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INTERIOR CURVATURE BOUNDS FOR A CLASS OF
CURVATURE EQUATIONS

WEIMIN SHENG, JOHN URBAS, and XU-JIA WANG

Abstract
We derive interior curvature bounds for admissible solutions of a class of curva-
ture equations subject to affine Dirichlet data, generalizing a well-known estimate of
Pogorelov for equations of Monge-Ampère type. For equations for which convexity of
the solution is the natural ellipticity assumption, the curvature bound is proved for
solutions with C1,1 Dirichlet data. We also use the curvature bounds to improve and
extend various existence results for the Dirichlet and Plateau problems.

1. Introduction
In this paper we derive interior curvature bounds for admissible solutions of a class of
curvature equations subject to affine Dirichlet data, generalizing the well-known in-
terior second derivative bound of Pogorelov [P] for equations of Monge-Ampère type
(see also Ivochkina [I1]). This estimate has recently been extended to k-Hessian equa-
tions by Chou and Wang [CW]. In addition, in the case that convexity of the solution
is the natural ellipticity assumption, we prove an interior curvature bound for convex
solutions subject to C1,1 Dirichlet data. This is a generalization of the interior sec-
ond derivative bound of Trudinger and Urbas [TU2] for solutions of Monge-Ampère
equations (see also Caffarelli [C] and Urbas [U1]).

The interior curvature bound permits us to extend in a straightforward way some
Is there a grant number
available for Wang’s
work?

of the existence theorems of Caffarelli, Nirenberg, and Spruck [CNS1] and Ivochk-
ina, Trudinger, and Lin [I2], [I3], [ILT], [LT] to less regular boundary data than are
required for the existence of globally smooth solutions. Moreover, the existence re-
sults of Trudinger [T1] for Lipschitz continuous viscosity solutions can be improved
to yield locally smooth solutions, in the case of constant Dirichlet data, and more
generally, affine Dirichlet data. In addition, we use the curvature bound to extend the
recent work of Trudinger and Wang [TW] and Guan and Spruck [GS2] on the Plateau
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2 SHENG, URBAS, and WANG

problem for hypersurfaces of constant Gauss curvature to hypersurfaces of constant
curvature ratio Hn/Hl where for any integer k between 1 and n, Hk denotes the kth
mean curvature of the hypersurface. This is explained more fully below.

We assume that f ∈ C2(0)∩ C0(0) is a symmetric function defined on an open,
convex, symmetric region 0 ⊂ Rn , 0 6= Rn , with 0 ∈ ∂0 and such that 0 + 0+ ⊂ 0,
where 0+ is the positive cone in Rn . We assume that f satisfies

f > 0 in 0, f = 0 on ∂0; (1.1)

f is concave in 0; (1.2)
n∑

i=1

fi ≥ σ0 on 0µ1,µ2, (1.3)

and

n∑
i=1

fiλi ≥ σ1 on 0µ1,µ2, (1.4)

where 0µ1,µ2 = {λ ∈ 0 : µ1 ≤ f (λ) ≤ µ2} for any µ2 ≥ µ1 > 0, and σ0, σ1 are
positive constants depending on µ1 and µ2.

Remarks 1.1
(i) (1.1) and (1.2) imply the degenerate ellipticity condition

fi =
∂ f
∂λi

≥ 0 in 0 for i = 1, . . . , n. (1.5)

(ii) In the presence of (1.1) and (1.2), conditions (1.3) and (1.4) can be derived
from various other assumptions. For example, if

f (t, . . . , t) → ∞ as t → ∞, (1.6)

then from the concavity of f and the fact that
∑

fiλi ≥ 0 we have

f (t, . . . , t) ≤ f (λ) +

∑
fi (λ)(t − λi ) ≤ f (λ) + t

∑
fi (λ),

from which (1.3) follows on any 00,µ2 by fixing t large enough. In fact, we see that
(1.3) and (1.6) are equivalent. Similarly, if for any µ1 ≥ µ2 > 0 there is a constant
θ = θ(µ1, µ2) > 0 such that

f (2λ) ≥ θ + f (λ) for all λ ∈ 0µ1,µ2, (1.7)

then
f (2λ) ≤ f (λ) +

∑
fi (λ)λi ,
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INTERIOR CURVATURE BOUNDS 3

which implies (1.4) with σ1 = θ . Clearly, (1.7) is satisfied with θ = (2α
− 1)µ1 if f

is homogeneous of some degree α ∈ (0, 1].
(iii) The main examples of functions f satisfying (1.1) to (1.4) are those corre-

sponding to the kth mean curvature operators Hk , for which we take

f (λ) = Sk(λ)1/k
=

( ∑
1≤i1<···<ik≤n

λi1 · · · λik

)1/k
, (1.8)

and those corresponding to the curvature quotients Hk/Hl , 1 ≤ · · · ≤ l < k ≤ · · · ≤

n, for which we take

f (λ) =

( Sk(λ)

Sl(λ)

)1/(k−l)
. (1.9)

In both cases 0 = 0k is defined to be the connected component of the set {λ :

f (λ) > 0} containing 0+. For these examples the concavity condition (1.3) is ver-
ified in [CNS1] and [T1].

(iv) These conditions, augmented by one further condition (see (1.14)) which we
do not need for proving the curvature bound, are essentially the conditions formulated
in [T1], for which the existence of viscosity solutions of the Dirichlet problem for
the corresponding curvature equations has been established under appropriate further
hypotheses on the data (in [T1] 0 is assumed to be a cone, but this is not necessary).

The curvature operator F corresponding to f is defined by

F[u] = f (λ1, . . . , λn) (1.10)

where λ1, . . . , λn are the principal curvatures of the graph of the function u ∈ C2(�)

defined on a domain � ⊂ Rn . A function u ∈ C2(�) is said to be admissible (or
0-admissible) if λ = (λ1, . . . , λn) belongs to 0 at each point of �.

THEOREM 1.1
Let � be a bounded domain in Rn , and let u ∈ C4(�) ∩ C0,1(�) be an admissible
solution of

F[u] = g(x, u) in �, u = φ on ∂�, (1.11)

where g ∈ C1,1(�×R) is a positive function and φ is affine. Then there exist positive
constants β, depending only on sup� |Du|, and C , depending only on n, ‖u‖C1(�), g
and its first and second derivatives, µ1 = inf� g(x, u), µ2 = sup� g(x, u), and the
structure constants σ0, σ1 in (1.3) and (1.4), such that the second fundamental form A
of graph u satisfies

|A| ≤
C

(φ − u)β
. (1.12)
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4 SHENG, URBAS, and WANG

Remark 1.2
To see that this is indeed an interior curvature estimate we need to verify that φ −

u ≥ c(�′) > 0 for any �′
⊂⊂ �. To do this we fix any point x0 ∈ �, and let

X0 = (x0, φ(x0)). Let v be the function whose graph is a hemisphere of radius R
lying above graph φ, such that v(x0) = φ(x0) and Dv(x0) = Dφ(x0). Then for large
enough R and small enough ε > 0 we have F[v − ε] < F[u] in �ε = {x ∈ � :

v(x) − ε < φ(x)} ⊂⊂ �, and v − ε = φ ≥ u on ∂�ε . By the comparison principle
we then have u ≤ v − ε in �ε . Consequently (φ − u)(x0) ≥ ε.

We see that by making some minor modifications and extensions to the proof of The-
orem 1.1 we are able to relax the assumptions on the boundary data in certain special
cases. We defer the statements of these results to the later sections.

