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We have compared statistical properties of the interior-branch and bootstrap tests of phylogenetic trees when the
neighbor-joining tree-building method is used. For each interior branch of a predetermined topology, the interior-
branch and bootstrap tests provide the confidence values, P~ and Pg, respectively, that indicate the extent of
statistical support of the sequence cluster generated by the branch. In phylogenetic analysis these two values are
often interpreted in the same way, and if P and Py are high (say, =0.95), the sequence cluster is regarded as
reliable. We have shown that P is in fact the complement of the P-value used in the standard statistical test, but
Py is not. Actually, the bootstrap test usually underestimates the extent of statistical support of species clusters.
The relationship between the confidence values obtained by the two tests varies with both the topology and expected
branch lengths of the true (model) tree. The most conspicuous difference between Pc and Pjp is observed when
the true tree is starlike, and there is a tendency for the difference to increase as the number of sequences in the
tree increases. The reason for this is that the bootstrap test tends to become progressively more conservative as the
number of sequences in the tree increases. Unlike the bootstrap, the interior-branch test has the same statistical
properties irrespective of the number of sequences used when a predetermined tree is considered. Therefore, the
interior-branch test appears to be preferable to the bootstrap test as long as unbiased estimators of evolutionary
distances are used. However, when the interior-branch is applied to a tree estimated from a given data set, P may
give an overestimate of statistical confidence. For this case, we developed a method for computing a modified
version (P¢) of the P value and showed that this P tends to give a conservative estimate of statistical confidence,
though it is not as conservative as Pg. In this paper we have introduced a model in which evolutionary distances
between sequences follow a multivariate normal distribution. This model allowed us to study the relationships

between the two tests analytically.

Introduction

There are several different methods that are cur-
rently in use for testing the statistical significance of a
particular branching pattern of a phylogenetic tree (see,
e.g., Felsenstein 1988; Li and Gouy 1991; Nei 1991 for
review ). Since the significance levels obtained by differ-
ent methods for the same phylogenetic tree do not nec-
essarily agree with each other, it is important to under-
stand statistical properties of these methods. In this paper
we compare the interior-branch test (Nei et al. 1985; Li
1989; Rzhetsky and Nei 1992a) and the bootstrap test
(Efron 1982; Felsenstein 1985) using both computer
simulation and analytical study. A similar study was
carried out by Pamilo (1990), but his study was con-
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cerned with the UPGMA tree-building method in whic 4>
a constant rate of evolution is assumed. We will consider:
a tree-building method which does not require this as$
sumption. 9

In the present study we used two different types of2
computer simulations. In the first type the evolutiona
distances corrected for multiple hits were estimated front;
observed nucleotide differences. In the second type of
simulation the evolutionary distances were drawn from3
a multivariate normal distribution with the same mean
vector and the variance-covariance matrix as those for
distances calculated from nucleotide sequences. By
comparing the results of the two types of simulation for
the same model tree, we were able to study the effect of
the different distributions of distances on the relation-
ships of the interior-branch and bootstrap tests of sta-
tistical confidence. In addition, the second type of sim-
ulation led us to study the relationships of the two tests
analytically.

We start our analysis with a simple model tree of
four sequences. We examine the relationship between
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the statistical confidences obtained by the two methods
for various model trees. We will then compare the two
tests for the case of six sequences. Before presenting our
results, we briefly explain the essential aspects of the two
statistical tests.

Interior-Branch Test

Consider a given tree for a set of m nucleotide se-
quences. The interior-branch test for this tree is con-
ducted as follows. We first compute the unbiased esti-
mates of the evolutionary distances (the numbers of
nucleotide substitutions) for all pairs of sequences, that
is, d’,-,’s, where i and j refer to the ith and jth sequences,
respectively. The estimates (,’s) of branch lengths for
the tree are then given by

b = Ld, (1)
where f), = (B], Bz, ey i)zm_g) and ﬁ’ = (dAlz, d’]_‘;, ey
Jm,l,m) are the transposes of the column vectors of
branch length and distance estimates, respectively. L is
a([2m — 3] X m[m — 1]/2) matrix that is specified by
the tree (Rzhetsky and Nei 1992a). Let W be the estimate
of the variance-covariancematrix (W) of vector d (see
below). The vector of the variances of branch length es-
timates, V(b') = (V[b;], V[b2], ..., V[bam_s}), can
then be obtained by
V(b) = L'WL. (2)
In practice, the computation of b;’s and V (b;)’s for a
large tree becomes simpler if we use Rzhetsky and Nei’s
(1993) formulas that require no matrix algebra.
The null hypothesis of the interior-branch test is
that the interior branch under consideration has length
0. To test this hypothesis, we can use the following test

statistic (normal deviate) if b; can be assumed to be
normally distributed:

Z = b;/s(bi), (3)
where s(b;) = V(b;)'/*. We have done computer sim-
ulation to examine the distribution of Z in equation (3)
under the null hypothesis and have shown that the dis-
tribution is indeed approximately normal. Therefore, Z
can be used to construct the two-sided normal deviate
test. The null hypothesis is rejected at the significance
levelof aif | Z | > Z,,,, where Z,, is the upper (0./2)-
critical value for the standard normal distribution.

To compare the interior-branch test with the
bootstrap test, it is convenient to consider the following
probability:

Pe=20(Z]) - 1, (4

where

d2Z) = e~ dx. (5

.

P tends to be 0 when b; approaches 0 and tends to t
1 when | ;| increases. We call this confidence value.
is the complement of the P-value used in the standar
statistical test.

Note that the above statistical test applies when
topology to be tested is predetermined. This sxtua‘ﬁo
occurs when an investigator is interested in the rehablln
of a particular topology. However, the 1ntenor-br@c
test is often applied to a phylogenetic tree estimated ﬁor
actual data rather than to a predetermined tree. Incth
case the statistical properties of the P test becomexdi
ferent. Later we will consider a correction for Pcﬁa
essary for this case.

Interior-Branch Test for Large Trees

1wapeoe//:

In the case of four-sequence trees the expected val
of the estimate of the interior branch length can be efth
positive (for the true tree) or negative (for a wrong %(
if the true tree is not starlike. Hence, the estimate ofth
interior branch length gives some idea about the valmin
of a tree. In the case of a large number of sequencesvs
can test the null hypothesis E(b;) = 0 for the ith mt@m(
branch, but the interpretation of the test outcor@
somewhat more complicated. It can be shown thatstt
expectation of the length estimate of an incorrect intg¥ic
branch (which gives a sequence partition that is?ﬁn(
present in the true tree) in a large tree can be posiiy
(E[b;1>0). However, a negative E(b;) always indi€at
that the corresponding partition is wrong. We %lll
strate this point with the following example of a~s1
sequence tree.

