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We have compared statistical properties of the interior-branch and bootstrap tests of phylogenetic trees when the 

neighbor-joining tree-building method is used. For each interior branch of a predetermined topology, the interior- 

branch and bootstrap tests provide the confidence values, PC and PB, respectively, that indicate the extent of 

statistical support of the sequence cluster generated by the branch. In phylogenetic analysis these two values are 

often interpreted in the same way, and if PC, and Ps are high (say, 20.95 ), the sequence cluster is regarded as 

reliable. We have shown that PC. is in fact the complement of the P-value used in the standard statistical test, but 

PB is not. Actually, the bootstrap test usually underestimates the extent of statistical support of species clusters. 

The relationship between the confidence values obtained by the two tests varies with both the topology and expected 

branch lengths of the true (model) tree. The most conspicuous difference between PC and PB is observed when 

the true tree is starlike, and there is a tendency for the difference to increase as the number of sequences in the 

tree increases. The reason for this is that the bootstrap test tends to become progressively more conservative as the 

number of sequences in the tree increases. Unlike the bootstrap, the interior-branch test has the same statistical 

properties irrespective of the number of sequences used when a predetermined tree is considered. Therefore, the 

interior-branch test appears to be preferable to the bootstrap test as long as unbiased estimators of evolutionary 

distances are used. However, when the interior-branch is applied to a tree estimated from a given data set, PC may 

give an overestimate of statistical confidence. For this case, we developed a method for computing a modified 

version (Pk.) of the PC, value and showed that this P& tends to give a conservative estimate of statistical confidence, 

though it is not as conservative as P B. In this paper we have introduced a model in which evolutionary distances 

between sequences follow a multivariate normal distribution. This model allowed us to study the relationships 

between the two tests analytically. 

Introduction 

There are several different methods that are cur- 

rently in use for testing the statistical significance of a 

particular branching pattern of a phylogenetic tree (see, 

e.g., Felsenstein 1988; Li and Gouy 199 1; Nei 199 1 for 

review). Since the significance levels obtained by differ- 

ent methods for the same phylogenetic tree do not nec- 

essarily agree with each other, it is important to under- 

stand statistical properties of these methods. In this paper 

we compare the interior-branch test (Nei et al. 1985; Li 

1989; Rzhetsky and Nei 1992~) and the’ bootstrap test 

(Efron 1982; Felsenstein 1985) using both computer 

simulation and analytical study. A similar study was 

carried out by Pamilo ( 1990), but his study was con- 
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cerned with the UPGMA tree-building method in which 

a constant rate of evolution is assumed. We will consider 

a tree-building method which does not require this as- 

sumption. 

In the present study we used two different types of 

computer simulations. In the first type the evolutionary 

distances corrected for multiple hits were estimated from 

observed nucleotide differences. In the second type of 

simulation the evolutionary distances were drawn from 

a multivariate normal distribution with the same mean 

vector and the variance-covariance matrix as those for 

distances calculated from nucleotide sequences. By 

comparing the results of the two types of simulation for 

the same model tree, we were able to study the effect of 

the different distributions of distances on the relation- 

ships of the interior-branch and bootstrap tests of sta- 

tistical confidence. In addition, the second type of sim- 

ulation led us to study the relationships of the two tests 

analytically. 

We start our analysis with a simple model tree of 

four sequences. We examine the relationship between 
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320 Sitnikova et al. 

the statistical confidences obtained by the two methods 

for various model trees. We will then compare the two 

tests for the case of six sequences. Before presenting our 

results, we briefly explain the essential aspects of the two 

statistical tests. 

Interior-Branch Test 

Consider a given tree for a set of m nucleotide se- 

quences. The interior-branch test for this tree is con- 

ducted as follows. We first compute the unbiased esti- 

mates of the evolutionary distances (the numbers of 

nucleotide substitutions) for all pairs of sequences, that 

is, a;,‘~, where i and j refer to the ith and jth sequences, 

respectively. The estimates (bi’S) of branch lengths for 

the tree are then given by 

1; = Ld, (1) 

where b’ = (6,) b2, . . . , bznl--3) and d’ = (a,*, d13, . . . , 

d,,_,.,) are the transposes of the column vectors of 

branch length and distance estimates, respectively. L is 

a ([ 2m - 31 X m[ m - 1]/2) matrix that is specified by 

the tree ( Rzhetsky and Nei 1992a). Let w be the estimate 

of the variance-covariancematrix ( W) of vector a (see 

below). The vector of the variances of branch length es- 

timates,V(1;‘) = (V[&], V[&], . . . , V[b2m-3]), can 

then be obtained by 

V(b) = L%vL. (2) 

In practice, the computation of hi’s and V( bi )‘s for a 

large tree becomes simpler if we use Rzhetsky and Nei’s 

( 1993) formulas that require no matrix algebra. 

The null hypothesis of the interior-branch test is 

that the interior branch under consideration has length 

0. To test this hypothesis, we can use the following test 

statistic (normal deviate) if bi can be assumed to be 

normally distributed: 

Z = bi/S( hi), (3) 

where s(&) = I’(i)i) ‘I* We have done computer sim- . 

ulation to examine the distribution of 2 in equation (3) 

under the null hypothesis and have shown that the dis- 

tribution is indeed approximately normal. Therefore, 2 

can be used to construct the two-sided normal deviate 

test. The null hypothesis is rejected at the significance 

level of c1 if 12 1 > Zai2, where Za,2 is the upper (a/2)- 

critical value for the standard normal distribution. 

To compare the interior-branch test with the 

bootstrap test, it is convenient to consider the following 

probability: 

Pc=2aqZI)-  1, (4 

where 

@(z) = -& s_’ cx2’*dx. 
IT a 

PC tends to be 0 when bi approaches 0 and tends to b 

1 when I bi I increases. We call this confidence value. 

is the complement of the P-value used in the standar 

statistical test. 

Note that the above statistical test applies when 

topology to be tested is predetermined. This situatio 

occurs when an investigator is interested in the reliabilit 

of a particular topology. However, the interior-branc 

test is often applied to a phylogenetic tree estimated fror 

actual data rather than to a predetermined tree. In th 

case the statistical properties of the PC test become di 

ferent. Later we will consider a correction for PC net 

essary for this case. 

Interior-Branch Test for Large Trees 

In the case of four-sequence trees the expected vah 

of the estimate of the interior branch length can be eithc 

positive (for the true tree) or negative (for a wrong tree 

if the true tree is not starlike. Hence, the estimate of th 

interior branch length gives some idea about the validii 

of a tree. In the case of a large number of sequences CI 

can test the null hypothesis E( bi) = 0 for the ith interim: 

branch, but the interpretation of the test outcome 

somewhat more complicated. It can be shown that tl 

expectation of the length estimate of an incorrect interim 

branch (which gives a sequence partition that is nc 

present in the true tree) in a large tree can be positiv 

(E[ bi ]>O). However, a negative E( bi ) always indicate 

that the corresponding partition is wrong. We ilh 

strate this point with the following example of a si: 

sequence tree. 