The main application of the curvature bound of Theorem 1.1 is to extend and
improve various existence results for the Dirichlet problem for curvature equations,
in particular, for the equations of prescribed kth mean curvature Hk and prescribed
curvature quotients Hk/Hl with k > l. To obtain the existence of classical solutions
we need to strengthen the degenerate ellipticity condition (1.5) to the strict ellipticity
condition

fi > 0 in 0 for i = 1, . . . , n. (1.13)

In addition, for proving gradient estimates we need to assume that

fi ≥ σ2

n∑
j=1

f j if λi ≤ 0, λ ∈ 0µ1,µ2, (1.14)

for any µ2 ≥ µ1 > 0, where σ2 is positive constant depending on µ1 and µ2.
A typical result is the following theorem, which improves a result of Trudinger

[T1] on the existence of viscosity solutions, in the case of zero Dirichlet data. Various
extensions and modifications of this result are mentioned in Sections 3 and 4.

THEOREM 1.2
Let f satisfy (1.1) to (1.4), together with (1.13) and (1.14). Let � be a bounded domain
in Rn , let g ∈ C1,1(�×R) be a positive function satisfying gz ≥ 0, and suppose there
is an admissible function u ∈ C2(�) ∩ C0,1(�) satisfying

F[u] ≥ g(x, u) in �, u = 0 on ∂�. (1.15)

Then the problem

F[u] = g(x, u) in �, u = 0 on ∂�, (1.16)

has a unique admissible solution u ∈ C3,α(�) ∩ C0,1(�) for all α ∈ (0, 1).
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INTERIOR CURVATURE BOUNDS 5

As a further application of the a priori curvature estimate we also consider a Plateau
type problem for locally convex Weingarten hypersurfaces. Let 6 be a finite collection
of disjoint, smooth, closed, co-dimension 2 submanifolds of Rn+1. Let f be as above
with 0 = 0+. We consider the following.

Suppose 6 bounds a locally uniformly convex hypersurface M0 with f (λ0) ≥

k, where λ0
= (λ0

1, . . . , λ
0
n) are the principal curvatures of M0 and k is a positive

constant. Does 6 bound a locally convex hypersurface M with f (λ) = k, where
λ = (λ1, . . . , λn) are the principal curvatures of M ?

In the Gauss curvature case f (λ) =
∏

λi , this problem was studied in [HRS]
for Euclidean graphs over annular domains and in [GS1] for radial graphs over sub-
domains of the sphere. In [S] it was conjectured to have an affirmative answer in the
general case. For Weingarten hypersurfaces with curvature function

f (λ) =

( Sn(λ)

Sl(λ)

)1/(n−l)
, l = 1, . . . , n − 1, (1.17)

this problem was studied in [IT] in the more general setting that the hypersurface can
be represented as a section of a locally Euclidean line bundle; this includes Euclidean
and radial graphs as special cases. In all these papers, however, M0 is a graph of some
kind, so the problem can be reduced to a Dirichlet problem, for which the existence
of a solution is proved under certain conditions guaranteeing a priori solution and
gradient estimates.

The graph condition on M0 was removed in [TW] and [GS2] for the Gauss curva-
ture case, thereby confirming the conjecture made in [S]. In Section 5 we extend this
result to Weingarten hypersurfaces with curvature function f given by (1.17). In fact,
the existence of locally smooth solutions is valid for the class of functions f satisfying
(1.1) to (1.4) with 0 = 0+, together with the strict ellipticity condition (1.13), but for
the existence of globally smooth solutions we need to impose further assumptions in
order to derive curvature estimates at the boundary. To avoid these technicalities we
prove boundary regularity only for the case (1.17).

THEOREM 1.3
Let f be given by f (λ) = Sn(λ)/Sl(λ) for some l = 0, . . . , n − 1. Let 6 be as
above, and suppose that 6 bounds a locally uniformly convex hypersurface M0 with
f (λ0) ≥ k at each point of M0, where k is a positive constant. Then 6 bounds a
smooth, locally convex hypersurface M with f (λ) = k at each point of M .

2. Proof of the curvature bound
We compute using a local orthonormal frame field ê1, . . . , ên defined on M =

graph u in a neighbourhood of the point at which we are computing. The standard
basis of Rn+1 is denoted by e1, . . . , en+1. Covariant differentiation on M in the di-
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6 SHENG, URBAS, and WANG

rection êi are denoted by ∇i . The components of the second fundamental form A of
M in the basis ê1, . . . , ên are denoted by [hi j ]. Thus

hi j = 〈Dêi ê j , ν〉, (2.1)

where D and 〈·, ·〉 denote the usual connection and inner product on Rn+1, and ν

denotes the upward unit normal vector field

ν =
(−Du, 1)√
1 + |Du|2

. (2.2)

The differential equation in (1.11) can then be expressed as

F[A] = g(X). (2.3)

As usual we denote first and second partial derivatives of F with respect to hi j by Fi j

and Fi j,kl .
The following facts are well known (see [U3]). We assume summation from 1 to

n over repeated Latin indices unless otherwise indicated.

LEMMA 2.1
The second fundamental form hab satisfies

Fi j∇i∇ j hab = −Fi j,kl∇ahi j∇bhkl + Fi j hi j hakhbk

− Fi j hikh jkhab + ∇a∇bg.

LEMMA 2.2
For any α = 1, . . . , n + 1 we have

Fi j∇i∇ jνα + Fi j hikh jkνα = −〈∇g, eα〉.

The following lemma is stated without proof in [An]; a proof is given in [G].

LEMMA 2.3
For any symmetric matrix η = [ηi j ] we have

Fi j,klηi jηkl =

∑
i, j

∂2 f
∂λi∂λ j

ηi iη j j +

∑
i 6= j

fi − f j

λi − λ j
η2

i j .

The second term on the right hand side is nonpositive if f is concave, and is inter-
preted as a limit if λi = λ j .
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INTERIOR CURVATURE BOUNDS 7

Proof of Theorem 1.1
First, we may assume that u ∈ C4(�) by replacing u by u + ε and � by {x ∈ � :

u(x) + ε < φ(x)} for small enough ε > 0.
We now let η = φ − u. As observed in Remark 1.2, η > 0 in �. For a function 8

and a constant β ≥ 1 to be chosen, we consider the function

W̃ (X, ξ) = ηβ
(

exp 8(νn+1)
)
hξξ

for all X ∈ M and all unit ξ ∈ TXM . Then W̃ attains its maximum at an interior
point X0 ∈ M , in a direction ξ0 ∈ TX0M which we may take to be ê1. We may
assume that [hi j ] is diagonal at X0 with eigenvalues λ1 ≥ · · · ≥ λn . The concavity of
f then implies that f1 ≤ · · · ≤ fn , and therefore also

fn ≥
1
n

T :=
1
n

∑
fi .

We may assume without loss of generality that the frame ê1, . . . , ên has been
chosen so that ∇i ê j = 0 at X0 for all i, j = 1, . . . , n. The existence of such a frame
follows easily from the existence of Riemannian normal coordinates (see [Y], Section
1.5). Let ζ = ê1. Then the function

W (X) = ηβ
(

exp 8(νn+1)
)
habζaζb,

which is defined near X0, has an interior maximum at X0. We need to compute the
equation satisfied by Z := habζaζb. Using the special choice of frame and the fact
that hab is diagonal at X0 in this frame, we find that

∇i Z = ∇i h11 and ∇i∇ j Z = ∇i∇ j h11 at X0.