Let tree 4 in figure 1 be the true tree for thg> sl
sequences 1, 2, 3, 4, 5, and 6, and let b,, bg, and @ t
the expected lengths of interior branches of this treeﬁLc
us compute the expectation of the least-square estm%te
of the interior branch lengths of wrong trees B and 'C i
figure 1. For interior branches 7, 8, and 9 of tree B (fi;
1 B)), we obtain

- 2 1
E(b7) = b7 + 5 bg + 5 bg,

- 5
E(bg) = ‘1_8(2b8+b9), (¢

- 1
and E(bg) =g(4bg—b9).
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FI1G. 1.—A, Hypothetical true tree for six sequences. B and C, Incorrect trees for the same sequences. D, Three model trees for six sequences
used for generating the relationship between P and Pz in fig. 6B. When bg = 0, trees (i), (ii), and (iii) behave as six-, five-, and four-sequenge
o

star trees, respectively.
Similarly, for tree C, we have

R 1
E(by) = 2 (—bs+2bg+by),

X 1
E(bg) = Z(b7+2b8_b9)9 (7)

o 1
and E(bg) = - Z (b7+2bg+b9)

Therefore, (1) the value of E(b,) for tree B is always
positive and the corresponding interior branch gives the
correct partition of sequences, (2) the values of E(bg)
for tree B and E(bs) for tree C are always negative and
both interior branches give an incorrect partition of se-
quences, and (3) the values of E(by) for tree B and
E(b;) and E(bg) for tree C can be either positive or
negative depending on the actual values of b;, bg, and
by. We note that all these interior branches in trees B
and C give an incorrect partition of sequences.

From a number of other similar examples, we have
conjectured that any wrong bifurcating tree has at least
one interior branch with a negative value of expected
length estimate. (We do not attempt to prove this con-
Jjecture in this paper but assume that it is true.) Therefore,
the interior-branch test indicates that.the tree under
consideration can not be rejected if there is no interior
branch length estimate that is significantly smaller than
0. Note that due to sampling errors one may obtain some
negative branch length estimates even for the true to-
pology, but the probability that these estimates are sig-
nificantly different from 0 should be very small.

Since the interpretation of P, varies with the sign
of the corresponding branch length estimate (b)), we
shall compare P, and its equivalent quantity for the
bootstrap test for the positive and negative values of b;
separately.

woJj pape

Bootstrap Test

Unlike the interior-branch test, the bootstrap tgst
is not independent of the tree-building method. In tHis
paper we consider the neighbor-joining (NJ) meth@d
(Saitou and Nei 1987) using unbiased estimates of evo-
lutionary distances. However, the results obtained hese
should apply to other methods as well if the metho@s
are as efficient as the NJ method in obtaining the corréet
tree. A common way to apply the bootstrap test is ﬁ%t
to construct an NJ tree from a given set of sequenge
data and then test this tree with a bootstrap test. Ho%-
ever, as in the case of the interior-branch test, the boéii—
strap test can be applied to any predetermined tree
(Zharkikh and Li 19924, 19925, 1995). N

Once a tree is obtained, the original data set is used
to generate B independent pseudosamples of sequenc%.
Each pseudosample is obtained by drawing nucleotide
sites randomly from the original set of sequences with
replacement until a sample of the same size (number%f
nucleotides) as the original one is obtained. Some sit@s
are sampled several times, and others are omitted. We
then apply the NJ method to construct a phylogenefic
tree from each pseudosample and compare each bo@-
strap tree with the original tree. This is repeated for Iz‘agll
B pseudosamples, and for each cluster (or partition Ef
sequences; see Penny and Hendy 1985; Rzhetsky and
Nei 1992a) of the original tree, the proportion of boot-
strap trees in which this cluster appears is computed.
We call this value (Pp) the bootstrap confidence value
or bootstrap value.

Note that the above procedure of the bootstrap test
is somewhat different from that of Felsenstein (1985).
In his method the topology of a bootstrap tree is not
compared with that of the original tree. Instead, a boot-
strap consensus tree is produced, and this tree is regarded
as a representative tree obtained from the data set. The
P for sequence cluster of this tree is the proportion of

Le/
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bootstrap trees in which the cluster appears. The boot-
strap tests for the maximum-parsimony and NJ methods
in the PHYLIP program package (Felsenstein 1991 ) are
both conducted in this way. By contrast, the bootstrap
test for the NJ method in the MEGA package (Kumar
etal. 1993) follows the method described above. Kumar
et al.’s method is for testing the reiiability of the tree
obtained from the original set of data.

Literally speaking, Py is an estimate of the propor-
tion of cases in which the tree-building method recovers
a specific sequence ciuster from infinitely many data
sets generated by the same evolutionary process. Recent
studies (Zharkikh and Li 19924, 19925, 1995; Hillis and
Bull 1993; Felsenstein and Kishino 1993) have shown
that Py is a biased estimate of this proportion. Bootstrap
tests tend to give conservative estimates of statistical
confidence when the true tree contains the cluster under
investigation, and the length of the corresponding in-
terior branch is positive and small. By contrast, bootstrap
tests tend to be liberal if the cluster does not belong to
the true tree. ( The latter problem rarely affects the phy-
logenetic inference, since it occurs only for small values
of Pg.) All the above statements about statistical prop-
erties of the bootstrap test are correct only when the
tree-building method used in bootstrapping is statistically
consistent.

The null hypothesis of bootstrap tests has not been
clearly defined. Since Py, for a particular sequence cluster
or an interior branch is required to be greater than a
threshold value (say, 0.95) for accepting this cluster as
statistically significant, P has been implicitly interpreted
as though it is the same quantity as P In practice, this
is not true, as will be shown below.

Comparison of P- and Pz by Computer Simulation and
Analytical Study

In the following section we present details of the
procedure of our computer simulation only for the case
of four-sequence trees, since its extension for the case
of larger trees is straightforward.

Nucleotide Sequence Data

We used the Jukes and Cantor ( 1969) substitution
model to simulate the evolution of nucleotide sequences
and compare P and Pg, though any model can be used
as long as the distance estimates obtained are unbiased.
The procedure of the simulation was as follows. First,
specify the values of expected branch lengths b, b,, b3,
ba, and bs for the model tree in figure 2A4. Second, gen-
erate four “extant” nucleotide sequences of length » ac-
cording to the model tree as in Rzhetsky and Nei
(1992b). Third, estimate the vector of evolutionary dis-
tances between sequences, d' = (J,z, 6?13, d};, JB, 6?24,
334), using the Jukes-Cantor method. The variance-co-
variance matrix (W) of the vector d is then estimated

(A) (B) (©)

FI1G. 2.—A, Hypothetical true tree for four sequences. B and C,
Incorrect trees for the same sequences.

by using Kimura and Ohta’s (1972) formula for the

arinnes 4 Rnlm m
variances and Bulmer’s { 1991) formula for the COVan=

ances. Fourth, estimate the length of the interior branch

of the true tree (tree A in fig. 2) by the equation g
bs = kod, where kKo = (=2, Y, Y, Ya, Ya, =), é)

and the variance of bs by g
V(bs) = koWk, é)

o

where W is the estimate of W (Rzhetsky and Nei 19928).
Finally, compute P, using equation (4) to test the nfill
hypothesis E(bs) = 0. Compute Pj (i.e., the proportion
of bootstrap trees in which the interior branch under cén-
sideration appears). In all simulations discussed below we
used n = 100 and B = 500 unless otherwise stated.

ole/aqU/ W

Normally Distributed Distance Data

The joint distribution of d;’s computed abové"\ls
slightly asymmetrical compared with a multlvan@e
normal distribution. To evaluate the effect of this skew-
ness on the performance of the interior-branch test, ¥e
conducted another type of simulation, in which the v%:
tor of the distance estimates, d, exactly followed a m@l-
tivariate normal distribution. In this simulation allgs-
sumptions underlying the interior-branch test gre
satisfied, and the results obtained could be compaged
with those from the analytical formulas.