Let tree A in figure 1 be the true tree for the sj 

sequences 1, 2, 3, 4, 5, and 6, and let b7, b8, and bg I: 

the expected lengths of interior branches of this tree. Lc 

us compute the expectation of the least-square estimate 

of the interior branch lengths of wrong trees B and C i 

figure 1. For interior branches 7, 8, and 9 of tree B (fi; 

1 B)), we obtain 

E(&) = - $ (2b,+b,), U 

and E(bg) = i (4bg--bg). 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
b
e
/a

rtic
le

/1
2
/2

/3
1
9
/9

6
6
3
5
8
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Interior-Branch and Bootstrap Tests 32 1 

1 3 4  5 1 5 3 4  

used 

yL-!< 6 >&< 2 6 43+5 6 2 

09 (B) (C) 

1 

(D) +-+ + b8 c5 ‘>A<5 

6 6 

0) (ii) (iii) 

FIG. 1 .-A. Hypothetical true tree for six sequences. Band C, Incorrect trees for the same sequences. II. Three model trees for six sequences 

for generating the relationship between PC and pB in fig. 68. When b8 = 0, trees (i), (ii), and (iii) behave as six-, five-, and four-sequence 

star trees, respectively. 

Similarly, for tree C, we have Bootstrap Test 

E( b,) = ; (-b7+2b,+b,), 

E( &) = + (b7+2b&9), (7) 

and E( b,) = - i (b,+2b,+b,). 

Therefore, ( 1) the value of E(&) for tree B is always 

positive and the corresponding interior branch gives the 

correct partition of sequences, (2) the values of E( 6,) 

for tree B and E( b,) for tree C are always negative and 

both interior branches give an incorrect partition of se- 

quences, and (3) the values of E(&) for tree B and 

E( 8,) and E( 8,) for tree C can be either positive or 

negative depending on the actual values of b,, bg, and 

bg. We note that all these interior branches in trees B 

and C give an incorrect partition of sequences. 

From a number of other similar examples, we have 

conjectured that any wrong bifurcating tree has at least 

one interior branch with a negative value of expected 

length estimate. (We do not attempt to prove this con- 

jecture in this paper but assume that it is true.) Therefore, 

the interior-branch test indicates that. the tree under 

consideration can not be rejected if there is no interior 

branch length estimate that is significantly smaller than 

0. Note that due to sampling errors one may obtain some 

negative branch length estimates even for the true to- 

pology, but the probability that these estimates are sig- 

nificantly different from 0 should be very small. 

Since the interpretation of PC. varies with the sign 

of the corresponding branch length estimate (bi ), we 

shall compare PC. and its equivalent quantity for the 

bootstrap test for the positive and negative values of i)i 

separately. 

Unlike the interior-branch test, the bootstrap test 

is not independent of the tree-building method. In this 

paper we consider the neighbor-joining (NJ) method 

( Saitou and Nei 1987 ) using unbiased estimates of evo- 

lutionary distances. However, the results obtained here 

should apply to other methods as well if the methods 

are as efficient as the NJ method in obtaining the correct 

tree. A common way to apply the bootstrap test is first 

to construct an NJ tree from a given set of sequence 

data and then test this tree with a bootstrap test. How- 

ever, as in the case of the interior-branch test, the boot- 

strap test can be applied to any predetermined tree 

(Zharkikh and Li 1992a, 19926, 1995). 

Once a tree is obtained, the original data set is used 

to generate B independent pseudosamples of sequences. 

Each pseudosample is obtained by drawing nucleotide 

sites randomly from the original set of sequences with 

replacement until a sample of the same size (number of 

nucleotides) as the original one is obtained. Some sites 

are sampled several times, and others are omitted. We 

then apply the NJ method to construct a phylogenetic 

tree from each pseudosample and compare each boot- 

strap tree with the original tree. This is repeated for all 

B pseudosamples, and for each cluster (or partition of 

sequences; see Penny and Hendy 1985; Rzhetsky and 

Nei 1992a) of the original tree, the proportion of boot- 

strap trees in which this cluster appears is computed. 

We call this value (PB) the bootstrap confidence value 

or bootstrap value. 

Note that the above procedure of the bootstrap test 

is somewhat different from that of Felsenstein ( 1985). 

In his method the topology of a bootstrap tree is not 

compared with that of the original tree. Instead, a boot- 

strap consensus tree is produced, and this tree is regarded 

as a representative tree obtained from the data set. The 

Ps for sequence cluster of this tree is the proportion of 
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322 Sitnikova et al. 

bootstrap trees in which the cluster appears. The boot- 

strap tests for the maximum-parsimony and NJ methods 

in the PHYLIP program package (Felsenstein 199 1) are 

both conducted in this way. By contrast, the bootstrap 

test for the NJ method in the MEGA package (Kumar 

et al. 1993) follows the method described above. Kumar 

et al.‘s method is for testing the reliability of the tree 

obtained from the original set of data. 

Literally speaking, Ps is an estimate of the propor- 

tion of cases in which the tree-building method recovers 

a specific sequence cluster from infinitely many data 

sets generated by the same evolutionary process. Recent 

studies (Zharkikh and Li 1992a, 1992b, 1995; Hillis and 

Bull 1993; Felsenstein and Kishino 1993) have shown 

that PB is a biased estimate of this proportion. Bootstrap 

tests tend to give conservative estimates of statistical 

confidence when the true tree contains the cluster under 

investigation, and the length of the corresponding in- 

terior branch is positive and small. By contrast, bootstrap 

tests tend to be liberal if the cluster does not belong to 

the true tree. (The latter problem rarely affects the phy- 

logenetic inference, since it occurs only for small values 

of PB.) All the above statements about statistical prop- 

erties of the bootstrap test are correct only when the 

tree-building method used in bootstrapping is statistically 

consistent. 

The null hypothesis of bootstrap tests has not been 

clearly defined. Since PB for a particular sequence cluster 

or an interior branch is required to be greater than a 

threshold value (say, 0.95) for accepting this cluster as 

statistically significant, PB has been implicitly interpreted 

as though it is the same quantity as PC,. In practice, this 

is not true, as will be shown below. 

Comparison of PC and PB by Computer Simulation and 

Analytical Study 

In the following section we present details of the 

procedure of our computer simulation only for the case 

of four-sequence trees, since its extension for the case 

of larger trees is straightforward. 

Nucleotide Sequence Data 

We used the Jukes and Cantor ( 1969) substitution 

model to simulate the evolution of nucleotide sequences 

and compare PC- and PB, though any model can be used 

as long as the distance estimates obtained are unbiased. 

The procedure of the simulation was as follows. First, 

specify the values of expected branch lengths bl , bz, b3, 

b4, and b5 for the model tree in figure 2 A. Second, gen- 

erate four “extant” nucleotide sequences of length n ac- 

cording to the model tree as in Rzhetsky and Nei 

( 1992b). Third, estimate the vector of evolutionary dis- 

tances between sequences, df = ( d12, d, 3, ata, $23, t&d, 

&), using the Jukes-Cantor method. The variance-co- 

variance matrix (W) of the vector a is then estimated 

‘y_.g33 ‘x2 ‘x2 
2 4 3 4 4 3 

(A) (B) 0 

FIG. 2.-A, Hypothetical true tree for four sequences. B and C, 

Incorrect tree’s for the same sequences. 

by using Kimura and Ohta’s ( 1972) formula for the 

variances and Bulmer’s ( 199 1) formula for the covari- 

antes. Fourth, estimate the length of the interior branch 

of the true tree (tree A in fig. 2) by the equation 

& = kod, where kO = (-l/2, l/4, l/4, l/4, l/4, -l/2), (8) 

and the variance of &, by 

V(&) = kOtikb, (9) 

where w is the estimate of W ( Rzhetsky and Nei 1992b). 