Thus at X0, the scalar function Z satisfies the same equation as the component h11 of
the tensor hab. Therefore

∇i W
W

= β
∇iη

η
+ 8′

∇iνn+1 +
∇i h11

h11
= 0 at X0, (2.4)

and

∇i∇ j W
W

−
∇i W∇ j W

W 2 = β
{
∇i∇ jη

η
−

∇iη∇ jη

η2

}
+ 8′′

∇iνn+1∇ jνn+1 + 8′
∇i∇ jνn+1

+
∇i∇ j h11

h11
−

∇i h11∇ j h11

h2
11

(2.5)
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is nonpositive in the sense of matrices at X0. Using Lemmas 2.1 and 2.2, we therefore
have, at X0,

0 ≥ βFi j

{
∇i∇ jη

η
−

∇iη∇ jη

η2

}
+ 8′′Fi j∇iνn+1∇ jνn+1

− (8′νn+1 + 1)Fi j hikh jk + Fi j hi j h11 +
∇1∇1g

h11

− 8′
〈∇g, en+1〉 −

1
h11

Fi j,kl∇1hi j∇1hkl − Fi j
∇i h11∇ j h11

h2
11

. (2.6)

Using Gauss’s formula
∇i∇ j Xα = hi jνα, (2.7)

we compute

∇1∇1g(X) =

n+1∑
α=1

∂g
∂ Xα

∇1∇1 Xα +

n+1∑
α,β=1

∂2g
∂ Xα∂ Xβ

∇1 Xα∇1 Xβ

=

n+1∑
α=1

∂g
∂ Xα

ναh11 +

n+1∑
α,β=1

∂2g
∂ Xα∂ Xβ

∇1 Xα∇1 Xβ .

Consequently,
∇1∇1g

h11
≥ −C (2.8)

and
−8′

〈∇g, en+1〉 ≥ −C |8′
|. (2.9)

Using (1.4), we have
Fi j hi j h11 ≥ σ1h11. (2.10)

Next we assume that φ has been extended to be constant in the en+1 direction.
We compute

∇i∇ jη =

n∑
α,β=1

∂2φ

∂ Xα∂ Xβ
∇i Xα∇ j Xβ +

n∑
α=1

∂φ

∂ Xα
∇i∇ j Xα − ∇i∇ j Xn+1

=

n∑
α=1

∂φ

∂ Xα
ναhi j − hi jνn+1,

where we have again used Gauss’s formula (2.7) and the assumption that φ is affine.
Consequently,

Fi j∇i∇ jη =

( n∑
α=1

∂φ

∂ Xα
να − νn+1

)
Fi j hi j ≥ −C. (2.11)
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INTERIOR CURVATURE BOUNDS 9

Here we have used the fact that

0 ≤

∑
fiλi ≤ C;

the second inequality follows immediately from the concavity of f and the fact that
f (0) = 0.

Remarks 2.1
(i) It is in the derivation of (2.11) that the special form of η is used. For the remainder
of the proof, all we need is that |∇η| be bounded. In particular, under the additional
structure condition

n∑
i=1

fi ≤ σ2 on 0µ1,µ2 (2.12)

for some positive constant σ2 depending on µ2 ≥ µ1 > 0, we may use a standard
cutoff function η ∈ C2

0(M ). The main examples of functions satisfying (2.12) are the
quotients f = Sk/Sk−1, k = 1, . . . , n. For these examples, (2.12) follows immediately
from [LT, equation (2.7)].

(ii) If φ is convex, not necessarily affine, the term

n∑
α,β=1

∂2φ

∂ Xα∂ Xβ
Fi j∇i Xα∇ j Xβ

is nonnegative and can be discarded. This observation is used in Section 4 to extend
the curvature bound to C1,1 boundary data in the case 0 = 0+.

Using the above estimates in (2.6) and using (1.4), we have, at X0,

0 ≥ −
Cβ

η
− βFi j

∇iη∇ jη

η2 + 8′′Fi j∇iνn+1∇ jνn+1

− (8′νn+1 + 1)Fi j hikh jk + σ1h11 − C(1 + |8′
|)

−
1

h11
Fi j,kl∇1hi j∇1hkl − Fi j

∇i h11∇ j h11

h2
11

. (2.13)

We now consider two cases.

Case 1
There is a positive constant θ > 0 to be chosen (θ = 1/5 is our eventual choice) such
that

λn < −θλ1. (2.14)
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In this case we use the concavity of F to discard the second to last term in (2.13).
Next, using (2.4), we have

Fi j
∇i h11∇ j h11

h2
11

= Fi j

(
β

∇iη

η
+ 8′

∇iνn+1

)(
β

∇ jη

η
+ 8′

∇ jνn+1

)
≤ (1 + γ −1)β2 Fi j

∇iη∇ jη

η2

+ (1 + γ )(8′)2 Fi j∇iνn+1∇ jνn+1

for any γ > 0. Therefore at X0 we have, since |∇η| ≤ C ,

0 ≥ −
Cβ

η
− C

[
β + (1 + γ −1)β2]T

η2

+
[
8′′

− (1 + γ )(8′)2]Fi j∇iνn+1∇ jνn+1

− [8′νn+1 + 1]Fi j hikh jk + σ1h11 − C(1 + |8′
|). (2.15)

We now write
1 + γ = (1 + ε)(1 + β−1)

where ε > 0 and β > 0 are still to be fixed. The reason for this becomes apparent
below. We then choose 8 as in the global curvature bound of [CNS1]. For a controlled
positive constant a, depending only on sup� |Du|, we have

2a ≤ νn+1

and therefore
1

νn+1 − a
≤

1
a

≤ C.

We now choose
8(t) = − log(t − a).

Then
8′(t) =

−1
t − a

, 8′′(t) =
1

(t − a)2 ,

and

−(8′t + 1) =
a

t − a
,

8′′
− (1 + ε)(1 + β−1)(8′)2

= −
ε + β−1

+ εβ−1

(t − a)2 .

By direct computation (see [U3]), we have ∇iνn+1 = −hik〈êk, en+1〉, and therefore

Fi j∇iνn+1∇ jνn+1 = Fi j hikh jl〈êk, en+1〉〈êl , en+1〉 ≤ Fi j hikh jk .
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Fixing ε = a2/8 and assuming henceforth that

β ≥ β0 :=
4
a2 ,

we have

−(8′t + 1)+
[
8′′

− (1 + ε)(1 + β−1)(8′)2]
=

a
t − a

−
(ε + β−1

+ εβ−1)

(t − a)2

≥
1
2

a2.

Using this in (2.15), together with

Fi j hikh jk =

∑
fiλ

2
i ≥ fnλ

2
n ≥

θ2

n
λ2

1T ,

which follows from (2.14) and the fact that fn ≥
1
n T , we have, at X0,

0 ≥ −
C(β)

η
− C(β)

T

η2 +
1

2n
a2θ2λ2

1T + σ1λ1 − C(β). (2.16)

An upper bound

ηλ1 ≤
C(β)

θ
at X0

follows from this and (1.3). Consequently W (X0) satisfies a similar bound.

Remark 2.2
The fact that σ1 > 0 is not needed at this point.

Case 2
We now assume that

λn ≥ −θλ1.

Since λ1 ≥ · · · ≥ λn , this implies

λi ≥ −θλ1 for all i = 1, . . . , n. (2.17)

We partition {1, . . . , n} into

I = { j : f j ≤ 4 f1}, J = { j : f j > 4 f1},

where fi is evaluated at λ(X0). Then for each j ∈ I we have, by (2.4),

f j
|∇ j h11|

2

h2
11

= f j

(
8′

∇ jνn+1 + β
∇ jη

η

)2

≤ (1 + ε)(8′)2 f j |∇ jνn+1|
2
+ (1 + ε−1)β2 f j

|∇ jη|
2

η2 , (2.18)
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for any ε > 0. Again by (2.4), for each j ∈ J we have

β f j
|∇ jη|

2

η2 = β−1 f j

(
8′

∇ jνn+1 +
∇ j h11

h11

)2

≤
1 + ε

β
(8′)2 f j |∇ jνn+1|

2
+

(1 + ε−1)

β
f j

|∇ j h11|
2

h2
11

(2.19)

for any ε > 0. Consequently,

β

n∑
j=1

f j
|∇ jη|

2

η2 +

n∑
j=1

f j
|∇ j h11|

2

h2
11

≤
[
β + (1 + ε−1)β2] ∑

j∈I

f j
|∇ jη|

2

η2 + (1 + ε)(8′)2
∑
j∈I

f j |∇ jνn+1|
2

+
(1 + ε)

β
(8′)2

∑
j∈J

f j |∇ jνn+1|
2
+

[
1 + (1 + ε−1)β−1] ∑

j∈J

f j
|∇ j h11|

2

h2
11

≤ 4n
[
β + (1 + ε−1)β2] f1

|∇η|
2

η2 + (1 + ε)(1 + β−1)(8′)2
n∑

j=1

f j |∇ jνn+1|
2

+
[
1 + (1 + ε−1)β−1] ∑

j∈J

f j
|∇ j h11|

2

h2
11

.