The procedure of this simulation was exactly ﬁﬁe
same as those for nucleotide sequences except for sogle
details concerning the estimation of evolutionary cﬁs-
tances (steps 2 and 3 in the previous section). We u@d
the following method to generate a vector of estimates
of “evolutionary distances” (d) following a multivariate
normal distribution. The expected distances for this
multivariate normal distribution were given by

diy=by+ by, di3=b + bs+ bs,
dis=by + bs+ by, dyz =
d24 = bz + b5 + b4, and d34 = b3 + b4,

by + bs + b3, (10

where b,’s are the expected branch lengths of the model tree
(see fig. 24), and the variance-covariance matrix, W, was



S(bi+by) S(by) S(by)

J(by) S(b+b3+bs) S(bi+bs)
W= S(by) S(bitbs)  f(bi+batbs)

J(b2) J(bs+bs) S(bs)
S(b2) S(bs) J(bstbs)

0 S(b3) S(bs)

Here

f(8) = (—9+6e%/3+3e%/3)/(16n), (12)

where 0 is given by an appropriate sum of b,’s, and n is
the sample size that is analogous to the number of nu-
cleotide sites. The matrix W is the same as the variance-
covariance matrix of vector d for nucleotide sequence
data generated by the Jukes-Cantor model following the
model tree in figure 24 (see Rzhetsky and Nei 1992b).
To generate observed distances, c?,;,»’s, we computed a
triangular matrix C such that
W =C'C (13)
(for details, see Press et al. 1988, pp. 39-45). We then
computed » random vectors, xx = (Xi1, X2, Xk3, Xkd»
Xis, Xre), where k = 1,2, ..., n, and x;,;’s are indepen-
dent random variables drawn from a standard normal
distribution. We generated x;;’s using the Box-Muller
method (see Press et al. 1988, pp. 216-217). We used

vectors xk s to obtain a set of random vectors d,, dz,
, and d by

d, =d+Cx, Vn, (14)
where d is the vector of dj;’s. We then computed a vector
of estimates of evolutionary distances, d, by

d = (d,+d,+. . .+d,)/n (15)
and the estimated variance-covariance matrix (W) of

vector d using the standard formulas for sample vari-
ances and covariances for a vector of sample means by

Wrx = z": (dr,i-dr)(dAx.i_dAs)]/n(n_l)’ (16)

i=1

where W, is an estimate of the covariance between the
rth and sth entries of the d vector, d,, is the rth entry
of the vector d;, and d, is the rth entry of the vector d.
The rest of the simulation was done in the same way as
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Sf(by) S(b2) 0
S(bst+bs) S(bs) Sf(b3)
S(bs) S(batbs) Sf(bs) (11)
S(batbst+bs)  f(bytbs) S(b3)
f(batbs)  f(batbstbs)  f(bs)
S(b3) S(bs) S(bs+by)

that for nucleotide sequence data (see steps 4 and 5 in
the previous section). The vectors d,, d,, . . ., and d,
were treated as nucleotide sites in bootstrap resarnplmgo
When the estimates of evolutionary distances follovg
a multivariate normal distribution, one can obtain rathe
simple formulas for computing the expected value of Pf,_%
and the probability to recover the true tree by the N.E
method. We shall consider these formulas in the next:
section.

Analytical Formulation for the Case of Normally
Distributed Evolutionary Distances

jwapeoe//:sdy

In the case of four sequence trees, the NJ metho&a
is known to select the unrooted tree with the smallesf
sum of branch length estimates ( Saitou and Nei 1987 )§
Therefore, if we denote the sums of branch length esti2
mates for trees 4, B, and C in figure 2 by Sa, Ss, an@i
SC, respcctlvely, we can introduce the following vanables;
D] and D2

D] = SB - S’A, and ljy_ = S(“‘ SA.

=
96/6¥E/T/T /o]

Therefore, the NJ method recovers the correct tree (tre€3
A) whenever both D, and D, are positive. We can com9°

pute D, and D, by ;
[9]

D, = ki, and D, = k.d (18%

N

where >
e

K, = (=%, %, 0,0, %, —%), and =

o

(19%

k, = (Y%, 0, Ya, Y4, 0, —V4).
When é’,—j’s follow a multivariate normal distribution,
the joint distribution of D, and D, is a bivariate normal

distribution with the expected values pu, = k;d and L,
= k,d, and the variance-covariance matrix

63  pooc,
V= ) ,
pPO102 02

where 67 and o3 are the variances of D, and D,, re-

(20)
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spectively, po,0; is the covariance for D, and D5, and
p is the correlation coefficient between D, and D,. The
elements of matrix V are given by

oi = k,WKki,

(21)
03 = k,Wk5, and po;6; = kWK,
where matrix W is computed by equations (11) and
(12). Since the correct tree is recovered when D, >0
and D, > 0, the probability (P) of obtaining the true
tree (tree A in fig. 2) by the NJ method can be computed
by

1

l ou o
.
2n6,6,V1 —p2Jo Jo cxp 2(1-p?)
><((X_1211)2_2 (x—p)(y—H2)
(o2 0,0,
(y Hz)
o )]dxdy

(22)
1

1 J‘m J‘o{, [
_— expl| — ——
21V — p2J-uson J-ua/on 2(1-p?)

X (x2—2pxy+y2)]dxdy
g M _ M2,
F( 5’ 02,p).

This integral can be evaluated numerically (see Drezner
and Wesolowsky 1990). Computer simulations have
shown that equation (22) gives a surprisingly good es-
timate of the probability of obtaining the true tree by
the NJ method as long as #» = 100 even if the distribution
of evolutionary distances deviates from normality to
some extent, as in the case of nucleotide sequences.