Finally, compute PC- using equation (4) to test the null 

hypothesis E( 6,) = 0. Compute Ps (i.e., the proportion 

of bootstrap trees in which the interior branch under con- 

sideration appears). In all simulations discussed below we 

used n = 100 and B = 500 unless otherwise stated. 

Normally Distributed Distance Data 

The joint distribution of &‘s computed above is 

slightly asymmetrical compared with a multivariate 

normal distribution. To evaluate the effect of this skew- 

ness on the performance of the interior-branch test, we 

conducted another type of simulation, in which the vec- 

tor of the distance estimates, i, exactly followed a mul- 

tivariate normal distribution. In this simulation all as- 

sumptions underlying the interior-branch test are 

satisfied, and the results obtained could be compared 

with those from the analytical formulas. 

The procedure of this simulation was exactly the 

same as those for nucleotide sequences except for some 

details concerning the estimation of evolutionary dis- 

tances ( steps 2 and 3 in the previous section ) . We used 

the following method to generate a vector of estimates 

of “evolutionary distances” (d) following a multivariate 

normal distribution. The expected distances 

multivariate normal distribution were given by 

for this 

d,* = b, + bZ, d,3 = b, + b5 + b3, 

d,‘, = b, + b5 + b4, d13 = b2 + b5 + b3, (10; 

dz4 = b2 + b5 + b4, and dJ4 = b3 + b4, 

where hi’s are the expected branch lengths of the model tree 

(see fig. 2A), and the variance-covariance matrix, W, was 
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W= 

Here 

* f(h+b,) of@, 1 f(h 1 f(b) f(W 

f(h) f(b,+b,+b,) f(h+W f(h+bd f(W fpb,) 

f(h) f(h+b,) f(h+b,+W f(W f@a+bd f(h) 1 /ll\ 

f(h) f(b3+bd f(bs) 

f(bz) f(bd f(h+bd 
0 . f(W f(h) 

f ( b,+b,+b, 1 f(h+W 
\“I 

f(b2+bd f(b,+h+W 

f(h) f(W 

f(6) = (-9+6e 46/3+3e86/3)/( 16n), (12) 

where 6 is given by an appropriate sum of hi’s, and n is 

the sample size that is analogous to the number of nu- 

cleotide sites. The matrix W is the same as the variance- 

covariance matrix of vector 4 for nucleotide sequence 

data generated by the Jukes-Cantor model following the 

model tree in figure 2A (see Rzhetsky and Nei 1992b). 

To generate observed distances, $i,‘s, we computed a 

triangular matrix C such that 

w = cc (13) 

(for details, see Press et al. 1988, pp. 39-45). We then 

computed n random vectors, xk = (XL I, xk2, _xk3, _xk4, 

xk5, q6), where k = 1, 2, . . . , n, and XA_,‘S are indepen- 

dent random variables drawn from a standard normal 

distribution. We generated xk;s using the Box-Muller 

method (see Press et al. 1988, pp. 2 16-2 17). We used 

vectors xk’s to obtain a Set of random vectors ar, d2, 

. . . ) and a, by 

dk = d + cxk hi, (14) 

where d is the vector Of dij’S. We then computed a vector 

of estimates of evolutionary distances, d, by 

ii = (&+a,+. . .+d,)/n (15) 

and the estimated variance-covariance matrix \( \jL ) of 

vector d using the standard formulas for sample vari- 

ances and covariances for a vector of sample means by 

where G,., is an estimate of the covariance between the 

rth and sth entries of the d vector, Lir,i is the rth entry 

of the vector ai, and L& is the rth entry of the vector d. 

that for nucleotide sequence data (see steps 4 and 5 in 

the previous section). The vectors a,, &, . . . , and a, 

were treated as nucleotide sites in bootstrap resampling. 

When the estimates of evolutionary distances follow 

a multivariate normal distribution, one can obtain rather 

simple formulas for computing the expected value of PB 

and the probability to recover the true tree by the NJ 

method. We shall consider these formulas in the next 

section. 

Analytical Formulation for the Case of Normally 

Distributed Evolutionary Distances 

In the case of four sequence trees, the NJ method 

is known to select the unrooted tree with the smallest 

sum of branch length estimates (Saitou and Nei 1987). 

Therefore, if we denote the sums of branch length esti- 

mates for trees A, B, and C in figure 2 by &, 2&, and 

gc, respectively, we can introduce the following variables 

d, and d,: 

Therefore, the NJ method recovers the correct tree (tree 

A) whenever both 6, and d, are positive. We can com- 

pute fil and 6, by 

fii = k,d, and B2 = k2d, (18) 

where 

kr = (-l/4, l/4, 0, 0, l/q, -l/4), and 

(19) 

k2 = (-‘4 0, 9’4, l/i, 0, -9’4). 

When $iJ’s follow a multivariate normal distribution, 

the joint distribution of fir and fi2 is a bivariate normal 

distribution with the expected values ul = k,d and p2 

= k2d, and the variance-covariance matrix 

The rest of the simulation was done in the same way as where 0: and 0; are the variances of fir and &, re- 
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324 Sitnikova et al. 

spectively, ~0~0~ is the covariance for fi, and d2, and 

p is the correlation coefficient between d, and d,. The 

elements of matrix V are given by 

0: = k,Wk’,, 

(21) 
0; = k2Wk’ 2, and ~(~~02 = klWki, 

where matrix W is computed by equations ( 11) and 

( 12). Since the correct tree is recovered when 6, > 0 

and d, > 0, the probability (P) of obtaining the true 

tree (tree A in fig. 2) by the NJ method can be computed 

by 

x 

( 

(x-/h j2 _ 2p (x--CL1 KY-P2) 

0: (31G2 

l 

- 

r - 2x- _(PI/QI) S-9,,,,,exp[ - 2( Ilp’) 

x ( x2-2pxy+y2) dxdy 
I’ 

=F _E ( 7 

_kp 
(32 ’ 1 

. 

01 

(22) 

This integral can be evaluated numerically (see Drezner 

and Wesolowsky 1990). Computer simulations have 

shown that equation (22) gives a surprisingly good es- 

timate of the probability of obtaining the true tree by 

the NJ method as long as n z 100 even if the distribution 

of evolutionary distances deviates from normality to 

some extent, as in the case of nucleotide sequences. 

We are now in a position to derive the expression 

for Ps. For each bootstrap pseudosample we can com- 

pute d*, 67 and d;, where the asterisk indicates that 

the quantity is computed from a. pseudosample. As in 

the case of the original data set, the correct tree is re- 

covered from a pseudosample only when 67 and fi; 

are both positive. The joint distribution of 67 and fi; 

for the pseudosamples obtained from a particular data 

set can be approximated by a bivariate normal distri- 

bution with mean vector ( fil, h2) and variance-covari- 

ante matrix %‘. Here, fi, and b2 are computed by equa- 

tions ( 18 ) and ( 19 ) from the original set of data, and %’ 

is the estimate of matrix V in equation (20). Therefore, 

PB is equal to the proportion of cases where both 67 

and 6; are positive and can be computed by 

PB N F( -6,/6,, -d2/ik2; fi). (23) 

Our numerical study has shown that this approximation 

works very well even when vector & is computed from 

nucleotide sequences. 

