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Introduction 

Spacelike hypersurfaces with prescribed mean curvature have played 
a major role in the study of Lorentzian manifolds. Maximal (mean 
curvature zero) hypersurfaces were used in the first proof of the positive 
mass theorem ([17]). Constant mean curvature hypersurfaces provide 
convenient time gauges for the Einstein equations ([7]). For a survey of 
results we refer to [3]. 

In [5] and [6], it was shown that entire solutions of the maximal 
surface equation 

H(u) = div( , Du ) = 0 
\pl-\Du\*J 

for spacelike hypersurfaces in Minkowski space are linear. The proof of 
this remarkable result is based on an interior a priori estimate for the 
gradient function 

1 
v = — =. 

p l - \ D u \ 2 

In fact, estimates for this quantity form the basis of existence proofs for 
spacelike hypersurfaces with prescribed mean curvature functions in a 
variety of contexts. These surfaces are described by nonlinear elliptic 
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partial differential equations of the same type as the maximal surface 
equation. The a priori gradient estimate implies that the equation is 
uniformly elliptic so that topological fixed point arguments can be em
ployed in order to prove the existence of a solution (see [4], [l]-[3], [14]). 
These arguments are indirect in nature. 

In [9] and [8], a direct approach to the existence problem was taken. 
Solutions of mean curvature equations were constructed as stationary 
limits of a geometric heat flow which evolves the spacelike hypersur-
faces in the direction of their future directed unit normal with speed 
given by the difference of the actual and the desired mean curvature. 
This so-called mean curvature flow has been extensively studied in Eu
clidean space (see [12]). In [9], the case of cosmological spacetimes was 
treated where one is dealing with the flow of compact hypersurfaces. 
In [8], noncompact hypersurfaces in asymptotically flat spacetimes were 
considered but with the strong restriction that the initial surface be 
asymptotic to a time slice of the spacetime. This essentially amounts 
to assuming a global bound for the gradient function. 

In this paper, we study mean curvature flow of noncompact space
like hypersurfaces in Minkowski space without any restrictions on their 
behaviour at infinity. It turns out that some of the most interesting solu
tions of this flow have exponentially growing mean curvature at infinity 
and therefore cannot be dealt with in the framework of any standard 
theory for parabolic differential equations. In Euclidean space, mean 
curvature flow of noncompact hypersurfaces was studied in [10],[11]. 

Minkowski space L n + 1 is R n + 1 endowed with the metric (•, •) defined 
by (X,Y) = x • y - x n+iy n+i for vectors X = (x,x n+1),Y = (y,y n+1). 
Spacelike hypersurfaces M C L n + 1 have an everywhere timelike normal 
field which we assume to be future directed and to satisfy the condition 
{v,v) = — 1. Such surfaces can be expressed as graphs of functions 
u : R n —> R satisfying \Du(x)\ < 1 for all x G R n. 

We consider a family of spacelike embeddings 

X t=X(-,t) : R n ^ L n + 1 

with corresponding hypersurfaces M t = X t(R n) satisfying the evolution 
equation 

on some time interval. Here, H = div M ̂  denotes the mean curvature of 
the hypersurface M t. Each M t is the graph of a function u(-,t) satisfying 
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jDu(-,t)j < 1. Equation (1) is equivalent up to diffeomorphisms in R 
to the equation 

/ x du I rrr—^7 Du 

(2) — = /l - jDuj div d t j j pï=jDuj 

which is the parabolic analogue of the maximal surface equation. 
Examples of solutions of (1) are the spacelike hyperboloids of con

stant mean curvature p given by the functions 

S(x,t) = p jxj2 + 2nt. 

These are homothetic solutions with initial data given by the upper light 
cone at 0 which remain asymptotic to the same light cone for all t > 0, 
i.e., do not move at spatial infinity. 