We are now in a position to derive the expression
for Pg. For each bootstrap pseudosample we can com-
pute d*, DT and D3, where the asterisk indicates that
the quantity is computed from a pseudosample. As in
the case of the original data set, the correct tree is re-
covered from a pseudosample only when DY and D%
are both positive. The joint distribution of D} and D3
for the pseudosamples obtained from a particular data
set can be approximated by a bivariate normal distri-
bution with mean vector (D, Dz) and variance-covari-
ance matrix V. Here, D, and D, are computed by equa-
tions (18) and (19) from the original set of data, and \Y
is the estimate of matrix V in equation (20). Therefore,
Pg is equal to the proportion of cases where both D¥
and D3 are positive and can be computed by

Py~ F(=D,/6\, =D,/ 62; ). (23)
Our numerical study has shown that this approximation
works very well even when vector d is computed from
nucleotide sequences.

Case of Four-Sequence Trees

In this section we first examine the difference be-
tween the average P, and Pjg values for various model
trees and then consider statistical properties of the in-
dividual values of P and Py for a specified model tree.

Relationship between Average Pc and Py for Vanoug
Model Trees

Let us consider the relationship of the averages (%’(
and Pjp) of 3,000 Pc’s and Pg’s for the cases of bs >=0 =
for the model tree of four sequences in figure 24 when
bs gradually increases from O (fig. 3). Pc and Py age
quite close to each other, though the individual valhdes
of Pcand P obtained for each data set are not necessarily
close (data not shown). Figure 34 and B represent the
cases of normally distributed distance data and simulated
nucleotide sequence data, respectively. Although thée
two figures are slightly different for small values of @,
and Py (small values of bs), the relationships between
the two estimates are very similar for the two ty@s
of data.

The relationship between P and Py depends %n
the expected lengths of the exterior branches of t:l:)e
model tree. The points (P, Pg) tend to be “upwar‘g
(Pc<Pg) when the model tree has short exterior branches

BOJUM
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»
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o
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F1G. 3.—Comparison of the average values of P-and Pj for four-
sequence model trees for the cases of bs > 0. We used the following
two sets of the expected exterior branch lengths for the model tree ir
fig. 24: b, = 0.07, b, = 0.075, by = 0.065, by = 0.07 (short branct
trees, solid circles), and b, = 0.3, b, = 0.3, b3 = 0.3, by = 0.3 (long
branch trees, open circles). The expected length of the interior branch.
bs, was changed from 0 to 0.7 by incrementing it by 0.005 for eact
model tree of short branches and by incrementing it by 0.03 for eack
model tree of long branches. The sample size (number of nucleotides
was equal to 100. Each point was obtained by averaging resulits o
3,000 replications. 4, Normally distributed distance data; B, simulatec
nucleotide sequence data.
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F1G. 4. —Frequency distributions of P5 (4) and P (B) for normally distributed distance data obtained in 10,000 replicate simulations. l%e
frequencies of Pg and Pc for bs > 0 and bs < 0 are shown separately (corresponding bars are stacked one on top of the other). Here we used

the model tree in fig. 24 with b, = by = b; = by = 0.3, and b5 =

(fig. 3, solid circles) and “downward” when the exterior
branches are long (fig. 3, open circles). We conducted
an analytical study of these properties for the case of
normally distributed distance data. In this case it is easy
to derive an equation for P (Appendix B), where P is
determined by { = bs/c (where 6=s[bs]). To obtain
an equivalent equation for Py, we use equation (23),
the relationship bs = D, + D, (see equations [81,[18],
and [19]),and V (bs) = 6} + 2p0,0; + 63. To simplify
the analysis, we replace 6,, 6,, and p in equation (23)
by their expected values o, o,, and p. Then, after
some algebraic manipulations we obtain the following
equation:

- 1
Fr = S Q2m(1-p7) 7

o0 o0
X f f exp{ —(x3—2px,x2+x3)/
—o0 V—01Xx1/03

[2(1-pH)]}
—(x+8ay); p] dx dxz,
(24)

X F[—(x;+Ca,),

where § = bs/o, 0, = (1+2pc,/0,+03/02)'2/2, a,
= (1+2po,/0,t6i/03)'/?/2, and F(y,, y,; p) is a
function given in (22). Both computer simulations and
analytical studies have indicated that for bs > 0, the
values of ¢, and o, are very close to each other for the
majority of the model trees (see Appendix A). Therefore,
we can assume that o, ~ 0, ~ o = ([1+p]/2)'/2. The
value of Pj for a given { is then determined mainly by
the correlation coefficient p. The higher the p value, the
greater the Py in equation (24). Therefore, to explain

0. The number of nucleotides sampled (#) was equal to 100.

/:sdny wo

the difference in points (Pc, Pg) between the different
model trees in figure 3, we only need to note that p ten;ﬁs
to be higher for a model tree with short exterior brancl?s
than for a model tree with long exterior branches for the
same value of { and, consequently, for the same vaIﬁe
of P (see Appendices A and B). 3

Let us now consider the frequency distributionsg)f
the individual values of P and Pj for a starlike model
tree (fig. 4). The P, and Pjp values are given separat@y
for the cases of positive and negative values of . Figute
4 indicates that the bootstrap is conservative test und%r
the null hypothesis s = 0 since the distribution of ?
is skewed, and there are less than 5% of cases in wh1§1
Pgis greater than or equal to 0.95. (A similar result v@s
obtained by Zharkikh and Li [19924, 19925, 199@)
However, the distribution of P is uniform (fig. 4 5).
This indicates that the interior-branch test is unbiascgf;j.
That is, there are about 5% of the cases in which chis
greater than or equal to 0.95. N

Despite the observed difference between the two
estimates, we have found that for the majority of fof&-
sequence model trees, the values of P- and Py for ﬁs
> 0 are quite close to each other. However, this is ﬂ,@t
the case when model trees with a large number of se-
quences are considered.

Case of Six-Sequence Trees

Let us now consider the relationship of P. and
Py for the case of six-sequence trees. We consider Pc
to test the null hypothesis E(bg) = 0, where b is the
estimate of the branch length bg of the true tree (tree
Ain fig. 1). Here bg and V (bg) are computed by equa-
tions (8) and (9), redefining ko = {0, —Y4, %6, Y13, Y18
—Yas F16> 118> V18> o5 36> V365 —Vas —Ya» 0} (see Rzhetsky
and Nei 1992a). Py is computed by the same procedure
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as mentioned earlier to measure the statistical confidence
of the partition of sequences at the branch corresponding
to bg .

The general pattern of the effect of the exterior
branch lengths on the difference between P and P for
the case of six sequences is somewhat similar to that for
the case of four sequences (compare fig. 54 with fig. 3.4
and B). However, figure 54 does differ from figure 3 in
one important aspect. That is, the values of Py for six-
sequence trees are considerably smaller than those for
four-sequence trees. Before explaining this result, let us
consider the relationships between P, and Pj for other
model trees (see fig. 5 B). In this case we have considered
three different sets of expected branch lengths of tree A
in figure 1. The expected lengths of the exterior branches
were the same in all cases (see figure legend to fig. 5 B),
but the expected lengths of interior branches were dif-
ferent. We used b; = by = 0 (fig. 5B, solid circles) for
the first model tree, b; = 0 and by > 0 (fig. 5B, solid
squares) for the second model tree, and b; > 0 and by
> 0 (fig. 5B, solid triangles) for the third model tree.
These three types of model trees are schematically shown
in figure 1 D. In all three cases the value of bg was grad-
ually increased from 0, and the values of Pc and Py for
the case of by > 0 were averaged for each value of bg.

