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INTERIOR DERIVATIVE ESTIMATES FOR THE
KÄHLER–RICCI FLOW

MORGAN SHERMAN AND BEN WEINKOVE

We give a maximum principle proof of interior derivative estimates for the
Kähler–Ricci flow, assuming local uniform bounds on the metric.

1. Introduction

Let (M, ω̂) be a Kähler manifold of complex dimension n. Let ω = ω(t) be a
solution of the Kähler–Ricci flow on M ×[0, T ], for some T > 0:

(1-1)
∂

∂t
ω =−Ric(ω), ω|t=0 = ω0,

with ω0 a smooth initial Kähler metric.
Fix a point p ∈ M and denote by Br ⊂ M the open ball centered at p of radius r

for 0< r < 1 with respect to ω̂. We assume that r is sufficiently small so that Br is
contained in a single holomorphic coordinate chart. Our main result is as follows:

Theorem 1.1. Let N > 1 satisfy

(1-2)
1
N
ω̂ ≤ ω ≤ N ω̂, on Br ×[0, T ].

Then for each m = 0, 1, 2, . . . there exist constants C and Cm depending only on
ω̂ and T such that on Br/2× (0, T ],

(i) |∇̂ω|2ω ≤ C
N 3

r2t
, for ∇̂ the covariant derivative with respect to ω̂.

(ii) |Rm|2ω ≤ C0
N 8

r4t2 .

(iii) |∇m
R Rm|2ω ≤ Cm

(
N 4

r2t

)m+2

for m = 1, 2, . . . , where ∇R is the real covariant

derivative with respect to the metric ω.
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Moreover, if we allow the constants C and Cm to depend also on ω0 then the
estimates (i), (ii) and (iii) hold with each factor of t on the right hand side replaced
by 1.

We prove this result using the maximum principle. Note that by work of Shi
[1989a; 1989b] it was already known that a bound on curvature as in (ii) implies (iii)
(nevertheless, we include a proof here, for the sake of completeness). Theorem 1.1
implies the following:

Corollary 1.2. Let N > 1 satisfy

(1-3)
1
N
ω̂ ≤ ω ≤ N ω̂ on Br ×[0, T ].

Then for each m = 0, 1, 2, . . . there exist constants Cm , αm , βm and γm depending
only on m, ω̂ and T such that

(1-4) |∇̂
m
Rω|ω̂ ≤ Cm

Nαm

rβm tγm
on Br/2× (0, T ],

Moreover, if we allow the constants Cm , αm and βm to depend also on ω0 then (1-4)
holds with γm = 0.

Namely, a local uniform estimate for the metric along the Kähler–Ricci flow im-
plies local derivative estimates to all orders. This fact in itself is not new. Indeed the
local PDE theory of Evans [1982] and Krylov [1982] can be applied to the Kähler–
Ricci flow equation (see, for example, [Chow et al. 2007] or the generalization in
[Gill 2011]). The key point here is to establish this via Theorem 1.1 whose proof
uses only elementary maximum principle arguments.

The form of the estimate (1-4) may be useful for applications and does not
seem to be written down explicitly elsewhere in the literature. When considering
the Kähler–Ricci flow on projective varieties, it is often the case that one obtains
a uniform estimate for the metric ω away from a subvariety (see [Song and Tian
2009; Song and Weinkove 2011a; 2011b; 2011c; Tian and Zhang 2006; Tsuji
1988; Zhang 2009], for example). Theorem 1.1 can be used to replace global
arguments. To illustrate, suppose that ω = ω(t) solves the Kähler–Ricci flow on
a compact Kähler manifold M and there exists an analytic hypersurface D ⊂ M
whose associated line bundle [D] admits a holomorphic section s vanishing to order
1 along D. Assume that

(1-5)
1
C
|s|αH ω̂ ≤ ω ≤

C
|s|αH

ω̂ on (M \ D)×[0, T ]

for some positive constants C and α, where H is a Hermitian metric on [D]. An
elementary argument shows that Theorem 1.1 implies the existence of Cm , αm and
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γm such that

(1-6) |∇̂
m
Rω|ω̂ ≤

Cm

tγm |s|αm
H
, on (M \ D)× (0, T ]

for each m = 1, 2, . . . . Moreover we can take γm = 0 if we allow Cm and αm

to depend on the initial metric ω0. Estimates of the form of (1-6) are used, for
example, in [Song and Weinkove 2011b; 2011c]. In particular, Corollary 1.2 gives
an alternative proof of the results in Section 4 of [Song and Weinkove 2011b].