More interestingly, there are also solutions of (1) (or equivalently 
(2)) which move by vertical translation: Let uo : R n —> R be an initial 
spacelike hypersurface with mean curvature satisfying the equation 

(3) H(u0) 

or equivalently 

1 

Vl-jDuoj2 

Du0 

j j p i - j D u j V 

Then a solution u of (2) is given by 

u(x,t) = uo(x) + t. 

In the case n = l , uo(x) = log cosh x is a particular solution of (3). Note 
that the graph of this solution is geodesically incomplete. The mean 
curvature grows exponentially at infinity. In particular, the maximum 
principle does not apply in this case. The translating solution given by 
u(x, t) = log cosh x + t lies initially underneath the homothetic solution 
given by p x2 + It but crosses it at infinity at time t = log 2. 

In Section 2, we establish the existence of solutions of (3) for gen
eral n. The construction of translating solutions of mean curvature 
flow in more general asymptotically flat spacetimes and their possible 
applications in general relativity are the subjects of further investiga
tion. Translating solutions can be regarded as a natural way of foliating 
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spacetimes by almost null like hypersurfaces. Particular examples may 
give insight into the structure of certain spacetimes at null infinity. 

In Section 3, we prove an interior estimate inside 

K R(0) = {XGL n+1, (X,X)<R2g 

for the gradient function and the mean curvature of M t which has the 
form 

sup (v + \H\) < c\ 
M tnK R(0) 

for t < c(n)R2 where c\ depends on n,R and sup MonK2Rt0\(v + \H\). 
We furthermore derive similar bounds for the second fundamental form 
of M t and its covariant derivatives. 

In Section 4, we prove that the initial-boundary value problem cor
responding to (2) on bounded domains of R n has a smooth solution for 
all time which converges for t —> oo to the unique maximal hypersur-
face with the given boundary values. This result applied on increasing 
domains in combination with the interior estimates is then used to es
tablish the following main result of this paper. 

Theorem. For arbitrary spacelike initial data uo : R n —> R ; equa
tion (2) admits a smooth spacelike solution u for allt > 0 which satisfies 
u(-, 0) = uo-

Note that in contrast to even the standard linear heat equation, no 
assumption about the behaviour of the initial data at infinity has to be 
imposed. A corresponding result for mean curvature flow in Euclidean 
space was established in [11]. 

1. Maximum principles and local height bounds 

We list without proof the particular versions of the standard maxi
mum and comparison principles used in this paper. 

1.1. Proposition. Let u\ and u<2 be solutions of (2) on a bounded 
domain O C R n. Suppose that ui(x,0) < u2(x,0) for all x G Q and 
u\ (x,t) < u2 (x, t) for all x G dQ and t > 0. Then u\ (x,t) < u^ (x, t) for 
all x G $1 and t > 0. 

1.2. Proposition. Let M t = graph u(-,t) where u : Q x [0,T) —> R 
solves (2). Suppose the function f : S l x [ 0 , T ) - > R satisfies f > 0 and 
the inequality 
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where A denotes the Laplace-Beltrami operator on M t. If sptf(-,t) is 
compact for every t G [0,T); then 

sup f(-,t) < supf(-,0). 
n n 

If O is bounded, then 

sup f < max{supf(-,0), sup f } . 
S7x[0,T) n dQx[0,T) 

1.3. Proposition. Let Q be a bounded domain in R n and uo : Q —> 
R be spacelike. Let u be a solution of (2) in Q x (0, T) which satisfies 
u(-,0) = uo in Q and u(-,t) = uo on dQ for t > 0. Then for all x G Q 
and t G [0, T] the inequality 

\u(x,t) — uQ{x)\ < p2nt 

holds. 

Proof. Since uo is spacelike the inequality 

u0(y) -\x-y\< u0(x) < u0(y) + \x-y\ 

holds for all x,y G O. For every y G O we use Proposition 1.1 to compare 
the solution u with the homothetic solutions corresponding to the initial 
data uo(y) ± \x — y\ given by 

u0(y) ± p \ x - y \ 2 + 2nt. 