For the first tree (b;=by=0; solid circles in fig. 5 B),
we obtain an already familiar relationship in figure 54
(solid circles). In the second case (b;=0, by>0; solid
squares in fig. 5B), Pg’s increase. In the third case (57>0
and by>0; solid triangles in fig. 5B), we observe a re-
lationship of Pc and P that is virtually identical with

A

0.8

0.2

that for a four-sequence tree with short exterior branches
(see fig. 3).

To find the reasons for the discrepancy between P
and Py, we computed the frequency distributions of P¢
and P; for the case of the lowest point in figure 54 (open
circle) where b; = bg = by = 0. The distribution of Py
values is even more skewed than in the case of four
sequences (compare fig. 6 4 with fig. 4 4) (see also Zhar-
kikh and Li, 1995). However, P is distributed uniformly
as in the case of the four sequence model tree (compare
fig. 6 B with fig. 4 B). Therefore, it is the bootstrap test
that is biased (conservative), and the mtenor-branch
test is an unbiased test. 0

Figure 5 B indicates that the bias of Pg depends gn
both the topology and the expected branch lengths%ol
the model tree. The larger the number of sequences (or
sequence groups) that behave independently (or neafly
independently) in bootstrap tests, the greater the biasDf
Pg. The lowest point in figure 5B (solid circle) cor?ze
sponds to the six-sequence starlike model tree (ﬁg
1 D[{]), but the lowest solid-square and the lowest solg:l
triangle points in figure 5B are obtained for the model
trees that behave like a five-sequence star tree (see fig
1 D[ii]) and a four-sequence star tree (see fig. 1 D[ iiz@)‘
respectively. It can be shown that the bias of Pp tend:
to increase rapidly as the number of independent %)1
semi-independent sequences in the model tree mcreasés

Statistical Tests of an Estimated Tree Topology

So far we have considered the interior-branch
bootstrap tests for a predetermined tree topology. H

B)
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v
. -)
g
_ 06| S :

220z 1snbny |z uojsanb Aq 899996/@9@/&/&0'1

0.2 -

FIG. 5.—Comparison of P. and Py for interior branch bg for the case of six-sequence model trees (fig. 14) in simulation for nucleotid
sequence data. A, Simulations for model trees with the expected exterior branch lengths b, = b, = by = by = bs = bs = 0.07 and b; = by = (

(short branch trees, solid circles) and b, = 0.31, b, = 0.3, b; = 0.29, by =

0.3, bs = 0.28, by = 0.3, and b; = by = 0 (long branch trees, opel

circles). The value of by was changed from 0 to 0.6 by incrementing it by 0.005 for each model tree of short branches and by incrementing i
by 0.015 for each model tree of long branches. P and P, were obtained by averaging all Pc’s and Pp’s (given bg > 0) for each bg value. Eacl
point was obtained by averaging the results for 3,000 replications. The number of nucleotides sampled (n) was equal to 100. B, Simulations fo
the model trees with the exterior branches b, = b, = by = by, = bs = bs = 0.07 and various values of the interior branch lengths (solid circles
b; = by = 0; solid squares: b; = 0 and by = 0.09; solid triangles: b; = 0.08, by = 0.09). The value of bs in all three cases was increased from (
to 0.25 by incrementing it by 0.005 for each model tree. Each point was obtained by averaging results of 3,000 replications; n = 100.
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FIG. 6.—Frequency distributions of the individual values of Px(4) and P«{(B) for the branch b of the model tree in fig. 14 for nucleotlae
sequence data. The frequencies of P¢ and Py corresponding to bs > 0 and bs < 0 are shown separately (corresponding bars are stacked one an

top of the other). The expected branch lengths of the tree were by = 0.31, b, = 0.3, by =
= 0. The histogram was obtained for data from 30,000 replicate simulations; » = 100.

ever, when these tests are applied to a tree estimated
from data rather than to a predetermined tree, their sta-
tistical properties change. This problem has been studied
by Zharkikh and Li (19924, 19925, 1995) in the case
of bootstrap tests for parsimony trees. In this paper we
consider the same problem for the interior-branch and
bootstrap tests for NJ trees.

When the interior-branch test is applied to an es-
timated tree, matrix L in equations (1) and (2) is no
longer independent of the estimates of evolutionary dis-
tances (i.e., c?,j’s). As a result, the estimates of branch
lengths, b,’s, may not follow a normal distribution, and
the interior-branch test, in which P¢ is computed by
equation (4), may become too liberal or too conservative
depending on the parameter values of the true tree.

In the simplest case of a four-sequence tree (see fig.
24, bs = 0), the conditional distribution of bs/s( bs) for
the case where the NJ tree agrees with topology A in
figure 2 is close to a gamma distribution (see fig. 7A4)
rather than to the standard normal distribution. This is
because the NJ method always chooses a tree with the
longest interior branch, and trees that have negative
bs’s are excluded from consideration. We have found
that the conditional distribution of Z = b, /s(5;) varies
considerably with the topology and expected branch
lengths of the model tree (see fig. 7B and C). Although
it is very difficult to obtain the exact distribution of Z
under the null hypothesis of b, = 0 for every interior
branch of an estimated tree, one can use the worst-case
distribution for conducting statistical tests. Let Z, be the
value of Z such that the probability of obtaining Z greater
than Z, is exactly a (say, o = 0.05). Obviously, Z, varies
with model (true) tree. We call the distribution with the

029 b4—03 b5 028 b6*03 andb7—bg~879

epeoe//:

highest Z, among various model trees the worst-ca_ge
distribution. Our computer simulations have shown th@t
the worst case for four-sequence starlike model trees og-
curs when all the exterior branches are of equal length
(see fig. 7 B). For five- or more sequence trees the wor St-
case distribution is observed when one interior branch
of the model tree has length 0 and all other interigr
branches are long (see fig. 7C). This worst-case distri-
bution is the same for any number of sequences a@i
coincides with the four-sequence worst-case distributio@.
(The conditional distribution of Z tends to become nzﬁf.}
rower as the number of independent sequence groubﬁ
increases; see fig. 7C. Therefore, the four-sequence tree
provides the worst-case distribution.) The dlstnbutlgx
of Z for the worst case is close to the gamma distributidn
o

=}
A(Z)=bT(a) e b2Z7, (2®)

>

C

where a = 3.17 and b = 3.06 (see Appendix C). Ther%—
fore, the P value for the worst case can be compute;d
by N