Finally we remark that since our result is completely local, we may and do
assume that M = Cn , p = 0 and ω̂ is the Euclidean metric. We will write g and
ĝ for the Kähler metrics associated to ω and ω̂. All magnitudes | · | are taken with
respect to the metric g. We shall use the letter C (as well as C ′,C ′′, etc.) for a
uniform constant (depending only on m, ω̂, and T ) which may differ from line to
line.

In Sections 2, 3 and 4 we prove parts (i), (ii) and (iii) of Theorem 1.1 respectively.
In Section 5 we give a proof of Corollary 1.2.

2. Bound on the first derivative of the metric

In this section we prove the estimate on the first derivative of the metric g, and so
establish Theorem 1.1(i). This gives a local parabolic version of Calabi’s [1958]
well-known “third-order” estimate for the complex Monge–Ampère equation (used
by Yau [1978] in his solution of the Calabi conjecture). There exist now many
generalizations of Calabi’s estimate [Cherrier 1987; Tosatti 2010; Tosatti et al.
2008; Zhang and Zhang 2011]. A global parabolic Calabi estimate was applied to
the case of the Kähler–Ricci flow in [Cao 1985]. Phong, Sesum and Sturm [Phong
et al. 2007] later gave a neat and explicit computation in this which we will make
use of here for our local estimate.

We wish to bound the quantity

(2-1) S = |∇̂g|2 = gi j̄ gkl̄ g pq̄
∇̂i gkq̄∇̂ j gl p̄

where we write ∇̂ for the covariant derivative with respect to ĝ. Write r0 = r and
let ψ be a nonnegative C∞ cut-off function that is identically equal to 1 on Br1 and
vanishes outside Br , where r0 > r1 > r/2. We may assume that

(2-2) |∇ψ |2, |1ψ | ≤ C
N
r2 ,

where 1=∇ j̄
∇ j̄ = g pq̄

∇p∇q̄ . Thus

(2-3) (∂t −1)(ψ
2S)≤ ψ2(∂t −1)S+C

N
r2 S+ 2

∣∣〈∇ψ2, ∇S〉
∣∣ ,
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where we are writing 〈∇F,∇G〉 = gi j̄∂i F∂ j̄ G for functions F,G. Following the
notation in [Phong et al. 2007], we introduce the endomorphism hi

k = ĝi j̄ g j̄ k and
let X be the tensor with components X k

il = (∇i h · h−1)kl , so that S = |X |2. Note
that X is the difference of the Christoffel symbols of g and ĝ.

An application of Young’s inequality gives

(2-4) 2
∣∣〈∇ψ2, ∇S〉

∣∣≤ ψ2(|∇X |2+ |∇X |2)+C
N
r2 S.

We now use the evolution equation for S derived by Phong, Sesum and Sturm [ibid.,
(2.51)] which, in the case where ω̂ is Euclidean, has the simple form:

(2-5) (∂t −1)S = −
(
|∇X |2+ |∇X |2

)
.

Combining (2-3), (2-4), and (2-5) we find

(2-6) (∂t −1)(ψ
2S)≤ C

N
r2 S.

We now need to use the evolution equation for tr h from [Cao 1985], which is
a parabolic version of an estimate from [Aubin 1978; Yau 1978]. More precisely,
we can apply equations (2.28) and (2.31) of [Phong et al. 2007] and use the fact
that the fixed metric is Euclidean to obtain

(2-7) (∂t −1)(tr h)=−ĝi j̄ gkl̄ g pq̄
∇̂i gl̄ p∇̂ j gk̄q .

Hence

(2-8) (∂t −1)(tr h) ≤ −
S
N
.

Let f (t) denote either the function t or the constant 1. Then 0≤ f (t)≤max(T, 1)
and f ′(t)= 1 or 0 so that we get, for any positive constant B,

(∂t −1)( f (t)ψ2S+ B tr h) ≤ C
N
r2 S−

B
N

S.