Case of Four-Sequence Trees 

In this section we first examine the difference be- 

tween the average PC7 and PB values for various model 

trees and then consider statistical properties of the in- 

dividual values of PC and PB for a specified model tree. 

Relationship between Average PC and PB for Various 

Model Trees 

Let us consider the relationship of the averages (PC 

and pB) of 3,000 PC’s and PB’s for the cases of 6, > 0 

for the model tree of four sequences in figure 2A when 

b5 gradually increases from 0 (fig. 3). PC and pB are 

quite close to each other, though the individual values 

of PC and Ps obtained for each data set are not necessarily 

close (data not shown). Figure 3A and B represent the 

cases of normally distributed distance data and simulated 

nucleotide sequence data, respectively. Although these 

two figures are slightly different for small values of PC 

and pB (small values of b,), the relationships between 

the two estimates are very similar for the two types 

of data. 

The relationship between pc and pB depends on 

the expected lengths of the exterior branches of the 

model tree. The points (PC, pB) tend to be “upward” 

( ~~K~~) when the model tree has short exterior branches 

(A) (s) 

,.,I ,< , , , , 1 o.5i” , , ( , _I 
0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.6 0.9 1 .o 

PC & 

FIG. 3.-Comparison of the average values of PC and PB for four. 

sequence model trees for the cases of b, > 0. We used the following 

two sets of the expected exterior branch lengths for the model tree ir 

fig. 2A: b, = 0.07, b2 = 0.075, b3 = 0.065, b, = 0.07 (short bran& 

trees, solid circles), and b, = 0.3, b2 = 0.3, b3 = 0.3, b4 = 0.3 (long 

branch trees, open circles). The expected length of the interior branch 

b5, was changed from 0 to 0.7 by incrementing it by 0.005 for eact 

mode1 tree of short branches and by incrementing it by 0.03 for cad 

model tree of long branches. The sample size (number of nucleotides: 

was equal to 100. Each point was obtained by averaging results o’ 

3,000 replications. A, Normally distributed distance data; B, simulatec 

nucleotide sequence data. 
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

FIG. 4.-Frequency distributions of Ps (A) and PC (B) for normally distributed distance data obtained in 10,000 replicate simulations. The 

frequencies of Pe and PC for 8, > 0 and & < 0 are shown separately (corresponding bars are stacked one on top of the other). Here we used 

the model tree in fig. 2A with b, = b2 = b3 = b4 = 0.3, and b5 = 0. The number of nucleotides sampled (n) was equal to 100. 

(fig. 3, solid circles) and “downward” when the exterior 

branches are long (fig. 3, open circles). We conducted 

an analytical study of these properties for the case of 

normally distributed distance data. In this case it is easy 

to derive an equation for PC (Appendix B), where PC is 

determined by 5 = b5 /o (where o=s[ b,] ). To obtain 

an equivalent equation for pB, we use equation (23), 

the relationship 6, = d, + 6, (see equations [ 81, [ 181, 

and [19]), and V(&) = 0: + 2p0102 + 0:. To simplify 

the analysis, we replace 6 ], 6.2, and fi in equation ( 23) 

by their expected values ol, (32, and p. Then, after 

some algebraic manipulations we obtain the following 

equation: 

& N 
1 

0( C)2z( 1 -p*)“* 

cc ss cc 

X exp ( - ( x+2p_x1 x*+x;)/ 
--a, -o1xda2 

[2( l-P2)1} 

x n-(xl+blL -(x*+Ca*); PI d-4x2, 

(24) 

where 6 = b5/o, al = ( 1+2p02/crl+o~/o~)1’2/2, a2 

= (1+2p<~,/(r2+(~:/~~)~‘~/2, and F(yi, ~2; p) is a 

function given in (22). Both computer simulations and 

analytical studies have indicated that for b5 > 0, the 

values of oi and o2 are very close to each other for the 

majority of the model trees (see Appendix A). Therefore, 

we can assume that ai II a2 II a = ([ 1 +p]/2) ‘12. The 

value of PB for a given < is then determined mainly by 

the correlation coefficient p. The higher the p value, the 

greater the ps in equation (24). Therefore, to explain 

the difference in points (PC, FB) between the different 

model trees in figure 3, we only need to note that p tends 

to be higher for a model tree with short exterior branches 

than for a model tree with long exterior branches for the 

same value of c and, consequently, for the same value 

of PC (see Appendices A and B). 

Let us now consider the frequency distributions of 

the individual values of PC and Ps for a starlike model 

tree (fig. 4). The PC and PB values are given separately 

for the cases of positive and negative values of 6,. Figure 

4 indicates that the bootstrap is conservative test under 

the null hypothesis b5 = 0 since the distribution of PB 

is skewed, and there are less than 5% of cases in which 

Ps is greater than or equal to 0.95. (A similar result was 

obtained by Zharkikh and Li [1992a, 1992b, 19951.) 

However, the distribution of PC is uniform (fig. 4B). 

This indicates that the interior-branch test is unbiased. 

That is, there are about 5% of the cases in which PC is 

greater than or equal to 0.95. 

Despite the observed difference between the two 

estimates, we have found that for the majority of four- 

sequence model trees, the values of PC and ps for 6, 

> 0 are quite close to each other. However, this is not 

the case when model trees with a large number of se- 

quences are considered. 

Case of Six-Sequence Trees 

Let us now consider the relationship of PC and 

ps for the case of six-sequence trees. We consider PC 

to test the null hypothesis E(&) = 0, where 8, is the 

estimate of the branch length b8 of the true tree (tree 

A in fig. 1). Here 6, and V( 8,) are computed by equa- 

tions (8) and (9), redefining k0 = ( 0, -‘/4, ys6, &, y18, 

- ‘Id, 5/~ 6, ‘h %8, %, ?XG %6, - I/q, -‘Id, 0 > (see Rzhetsky 

and Nei 1992a). PB is computed by the same procedure 
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as mentioned earlier to measure the statistical confidence 

of the partition of sequences at the branch corresponding 

to bg. 

The general pattern of the effect of the exterior 

branch lengths on the difference between PC and PB for 

the case of six sequences is somewhat similar to that for 

the case of four sequences (compare fig. 5A with fig. 3A 

and B) . However, figure 5A does differ from figure 3 in 

one important aspect. That is, the values of ps for six- 

sequence trees are considerably smaller than those for 

four-sequence trees. Before explaining this result, let us 

consider the relationships between PC and PB for other 

model trees (see fig. 5 B) . In this case we have considered 

three different sets of expected branch lengths of tree A 

in figure 1. The expected lengths of the exterior branches 

were the same in all cases ( see figure legend to fig. 5 B), 

but the expected lengths of interior branches were dif- 

ferent. We used b, = b9 = 0 (fig. 5B, solid circles) for 

the first model tree, b7 = 0 and b9 > 0 (fig. 5 B, solid 

squares) for the second model tree, and b7 > 0 and b9 

> 0 (fig. 5B, solid triangles) for the third model tree. 