'sz bT (a) e~ x4 dx. (26)
0

This integral can be evaluated numerically (Press et al.
1988, pp. 171-174). Note that equation (26) tends to
give smaller values than equation (4) for the same value
of Z. However, the values of P-and P/ are usually quite
close to each other when they are high. For example, P¢
=0.95 and P¢ = 0.93 for Z = 1.96, and P- = 0.99 and
= 0.98 for Z = 2.58.
Note that P, in equation (26) is defined only for
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FIG. 7.—A, Distribution of Z = bs/s(bs) obtained for the model
tree in fig. 24 by considering only data sets that generated the NJ tree
identical with tree 4 in fig. 2. The histogram was obtained for data
from 100,000 replications with n = 100. The distribution represented
by a smooth curve is the gamma distribution (equation [25]) with
parameters a = 3.10 and b = 2.97. The branch lengths of the model
tree were b, = by, = by = by = 0.3 and bs = 0. “Estimates” of evolutionary
distances were computed using a multivariate normal distribution. B,
Various conditional distributions of Z for four-species model trees.
Solid line, b, = b, = b3 = by = 0.3 and bs = 0. Dashed line, b, = b;
= 0.6, b, = by = 0.02, and b5 = 0. Dotted line, b, = b, = 0.6, b; = b,
= 0.02, and bs = 0. Here the solid line represents the worst-case dis-
tribution of Z. The number of replications was 100,000; n = 100. C,
Conditional distributions of Z = bg/s(bs) for six-sequence model trees
(see fig. 14). The distributions of Z for a four-sequence-like tree (solid
line, b; = by = 0.15), a five-sequence-like tree (dashed line, b; = 0.15
and by = 0), and a six-sequence-like tree (dotted line, b; = by = 0).
The expected lengths of exterior branches for six-sequence model trees
were b, = 0.31, b, = 0.3, by = 0.29, by = 0.3, bs = 0.28, bs = 0.3, and
the interior branch length by = 0. The number of replications was
1,000,000; » = 100.

positive values of Z because in the worst-case distribution
all values of Z are positive. In practice, some of branch
length estimates of a NJ tree may become negative.
However, since the expected values of Z for estimated
trees were always positive in our computer simulations,
we assume that negative estimates indicate that the ex-
pected values of the corresponding branch lengths are
close to 0. We therefore suggest that P~ = 0 be assigned
to any interior branches with negative estimates.

Using computer simulation, we also studied the
conditional distribution of the bootstrap values (P’) for

the estimated tree that has the same fnnnlncry as that 8f

SIAT LOMIIAANLA LITL UIQL A5 UL SQIL WPVIVE) s kAl

the model tree (fig. 84 and B). At the same time, the
P/ values were computed for the same set of simulated
data. This simulation was done for the cases of (1 )§a
four-sequence model tree (fig. 24) with b, = b, = &3
= by =0.3,and bs = 0 (see fig. 8.4) and (2) a six-sequenge
model tree (fig. 1 4) with b, = 0.31, b, = 0.3, b; = 0.29,
b4 = 03, b5 = 028, b6 = 03, and b7 = bg bg =0 (s&e
fig. 8 B). In case (1), the distribution of P is close t(i%a
uniform distribution, but that of P’ is not. This cage
corresponds to the worst-case distribution of Z discuss_éd
above, and the uncorrected P test gives slight over§-
timates of statistical confidence as mentioned above.
However, P'; tends to give underestimates even in this
case if a region of P > 0.9 is considered. In case (%,
in which a six-sequence tree is considered, both P, a&:d
P becomes underestimates when a region of P> (29
or Py > 0.9 is considered. However, the conditiongl
interior-branch test is less conservative than the con(ﬁ-
tional bootstrap test, and thus the former test gives bet@r
test results than the latter.

Discussion

Both Pcand Py (or Pcand.P%) undoubtedly m@g-
sure the reliability of a branching pattern of a tree, bt
their properties are quite different. Qur computer sira-
ulations showed that P is a more appropriate measute
of statistical confidence than Pz when the tree uncgr
analysis is predetermined and that Pg is biased (see also
Zharkikh and Li 19924, 19925, 1995; Hillis and Bl@l
1993).

The first source of bias of Py is the uncertainty about
magnitude of phylogenetic signal in the bootstrap test.
Considering information provided by data with regard
to a particular branching pattern, we can distinguish
among the following three situations. First, sequence
data on the average provide no phylogenetic signal con-
cerning the branching pattern if the underlying true tree
is multifurcating and the multifurcating topology be-
comes a bifurcating topology by chance. Second, a “pos-
itive phylogenetic signal” is observed on the average
when the sequence partition under consideration exists
in the true tree (b, > 0). Third, a “negative phylogenetic

Aq 85€996/
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tree. 4, Distributions of P¢ and P} for normally distributed distance data obtained from 30,000 replicate simulations. We used the model treg
shown in fig. 24 with b, = b, = by = by = 0.3, and bs = 0. B, Distributions of P and P’ for branch bg of the model tree in fig. 14. Thesg

results were obtained from simulated sequence data with 1,000,000 replications. The expected branch lengths of the tree were b, = 0.31,
=0.3,5;=0.29, by = 0.3, bs = 0.28, by = 0.3, and b; = by = by = 0, and n = 100.

signal” occurs when the partition under consideration
does not exist in the true tree (incorrect partition).

In the case of star topologies with no phylogenetic
signal it is possible to compute the average value (P})
of Pg. This P} depends on the number of sequences in
the two groups produced by a partition. If we consider
the case in which m sequences are partitioned into two
groups containing r and s sequences, respectively, and
assume that a tree-building method chooses any tree
with an equal probability, we obtain

_ B, B,
Py =17 where
B,
(27)
-2
B, =] (2j-1), andi= 3.

J=1

Note that P} is equal to 0.33 for r = s = 2 for the case
of a four-sequence star tree and 0.2 forr=2 and s = 3
in the case of a five-sequence star tree. Equation (27)
indicates that the value of P} tends to be 0 as the number
of sequences increases.

However, the computation of P} becomes quite
complicated when some of the interior branches of the
true tree have positive expected lengths (see fig. 5B). In
this case some groups of sequences appear together in
the majority of bootstrap replications, and thus the P}
for this grouping increases. To make things worse, the
probabilities of recovering various trees containing a
particular partition may not always be equal to one an-
other (see Appendix A). Therefore, for every sequence
partition of a large tree there is a unique P} value that

&

is determined by numerous factors, and there is no eas:
way to compute this value. So, it is difficult to sag
whether the individual Py (say, Ps=0.2) indicates af
absence of phylogenetic signal (which would be the cas%
if P = 0.2 for r = 2 and s = 3 in equation [27])%
negative phylogenetic signal (if P3=0.33 for r=
=2), or positive phylogenetic signal (if P5=0.09 for
=5=3).