Using the above estimates in (2.13), we see that at X0 we have

0 ≥ −
Cβ

η
− 4n

[
β + (1 + ε−1)β2] f1

|∇η|
2

η2

+
[
8′′

− (1 + ε)(1 + β−1)(8′)2]Fi j∇iνn+1∇ jνn+1

− [8′νn+1 + 1]Fi j hikh jk + σ1h11 − C(1 + |8′
|)

−
1

h11
Fi j,kl∇1hi j∇1hkl −

[
1 + (1 + ε−1)β−1] ∑

j∈J

f j
|∇ j h11|

2

h2
11

(2.20)

For ε = a2/8 and β ≥ β0 = 4/a2 exactly as above, we therefore have, at X0,

0 ≥ −
Cβ

η
− C(β + β2)

f1

η2 +
1
2

a2 f1λ
2
1 + σ1λ1 − C

−
1

h11
Fi j,kl∇1hi j∇1hkl − (1 + C0β

−1)
∑
j∈J

f j
|∇ j h11|

2

h2
11

, (2.21)

where C0 = 1 + 2a−2.
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Next we estimate the last two terms in (2.21). Using the concavity of f , Lemma
2.3, and the Codazzi equations, which tell us that ∇i h jk is symmetric in all indices,
we see that

−
1

h11
Fi j,kl∇1hi j∇1hkl ≥ −

2
λ1

∑
j∈J

f1 − f j

λ1 − λ j
|∇ j h11|

2.

We therefore need to show that

−
2( f1 − f j )

λ1(λ1 − λ j )
≥ (1 + C0β

−1)
f j

λ2
1

for j ∈ J,

provided β is sufficiently large. Let us set δ = C0/β. Then we need to show

(1 − δ) f jλ1 ≥ 2 f1λ1 − (1 + δ) f jλ j for j ∈ J, (2.22)

provided δ > 0 is sufficiently small. We show this if either λ j ≥ 0 or λ j ≤ 0 and
|λ j | ≤ θλ1 for a sufficiently small positive constant θ .

Since j ∈ J , we have f j > 4 f1. Therefore, if λ j ≥ 0, then (2.22) is satisfied if
δ = 1/4. On the other hand, if λ j ≤ 0, then |λ j | ≤ θλ1 by (2.17), and therefore (2.22)
is again satisfied if δ = 1/4 and θ = 1/5. Notice that with this choice of δ we have
β = 4(1 + 2a−2), so the previous restriction β ≥ β0 is automatically satisfied. Notice
also that β depends only on sup� |Du|.

Having fixed δ and θ in this way, we see from (2.21) that at X0 we have

σ1λ1 +
1
2

a2 f1λ
2
1 ≤ C

(
1 +

1
η

+
f1

η2

)
, (2.23)

from which we again conclude a bound for ηλ1 at X0, and hence also for W (X0). The
curvature bound of Theorem 1.1 then follows.

Remarks 2.3
(i) At this point we have used the fact that σ1 > 0. If the term σ1λ1 were absent from
(2.23), we could still conclude a curvature estimate if we assumed in addition that

f1 ≥ cλ−1
1 (2.24)

for a controlled positive constant c. This structure condition is satisfied for f given by
(1.8), but not for f given by (1.9).

(ii) We can deduce the following result by taking into account Remark 2.1(i). This
has been proved independently by Trudinger [T4].

THEOREM 2.1
Suppose that f ∈ C2(0)∩C0(0) satisfies (1.1) to (1.4) and (2.12). Let � be a bounded
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14 SHENG, URBAS, and WANG

domain in Rn , let g ∈ C1,1(�×R) be a positive function, and let u ∈ C4(�)∩C0,1(�)

be an admissible solution of

F[u] = g(x, u) in �. (2.25)

Then for any �′
⊂⊂ � there is a positive constant C(�′), such that the second

fundamental form A of graph u satisfies

sup
�′

|A| ≤ C(�′). (2.26)

The positive constant C(�′) depends only on n, dist(�′, ∂�), ‖u‖C1(�), g and its first
and second derivatives, µ1 = inf� g(x, u), µ2 = sup� g(x, u), and on the structure
constants σ0, σ1, σ2 in (1.3), (1.4), and (2.12).

(iii) It is also evident that (2.12) could be weakened to

n∑
i=1

fi ≤ σ2|λ|
1−ε on 0µ1,µ2, (2.12)′

for any µ2 ≥ µ1 > 0, where σ2 > 0 and ε ∈ (0, 1) are constants (the scalar curvature
case k = 2 in (1.8) lies just outside the scope of this refinement of Theorem 2.1).
Some additional modifications in the proof are necessary. First, in place of (2.11) we
have

Fi j∇i∇ jη ≥ −Cλ1−ε
1 . (2.11)′

Second, the proof of (2.22) is valid provided β is sufficiently large; it does not need
to be fixed at that point. In place of (2.23) we then obtain

σ1λ1 +
1
2

a2 f1λ
2
1 ≤ C(β)

(
1 +

λ1−ε
1
η

+
f1

η2

)
. (2.23)′

The proof then proceeds similarly to before, provided ε ∈ (0, 1) and β is fixed suf-
ficiently large, depending on ε, and also so that all the previous requirements are
satisfied.

(iv) The techniques of this paper can be used to obtain analogous results for
admissible solutions of Hessian equations

F(D2u) = g(x, u),

where now F(D2u) = f (λ1, . . . , λn) and λ1, . . . , λn are the eigenvalues of D2u. If
we make the analogous computations for Hessian equations, then in place of Lemmas
2.1 and 2.2 we use

Fi j Di jααu = −Fi j,kl Di jαu Dklαu + Dααg
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and
Fi j Di j |Du|

2
= 2Fi j Diku D jku + 2Dk gDku.

We consider a function

W̃ (x, ξ) = ηβ
[

exp 8(|Du|
2/2)

]
Dξξ u

where η is as above, but now

8(t) = −α log
(

1 −
t
N

)
where α is a sufficiently small positive constant, and N = sup� |Du|

2. In place of
(2.13), we obtain

0 ≥ −
Cβ

η
− βFi j

DiηD jη

η2

+ 8′Fi j Diku D jlu Dku Dlu + 8′′Fi j Diku D jku − C(1 + |8′
|)

−
1

D11u
Fi j,kl D1i j u D1klu − Fi j

Di11u D j11u
(D11u)2 .

We then proceed as above with obvious modifications and simplifications. It is clear
that in the Hessian case the term σ1λ1 is missing in (2.23). To compensate for this, we
can impose the additional structure condition

fi ≥
σ3

max{λ1, . . . , λn}
on 0µ1,µ2, i = 1, . . . , n,

for any µ2 ≥ µ1 > 0, where σ3 is a positive constant. This condition is satisfied by
f = S1/k

k , k = 1, . . . , n, but not by the quotients (Sk/Sl)
1/(k−l), 0 < l < k ≤ n. The

derivation of interior second derivative bounds for solutions of the Hessian quotient
equations remains an interesting open problem.

3. The Dirichlet problem
In this section we prove Theorem 1.2 and indicate some straightforward extensions
and modifications.