Let B = (N 2/r2)(C + 1). Then, by the maximum principle, the maximum of
f (t)ψ2S+ B tr h on Br ×[0, T ] can only occur at t = 0 or on the boundary of Br ,

where ψ = 0. Since tr h ≤ nN , we have

(2-9) S ≤ C
N 3

f (t)r2 on Br1 × (0, T ].

giving part (i) of Theorem 1.1.
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3. Bound on curvature

We now prove part (ii) of Theorem 1.1. For global estimates of this type, see [Chau
2004; Phong et al. 2011]. We fix a smaller radius r2 satisfying r1 > r2 > r/2. In
this section we let ψ be a cut-off function, identically 1 on Br2 and identically 0
outside Br1 . As before we may assume |1ψ |, |∇ψ |2 ≤ C N/r2 for some uniform
constant C . Calculate

(∂t −1)R j̄ i l̄k =− R j̄ i
pq̄ Rl̄kq̄ p + Rl̄ i

pq̄ R j̄ kq̄ p − R j̄ pl̄
q̄ R p

iq̄k

− R j̄ p R p
il̄k − Rl̄ p R j̄ i

p
k,(3-1)

and therefore (see [Hamilton 1982])

(∂t −1)|Rm|2 ≤−|∇Rm|2− |∇Rm|2+C |Rm|3,(3-2)

where we are writing |Rm|2 = R j̄ i l̄k Ri j̄ kl̄ etc.
As before we set f (t)= t, 1. We introduce the function

(3-3) S̃ = f S+C1 N tr h

where C1 is a large uniform constant. Note that by (2-9) we have S̃ ≤ C N 3

r2 at every
(x, t) ∈ Br1 ×[0, T ]. Furthermore S̃ satisfies

(3-4) (∂t −1)S̃ ≤− f (|∇X |2+ |∇X |2)−C2S

where C2 =C1− f ′� 1 is uniform. Let K =C3 N 4/r2 where C3� 1 is a uniform
constant. Note that we may assume K/2 ≤ K − S̃ ≤ K . We will establish our
bound for |Rm| by using a maximum principle argument for the function

(3-5) F = f 2ψ
2
|Rm|2

K− S̃
+ B̃ S̃,

where B̃ = C4/N 3 with C4� 1 uniform. We begin by computing

(∂t−1)

(
ψ2 |Rm|2

K − S̃

)
=−1ψ2 |Rm|2

K − S̃
+ψ2 (∂t−1)|Rm|2

K − S̃
+ψ2 (∂t−1)S̃

(K − S̃)2
|Rm|2

− 2ψ2 |∇ S̃|2|Rm|2

(K− S̃)3
− 4 Re

ψ〈∇ψ,∇|Rm|2〉

K− S̃

− 4 Re
ψ〈∇ψ,∇ S̃〉|Rm|2

(K− S̃)2
− 2 Re

ψ2
〈∇|Rm|2,∇ S̃〉

(K− S̃)2

and thus
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(3-6) (∂t −1)

(
ψ2 |Rm|2

K− S̃

)
≤

1

(K− S̃)2

[
|1ψ2

|(K− S̃)|Rm|2

terms (2)–(4) +ψ2(K− S̃)
(
C |Rm|3− |∇Rm|2− |∇Rm|2

)
terms (5)–(7) +ψ2 (

− f |∇X |2− f |∇X |2−C2S
)
|Rm|2

terms (8), (9) −
2

K− S̃
ψ2
|∇ S̃|2|Rm|2+ 16|∇ψ |2(K− S̃)|Rm|2

terms (10), (11) +
1
2ψ

2(K− S̃)|∇Rm|2+ 1
2ψ

2(K− S̃)|∇Rm|2

terms (12), (13) +
1

K− S̃
ψ2
|∇ S̃|2|Rm|2+ 4|∇ψ |2(K− S̃)|Rm|2

term (14) +
4

K− S̃
ψ2
|∇ S̃|2|Rm|2

terms (15), (16) +
1
2ψ

2(K− S̃)|∇Rm|2+ 1
2ψ

2(K− S̃)|∇Rm|2
]
.

We wish to bound (3-6) in terms of |Rm|2. Label the terms (1), (2), . . . , (16), as
shown. The bad terms are (1), (2), and (9)–(16), while the remaining terms are all
good. One sees that

(1)+ (9)+ (13)≤ C
N

Kr2 |Rm|2,

while [(10)+ (11)+ (15)+ (16)]+ [(3)+ (4)] ≤ 0 and (12)+ 1
2(8)≤ 0. It remains

only to bound the terms (2) and (14). For (2) we argue as follows: we may assume
that at a maximum for the function F we have a lower bound of the form

(3-7) f |Rm| ≥ C K , C � 1,

for if not we can apply a maximum principle argument immediately: At any (x, t)∈
Br1 × (0, T ] we would have F ≤ C K +C/r2, which implies that

f 2
|Rm|2 ≤ C

N 8

r4 on Br2 × (0, T ].