These three types of model trees are schematically shown 

in figure 1 D. In all three cases the value of b8 was grad- 

ually increased from 0, and the values of PC and Ps for 

the case of & > 0 were averaged for each value of bg. 

For the first tree ( b7=b9=0; solid circles in fig. 5 B), 

we obtain an already familiar relationship in figure 5A 

(solid circles). In the second case ( b7=0, b+O; solid 

squares in fig. 5 B), pB’s increase. In the third case (b+O 

and b+O; solid triangles in fig. 5B), we observe a re- 

lationship of PC and PB that is virtually identical with 

(4 

63 0.6 - 

0.4 - 

0.2 - 

I 

0.2 0.4 0.6 0.8 1.0 

PC 

that for a four-sequence tree with short exterior branches 

(see fig. 3). 

To find the reasons for the discrepancy between pc 

and ps, we computed the frequency distributions of PC 

and PB for the case of the lowest point in figure 5A (open 

circle) where b7 = b8 = b9 = 0. The distribution of PB 

values is even more skewed than in the case of four 

sequences (compare fig. 6A with fig. 4A) (see also Zhar- 

kikh and Li, 1995 ) . However, PC is distributed uniformly 

as in the case of the four sequence model tree (compare 

fig. 6B with fig. 4B). Therefore, it is the bootstrap test 

that is biased (conservative), and the interior-branch 

test is an unbiased test. 

Figure 5 B indicates that the bias of PB depends on 

both the topology and the expected branch lengths of 

the model tree. The larger the number of sequences (or 

sequence groups) that behave independently (or nearly 

independently) in bootstrap tests, the greater the bias 01 

PB. The lowest point in figure 5 B (solid circle) corre- 

sponds to the six-sequence starlike model tree (fig. 

1 D[ i] ) , but the lowest solid-square and the lowest solid- 

triangle points in figure 5B are obtained for the model 

trees that behave like a five-sequence star tree (see fig, 

1 D[ ii] ) and a four-sequence star tree (see fig. 1 D[ iii] ), 

respectively. It can be shown that the bias of PB tend: 

to increase rapidly as the number of independent 01 

semi-independent sequences in the model tree increases, 

Statistical Tests of an Estimated Tree Topology 

So far we have considered the interior-branch ant 

bootstrap tests for a predetermined tree topology. How. 

1.0 

0.8 

0.6 

0.4 

0.2 

@I 

I I I 

I , /, I 

0.2 0.4 0.6 0.8 1.0 

FIG. 5.-Comparison of pc and pB for interior branch bs for the case of six-sequence model trees (fig. IA) in simulation for nucleotidc 

sequence data. A, Simulations for model trees with the expected exterior branch lengths b, = b2 = bJ = b4 = bS = b6 = 0.07 and b, = bg = ( 

(short branch trees, solid circles) and b, = 0.31, b2 = 0.3, b3 = 0.29, b4 = 0.3, b5 = 0.28, b6 = 0.3, and b, = bg = 0 (long branch trees, oper 

circles). The value of bs was changed from 0 to 0.6 by incrementing it by 0.005 for each model tree of short branches and by incrementing i 

by 0.0 15 for each model tree of long branches. PC and pB were obtained by averaging all PC’s and PB’s (given 6, > 0) for each b8 value. Eacl 

point was obtained by averaging the results for 3,000 replications. The number of nucleotides sampled (n) was equal to 100. B, Simulations fo 

the model trees with the exterior branches 6, = b2 = b3 = b4 = b5 = b6 = 0.07 and various values of the interior branch lengths (solid circles 

bl = bg = 0; solid squares: b, = 0 and bg = 0.09; solid triangles: b7 = 0.08, bg = 0.09). The value of b8 in all three cases was increased from ( 
to 0.25 by incrementing it by 0.005 for each model tree. Each point was obtained by averaging results of 3,000 replications; n = 100. 
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0.56 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1. 

P-3 pc 

FIG. 6.-Frequency distributions of the individual values of P&t) and P&I) for the branch bs of the model tree in fig. 1A for nucleotide 

sequence data. The frequencies of PC and Pe corresponding to & > 0 and b, < 0 are shown separately (corresponding bars are stacked one on 

top of the other). The expected branch lengths of the tree were b, = 0.31, b2 = 0.3, b3 = 0.29, b4 = 0.3, b5 = 0.28, b6 = 0.3, and b7 = be = bg 

= 0. The histogram was obtained for data from 30,000 replicate simulations; n = 100. 

ever, when these tests are applied to a tree estimated 

from data rather than to a predetermined tree, their sta- 

tistical properties change. This problem has been studied 

by Zharkikh and Li ( 1992a, 1992b, 1995) in the case 

of bootstrap tests for parsimony trees. In this paper we 

consider the same problem for the interior-branch and 

bootstrap tests for NJ trees. 

When the interior-branch test is applied to an es- 

timated tree, matrix L in equations ( 1) and (2) is no 

longer independent of the estimates of evolutionary dis- 

tances (i.e., &,‘s). As a result, the estimates of branch 

lengths, I;i’s, may not follow a normal distribution, and 

the interior-branch test, in which PC is computed by 

equation (4), may become too liberal or too conservative 

depending on the parameter values of the true tree. 

In the simplest case of a four-sequence tree (see fig. 

2A, b5 = 0), the conditional distribution of b,/s( &) for 

the case where the NJ tree agrees with topology A in 

figure 2 is close to a gamma distribution (see fig. 7A) 

rather than to the standard normal distribution. This is 

because the NJ method always chooses a tree with the 

longest interior branch, and trees that have negative 

&‘s are excluded from consideration. We have found 

that the conditional distribution of 2 E bi /s( Bi ) varies 

considerably with the topology and expected branch 

lengths of the model tree (see fig. 7 B and C). Although 

it is very difficult to obtain the exact distribution of 2 

under the null hypothesis of bi = 0 for every interior 

branch of an estimated tree, one can use the worst-case 

distribution for conducting statistical tests. Let 2, be the 

value of 2 such that the probability of obtaining Z greater 

than Z, is exactly a (say, a = 0.05). Obviously, Z, varies 

with model (true) tree. We call the distribution with the 

highest Z, among various model trees the worst-case 

distribution. Our computer simulations have shown that 

the worst case for four-sequence starlike model trees oc- 

curs when all the exterior branches are of equal length 

(see fig. 7 B) . For five- or more sequence trees the worst- 

case distribution is observed when one interior branch 

of the model tree has length 0 and all other interior 

branches are long (see fig. 7C). This worst-case distri- 

bution is the same for any number of sequences and 

coincides with the four-sequence worst-case distribution. 

(The conditional distribution of Z tends to become nar- 

rower as the number of independent sequence groups 

increases; see fig. 7C. Therefore, the four-sequence tree 

provides the worst-case distribution.) The distribution 

of Z for the worst case is close to the gamma distribution 

f(Z) = bT( a)-* e-bZZa-l, (25) 

where a = 3.17 and b = 3.06 (see Appendix C). There- 

fore, the PC value for the worst case can be computed 

bY 

s 

Z 

P’c = bT( a)- ’ e-bx_xu-l dx. (26) 
0 

This integral can be evaluated numerically (Press et al. 