Proof of Theorem 1.2
This can be proved by solving uniformly elliptic approximating problems

Fε[uε] = gε(x, uε) in �, uε = 0 on ∂�

for ε > 0, as in [T1], such that u is an admissible subsolution for each of the ap-
proximating problems (in [T1] 0 is assumed to be a cone, but this is not necessary).
The comparison principle then implies that u ≤ uε ≤ 0 in �. Uniform bounds for
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‖Duε‖L∞(�) follow with the aid of the global gradient bound proved in [T1], while
the interior curvature bound, Theorem 1.1, implies uniform bounds for ‖D2uε‖L∞(�′)

for any �′
⊂⊂ �. The interior second derivative Hölder estimates of Evans and

Krylov, together with Schauder theory (see [GT]), then imply uniform estimates for
‖uε‖C3,α(�′) for any �′

⊂⊂ �. Theorem 1.2 then follows by extracting a suitable
subsequence as ε → 0.

Remarks 3.1
(i) The regularity assumption on u in Theorem 1.2 can be weakened to u ∈ C0,1(�),
provided u is a strict viscosity subsolution of (1.16), that is, there is a δ > 0 such that

F[u] ≥ g(x, u) + δ in �, u = 0 on ∂�, (1.15)′

in the viscosity sense. The proof proceeds as above, with the usual comparison prin-
ciple replaced by the comparison principle for viscosity solutions; this holds if (1.15)
is strengthened to (1.15)′ (see [T1, Section 2]).

(ii) If u ∈ C2(�) ∩ C0(�) (or even if u ∈ C0(�) satisfies (1.15)′ in the viscosity
sense for some δ > 0), we obtain an admissible solution u ∈ C3,α(�) ∩ C0(�) by
invoking the interior gradient bounds proved in [T1] (see also [K], [L], and [W]) in
place of the global gradient bounds. If uε ∈ C4(�) ∩ C0(�) are the approximating
solutions, by applying Remark 1.2 to each uε , we get

sup
�′

uε ≤ −c0(�
′)

for a positive constant c0(�
′) independent of ε > 0. Consequently, for any �′

⊂⊂ �

we can choose τ > 0 such that

�′
⊂⊂ �ε

3τ := {x ∈ � : uε(x) < −3τ }.

By the comparison principle (for either classical or viscosity solutions, as appropri-
ate), we have u ≤ uε in �. Therefore

dist(�ε
τ , ∂�) ≥ c1(τ )

for a positive constant c1(τ ) depending on τ and the modulus of continuity of u, but
not on ε. By applying the interior gradient bounds of [T1], we therefore have bounds
independent of ε (but depending on τ ) for ‖Duε‖L∞(�ε

τ ). By Theorem 1.1, the Evans-
Krylov estimates, and the Schauder theory, we then have bounds independent of ε

(but depending on τ ) for ‖D2uε‖L∞(�ε
2τ ) and ‖uε‖C3,α(�ε

3τ ) for all α ∈ (0, 1). We then

obtain an admissible solution u ∈ C3,α(�) ∩ C0(�) of (1.16) by extracting a suitable
sequence as ε → 0 and using the estimates for uε on a sequence of subdomains
increasing to �.
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(iii) For the prescribed kth mean curvature equations and curvature quotient equa-
tions, the existence of an admissible subsolution can be replaced by appropriate as-
sumptions on g and � guaranteeing uniform lower bounds, and uniform boundary
gradient estimates, for the approximating solutions uε (see [T2], [T3]).

(iv) We could also impose affine Dirichlet data rather than just constant data.
(v) If f satisfies (2.12) (or more generally (2.12)′; see Remark 2.3(iii)), and there

exists an admissible subsolution u ∈ C2(�) ∩ C0,1(�) (respectively u ∈ C2(�) ∩

C0(�)) of the equation F[u] = g(x, u) in �, then there exists an admissible solution
u ∈ C3,α(�) ∩ C0,1(�) (respectively u ∈ C3,α(�) ∩ C0(�)) with u = u on ∂�. To
prove this we argue as above, using Theorem 2.1 in place of Theorem 1.1.

(vi) We may also obtain analogous existence results if f satisfies all the required
structure conditions except for smoothness, or if f does not satisfy the strict ellipticity
condition (1.13). In these cases the resulting solution belongs to C2,α(�) ∩ C0,1(�)

for some α ∈ (0, 1) in the first case, and to C1,1(�) ∩ C0,1(�) in the degenerate case
(with the obvious modification if u ∈ C0(�) rather than u ∈ C0,1(�)). These results
can be proved by solving suitable approximating problems using the above existence
assertions. A particularly interesting example (which also satisfies (2.12)) is

f∞(λ) = min
1≤i≤n

λi on 0+. (3.1)

We leave the precise formulation of these results to the reader.
(vii) It is known that if k ≥ 3, there are no interior curvature bounds for graphs

of prescribed kth mean curvature unless we make some additional assumptions (see
[U2]). Purely interior curvature bounds (i.e., independent of any boundary data) for
hypersurfaces of prescribed kth mean curvature have been proved under certain inte-
grability assumptions on the second fundamental form (see [U3], [U4]).

(viii) Purely interior curvature bounds have been proved in [CNS2] for curvature
equations that are uniformly elliptic once the gradient of the solution is bounded.
Some weakening of the uniform ellipticity is permitted in [N] and [NS]. In particular,
for admissible graphs of prescribed scalar curvature (k = 2 in (1.8)), an interior
curvature bound is derived under the unnatural strict ellipticity assumption

min
1≤i≤n

fi ≥ c(µ1, µ2) > 0 on 0µ1,µ2, (3.2)

for any µ2 ≥ µ1 > 0. The main application of the curvature bound in [N] and
[NS] is the derivation of some structure and compactness theorems for hypersurfaces
of constant positive scalar curvature. It is apparent from the proofs in [NS] that an
interior curvature for graphs of constant positive scalar curvature with constant or
affine Dirichlet data suffices for this. Thus condition (3.2) can be eliminated from
these results by using Theorem 1.1.
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18 SHENG, URBAS, and WANG

4. Convex solutions
In this section we provide the additional observations necessary to extend the cur-
vature bound to solutions with C1,1 boundary data, in the case 0 = 0+. We have
already observed in Remark 2.1 that if φ is convex, the additional term that arises in
the computation of Fi j∇i∇ jη is nonnegative and can be discarded. If the domain �

is uniformly convex with ∂� ∈ C1,1, then any φ ∈ C1,1(∂�) has a convex extension
belonging to C1,1(�). For the proof of Theorem 4.1 below it is sufficient to show that
there is a convex extension v ∈ C1,1(�) ∩ C0,1(�) of φ such that

inf
�′

(v − u) ≥ c(�′) > 0 (4.1)

for any �′
⊂⊂ �. We then choose η = v − u. The key to this is the following result

of [TU2] for the homogeneous Monge-Ampère equation.

LEMMA 4.1
Let � be a C1,1 bounded uniformly convex domain in Rn . Then for any φ ∈ C1,1(∂�)

the problem
det D2v = 0 in �, v = φ on ∂�, (4.2)

has a unique convex solution v ∈ C1,1(�) ∩ C0,1(�).

Now let f be as in Section 1, with 0 = 0+, the positive cone in Rn . Then, since
v ∈ C1,1(�), the principal curvatures λ1, . . . , λn of graph v are defined for almost all
points of �, and λ = (λ1, . . . , λn) belongs to ∂0+. It follows that v satisfies

F[v] = 0 in �, v = φ on ∂�. (4.3)

We now verify (4.1). Let x0 ∈ �; for convenience let us assume that x0 = 0. For
ρ > 0 fixed so small that Bρ = Bρ(0) ⊂⊂ � and ε > 0 to be chosen, we consider

vε = v + ε(|x |
2
− ρ2) in Bρ .

The principal curvatures λε
1, . . . , λ

ε
n of graph vε are the eigenvalues of

hε
i j =

Di jvε√
1 + |Dvε |

2
=

Di jv√
1 + |Dv|2

+ O(ε)

relative to the metric

gε
i j = δi j + Divε D jvε = δi j + DivD jv + O(ε).