This yields the inequality 

uo(y) — p | x — y|2 + Int < u(x, t) < uo(y) + p \ x — y\2 + 2nt 

for every x G $1. Setting x = y implies the estimate. 

1.4. Proposition. There exists a spacelike solution u : R n —> R of 
the equation 

1 
(3) H(u) 

l-\Du\ 

Proof. Note that for radially symmetric solutions (3) reduces to 
the equation 

u" n — 1 . 
1 TÏY2 + u = l 

1 — (u')z r 
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on the real line which can be solved using ODE methods. 
We outline an alternative approach, which seems to be overkill in the 

case of radially symmetric solutions but has the potential to generalize 
to asymptotically flat spacetimes. It is based on the observation that 
constant mean curvature spacelike hypersurfaces can be used as barriers 
for solutions of (3) on bounded domains. 

For k G N and fixed a > 0 we solve the Dirichlet problems 

H ^ = p j j 9 in B ° ) ' 
l - Du kl 

u k = k — a on ô-k(O) 

on balls in R n. By symmetry, the solutions u k are of course radially 
symmetric having constant boundary values. In general, solvability fol
lows from [1] since the right-hand side of the equation satisfies the mean 
curvature structure conditions required there. Interior estimates for 

v(u k) = / = 
pl-j k j 2 

and higher derivatives of u k independent of k hold on any fixed ball 
B R(0) C R n. This uses again the symmetry of our solution which 
guarantees constant height on dB R(0). In a more general construction, 
this is the step which requires additional work. The crucial observation 
is the inequality 

u k(x) < \jxj2 + n2 - a? 

which holds for all x G B k(Q). This follows by comparing u k with the 

constant mean curvature hypersurfaces given by 

k ^(x) = \jxjl + n 2 — p k2 + n2 + k — a. 

Their mean curvatures satisfy the inequality H(k~£) = 1 < H{u k) in 
B k(0) while k+ = u k on ô-k(O). The comparison principle of [4] then 
yields that u k < k ^ in - k ( 0 ) . 

This argument provides a height bound for u k over fixed balls B R(O) 
independent of k. In view of the uniform derivative estimates we can 
therefore let k —> oo to obtain the result. 

2. Evo lut ion equat ions 

Most of the evolution equations in this section were derived in [9]. 
They will form the basis for the a priori estimates of the next section. 
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We first recall that in view of the geometric identity A X = Hu for the 
position vector of the hypersurface M t, equation (1) is equivalent to the 
nonlinear heat equation 

Here, A denotes the Laplace-Beltrami operator on M t. 

2.1 . Propos i t ion . The Lorentz distance function z = hX,Xi 
satisfies the evolution equation 

— - A ) (z + 2nt) = 0. 
dt 

Proof. Using (1), we calculate 

while (see [4]) 

Az = 2(n + HhX,ui). 

The length of the tangential projections of vectors onto spacelike hy-

persurfaces M = g raphu with normal v is controlled by the gradient 
function 

v = -hv,e n+1i = , . 
p 1 — jDujZ 

We will frequently use the inequalities j r x n+ i j < v and j r r j < v (see 
[4]), where r denotes the tangential gradient on M t, and r = jxj is 
Euclidean distance on R n. 

2.2. Propos i t ion . The Euclidean distance function r = jxj on R n 
satisfies 

A r < c(n)v. 
dt - y ' 

Proof. Since r = z + x ̂ +1 for X = (x,x n+i), from (4) and 
Proposition 2.1 we obtain that 

— - A ) r 2 = -In - 2 j r x n + i j 2 . 
dt + 



488 k l a u s e c k e r 

In view of the inequality j r x n+ i j < v this implies the result. 