Now since ω̂ is Euclidean we have

(3-8)
∣∣∇X

∣∣2 = |Rm− R̂m|2 = |Rm|2.

Hence, using (3-7), we have (2)+ 1
2(6)≤ 0. Finally, to control (14) we use

(3-9) |∇ S̃|2 ≤ 4 f 2S(|∇X |2+ |∇X |2)+ 2nC2
1 N 4S.
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Here we have made use of a well-known estimate (computed in [Yau 1978]) that
implies that |∇ tr h|2 ≤ nN 2S. Now we find (14)+ 1

2 [(5)+ (6)+ (7)] ≤ 0 if in
K = C3 N 4/r2 we choose C3� C1. In total then we have

(3-10) (∂t −1)

(
ψ2
|Rm|2

K− S̃

)
≤

C
N 3 |Rm|2.

Therefore

(3-11) (∂t −1)

(
ψ2 f 2

|Rm|2

K− S̃
+ B̃ S̃

)
≤ −

f
N 3 |Rm|2,

if in B̃ = C4/N 3 we pick C4 large enough. This implies that the maximum of F
on Br1 × [0, T ] can only occur at t = 0 or on the boundary of Br , where ψ = 0.
Hence F is bounded above by C/r2. Therefore at any (x, t) in Br2×[0, T ] we have
f 2
|Rm|2 ≤ C ′N 4/r4. Comparing with our comments following (3-7) we arrive at

the estimate

(3-12) |Rm|2 ≤ C
N 8

f (t)2r4 on Br2 × (0, T ].

4. Higher-order estimates

We finish the proof of Theorem 1.1 by establishing bounds on the derivatives of
curvature, following the basic idea of Shi [1989a; 1989b] (see also [Bando 1987;
Chow and Knopf 2004; Chow et al. 2006]). Our setting here is slightly different
from that of Shi, who assumes that curvature is uniformly bounded (independent
of t) but that (1-2) does not necessarily hold. Although the result we need can
be recovered from what is known in the literature, we include the short proof for
the sake of completeness. Fix a sequence of radii r = r0 > r1 > r2 > · · · > r/2.
For a fixed m we will denote by ψ a cutoff function that is zero outside Brm+1 and
identically 1 on Brm+2 .

We now work in real coordinates, writing, in this section, ∇ for the real covariant
derivative ∇R. Write ∇m for ∇∇ · · · ∇ (m times). The key evolution equation we
need is due to Hamilton [1982]:

(4-1) (∂t −1)|∇
mRm|2 =−|∇m+1Rm|2+

∑
i+ j=m

∇
i Rm ∗∇ j Rm ∗∇mRm,

where we are writing S ∗ T to denote a linear combination of the tensors S and
T contracted with respect to the metric g. To clarify (4-1), we take 1 here to be
the complex Laplacian, which, acting on functions, is half the usual Riemannian
Laplace operator. When comparing to the formula in [Hamilton 1982] note that
Hamilton’s Ricci flow equation includes a factor of 2 that is not present in (1-1).
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We will show inductively that

(4-2)
∣∣∇mRm

∣∣2 ≤ C
(

N 4

f (t)r2

)m+2

on Brm+2 × (0, T ]

for every m ≥ 0, the base case m = 0 having already been established in Section 3.
Assume (4-2) holds for every value < m. Let A = N 4/r2. We will apply the
maximum principle argument to the function

(4-3) F = ψ2 f m+2
|∇

mRm|2+ B f m+1
|∇

m−1Rm|2

where B =C1 A with C1� 1 a large uniform constant. Let (x0, t0) ∈ Brm+1×[0, T ]
be the point at which F achieves a maximum. We may assume that (x0, t0) lies in
Brm+1 × (0, T ], otherwise, by the inductive hypothesis, we are finished. Suppose
first that f m+2

|∇
mRm|2 ≤ Am+2 at the point (x0, t0). Then at any (x, t) ∈ Brm+2 ×

[0, T ] we have

(4-4) f m+2
|∇

mRm|2 ≤ Am+2
+ f m+1 B|∇m−1Rm|2

∣∣
(x0,t0)

,

and our claim follows by the inductive hypothesis. Otherwise we have

(4-5) f m+2
|∇

mRm|2 > Am+2 at (x0, t0).