Since Dv and D2v are bounded on Bρ by a controlled constant, and the eigenvalues
of a matrix are locally Lipschitz functions of the matrix entries (see [A, Lemma 1]),
we see that for ε > 0 sufficiently small,

|λ − λε
| ≤ Cε,
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where C depends on bounds for |Dv| and |D2v| on Bρ . Therefore

F[vε] ≤ F[v] + ω(ε) = ω(ε)

where ω(ε) → 0 as ε → 0. Consequently, for ε > 0 fixed sufficiently small we have

F[vε] < F[u] in Bρ .

Since v is characterized by

v = sup{w : w is convex on �, w ≤ φ on ∂� },

we have u ≤ v = vε on ∂ Bρ . Therefore vε ≥ u in Bρ by the comparison principle, and
hence (v − u)(0) ≥ ερ2. This proves (4.1). Therefore we have proved the following
result.

THEOREM 4.1
Suppose that f satisfies (1.1) to (1.4) with 0 = 0+. Let � be a C1,1 bounded uniformly
convex domain in Rn , and let u ∈ C4(�) ∩ C0,1(�) be an admissible solution of

F[u] = g(x, u) in �, u = φ on ∂�, (4.4)

where g ∈ C1,1(�×R) is a positive function and φ ∈ C1,1(∂�). Then there exist posi-
tive constants β, depending only on sup� |Du|, and C , depending only on n, ‖u‖C1(�),
g and its first and second derivatives, µ1 = inf� g(x, u), µ2 = sup� g(x, u), and the
structure constants σ0, σ1 in (1.3) and (1.4), such that the second fundamental form A
of graph u satisfies

|A| ≤
C

(v − u)β
, (4.5)

where v ∈ C1,1(�) ∩ C0,1(�) is the unique convex solution of

F[v] = 0 in �, v = φ on ∂�. (4.6)

The constant C in Theorem 4.1 is independent of bounds for v and Dv because these
quantities are controlled by ‖u‖C1(�).

By an argument similar to that used in Section 3, we can conclude the following
theorem, which can be viewed as a generalization of a result of [TU1] for the equation
of prescribed Gauss curvature.

THEOREM 4.2
Let f and � satisfy the hypotheses of Theorem 4.1. Suppose that φ ∈ C1,1(�), and let
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g ∈ C1,1(� × R) be a positive function satisfying gz ≥ 0. Suppose there is a convex
function u ∈ C2(�) ∩ C0,1(�) satisfying

F[u] ≥ g(x, u) in �, u = φ on ∂). (4.7)

Then the problem

F[u] = g(x, u) in �, u = φ on ∂�, (4.8)

has a unique convex solution u ∈ C3,α(�) ∩ C0,1(�) for all α ∈ (0, 1).

Proof
We solve uniformly elliptic approximating problems having smooth solutions uε , ex-
actly as in the proof of Theorem 1.2. Note, however, that the elliptic regularization
used in [T1] enlarges the cone 0+, so the solutions uε need not be convex, even
though the limit solution u is convex. Consequently, Theorem 4.1 is not applicable
to the approximations uε . Instead, we first pass to a limit via a suitable sequence
εi → 0 to obtain a convex viscosity solution u ∈ C0,1(�) of (4.8). By the above con-
siderations involving v (which are valid even if u is a viscosity rather than classical
solution), we then see that for any x0 ∈ � there is a neighbourhood U ⊂⊂ � of x0

such that u is equal to an affine function l on ∂U . But then, for large enough i , the set
Uεi = {x ∈ � : uεi (x) < l(x)} ⊂⊂ �, and x0 ∈ Uεi . Furthermore, Uεi → U . By
applying the curvature bound of Theorem 1.1 to each uεi on Uεi and then using the
Evans-Krylov estimates and Schauder theory and passing to the limit, we conclude
that u ∈ C3,α in a neighbourhood of x0. Since x0 ∈ � is arbitrary, u ∈ C3,α(�).

Remark 4.1
The main examples covered by Theorem 4.2 are the quotients f = (Sn/Sl)

1/(n−l)

with l = 0, . . . , n − 1. In the Gauss curvature case l = 0 the regularity assumptions
on ∂� and φ can be weakened to ∂�, φ ∈ C1,α for some α > 1−2/n (see [C], [U1]).

5. The Plateau problem
In this section we prove Theorem 1.3. The notion of locally convex hypersurface we
use is the same as that used in [TW]. To state precisely some of the results we use we
need to recall this.

Definition 5.1
A compact, connected, locally convex hypersurface M in Rn+1 (possibly with bound-
ary) is an immersion of an n-dimensional, compact, oriented, and connected manifold
N (possibly with boundary) in Rn+1, that is, a mapping T : N → M ⊂ Rn+1, such
that for any p ∈ N there is a neighbourhood ωp ⊂ N such that
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(i) T is a homeomorphism from ωp to T (ωp);
(ii) T (ωp) is a convex graph;
(iii) the convexity of T (ωp) agrees with the orientation.

Since M is immersed, a point x ∈ M may be the image of several points in N

(since N is compact, M is also compact, and T −1(x) consists of only finitely many
points). Let r > 0 and x ∈ M . Then for small enough r , T −1(M ∩ Bn+1

r (x)) consists
of several disjoint open subsets U1, . . . , Us of N such that T |Ui is a homeomorphism
of Ui onto T (Ui ) for each i = 1, . . . , s. By an r -neighbourhood ωr (x) of x in M we
mean any one of the sets T (Ui ). We say that ωr (x) is convex if ωr (x) lies on the
boundary of its convex hull.

The key ingredient in proving Theorem 1.3 is the following lemma (see [TW,
Theorem A]).

LEMMA 5.1
Let M0 ⊂ BR(0) be a locally convex hypersurface with C2 boundary ∂M0. Suppose
that on ∂M0, the principal curvatures λ0

1, . . . , λ
0
n of M0 satisfy

C−1
0 ≤ λ0

i ≤ C0 i = 1, . . . , n (5.1)

for some C0 > 0. Then there exist positive constants r and α, depending only on
n, C0, R and ∂M0, such that for any point p ∈ M0, each r -neighbourhood ωr (p)

of p is convex, and there is a closed cone C p,α with vertex p and angle α such that
ωr (p) ∩ C p,α = {p}.

We make two observations related to Lemma 5.1. The first is that for any point p ∈

M0, if one chooses the axial direction of the cone C p,α as the xn+1-axis, then each
δ-neighbourhood of p can be represented as a graph,

xn+1 = u(x), |x | ≤ δ

for any δ < r sin(α/2). Moreover, the cone condition implies

|Du(x)| ≤ C, |x | < δ,

where C > 0 depends only on α.
The second observation is that Lemma 5.1 holds not just for M0, but also for a

family of locally convex hypersurfaces, with uniform r and α. Indeed, by extending
M0 to a larger locally convex hypersurface M1 such that ∂M0 lies in the interior of
M1 (see [TW]), and applying Lemma 5.1 to M1, we see that Lemma 5.1 holds for any
locally convex hypersurface M such that (M1 − M0) ∪ M is locally convex, with
uniform r and α.
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With the aid of Lemma 5.1 we can use the Perron method to obtain a viscosity
solution of the Plateau problem for the curvature function f , as was done for the Gauss
curvature case in [TW]. The only change is to replace the notion of a generalized
solution for the prescribed Gauss curvature equation by that of viscosity solution for
more general curvature equations, using the following lemma.

LEMMA 5.2
Let � be a bounded domain in Rn with Lipschitz boundary. Let φ ∈ C0,1(�) be a
convex viscosity subsolution of

f (λ) = k in � (5.2)

Then there is a viscosity solution u of (5.2) such that u = φ on ∂�.