Clearly, the bias of the bootstrap estimate becomes’
more extreme as P} decreases (see fig. 44 and fig. 6A)g%
Curiously enough, the bootstrap value is unbiased onl%
in the artificial case of two alternative trees as described
by Felsenstein and Kishino (1993). f

The interior-branch test for a predetermined to?i
pology is inherently free from this kind of bias. In th§
absence of phylogenetic signal (b,=0) the probability
of observing a P that is greater than or equal to 0.95 ig
exactly 0.05 regardless of the parameters of the true treg
(see fig. 4B and fig. 6 B). g

There is another type of bias mentioned in the 1itS
erature concerning the application of the bootstrap
technique in phylogenetic analysis. One might think that
Py is an estimate of the probability of obtaining the true
tree (Zharkikh and Li 19924, 1995; Hillis and Bull 1993;
Felsenstein and Kishino 1993). As we have seen earlier,
Py is a function of estimates of five parameters in the
case of four-sequence trees (D;, D,, 63, 63, p) (see
equation [23]). In general, we can write Pz = Pp(0),
where 0 is a vector of estimates of all parameters in-
volved. We can then consider Py as an estimate of
Py E(0)], where P5[E(0)] is equal to the probability
of obtaining the true tree in the case of four sequences.

odiwapeoe//
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Clearly, Pg should be a biased estimate of this value just
because Pj is a nonlinear function of 0. It is this kind
of bias that was studied by Felsenstein and Kishino
(1993). As shown earlier, for a four-sequence model
tree with short exterior branches, PB is essentially
functlon of only two parameters, D and 62 (D=D,
~ D,, §?=63~63, and p=~1). However, as the exterior
branches of the model tree increase, the number of pa-
rameters that affect the value of Py increases, and so
does the bias of Pjy. In the case of large trees, this effective
number of parameters tends to increase drastically.
Consequently, the larger the effective number of param-
eters, the greater the bias of this kind.

Some authors attempted to correct for the first type
of bias for Pg. For this purpose Rodrigo (1993 ) proposed
an application of the “iterated bootstrap” method (Hall
and Martin 1988 ), whereas Zharkikh and Li (1995) de-
veloped the so-called “complete-and-partial” bootstrap
technique. The efficiency of these techniques deserves
additional study.

One should be aware that for each test there are
certain assumptions that may not be satisfied in practice.
In particular, the bootstrap test requires the assumption
that the same evolutionary process operates indepen-
dently at each nucleotide site. This is not true for many
real sequence data. In principle, the interior-branch test
can overcome this problem provided that there is a
mathematical model that takes care of these biological
peculiarities in the estimation of evolutionary distances.
For example, the heterogeneity of substitution rate
among different nucleotide sites may easily be taken care
of by using Jin and Nei’s (1990) gamma distances.
Theoretically, similar problems may be taken care of in
bootstrap tests as well by developing a new sampling
procedure. In practice, however, the sampling procedure
seems to be quite complicated.

The interior-branch test for a predetermined tree
depends on the assumption of a normal distribution of
branch length estimates. This assumption may appear
to be violated when the nucleotide sequences under study
are very short (<100 characters) so that the discreteness
of nucleotide substitutions strongly affects the distribu-
tion of branch length estimates. However, our computer
simulations showed that the assumption of normal ap-
proximation rapidly improves as the number of se-
quences and/or their length increases. Note also that
the interior-branch test can be modified to relax the re-
quirement of the normal distribution of branch length
estimates (e.g., see Dopazo 1994). However, both the
bootstrap and the interior-branch methods may lead to
erroneous conclusions when inappropriate (biased) es-
timators of evolutionary distances are used. When the
interior-branch test is applied to an estimated topology,
we recommend that P, rather than Pc be used to avoid

the possible overestimation of statistical confidence fo

a sequence clusters by this test. In practice, however

P and P are close to each other when a region o
c> 0.9 or P> 0.9 is considered.
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APPENDIX A §
Relationships between the Expected Branch Lengths
of the Model Tree and the Values of 6, 6, and p ;‘%’

Since the values of 61, 63, and po,0, (the variance
and covariance of D, = Sz — S, and D, = S —
respectively) determine the probability of recoveringZh
correct tree (see equation [22]), it is important to &in
derstand their dependence on the branch lengths oﬁfthq
model tree.

Using equations (11), (12), and (21), we ﬁndzthl
following equation after some algebraic mampulatl@n

o1 = [g(bi, by)+g(bs, bs)+g(by, bs, bs)
+ g(b25 bS: b4)+4f(b5)]/169

0

~
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0% = [g(b]’ b2)+g(b3’ b4)+g(bl, bS, b4]
+g[b2s b51 b3)+4f(b5)]/16’

~~
o

poi0y = [g(by, by)+g(bs, bs)+g(by, bs)
+ g(b,, bs)+g(bs, bs)+g(ba, bs)

+41(bs)]1/ 16,
where
8(bi, b)) = f(bi+by) — [f(b:)H/(H)], (A2a
g(by, by, b) = f(br+b+by) (ASb
= LA+ (B)+f(bW)],

and function f(8) is the same as that defined in equatior
(12). An analysis of equations (Ala-b) shows that th
values of ¢, and &, tend to be close to each other, anc
p approaches a value close to | as bs increases. Thi
holds for a wide range of values of b,, b,, b;, and b,.
Using equation (Al) we can directly compar
the values of p for a given expected value of
= bs/s(bs) [E(Z) = bs/c] for four-sequence model tree
with “short” and “long” exterior branches (see fig. 3)
Figure 9 shows that p increases faster for trees with shor
exterior branches (solid circles) than for trees with lon;
exterior branches (open circles). This explains the dif
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FI1G. 9.—Relationships between p and the expected value of Z for
four-sequence model trees with short (solid circles) and long (open
circles) exterior branches. The actual values of the expected exterior
branch lengths are the same as in fig. 3. The values of p and Z increase
as the length of interior branch (bs) of the model tree in fig. 24 increases.

ferences in the relationships of P and Py between these

two types of model trees in figure 5.
In the case of a star tree (bs =

c) reduce to

0) equations (Ala-

G% - [g(bla b2)+g(b39 b4)

+g(by, b3)+g(ba, bs)]/ 16, (A3a)

G% = [g(by, by)+g(bs, bs) (A3b)
+g(by, bs)+g(bs, b3)]/ 16,

po 0y = [g(by, by)+g(bs, bs)]/ 16. (A3c)

From the above equations, we obtain

oi_ [g(blsb2)+g(b35b4)+g(bl9b3)+g(b2’b4)]1/2

o, [ &(bi, b)) tg(bs,.bs)+g(by, ba)t+g(by, bs)
(A4)
and
o= [[1 + g(by, b3) + g(bs, b4)]
g(bh b2)+g(b3’ b4) (AS)

[1 n g(by, by) + g(bs, bs)]}'llz
g(blz b2) + g(b37 b4)