We note that by the inductive hypothesis we always have

(4-6) |∇
i Rm||∇ j Rm| ≤ C

( A
f

) i+ j
2 +2

when i, j < m.

At (x0, t0),

(4-7) 0 ≤ (∂t −1)F

≤ Cψ2 f m+1
|∇

mRm|2+ |1ψ2
| f m+2

|∇
mRm|2−ψ2 f m+2

|∇
m+1Rm|2

+Cψ2 f m+2
|Rm||∇mRm|2+Cψ2 f m+2(A/ f )m/2+2

|∇
mRm|

+C f m+2ψ |∇ψ ||∇m+1Rm||∇mRm|

+C B f m(A/ f )m+1
− B f m+1

|∇
mRm|2

+C B f m+1
|Rm||∇m−1Rm|2+C B f m+1(A/ f )(m+3)/2

|∇
m−1Rm|

≤ C f m+1 A|∇mRm|2+C f m/2 Am/2+2
|∇

mRm|

−C1 A f m+1
|∇

mRm|2+C Am+3 f −1

≤ − f m+1 A|∇mRm|2+C ′Am+3 f −1,

where the final inequality follows from (4-5) and by taking the uniform constant C1

in B = C1 A uniformly large enough. Hence f m+2
|∇

mRm|2 ≤ C ′Am+2 at (x0, t0)
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and then, arguing in a similar way to (4-4) above, this completes the inductive step.
Thus (4-2) is established.

5. Proof of Corollary 1.2

There are various ways to deduce Corollary 1.2 from Theorem 1.1. We could
directly apply standard local parabolic theory (as discussed in [Chau 2004; Phong
et al. 2011] for example), or the method in [Chow and Knopf 2004]. However, in
our setting, we do not even need that g(t) is a solution of a parabolic equation and
instead we use an argument similar to one in [Song and Weinkove 2011b] which
uses only standard linear elliptic theory and some embedding theorems.

Fix a time t ∈ (0, T ]. Regarding gi j̄ as a set of n2 functions, we consider the
equations

(5-1) 1̂gi j̄ =−
∑

k

Rkk̄i j̄ +
∑
k,p,q

gq p̄∂k gi q̄∂k̄ gp j̄ =: Qi j̄ .

where 1̂=
∑

k ∂k∂k̄ . For each fixed i, j , we can regard (5-1) as Poisson’s equation
1̂gi j̄ = Qi j̄ .

For the purposes of this section we will say that a quantity Z is uniformly
bounded if there exist constants C, α, β, γ depending only on ω̂ and T such that
Z ≤ C Nαr−β t−γ . In the case when the constants may depend on ω0, we insist that
γ = 0.

Let r = r0 > r1 > · · ·> r/2 be as above. Fix p> 2n. From what we have proved,
each ‖Qi j̄‖L p(Br2 )

is uniformly bounded. Applying the standard elliptic estimates
for the Poisson equation [Gilbarg and Trudinger 2001, Theorem 9.11] to (5-1) we
see that the Sobolev norm ‖gi j̄‖L p

2 (Br3 )
is uniformly bounded. Morrey’s embedding

theorem [ibid., Theorem 7.17] gives that ‖gi j̄‖C1+κ (Br4 )
is uniformly bounded for

some 0< κ < 1.
The key observation we now need is that the mth derivative of Qi j̄ can be written

as a finite sum
∑

s As ∗ Bs where each As or Bs is either a covariant derivative of
Rm or a quantity involving derivatives of g up to order at most m + 1. Hence if
g is uniformly bounded in Cm+1+κ then each Qi j̄ is uniformly bounded in Cm+κ ,
after possibly passing to a slightly smaller ball.

Applying this observation with m = 0 we see that each ‖Qi j̄‖Cκ (Br4 )
is uniformly

bounded. The standard Schauder estimates for the Poisson equation [Gilbarg and
Trudinger 2001, Theorem 4.8] give that ‖gi j̄‖C2+κ (Br5 )

is uniformly bounded.
We can now apply a bootstrapping argument. Applying the observation with

m = 1 we see that Qi j̄ is uniformly bounded in C1+κ on a slightly smaller ball and
so on. This completes the proof of the corollary.
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