2.3. Propos i t ion . The gradient function satisfies the evolution 
equation 

— - A | v = -jAj2v. 
dt 

Here, jAj2 denotes the square of the norm of the second fundamental 
form A = (h ij) on M t, which is defined by 

h ij = (i,D jU) 

for a local orthonormal frame T I , . . . , Tn ofM t. 

For general spacelike hypersurfaces we recall the following inequality 

which is the key to the basic gradient type estimates (see [1], [2], [6], 

[14])-

2.4. L e m m a . On any spacelike hypersurface M in L n + 1 we have 
the inequality 

jAj2v2>(I + -)jrvj2-H2v2. 
n 

In combination with Proposition 2.3 this implies 

2.5. Corollary. The gradient function satisfies the inequality 

d * 2 1 2 -22 — - A v 2 < - 4 ( 1 + — ) j r v j + 2H v . 
dt 2n 

2.6. Propos i t ion . The second fundamental form and its deriva
tives satisfy 

d_ 

~dt 
A H = HjAj2, 

(ii) d - A j A j 2 <-2jrAj2-jAj4 + c(n) 
dt 

(iii) — - A j r m | 2 < - 2 j r m + 1 Aj 2 + c m(l + j r " A j 2 

dt 

where c m = c m(m,n,v,m=ijr j 1Aj). 

For later use we note that by combining Proposition 2.6 (i) with the 
inequality jAj2 > -H2 one obtains the following. 
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2.7. Corollary. The square of the mean curvature satisfies 

(d - A H < - - H 4 - 2\VH\2. 
dt n 

3. Interior estimates 

The proof of the existence theorem in the last section is based on the 
following interior estimate which simultaneously controls the gradient 
function and the mean curvature of M t inside the set 

K R(0) = {XG L n+1, z = (X,X) < R2} . 

The estimates will also be applied to solutions of (1) with boundary. 
However, we will always assume that the hypersurfaces M t have no 
boundary inside the sets in which we are estimating. 

For related estimates in the elliptic case we refer to [2], [3], [6] and 
[16]. 

3.1. Theorem. Suppose that M t n K R(0) is compact in L n+ 1 for 

t G [0, Tn-]. Let A > sup MofiK R/0\ H
2. There are constants p, q > 0 which 

only depend on n such that for all t G [0, |n-] 

We present the proof in two steps contained in the following lem
mata. 

3.2. Lemma. For sufficiently large q = q(n), the quantity g = 

v2 (A-H2V/q satisfies the inequality 

( d - A ) g , - ( 1 + g + c g , 

where 8 = 8{n) > 0 and c = c(n, q, A). 
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Proof. Let g = v2h(H2), where we will substitute h(y) = (A—y)-1 '9 

later. Denoting derivatives of h by ' and using Corollaries 2.5 and 2.7 
as well as h > 0 and h' > 0, we calculate 

d » 1 2 22 2 - 4 / 2 — - A g < - 4(1 + —)jVvjzh + 2 H v h - - H h v 
(6) dt - v 2ny n 

- h"jVH2j2v2 - 2h(Vv2
J VH2) . 

By Young's inequality ab < ea2 + 4-b2 with e = -̂ , we estimate 

1 2 ( ^ 2 
j2h'(Vv2,VH2)j = j8h'vHCVv,VH)j < -jVvj2h + l§n ^ ^ v2H2jVHj 

n h 
which yields 

d- - A g < - 4(1 + -^)jVvj2h + 2H2v2h - -H4hv2 

dt 4n n 
( 7 ) / (h')2 

+ 4[An[-h--h"v2H2jWHj2. 

^From the inequality ja + bj2 < (1 + <5)jaj2 + (1 + I/o)jbj2 for ô > 0 we 
derive 

2 / j Vgj = j2hvVv + 2vzh'HVHjz 

< 4(1 + 8)v2jVvj2h2 + 4 ( 1 + - v\h)2H2jVHj2. 