1988, pp. 17 1-174). Note that equation (26) tends to 

give smaller values than equation (4) for the same value 

of Z. However, the values of PC and Pb are usually quite 

close to each other when they are high. For example, PC 

= 0.95 and Pk = 0.93 for Z = 1.96, and PC = 0.99 and 

P& = 0.98 for Z = 2.58. 

Note that P& in equation ( 26) is defined only for 
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(4 

‘*O I 
0.8 

ox 
8 0.6 

cs 
g 0.4 

crc 

(B) _ 
0 1 2 3 

0.8 

go.6 

0.4 

0.2 

0.0 

FIG. 7.-A, Distribution of 2 = &/s(&) obtained for the model 

tree in fig. 2A by considering only data sets that generated the NJ tree 

identical with tree A in fig. 2. The histogram was obtained for data 

from 100,000 replications with n = 100. The distribution represented 

by a smooth curve is the gamma distribution (equation [25]) with 

parameters a = 3.10 and b = 2.97. The branch lengths of the model 

tree were b, = b2 = !I~ = b4 = 0.3 and bS = 0. “Estimates” of evolutionary 

distances were computed using a multivariate normal distribution. B, 

Various conditional distributions of 2 for four-species model trees. 

Solid line, b, = b2 = bs = b4 = 0.3 and b5 = 0. Dashed line, b, = b3 

= 0.6, b2 = b4 = 0.02, and b5 = 0. Dotted line, b, = b2 = 0.6, b3 = b, 

= 0.02, and b5 = 0. Here the solid line represents the worst-case dis- 

tribution of Z. The number of replications was 100,000; n = 100. C, 

Conditional distributions of Z = &/s(&) for six-sequence model trees 

(see fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIA). The distributions of Z for a four-sequence-like tree (solid 

line, b7 = b9 = 0.15), a five-sequence-like tree (dashed line, b, = 0.15 

and b9 = 0), and a six-sequence-like tree (dotted line, b7 = bg = 0). 

The expected lengths of exterior branches for six-sequence model trees 

were b, = 0.31, b2 = 0.3, b3 = 0.29, b4 = 0.3, b5 = 0.28, b6 = 0.3, and 

the interior branch length bs = 0. The number of replications was 

1 ,ooo,ooo; n = 100. 

positive values of 2 because in the worst-case distribution 

all values of 2 are positive. In practice, some of branch 

length estimates of a NJ tree may become negative. 

However, since the expected values of 2 for estimated 

trees were always positive in our computer simulations, 

we assume that negative estimates indicate that the ex- 

pected values of the corresponding branch lengths are 

close to 0. We therefore suggest that Pk = 0 be assigned 

to any interior branches with negative estimates. 

Using computer simulation, we also studied the 

conditional distribution of the bootstrap values (Pb) for 

the estimated tree that has the same topology as that of 

the model tree (fig. 8A and B). At the same time, the 

P& values were computed for the same set of simulated 

data. This simulation was done for the cases of ( 1) a 

four-sequence model tree (fig. 2A) with br = b2 = b3 

= b4 = 0.3, and b5 = 0 (see fig. 8A) and (2) a six-sequence 

model tree ( fig. 1 A ) with bl = 0.3 1, b2 = 0.3, b3 = 0.29, 

b4 = 0.3, b5 = 0.28, b6 = 0.3, and b7 = b8 = bg = 0 (see 

fig. 8 B) . In case ( 1)) the distribution of P& is close to a 

uniform distribution, but that of Pb is not. This case 

corresponds to the worst-case distribution of 2 discussed 

above, and the uncorrected PC test gives slight overes- 

timates of statistical confidence as mentioned above. 

However, Pb tends to give underestimates even in this 

case if a region of Pb > 0.9 is considered. In case (2), 

in which a six-sequence tree is considered, both Pb and 

Pb becomes underestimates when a region of Pk > 0.9 

or P;3 > 0.9 is considered. However, the conditional 

interior-branch test is less conservative than the condi- 

tional bootstrap test, and thus the former test gives better 

test results than the latter. . 

Discussion 

Both PC and Ps (or Pk and Pb) undoubtedly mea- 

sure the reliability of a branching pattern of a tree, but 

their properties are quite different. Our computer sim- 

ulations showed that PC is a more appropriate measure 

of statistical confidence than PB when the tree under 

analysis is predetermined and that PB is biased (see also 

Zharkikh and Li 1992a, 1992b, 1995; Hillis and Bull 

1993). 

The first source of bias of PB is the uncertainty about 

magnitude of phylogenetic signal in the bootstrap test. 

Considering information provided by data with regard 

to a particular branching pattern, we can distinguish 

among the following three situations. First, sequence 

data on the average provide no phylogenetic signal con- 

cerning the branching pattern if the underlying true tree 

is multifurcating and the multifurcating topology be- 

comes a bifurcating topology by chance. Second, a “pos- 

itive phylogenetic signal” is observed on the average 

when the sequence partition under consideration exists 

in the true tree ( bi > 0). Third, a “negative phylogenetic 
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(B) 
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; 0.1 
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I I n P; 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.9 1. 

0.15 
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PC’ and Pn’ 

FIG. 8.-Frequency distributions of the YC and PZ values for an estimated tree of which the topology is identical with that of the model 

tree. A, Distributions of Pk and Pi for normally distributed distance data obtained from 30,000 replicate simulations. We used the model tree 

shown in fig. 2A with b, = b2 = b3 = b4 = 0.3, and b5 = 0. B, Distributions of Pb and P’s for branch b8 of the model tree in fig. 1A. These 

results were obtained from simulated sequence data with 1 ,OOO,OOO replications. The expected branch lengths of the tree were b, = 0.3 1, b2 

= 0.3, b3 = 0.29, b4 = 0.3, b5 = 0.28, b6 = 0.3, and b, = b8 = b9 = 0, and n = 100. 

signal” occurs when the partition under consideration 

does not exist in the true tree (incorrect partition). 

In the case of star topologies with no phylogenetic 

signal it is possible to compute the average value (FE) 

of PB. This PE depends on the number of sequences in 

the two groups produced by a partition. If we consider 

the case in which m sequences are partitioned into two 

groups containing r and s sequences, respectively, and 

assume that a tree-building method chooses any tree 

with an equal probability, we obtain 

p; = B,+;B,, I , 
where 

m 
(27) 

i-2 

Bi= n (2j-l), andi>3. 
j=l 

Note that P: is equal to 0.33 for r = s = 2 for the case 

of a four-sequence star tree and 0.2 for r = 2 and s = 3 

in the case of a five-sequence star tree. Equation (27) 

indicates that the value of PE tends to be 0 as the number 

of sequences increases. 

However, the computation of Pz becomes quite 

complicated when some of the interior branches of the 

true tree have positive expected lengths (see fig. 5 B). In 

this case some groups of sequences appear together in 

the majority of bootstrap replications, and thus the P;i; 

for this grouping increases. To make things worse, the 

probabilities of recovering various trees containing a 

particular partition may not always be equal to one an- 

other (see Appendix A). Therefore, for every sequence 

partition of a large tree there is a unique Pz value that 

is determined by numerous factors, and there is no easy 

way to compute this value. So, it is difficult to say 

whether the individual Ps (say, P,=O.2) indicates an 

absence of phylogenetic signal (which would be the case 

if P;l; = 0.2 for Y = 2 and s = 3 in equation [ 271)) 

negative phylogenetic signal (if Pz=O.33 for T=S 

=2), or positive phylogenetic signal (if Pz=O.O9 for Y 

=s=3). 

