjects 14 and 15 showed sig-

nificant correlation in spike rate but not for seizure rate.

Subject 12 showed high correlation over the entire month

interval, most likely due to a very high rate of subclinical

seizures.

Discussion
This study represents the first long-term, ambulatory ana-

lysis of the relationship between interictal spikes and seiz-

ures. The results provide fundamental insights into the

mechanisms of epilepsy and new avenues of seizure control,

which we discuss in more detail below. Half (9 of 15) of

the subjects showed a significant change in spike rate prior

to seizures, indicating that spikes are not wholly independ-

ent of seizures. Of these subjects, spike rate typically

decreased pre-ictally (in 6 of 9 subjects). However, it is

interesting to note that the subjects whose spike rate

increased also had the best seizure prediction results in

the clinical trial (Cook et al., 2013). The prediction algo-

rithm used measures of signal energy in various frequency

bands; therefore we can speculate that increased spiking

activity may have contributed to seizure prediction for

these subjects. However, the relationship between epileptic

spikes and seizures was subject-specific. It is not clear that

spikes directly promote or inhibit seizures, however, we

hypothesize that spikes and seizures share one or more

common regulatory mechanisms, as evidenced by their

similar circadian patterns.
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Periodicity of spikes and seizures

It has long been demonstrated that circadian cycles influ-

ence seizure occurrences in a subject-specific manner and,

as we have shown here, there was a consistent relationship

between seizures and time of day (Fig. 3). Epileptic spikes

were shown to follow a similar (and also subject-specific)

circadian variation and, compellingly, the peaks in the dis-

tributions of spike times and seizure times within subjects

were typically located at similar times (in all but three sub-

jects). We propose that the similar peak times for spike rate

and seizure rate indicate a common regulatory factor influ-

encing the generative mechanisms of both. A possible

mechanism is the effect of sleep on spike and seizure gen-

eration. Although sleep data were not recorded for this

study, it is known that sleep cycles are related to seizure

onset times (Patry, 1931; Baldy-Moulinier, 1986; Crespel et

al., 2000). There is also previous evidence that alertness or

Figure 4 Circadian rhythm in spike and seizure. Each subplot is a bar graph representing the average number of spikes (black) or seizures

(blue) per hour. Only clinical (type 1) and electroencephalographically identical (type 2) seizures were included. The average hourly rates were

then individually normalized to the range [0 1]. The resulting values are repeated on the x-axis in order to visualize circadian patterns. The grey

shaded regions represent the hours between 10 pm and 6 am.
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sleep stage influences spike generation. For instance, it was

noted that spike rates may be enhanced during periods of

drowsiness (Ward, 1959) and also that spikes undergo

short-term cycles correlated with sleep stages (Ferrillo et

al., 2000). Further investigation is warranted into possible

causes of subject variability in the phase (peak location) of

spike rate and seizures. It is possible that different peak

locations are related to different network involvement in

seizure onset, as disruptions in certain circadian regulatory

pathways have been hypothesized to lead to a pro-ictal

state (Quigg, 2000; Stanley et al., 2013).

Some subjects showed evidence of longer cycles (weeks to

months) in spike rate and seizure rate. The appearance of

monthly periodicity in seizure times related to menstrual

cycles in females is fairly well established (Backstrom,

1976; Taubøll et al., 1991). However, there is no proven

explanation as to why males can show evidence of catame-

nial cycles of epileptic activity, although there are a number

of studies demonstrating their existence (Bercel, 1964;

Newmark and Penry, 1980; Bauer and Burr, 2001). In

this study the subject with the strongest evidence of

monthly periodicity in spike rate was male (Fig. 6A,

Subject 6), although more female subjects showed evidence

of week to month long periodic cycles. The autocorrelation

functions for seizure rate and spike rate (Fig. 6A and B)

generally showed peaks at similar locations, which is fur-

ther evidence of a common regulatory mechanism influen-

cing spike and seizure generation.

Identifying candidate mechanisms that cause both ultra-

dian and infradian rhythms is worthy of further study, as

this may shed light on mechanisms of seizure generation. It

is extremely difficult to study most biophysiological factors

in conjunction with seizure rhythms due to the paucity of

data. However, interictal spikes are more frequent, can be

recorded non-invasively, and, as we have seen, demonstrate

predictable daily fluctuations. Identifying the cause of peri-

odicity in spikes may provide testable hypotheses as to the

cause of periodicity in seizures. A better understanding of

the slow acting regulatory mechanisms underpinning epi-

leptic activity will improve timing of medication and may

even suggest new treatment strategies.

Relationship between spikes and
seizures

There is no firm consensus on the link between interictal

spikes and seizures. It is possible that spikes are caused by

different cellular and network mechanisms to seizures

(Gotman, 1991; De Curtis and Avanzini, 2001). Another

proposal is that interictal spikes and seizures are not inde-

pendent events, but the relationship may vary with other

factors such as onset location or brain state (Laetitia et al.,

2012). Here we showed spike rate was significantly chan-

ged prior to seizures in over half of the subjects. Increasing

spike rate was linked to improved seizure prediction, al-

though the increase could equally be attributed to spikes

Figure 5 Autocorrelation function for spike rate over 0–24h. The autocorrelation function between successively recorded values of

spikes/h is plotted from a lag of 0 to 24 h. Note that the autocorrelation function is normalized to the value at 0 h. The red lines indicate the 99%

confidence interval (with Bonferroni correction for multiple comparisons over the N days in the trial) that correlation values are significant. Points

considered significant are coloured in red. Confidence limits are omitted where all points obtained significance.
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promoting seizures, or a secondary regulatory mechanism