Proof
The proof uses the well-known Perron method. Let 9 denote the set of convex subso-
lutions v of (5.2) with v = φ on ∂�. Then 9 is nonempty and the required solution u
is given by

u(x) = sup{v(x) : v ∈ 9}.

The proof of this uses standard arguments. The only point that needs to be mentioned
is the solvability of the Dirichlet problem

f (λ) = k in Br , u = u0 on ∂ Br , (5.3)

in small enough balls Br ⊂ Rn , if u0 is any Lipschitz viscosity subsolution of (5.3).
This is a consequence of [T1, Theorem 6.2].

Using Lemma 5.2 and the argument of [TW], we conclude that there is a locally
convex hypersurface M with boundary 6, which satisfies the equation f (λ) = k
in the viscosity sense; that is, for any point p ∈ M , if M is locally represented as
the graph of a convex function u (by Lemma 5.1), then u is a viscosity solution of
f (λ) = k.

The remaining question is the regularity of M .

Interior regularity
We use Theorem 1.2 to prove the interior regularity of M . For any point p ∈ M ,
if M is strictly convex at p (i.e., if there is a tangent plane L of M at p such that
L ∩ ωr (p) = {p} for some r > 0, where ωr (p) is any r -neighbourhood of p),
then M is smooth and uniformly convex near p. This is because we can choose the
coordinate system so that p is the origin, and near p, M is represented as the graph
of a nonnegative convex function u. Then by the strict convexity of M at p, the set
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�ε := {u < ε} is a convex set that shrinks to the point {p} as ε → 0. Therefore,
by Theorem 1.2 and the uniqueness of viscosity solutions of the Dirichlet problem,
we conclude that u is smooth and uniformly convex in �ε when ε > 0 is sufficiently
small.

Next we prove that M is strictly convex. Suppose to the contrary that M contains
a line segment `. Choose an arbitrary point p ∈ `, and let L be a tangent plane of M

at p such that ` ⊂ L . Let C be a component of the contact set L ∩ M , by which we
mean that C is the image under T of one of the components of T −1(L ∩ M ) ⊂ N

(see Definition 5.1). Then C is a closed convex set.
Let p0 ∈ C be the farthest point from p (if there is more than one such point,

choose any one). If p0 is an interior point of M , we choose p0 as the origin and
suppose p = (t, 0, · · · , 0) for some t > 0. Then C ⊂ {x1 ≥ 0} and C ∩ {x1 = 0} =

{p0}.
By Lemma 5.1, ωr (p0) is convex for small enough r > 0. Hence the point p1 =

( r
2 cos θ, 0, . . . , 0, r

2 sin θ) is an interior point of the convex hull of ωr (p0) if θ > 0
is sufficiently small. We introduce a new coordinate system (y1, . . . , yn+1) such that
p0 p1 lies in the yn+1-axis, and

y1 = x1 sin θ − xn+1 cos θ,

yi = xi , i = 2, · · · , n.

As explained after Lemma 5.1, M can be locally represented as a graph

yn+1 = v(y), y = (y1, · · · , yn), |y| < 2δ,

for small enough δ > 0. In the new coordinates

C ⊂ {yn+1 = y1 cot θ} ∩ {y1, yn+1 > 0}.

Let �ε = {v(y) < −ε(y1 − δ) + y1 cot θ}. Then �ε ⊂ �ε′ for any 0 < ε < ε′. Since
C ∩ {y1 = 0} = {p0}, we see that �ε ↘ p0 p2, where p2 = (δ, 0, . . . , 0, δ cot θ) in
the y-coordinates. Therefore, when ε > 0 is sufficiently small, v is equal to an affine
function on ∂�ε . Applying Theorem 1.2 and the uniqueness of viscosity solutions of
the Dirichlet problem to (�ε, v), we conclude that v is smooth and uniformly convex
in �ε . That is, M is uniformly convex near p0, which is a contradiction.

If p0 is a boundary point, let M1 be an extension of M0 as mentioned after
Lemma 5.1, such that M1 −M0 is locally uniformly convex. Then M̃ = M ∪{M1 −

M0} is a locally convex extension of M . Take p0 as the origin, and choose a point
p1 ∈ M1 − M0 sufficiently close to p0 such that p0 p1 is perpendicular to 6 at p0.
Take p0 p1 as the xn+1-axis direction. Then 6 is tangent to the plane {xn+1 = 0} at
p0. By Lemma 5.1 above, for small enough r, δ > 0, the r -neighbourhood of p0 in
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M̃ , ωr (p0), is convex, and the line segment {ten+1, 0 ≤ t ≤ δ} lies in the interior of
the convex hull of ωr (p0). Hence, by the observations following Lemma 5.1, near the
origin M̃ can be represented as a graph,

xn+1 = u(x), x ∈ Bδ(0),

where Bδ(0) is the ball in Rn . Similarly, M̃0 = M0 ∪ {M1 − M0} can be represented
near p0 as a graph

xn+1 = u0(x), x ∈ Bδ(0),

in the same coordinate system. Since M is obtained from M0 by a sequence of Perron
liftings, we have u ≥ u0 near the origin.

Let ` be the line segment in C connecting p0 to p (indeed, p can be any fixed
point in C ). Then ` cannot be tangent to 6 at p0. For, if ` is tangent to 6, then
∂ξ∂ξ u0 = 0 since u ≥ u0, where ξ is a unit vector in the direction of `. This is a
contradiction.

It follows that ` is transversal to 6 at p0. Let {xn+1 = ξ · x} be a tangent plane of
M at p0 containing the line segment `. By a rotation of coordinates, we may suppose
`′, the projection of ` onto {xn+1 = 0}, lies on the xn-axis. By the smoothness of 6

and the convexity of u, we then have

0 ≤ u(x) − ξ · x ≤ C
n−1∑
i=1

x2
i (5.4)

for x near `′. But since u is a viscosity solution of f (λ) = k for some k > 0, one
can easily construct a supersolution to show that (5.4) is impossible. Indeed, u is a
viscosity solution of det D2u ≥ k̃ near ˜̀ for some positive constant k̃ depending
only on k, l, n, and supωr (p) |Du|, so one can appeal directly to [CY, Theorem 4].
Therefore M must be locally strictly convex, and therefore it is a smooth, locally
uniformly convex hypersurface.

Boundary regularity
The boundary regularity of M is a local property. The boundary estimates we need
are contained in the work of Ivochkina and Tomi [IT] (see also [ILT]). However, they
cannot be applied directly to M because their proof requires somewhat more regular-
ity of M up to ∂M than we have established so far. We need to apply the estimates
to suitable approximating solutions.

As observed above, since we are working in a neighbourhood of a boundary point
p ∈ ∂M , which we may take to be the origin, we may assume that for a smooth
bounded domain � ⊂ Rn with 0 ∈ ∂� and small enough ρ > 0 we have

M ∩ (Bρ × R) = graph u, M0 ∩ (Bρ × R) = graph u0,
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where u ∈ C∞(�ρ) ∩ C0,1(�ρ), and u0 ∈ C∞(�ρ) are convex solutions of

F[u] = k in �ρ, F[u0] ≥ k in �ρ,

with
u ≥ u0 in �ρ, u = u0 on ∂� ∩ Bρ .

Here �ρ = � ∩ Bρ where Bρ denotes the ball in Rn centered at the origin.
Next we observe that by the argument of [IT, Section 1], by making ρ smaller

if necessary, we may choose the coordinate system in Rn+1 in such a way that � is
uniformly convex, and moreover, so that for some ε > 0 we have

k ≤ (1 − ε)
( Sn−1(κ

′)

Sl−1(κ ′)

)1/(n−l)
(5.5)

on ∂� ∩ Bρ , where κ ′
= (κ ′

1, . . . , κ
′

n−1) denotes the vector of principal curvatures
of ∂�. The choice of coordinate system (and ρ, of course) depends on M0 and ∂M0,
but not on M .