This implies 

(8) (1+(J)LYgj < 4(l+^)2jVvj2h+4(l+^) f 1 + ^ v2ih H2jVH j2. 
g ô h 

Choosing ô = S(n) > 0 such that (1 + S)2 = 1 + -^ and substituting (8) 
into (7) we arrive at 

d.-A)g<-(1 + Ö)^ + 2H2v2h - -H4h'v2 

dt g n 

+ Ac(n)h--h"v2H2jVHj2. 
h 

Again using Young's inequality, we estimate 

2 

2Hzvzh < -H ^ h'vz + -—v 2 

n 2 h 
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which implies 

(d . \ , „ JVgI2 nh , / , Jh)2 

The function given by h(y) = (A — y)~l'q satisfies 

h"v2H2\VH\2. 

— h y ) = 
h y ) ^ 

c n h y - - h ( y ) = - (c(n) - (q + 1))(A - y ) " " 2 < 0 

for sufficiently large q depending on n. Moreover, since 0 < h < qk we 
conclude 

d _ A ) g < _ ( 1 + flJM + { n qA)g. 

3.3. Lemma. Let 77 = (R2 — z — 2nt)p. Then for sufficiently large 
p depending only on ö = 8(n) the inequality 

— - A gr\ < cgri 

holds where c depends on n and A. 

Proof. Abbreviating r\ = r](r), denoting derivatives of r\ by ' and 
using the previous lemma we calculate that 

dt - A J gr, < - (f + Sy^-Ti + cgr, + gr{ (d - A J (z + 2nt) 

-gri"\Vz\2-2{Vg,Vri). 

Here c depends on n, q and A. We estimate 

|2(vg,v,)|<(i+Ä+ 1 W! 
g 1 + 0 77 

and use the identities |Vr?|2 = (ry')2|Vz|2 and (d - A) (z + 2nt) = 0 
(see Proposition 2.1) to obtain 

A gr? < cgr/ + - — rj" \Vz\2. 
dt - l + 8 7] 

For i](r) = (R2 — r)p we have 

1 (r /)2
 r„ = (_p_ _ p p _1){R2_z_ 2nt p-2 < 0 

1 + 8 ri l + 8 
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for sufficiently large p depending on S. 

Proof of Theorem 3.1. Since by assumpt ion the hyp ersurfaces 
M t are compact inside the suppor t of 77, we can apply the m a x i m u m 
principle of Propos i t ion 1.2 to f = e~ct gr] to conclude 

sup gr\ < e ct sup gr\ 
M t M0 

and therefore the desired estimate. 

In the next section, the main estimate of Theorem 3.1 will be applied 
in balls in R n. Let C R denote the cylinder B R X R where B R = {x G 
R n, jxj < R}. Since C R C K R , the theorem applied with 2R instead of 
R immediately yields 

3.4. Corollary. For t G [0, c(n)R2] 

sup 
M tC\C R 

, the estimate 

[v + jHj)<cl 

(v + jHj holds where c\ depends on n,R and sup MonK2R\ 

3.5. R e m a r k . Having obta ined es t imates for v we are now in 
a posi t ion to use the Eucl idean dis tance function r = jxj for further 
localization a rguments . In view of Propos i t ion 2.2 and the inequali ty 
jVrj < v, Corollary 3.4 implies t h a t for t < c{n)R? 

( d_ 
dt 

and jVrj < c\ in C R . 

3.6. P r o p o s i t i o n . Suppose that sup M tnC R v < c\ for t G [0,T]. 
Then the curvatures of M t for t G [0, T] can be estimated by 

2 2 r 2 ) 2 < c 2 5 

A < c(n,ci) 

supjAjz{Rz 

M t 

where c2 = c2{n, R, c i , sup Mo nC R 

Proof. Abbrevia t ing 77 ( r 2 ) 
Propos i t ion 2.6 (ii), 

d_ 
~dt 

jAj2). 