facilitating epileptic events. Other subjects showed

decreased spiking before seizures, which adds weight to

the existing evidence that spike rate can also decrease

prior to ictogenesis (Engel and Ackermann, 1980; De

Curtis and Avanzini, 2001; Avoli et al., 2006). However,

this does not mean that decreased spiking is causally linked

to having a seizure (i.e. it does not show that spikes protect

against seizures). On the contrary, for the majority of sub-

jects, high likelihood of spikes was associated with high

likelihood of seizures (shown in Fig. 4 where peaks

occurred at similar time of day). This similarity in the

Figure 6 Autocorrelation function for 0–30 days. (A) The autocorrelation function between successively recorded values of spikes/day is

plotted from a lag of 0 to 30 days. (B) The autocorrelation function between successively recorded values of seizure/day is plotted from a lag of 0

to 30 days. Note that the autocorrelation function is normalized to the value at 0 days. The red lines indicate the 99% confidence interval (with

Bonferroni correction for multiple comparisons over the number of months in the trial) that correlation values are significant. Points considered

significant are coloured in red. Confidence limits are omitted where all points obtained significance.
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shape of the probability distributions suggests a common

regulatory factor between spikes and seizures. As spikes

involve a massive, synchronous neuronal discharge, it is

possible that their generation could be regulated by similar

global or local changes in excitability or enhanced syn-

chrony that also promote seizures.

The significance of a subject-specific pre-ictal decrease in

spike rate is controversial (De Curtis and Avanzini, 2001;

Avoli et al., 2006). It is possible epileptic spikes provide an

active protective benefit against seizures. Therefore, a de-

crease in spiking prior to seizures can be interpreted as a

failure of a regulatory mechanism. If this is the case, pre-

ventative action of the spikes could be augmented by treat-

ment strategies. For instance, results have shown drugs that

depress interictal spiking may have the opposite effect on

ictal activity (Watts and Jefferys, 1993; Barbarosie and

Avoli, 1997) and electrical stimulation that promotes

spike-like responses can suppress seizures (Swartzwelder

et al., 1987). Recordings from animal kindling models of

epilepsy show that interictal spiking decreases in parallel

with decreased seizure thresholds, and inducing spikes

can increase the seizure threshold (McNamara et al.,

1980). However, this does not constitute unambiguous evi-

dence that spikes prevent seizures, as there may be a sec-

ondary mechanism involved. We have hypothesized that

similar regulatory factors lead to increased probability of

both spikes and seizures. This brain state (where both

events are more likely) may be necessary and sufficient

for spikes, but insufficient for seizures. It is even possible

that an attempt to suppress spikes may lead to greater risk

of seizures. We raise these speculative hypotheses to high-

light the complexity involved in interpreting the available

evidence. It is necessary to develop further experiments cap-

able of distinguishing between the possible causal or indir-

ect relationships.

Implications for prediction

The very clear evidence that seizures occur reliably, for

some subjects almost exclusively, at particular times of

day is highly relevant to prediction. These patterns were

relatively stationary and, for most patients, were evident

early in the clinical trial (Fig. 3). The consistency in pat-

terns of seizure and spike activity over long periods (up to

30 days) was demonstrated through autocorrelation plots,

indicating that knowledge of past spike or seizure rate may

be relevant to predicting current events. Therefore, infor-

mation about the history of seizure timing and spike or

seizure rate could be used to weight the outcome of seizure

prediction algorithms, potentially improving performance

either through increased accuracy or reduced false

positives.

In this study we noted a link between good seizure pre-

diction performance and increased pre-ictal spiking. It is

possible that for these subjects increased spike rate is an

indication of imminent seizure, thus aiding prediction. We

also noted that the likelihood for spikes and seizures

showed similar patterns (Fig. 4). Based on this observation,

it is possible that prediction algorithms may appear to be

incorrectly predicting seizures while in fact correctly iden-

tifying smaller epileptic events. Therefore, a method of dis-

tinguishing between the two is necessary. Model-based

prediction that is capable of uniting a range of epileptiform

behaviours is a technique that may assist with this (Deco et

al., 2008; Freestone et al., 2014; Wang et al., 2014).

Training prediction algorithms to recognize other epileptic

events may also be a useful strategy to recognize times of

heightened risk of seizure, and possibly guide medication

delivery.

Regardless of whether the pre-ictal decrease in spike rate

is a secondary symptom of the brain approaching seizure,

or a causal factor, spikes could be used to aid prediction.

Although for those subjects who show decreased spiking,

prediction strategies should focus on extracting different

information from interictal spikes (rather than a simple

rate). For instance, if spike rate is modulated by common

regulatory factors as seizures then spikes can be used as

biomarkers of cortical excitability. It has been shown that

the cortical response to stochastic inputs can provide an

early warning sign of an impending seizure (Negahbani et

al., 2015). Similarly, features of spikes, such as spatiotem-

poral distribution or morphology, could be used to meas-

ure the resilience of the underlying system. Previously,

electrically evoked potentials have been used to quantify

the cortical response in order to estimate seizure likelihood

(Kalitzin et al., 2005; Freestone et al., 2011) and applying

this approach with interictal spikes warrants further

investigation.

It should be noted that the subjects in this study were not

chosen specifically to investigate the relationship between

seizure and other interictal spikes. Therefore, it is difficult

to relate the findings of this study to more general proper-

ties of seizures and epilepsy due to the potentially con-

founding influences of multiple medications and, in some

cases, previous surgeries. However, as epilepsy is a highly

subject-specific disease with few demonstrably general

properties, valuable insight can still be gained from particu-

lar cases and these may also suggest pertinent directions for

future research.
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