To study the values of 6,/0; and p, let us rewrite the
function g(b;, b)) as
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&(b:, by) = {(€4b/3—1)(€4”/3—1)

(A6)
X [2+(e*3+1)(e*?+1)]},

combining equations (A2) and (12). Considering the
first three terms of Taylor’s series expansion and assum-
ing that b; is much smaller than %, we can approximate
e**3by 1 + 4b;/3 + 8b? /9. After some algebraic com-
putation we can express equation (A6) as

g(b;i, by =

2b;bi/n + O(BbY), (A7)

)
where r + s = 3. Next, we replace b; by b + §, (i= %
2, 3, and 4), where b is the average value of b,, b, bg,
and b, and &, + &, + &3 + 8, = 0. We then obtain thg
following simplified equations for g(b;, b)), o,/ &3
and p.

g(b,, bj) o~ 2[b2+b(8,+51)+5,51]/n, (A

o1 _[1-(3,483)%/(4b*) ]2
oy | 1-(8,+83)%/(4b%) |

>

and

1+ [(85=8,)(8,-8,)-2831/(2b%)
P 2TI=(8,+8,)7/(407)]
X [1=(3,+85)%/(46%)]'"2

>

2/ ) /el IERq/wod dno o1 pese; iy wo

Equation (A9) indicates that the ratio 6,/ 0, is very cloSR
to 1 whenever §, is close to 8, or 8; is close to 8, or all
8;’s are much smaller than b. It follows from equation
(A10) that p = I, when all ;s are equal to 0 and th@t
p is close to ', whenever 8,’s are much smaller than b;
We also see from equatlon (22)that the probab111

of recovering the tree in figure 24 when bs = 0 is deteg-
mined solely by the value of p (1, =p,=bs/2=0), o
N

P=F(0,0;p) =~ + —— sin~! ALD)

p 2 sin” p. ( g

o

o

(Here we used the formula that was first derived by
Sheppard [1899].) Note that for p = ', we have P = '/,
However, as p deviates from ', three possible unrooted
trees for four sequences are no longer equiprobable. On
the one hand, when the values of b; and b, are much
larger than the values of b; and b,, the value of p tends
to be 1 and P tends to be %,. On the other hand, when
the values of b, and b; are very large and the values of
b, elmd b4 are very small, p tends to be 0 and P tends to
be /.

This implies that one may encounter a situation in
which the NJ method tends to choose an incorrect to-
pology. In other words, we can find a four-sequence
model tree with extremely short interior branch and two
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extremely long exterior branches such that the proba-
bility of obtaining the correct tree by the NJ method
from a small data set tends to be smaller than ;. How-
ever, this effect disappears as the number of nucleotides
increases.

APPENDIX B

Expected Value of P- when Z Is Positive

Let b; and V' (b;) be the estimates of the length of
the ith interior branch and its variance with the expected
values u, and G 2, respectx vcn_y The Pc for this branch is
computed by equation (4) in the text. Assuming that
the test statistic Z = b;/ s(b ) follows the standard nor-
I;l'ldl (]lbll'lDullOl’l d.l'lU IlUllIlg I.Ildl bUllUlllUllb L > U auu
b; > 0 are equivalent, we can obtain a formula for the

mean value of P for the case of b; > 0:

E(Pc|b>0) =
f: Po(x)p(x; ¢, 1)dx  (Bl)

Prob(Z>0) ’

where ¢(x; {, 1) is a normal density function with mean
{ = b; /o and variance 1,

Prob(Z>0) = ®({), (B2)

and
fm Pe(x)o(x; 1, 1)dx
0

1 ou
=— | [20(x)- —(x=§)*/2
mfo [20(x)—1]exp(—(x-0)?/2)dx
g (B3)
=n“f exp{—(x—§)*/2}
0

X (f exv(—yZ/Z)dy)dx — ®(0).

—X

Replacing variables x and y by r = x — { and s
= (x—C+y)/ VE, we can simplify the above equation to

-1 * * _ 2_ 2
| VEI{ ﬁc/ﬁ exp{—(r Vars+s )} drds (B4)
— ®(L) = 2F (-, —4/V2; 1/V2) — @(0),

where F(—(, —C/ VE; | /\6) is a function given in equa-
tion (22). Finally, we obtain

2F(-C, —t/V2;1/V2)
(L)

E(Pc|Z>0) =

(BS

For a starlike model tree we have { = 0, and equatio1
(B5) reduces to

E(Pc|Z2>0,=0) = 2sin~'(1/V2)/n = 0.5. (B6

(Here we used equation [A11].) Equation (B5) show
that P is an unbiased estimate of Prob(5,>0) for :
starlike model tree (i.e., for b; = 0). P is biased whe1

b > 0. For example, equation (B5) shows that we hav
| Z>0) = 0.81 when Prob(b >0) = 0.95.

APPENDIX C
The Worst-Case Distribution of Z for an Estimated:
Topology

9PEOJUMO

y wo.

The worst-case distribution of Z = b;/s(b;) 1sa‘>l:
served for the case of a four-sequence star tree w1th\\ex
terior branches of equal length. In order to approxm@t
this distribution by a gamma distribution we needt
know the mean and variance of Z. The shape and sgal
parameters of the gamma distribution are then give@ b

_EXZ) _E@Z) 3
v ™My (?

respectively, where E (Z )and V' (Z) stand for the @r
ditional mean and variance of Z, respectively, whema
data sets that give an NJ tree different from tree ,§§1
figure 2 are discarded. ©
Using the same notations as in equations (13)
(22) we can write Z as (D, + D,)h, whergg
= 1/s(bs). Assuming that D, and D, follow a bivariat
normal distribution with mean vector (0, 0) andéth
covariance matrix given in equation (20), we can ccbrr
pute the mean of Z by

3
N
E(Z) = h z
’ 26,6, PV1 — p? ‘5
<[
0 0 xry exp[ 2(1 (CQ
x2 Xy LY
X —_— z
(c% 2p i 0%)]dxdy

h(1+p)(oc,+0,)

2PVorr

where P is the probability computed by equation (22
Equation (C2) is derived by using the formula for ir
complete moments of a bivariate normal distributio
(Johnson and Kotz 1972, p. 92). Similarly, we ca
compute E(Z?)and V(Z):



E(Z?) = h*{(ci+03)[1+pV1—p?/(2nP)]

(C3)
+ 20,6,[p+V1—p?/(2nP)]}.
V(Z) = E(Z%) - EXZ)
= h*s}{(1+a?)[1+pV1i—p2/(2nP)] (C4)

+ 2a[p+V1—p?/(2nP)]
—(14+a)*(1+p)?/(8nP?)},

where o = 0,/0,. In the present case p = Yboa =1,
P =", and h = 1/(5,V3). Therefore, we have E(Z)

=3V3/(2V2r)and V(Z) = 1 + 3(2V3-9)/(8n). Using
equation (C1), we obtain g = 3.17 and b = 3.06.
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