= (R2 r2)2, we calculate, in view of 

A jAj2ri < - 2jVAj2ri - jAj'n + c{n)rj 

+ jAj2jV'j 
d 

~dt ~ 

jAjV'jVr2j2 + 2r?'(VjAj2,Vr2) 
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Estimating 

j2r/(r jAj2 , rr2) j < 2jrAj2r] + 8 ^ j A j 2 j r r 2 j 2 

'1 

we obtain 

d 2 4 2 / d - ^ r — - A jAjri < - jAjri + c(n)ri + j A j h 
dt 

+ U^_AjAj2jrr2j2. 

We now substitute r? into the last term, estimate jr/j < R2 and use 
Remark 3.5 to arrive at 

— - A ) jAj2r] < -jAjAr} + c(n)r} + c(n,ci)R2jAj2. 
dt J 

At a point where jAj2i] first reaches a maximum larger than sup Mo jAj2?7, 
in view of the inequality 77 < R4 we therefore obtain that 

jAj^ < c(n)R4 + c(n, ci)R2jAj2. 

Multiplying by r\ yields 

(jAj2r])2 < c{n)R8 + c(n,ci)R2jAj2r], 

and hence we conclude from Young's inequality that 

jAj T] < c(n,R,ci, sup jAj ) 
M0nC R 

at the maximum point. This implies for t G [0, T] 

supjAj T] < c(n,R,ci, sup jAj ). 
M t M 0 n C Ä 

3.7. Proposition. Suppose sup M tnC R v < c\ and sup M tnC R 
c2 for t G [0, T]. Then for every m > 1 and t G [0, T] we have the 
estimate 

sup j r m j 2 < c m, 
M t n C R 

2 

where c m = c m(n, m, R, ci, c2,maxi<j<m sup MonC R jVj Aj2). 
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Proof. We proceed exactly as in the corresponding case of mean 
curvature flow in Euclidean space (see [11, Ch.3], [8]). Utilizing the 
bounds on v and jAj2 we show that for sufficiently large K > 0 the 
function f = j V A ^ K + jAjl) satisfies an inequality of the type 

( d - A ) f < - f + C 

where 8 > 0. By Remark 3.5, the quantities jVrj and j (d — A ) r 2 j 
are controlled in C R. We can therefore estimate f(R2 — r 2 ) d as in [11]. 
Bounds for the higher derivatives are established inductively. 

4. L o n g t i m e ex i s t ence t h e o r e m s 

In this section, we will first consider the initial-boundary value prob
lem associated with equation (2) for bounded domains il C R n. We will 
then construct a global solution of (2) for arbitrary spacelike initial data 
uo : R n —> R- This is achieved by solving initial -boundary value prob
lems on increasing domains, and then using the interior estimates of the 
previous section to extract a subsequence of solutions which converges 
smoothly on compact subsets. 

4 .1 . T h e o r e m . Let $1 C R n be a bounded domain with smooth 

boundary. Let uo : Ù —> R be smooth and strictly spacelike in the sense 

that sup ̂  jDuoj < 1. Then the equation 

, s du p D j„ / Du \ 
(2) — = / 1 - u 2 d i v , 

dt \pl-jDuj2j 
has a smooth solution in il for all t > 0, which satisfies u(-, 0) = uo inQ 

and u(-,t) = uo on dQ. Moreover, as t —>• oo ; u(-,t) converges smoothly 

to the solution of the maximal surface equation with boundary data u$. 