Clearly, the bias of the bootstrap estimate becomes 

more extreme as Pz decreases (see fig. 4A and fig. 6A). 

Curiously enough, the bootstrap value is unbiased only 

in the artificial case of two alternative trees as described 

by Felsenstein and Kishino ( 1993). 

The interior-branch test for a predetermined to- 

pology is inherently free from this kind of bias. In the 

absence of phylogenetic signal (bi=O) the probability 

of observing a PC that is greater than or equal to 0.95 is 

exactly 0.05 regardless of the parameters of the true tree 

(see fig. 4B and fig. 6B). 

There is another type of bias mentioned in the lit- 

erature concerning the application of the bootstrap 

technique in phylogenetic analysis. One might think that 

PB is an estimate of the probability of obtaining the true 

tree (Zharkikh and Li 1992a, 1995; Hillis and Bull 1993; 

Felsenstein and Kishino 1993 ) . As we have seen earlier, 

PB is a function of estimates of five parameters in the 

case of four-sequence trees (fi,, fi2, 8:) &z, 0) (see 

equation [ 231). In general, we can write PB = PB( 6)) 

where 8 is a vector of estimates of all parameters in- 

volved. We can then consider Ps as an estimate of 

PB[E( a)], where PB[E( b)] is equal to the probability 

of obtaining the true tree in the case of four sequences. 
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Clearly, PB should be a biased estimate of this value just 

because PB is a nonlinear function of 8. It is this kind 

of bias that was studied by Felsenstein and Kishino 

( 1993). As shown earlier, for a four-sequence model 

tree with short exterior branches, Ps is essentially a 

function of only two parameters, d and 6’ (d=dl 

I: B2, 62=6~-6~, and p11). However, as the exterior 

branches of the model tree increase, the number of pa- 

rameters that affect the value of PB increases, and so 

does the bias of Ps. In the case of large trees, this effective 

number of parameters tends to increase drastically. 

Consequently, the larger the effective number of param- 

eters, the greater the bias of this kind. 

Some authors attempted to correct for the first type 

of bias for PB. For this purpose Rodrigo ( 1993) proposed 

an application of the “iterated bootstrap” method (Hall 

and Martin 1988 ), whereas Zharkikh and Li ( 1995 ) de- 

veloped the so-called “complete-and-partial” bootstrap 

technique. The efficiency of these techniques deserves 

additional study. 

One should be aware that for each test there are 

certain assumptions that may not be satisfied in practice. 

In particular, the bootstrap test requires the assumption 

that the same evolutionary process operates indepen- 

dently at each nucleotide site. This is not true for many 

real sequence data. In principle, the interior-branch test 

can overcome this problem provided that there is a 

mathematical model that takes care of these biological 

peculiarities in the estimation of evolutionary distances. 

For example, the heterogeneity of substitution rate 

among different nucleotide sites may easily be taken care 

of by using Jin and Nei’s ( 1990) gamma distances. 

Theoretically, similar problems may be taken care of in 

bootstrap tests as well by developing a new sampling 

procedure. In practice, however, the sampling procedure 

seems to be quite complicated. 

The interior-branch test for a predetermined tree 

depends on the assumption of a normal distribution of 

branch length estimates. This assumption may appear 

to be violated when the nucleotide sequences under study 

are very short ( < 100 characters) so that the discreteness 

of nucleotide substitutions strongly affects the distribu- 

tion of branch length estimates. However, our computer 

simulations showed that the assumption of normal ap- 

proximation rapidly improves as the number of se- 

quences and/or their length increases. Note also that 

the interior-branch test can be modified to relax the re- 

quirement of the normal distribution of branch length 

estimates (e.g., see Dopazo 1994). However, both the 

bootstrap and the interior-branch methods may lead to 

erroneous conclusions when inappropriate (biased) es- 

timators of evolutionary distances are used. When the 

interior-branch test is applied to an estimated topology, 

we recommend that PL rather than PC be used to avoid 

the possible overestimation of statistical confidence fo 

a sequence clusters by this test. In practice, however 

P& and PC are close to each other when a region o 

Pk > 0.9 or PC > 0.9 is considered. 
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APPENDIX A 

Relationships between the Expected Branch Lengths 

of the Model Tree and the Values of q, c2, and p 

Since thevaluesofo:, o$, andpol<T2(thevariance 

and covariance of d, = $B - sA and d, = & - gA 

respectively) determine the probability of recovering the 

correct tree ( see equation [ 22 ] ) , it is important to un 

derstand their dependence on the branch lengths of the 

model tree. 

Using equations (I!), (12), and (21), we find the 

following equation after some algebraic manipulation. 

0: = [gtbl, bd+gtb3, W+gth, bs W 

+ 02, bs, W+WWl/ 16, 
(Ala 

d = Mb, bd+gtb3, bd+g(h, b5, hl 

+g[&, bg, W+W-(M/16, 
(Alb 

~~102 = Mbl, b2)+g(b3, h)+g(b,, W 

+ g(b2, bd+gth, W+gtb4, b,) WC 

+4ftWlll6, 

where 

g@i, bj) =ftb+bj> - [fth)+f(bj)l, Wa 

g(bi, b,, bk) =f(bi+b,+bk) (A2b 

- [f(bi )+f(bj)+f(bk)l~ 

and functionf( 6) is the same as that defined in equatior 

( 12). An analysis of equations (A 1 a-b) shows that the 

values of o1 and o2 tend to be close to each other, ant 

p approaches a value close to 1 as b5 increases. Thi 

holds for a wide range of values of bl , b2, b3, and b4. 
Using equation (Al ) we can directly comparc 

the values of p for a given expected value of 2 

= b5 / s( b5 ) [ E( 2 ) = b5 / G] for four-sequence model tree 

with “short” and “long” exterior branches (see fig. 3) 

Figure 9 shows that p increases faster for trees with shor 

exterior branches (solid circles) than for trees with long 

exterior branches (open circles). This explains the dif 
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Expected 2 

FIG. 9.-Relationships between p and the expected value of Z for 

four-sequence model trees with short (solid circles) and long (open 

circles) exterior branches. The actual values of the expected exterior 

branch lengths are the same as in fig. 3. The values of p and Z increase 

as the length of interior branch (b,) of the model tree in fig. 2A increases. 

ferences in the relationships of PC and pB between these 

two types of model trees in figure 5. 