By making ρ smaller if necessary, we may assume that (5.5) also holds at all
points of ∂ Bρ . It is clear then that by suitably smoothing the corners of �ρ in Bρ −

B7ρ/8 we can find a uniformly convex domain �′
⊂ �ρ such that � ∩ B3ρ/4 =

�′
∩ B3ρ/4 and such that (5.5) holds at each point of ∂�′.

For each positive integer i , we divide ∂�′ into three pieces as follows:

00 = ∂�′
∩ B3ρ/4,

0i = ∂�′
∩ Bρ ∩ {x ∈ � : dist(x, ∂�) > i−1

},

0̃i = ∂�′
− (00 ∪ 0i ).

Let {φi } ⊂ C∞(�
′
) be a sequence of functions such that φi → u in C0,α(�

′
) for

α ∈ (0, 1), ‖φi‖C1 is uniformly bounded, and

φi = u0 = u on 00,

φi = u on 0i ,

φi ≥ u on 0̃i .

Let {ηi } ⊂ C∞(�
′
) be a nondecreasing sequence of positive functions such that

ηi → 1 in �′,

ηi = 1 in �
′
− {x ∈ � ∩ (Bρ − Bρ/4) : dist(x, ∂�) ≤ 4i−1

},

ηi = δi in �
′
∩ (Bρ − Bρ/2) ∩ {x ∈ � : dist(x, ∂�) < 2i−1

},

δi ≤ ηi ≤ 1 in �′,
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where {δi } is a sequence of positive constants to be chosen.
We claim that for a suitable choice of {δi } the problems

F[ui ] = ηi k in �′, ui = φi on ∂�′, (5.6)

are solvable, with convex solutions ui ∈ C∞(�
′
). The proof of this uses the

well known method of continuity, which relies on establishing a priori estimates in
C2,α(�

′
) for solutions of (5.6), or more precisely, for solutions of a suitable family of

problems containing (5.6), for example,

F[ui ] = tηi k + (1 − t)σiηi F[φi ] in �′,

u = φi on ∂�′, (5.7)

where t ∈ [0, 1], φi is assumed to be uniformly convex, and σi ∈ (0, 1] is a positive
constant so small that σi F[φi ] ≤ k in �′. We describe the estimates only for (5.6),
that is, for (5.7) with t = 1, because they are similar for other t ∈ [0, 1]. We observe
also that the solvability of (5.7) when t = 0 follows from [ILT] or [IT], since φi is a
convex subsolution of the problem in this case.

First, since ui is convex, and u0 is a subsolution of the equation with u0 ≤ ui on
∂�′, we have

u0 ≤ ui ≤ hi ≤ sup
�′

φi in �′,

where hi is the harmonic function in �′ with hi = φi on ∂�′. It follows then that

Dγ ui ≤ Dγ hi ≤ C(i) on ∂�′

where γ denotes the inner normal vector field to ∂�′.
To obtain a lower bound for Dγ ui on ∂�′, we need to consider several cases.

First, we have
−C ≤ Dγ u0 ≤ Dγ ui on 00

because u0 is a lower barrier for ui there. Second, u is a lower barrier for ui on 0i , so

−C(i) ≤ Dγ u ≤ Dγ ui on 0i .

Next we need to construct a local lower barrier for ui at each point of 0̃i . Let y ∈

0̃i , and let ∂ BR(z) be an enclosing sphere for �′ at y; that is, �′
⊂ BR(z) and

∂ BR(z) ∩ ∂�′
= {y}. Then for small enough ε(i) > 0 we have

�′
∩ {x : R − ε(i) ≤ |x − z| ≤ R}

⊂�′
∩ (Bρ − Bρ/2) ∩ {x : dist(x, ∂�) < 2i−1

}.

Furthermore, for a sufficiently large positive constant A(i),

φ̃i = φi + A(i)(|x − z|2 − R2)
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is uniformly convex, and φ̃i ≤ u0 on �′
∩ {x : |x − z| = R − ε(i)}. If we now fix

δi = min
�′

F[φ̃i ] > 0,

then φ̃i is a local lower barrier for ui at y, so

−C(i) ≤ Dγ φ̃i (y) ≤ Dγ ui (y).

Since y can be any point of 0̃i , and the constants ε(i) and A(i) are uniform for y ∈ 0̃i

for each fixed i , we conclude that

−C(i) ≤ Dγ ui on 0̃i .

Consequently,
sup
∂�′

|Dui | ≤ C(i),

and therefore, by the convexity of ui ,

sup
�′

|Dui | ≤ C(i).

Second derivative bounds for each ui then follow from the results in [IT] (for
this the curvature condition (5.5) is required at each point of ∂�′). Finally, the second
derivative Hölder estimate follows from the Evans-Krylov estimates for concave uni-
formly elliptic equations. Since the bounds for Dui are not uniform with respect to i ,
the same is true of the bounds for D2ui and their Hölder seminorms.

To complete the proof of the boundary regularity, we show that uniform C2,α

estimates hold for {ui } on �θρ for a sufficiently small controlled positive constant θ .
It then follows that u satisfies a similar bound on �θρ . Higher regularity of u on �θρ/2

then follows by standard linear elliptic estimates if ∂� is smooth enough.
By [IT, Lemma 1.1], we have

sup
�ρ/4

|Dui | ≤ sup
∂�∩Bρ/2

|Dui | + 8ρ−1 sup
�′

|ui |.

The first term on the right is uniformly bounded because u0 (respectively hi ) is a lower
(respectively upper) barrier for ui on ∂� ∩ Bρ/2, since φi = u0 = hi on ∂� ∩ Bρ/2.

Next, by [IT, Theorem 2.1], the second derivatives of ui are uniformly bounded
on ∂� ∩ Bρ/8. We claim that the second derivatives are bounded in �τρ for small
enough controlled τ > 0. Let xn+1 = l(x) be the graph of the tangent hyperplane L
to graph u0 at 0. By the uniform convexity of u0, L intersects graph u0 and graph ui

only at 0. Let us assume that the positive xn axis points in the direction of the inner
normal to ∂� at 0. Then for small enough ε′, δ′ > 0, the set Ui = {x ∈ � : ui (x) ≤

l(x) + ε′
− δ′xn} satisfies

Ui ⊂⊂ �ρ/16 and Ui ⊃ �σρ
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for some small positive constant σ , independent of i . By the proof of Theorem 1.1
with η = l(x) + ε′

− δ′xn , we conclude that D2ui is uniformly bounded in �2θρ

for a sufficiently small positive constant θ . Uniform estimates for ui in C2,α(�θρ),
α ∈ (0, 1), then follow from the Evans-Krylov estimates and the Schauder estimates.
This completes the proof of the boundary regularity.
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MR 0921546

[L] Y.-Y. LI, Interior gradient estimates for solutions of certain fully nonlinear elliptic
equations, J. Differential Equations 90 (1991), 172 – 185. MR 1094454

[LT] M. LIN and N. S. TRUDINGER, The Dirichlet problem for the prescribed curvature
quotient equations, Topol. Methods Nonlinear Anal. 3 (1994), 307 – 323.
MR 1281990

[N] B. NELLI, On the structure of positive scalar curvature type graphs, Ital. J. Pure Appl.
Math. 10 (2001), 169 – 179. MR 1930324

[NS] B. NELLI and B. SEMMLER, On hypersurfaces embedded in Euclidean space with
positive constant Hr curvature, Indiana Univ. Math. J. 50 (2001), 989 – 1002.
MR 1871396

[P] A. V. POGORELOV, The Minkowski multidimensional problem, Wiley, New York, 1978.
MR 0478079

[R] H. ROSENBERG, Hypersurfaces of constant curvature in space forms, Bull. Sci. Math.
117 (1993), 211 – 239. MR 1216008

[S] J. SPRUCK, “Fully nonlinear elliptic equations and applications in geometry” in
Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich,
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