Proof. Proposition 1.2 implies that any solution of (2) on a time 

interval [0, T] satisfies 

sup juj = sup juQj. 
fìx[0,T] Ù 

In view of Proposition 2.3 and Proposition 1.2 we also have 

sup v = max{supv(0), sup v}. 
fìx[0,T] n dux[0,T] 
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Estimates on sup9 s ì xroTi v are derived as in [4]. Note that again in 
view of the maximum principle the radially symmetric barriers used 
in [4, Proposition 3.1] will work in the parabolic setting as well. Being 
maximal hypersurfaces these barriers are stationary solutions of (2), and 
therefore by Proposition 1.1 the solution u will remain between them if 
it does so initially. We therefore obtain for arbitrary T > 0 

sup (\u\ +v) < co, 
Ux[0,T] 

where co depends only on the initial data. This implies that equation 
(2) is uniformly parabolic. Estimates for higher derivatives then follow 
from standard theory for uniformly parabolic equations. The estimates 
ensure the existence of a unique smooth solution for all t > 0 (see [15]). 
To prove the convergence to the unique (see [4]) solution of the maximal 
surface equation we proceed similarly as in [13]. From (2) we calculate 
for v~x = p l — \Du\2 that 

— ^l-\Du\2 = -vD i uD iiv^H) 
dt 

and therefore 

d_ 

~dt 
[ p l - \ D u \ 2 = - vD i uD i{v-lH) 
n n 

DAvDu)Hv-1 = H ^ v 1 

n 

where we have integrated by parts in the second last step using that 
v~lH = ^ vanishes on dQ for t > 0. Therefore, 

OO 

Z Z H2v~l < Z pl-\Du0\
2<\n\. 

o n n 

Since v < co on Ö x [0, oo) we obtain 

H2<c(c0i\n\). 
o n 

Moreover, by the global estimates for higher devivatives and Proposition 
2.6 (i) one verifies that 

s u p | | Z H 2 | < C 7 . 
[o,oo) dt n 
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This gives 

lim H2 = 0. 
t—>oo n 

An interpolation argument using the global estimates then implies that 

sup ̂  jHj —> 0 uniformly as t —> oo. 

4.2 . T h e o r e m . Let uo : R n —> R be spacelike and smooth. Then 
the equation 

(2) u = yr^jDujdiv Du 
Ôt p l - j D u j 2 

has a smooth solution for all t > 0 with initial data uo-

Proof. Suppose without loss of generality that uo(0) = 0. For 
k G N , we let u k be the smooth solution of the initial-boundary value 
problem 

u = p l - j D u j 2 d i v ( Du k ) in Bfc(0) x (0, oo), 
dt k ^pi-jDu k jv 

ufc ( - , 0 )=u 0 in Bfc(0), 

u k(-,t)=u0 on 9 B ( 0 ) x (0, oo). 

Fix R > 0. Since uo is spacelike and uo(0) = 0, an easy argument using 
the mean value theorem (see [6] or [16]) shows that 

jxj — u0(x) —> oo 

as jxj —> oo. Hence for sufficiently large k depending on R we have that 
jxj2 — u^{x) > 16R2 for jxj = k. For M t k = g raphu k(-,t), this implies 
that dM k n K4R{0) = 0 for all t > 0. Also, M t k n K4R(0) is compact for 
t > 0 as these sets are contained in the cylinders 1k(0) x R. We can 
therefore apply the interior estimates of Theorem 3.1 or Corollary 3.4 
to the solution (M t k) inside K ^ ̂ O) to obtain for t < c{n)R2 

sup (v + jHj) < c\. 
M knC2R(o) 

Propositions 3.6 and 3.7 with T = c{n)R2 imply that 

sup j r m Aj2 < c 
M t knC R(o) 
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for t G [0,c(n)R2] and for all m > 0. These estimates translate into 
uniform bounds (independent of k) on B R(0) x [0, c(n)R2] for v{u k) and 
derivatives of all orders of u k • The height estimate of Proposition 1.3 
furthermore yields that 

sup ju k j <c(n,R, sup juoj). 
B R(0)x[0,c(n)R2] B R(0) 

Since R > 0 is arbitrary, we can select a subsequence of (u k) which 

converges smoothly on compact subsets of R n x [0, oo) to a solution of 

(2) with initial data uo-
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