In the case of a star tree ( b5 = 0) equations (A 1 a- 

c) reduce to 

0: = ]g(k &)+g(k, b4) 

+g(bl, M+gh bdl/ 16, VW 

0: = Mh, bd+g(b3, bd 
WW 

+g(b,, bs)+gh WI/ 1% 

~0102 = Mb, b2)+g(h hN/ 16. (A3c) 

From the above equations, we obtain 

01 

i 

Ml, W+g(b3, W+g(h, bd+gh bd 1’2 -= 

02 Ml, b2)+ghbd+g(h 7 bd+g(b2, W 1 ’ 
(A4) 

and 

P= 
I[ 

1 + Ml, bd + g(b2, h) 
dh, bd + g(b3, W 1 W) x 1 + g(h, W + g(b2, bd 

[ II 
-1’2 

g(h, W + g(b3, b.d ’ 
To study the values of o1 /o2 and p, let us rewrite the 

function g( bi, bj) as 

g( bi, bi) = & { (e46J3- 1 )(e44i3- 1) 
b46) 

X [ 2+( e4bi/3+ 1 )(e4bi3+ 1 )] } , 

combining equations (A2) and ( 12). Considering the 

first three terms of Taylor’s series expansion and assum- 

ing that bj is much smaller than 3/4, we can approximate 

e4b1/3 by 1 + 4bi / 3 + 8bF /9. After some algebraic com- 

putation we can express equation ( A6) as 

g(bi, bj) = 2bibjln + O(brbj), (A7) 

where r + s = 3. Next, we replace bi by b + 6i (i= 1, 

2, 3, and 4)) where b is the average value of bl , b2, b3, 

and b4 and 6, + 62 + s3 + 6, = 0. We then obtain the 

following simplified equations for g( bj , bj) 7 0, /02 

and p. 

g( bi 3 b,) N 2 [ b2+b( 6i+6j)+Si6j]/n, (A8) 

l-(62+6,)2/(4b2) 1’2 

1 l-(S,+S3)2/(4b2) ’ 
(A9) 

and 

1 + [@3-h N&-W-2%1/(2b2) 
N 2[l-(S2+S3)2/(4b2)]1’2 

. (AW 

x [l-(S,+S3)2/(4b2)]1’2 

Equation (A9) indicates that the ratio o1 /02 is very close 

to 1 whenever 6, is close to 62, or 63 is close to s4, or all 

&i’s are much smaller than b. It follows from equation 

(A 10) that p = 1/z when all 6i’S are equal to 0 and that 

p is close to ‘/2 whenever 6i’s are much smaller than b. 

We also see from equation (22) that the probability 

of recovering the tree in figure 2A when b5 = 0 is deter- 

mined solely by the value of p (p1=p2=b5/2=0), 

P = F(0, 0; p) = + + & sin-lo. (All) 

(Here we used the formula that was first derived by 

Sheppard [ 18991.) Note that for p = ‘/2 we have P = y3. 

However, as p deviates from ‘/2, three possible unrooted 

trees for four sequences are no longer equiprobable. On 

the one hand, when the values of bl and b2 are much 

larger than the values of b3 and b4, the value of p tends 

to be 1 and P tends to be ‘/2. On the other hand, when 

the values of bl and b3 are very large and the values of 

b2 and b4 are very small, p tends to be 0 and P tends to 

be y4. 

This implies that one may encounter a situation in 

which the NJ method tends to choose an incorrect to- 

pology. In other words, we can find a four-sequence 

model tree with extremely short interior branch and two 
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extremely long exterior branches such that the proba- 

bility of obtaining the correct tree by the NJ method 

from a small data set tends to be smaller than ‘/3. How- 

ever, this effect disappears as the number of nucleotides 

increases. 

APPENDIX B 

Expected Value of PC when 2 Is Positive 

Let Bi and V( bi ) be the estimates of the length of 

the ith interior branch and its variance with the expected 

values bi and 02, respectively. The PC for this branch is 

computed by equation (4) in the text. Assuming that 

the test statistic 2 = bi /s( bi ) follows the standard nor- 

mal distribution and noting that conditions 2 > 0 and 

Bi > 0 are equivalent, we can obtain a formula for the 

mean value of PC for the case of bi > 0: 

E(Pcibi>O) = E(PcIZ>O) 

s 00 

&4x)~(x~ 5, 1 )dx VW 
0 

= 
Prob(Z>O) 

, 

where 4(x; 5, 1) is a normal density function with mean 

{ = bi / 0 and variance 1, 

Prob(Z>O) = (D(c), (B2) 

and 

1 
=- 

V?-- s 
cc [2@(x)-l]exp(-(x-c)2/2)dx 

7c 0 
(B3) pa, 

=n: -1 

J exp{ -(~-5)~/2} 
0 

X (s a exp( -y2/2)& dx - (D(c). 
-X 

1 

Replacing variables x and y by Y = x - 5 and s 

= (x-r+Y)l& we can simplify the above equation to 

a2 ss CCI 

7&i exp { - ( r2-Gs+s2)} drds 
-r -r;lfi 054) 

- WC) = w-r, -r/l% l/E) - Q(C), 

where F( -6, -c/ fi; 1 / fi) is a function given in equa- 

tion ( 22 ) . Finally, we obtain 

E( PC1 Z>O) = 
w-5, -r/c 1/e _ 1. 

@(5> 
(B5 

For a starlike model tree we have 4 = 0, and equatior 

(B5) reduces to 

E(PcJZ>O, c=O) = 2 sin-‘( l/fi)/lt = 0.5. (B6 

( Here we used equation [A 111.) Equation 1 B5 ) show 

that PC is an unbiased estimate of Prob(bi>O) for : 

starlike model tree (i.e., for bi = 0). PC is biased whei 

bi > 0. For example, equation (B,5 ) shows that we havl 

E(Pcl Z>O) = 0.81 when Prob(bi>O) = 0.95. 

APPENDIX C 

The Worst-Case Distribution of 2 for an Estimated 

Topology 

The worst-case distribution of 2 = bi /s( 6i ) is ok 

served for the case of a four-sequence star tree with ex 

terior branches of equal length. In order to approximat 

this distribution by a gamma distribution we need t 

know the mean and variance of 2. The shape and seal 

parameters of the gamma distribution are then given b 

a = E2(Z) E(Z) 

V(Z) ’ 
and b = - 

V(Z) ’ 
(Cl 

respectively, where E(Z) and V( Z ) stand for the COK 

ditional mean and variance of Z, respectively, when a 

data sets that give an NJ tree different from tree A i 

figure 2 are discarded. 

Using the same notations as in equations ( 17) 

(22), we can write Z as (Di + D2)h, where 

= 1 / s( & ) . Assuming that d, and d, follow a bivariat 

normal distribution with mean vector (0, 0) and th 

covariance matrix given in equation (20), we can con 

pute the mean of Z by 

E(Z) = 
h 

27KY,(T2 PF-7 

= h( l+p)@31+~2) 

2PGr ’ 

where P is the probability computed by equation (22 

Equation (C2) is derived by using the formula for ir 

complete moments of a bivariate normal distributio 

(Johnson and Kotz 1972, p. 92). Similarly, we ca 

compute E(Z2) and V(Z): 
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E(Z2)= h*{(~:+~~)[l+p~l(27cp)1 (C3) 

+ 20,cJ,[p+G7/(2x~)1}. 

V(Z) = E(Z*) - E*(Z) 

= h*O:{( l+a2)[l+pvi71(2xP)1 (C4) 

+ 2a[ p+W/( 27tnp)] 

-( l+a)*( l+p)*/( 8nP*) 1, 

where a = 02/01. In the present case p = ‘/*, a = 1, 

P = ‘/s, and h = l/(oifi). Therefore, we have E(Z) 

3fi/( 2fi) and V( 2) = 1 + 3(2e--9)/( 8x) 

rquation (Cl ), we obtain a = 3.17 and b = 3.08. 
Using 
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