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INTERIOR GRADIENT ESTIMATES FOR SURFACES
z=f(x,y) WITH PRESCRIBED MEAN CURVATURE

ERHARD HEINZ

Introduction

One of the main steps in solving the Dirichlet problem for a quasilinear el-
liptic equation with continuous boundary data (see [13] for a complete discus-
sion) consists in deriving interior estimates for the gradient of the solutions in
terms of their maximum bound. While such estimates are available for most
uniformly elliptic equations (see [10] for further details), there are only limited
classes of nonuniformly elliptic equations for which such conclusions are known.
The first significant results in this field are due to Finn ([2] and [3]) who estab-
lished such estimates for equations of minimal surface type (see [13, § 24] for
further work on this subject). Very recently Serrin [14] succeeded in proving
interior gradient estimates for the constant mean curvature equation in two
variables:

(1) (1 + ¢)r — 2pgs + (1 + pt = 2H(1 + p* + ¢°)" .

Serrin’s method, which is entirely nonparametric, depends on a delicate con-
struction of certain comparison functions associated with equation (1).

The question then naturally arises as to whether similar results can be estab-
lished in the case where the mean curvature of the surface z = f(x, y) is a given
function H = H(x,y) in a domain D C R®. In the present paper we shall answer
that question in the affirmative, provided that H(x, y) satisfies a Lipschitz con-
dition (Theorems 1 and 2). In contrast to Serrin’s method our approach is
entirely parametric. Our methods are related to those of an earlier paper [7] in
which we derived estimates for the jacobian of certain mappings w — z(w)
relevant for the discussion of the Weyl embedding problem, and also gave ref-
erences to previous work on this subject. So far as the nature of our estimates
is concerned, we have presented them here in an indirect form thus rendering
our arguments more transparent to the reader. Using the results of [6] and [8],
it is even possible to obtain explicit bounds for the gradient of the surface
z = f(x,y) at a point P € D in terms of the area of the surface, the Lipschitz
constant of H, and the distance of P from the boundary of D; the author in-
tends to take up these matters elsewhere.
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1. Preliminary lemmas

Throughout this paper we frequently use the complex notation w = u + iv,
z = x + iy, thus designating functions of (u, v), (x, y) by f(w) and g(z), respec-
tively, without implying holomorphy. We set
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Moreover, let J,(w) denote the jacobian of the mapping w — z(w). In this sec-
tion we are primarily concerned with estimating the quantity |J,(w)| for a class
of mappings satisfying certain nonlinear elliptic systems, and our main result
is Lemma 3 which forms the basis of the subsequent proof of the interior gra-
dient estimates for equation (1) to be carried out in § 2. We begin with the
following lemma.

Lemma 1. Let D be a domain in R?, and g(w) = (g,(w), - - -, gn(W)) € R™
a vector function of class C¥(D) satisfying in D the differential inequality

(1.1) 8wiz| < M(gu| + 18D
where M is a fixed positive constant. Furthermore, let
(1.2) g8wy) = g,(wy) =0,
where w, is a point in D, and let
gP(w) = (gPW), - - -, gPW)eR™  (p=1,2,--.)

be a sequence of vector functions of class CY(D) such that the relations

1.3) gPw) —gw)  (p— =),
(1.3) grw) — g,w)  (p— )

hold uniformly in a neighborhood of w,. Then either g(w) vanishes identically
or there exist a point w, € D and positive integers k, p with 1 < k < m such
that g&(w) = 0.

Proof. Assume that g does not vanish identically. Then according to
Hartman-Wintner ([4], especially pp. 455-458) we have an asymptotic expan-
sion of the form

(1.4 8w = aw — w)t + o((lw — wy[) W —wp) ,

where a = (a, - - -, a,) # 0, and [ is a positive integer. Let a; # 0. Then (1.4)
implies that the index of the mapping w — g, is positive at w,. Consequently,
for sufficiently large p, the function g% has a zero in a neighborhood of w,,
which proves the lemma.
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We shall now specify the class of mappings w — z(w) to be studied in this
paper.

Definition 1. Let M,, M, be positive constants, and D a domain in R?.
Then I'(M,, M,, D) is the class of mappings w — z(w) = x(u, v) + iy(u, v) with
the following properties:

(a) The functions x(u, v) and y(u, v) belong to C*(D) and satisfy in D the
quasilinear elliptic system

Xpw = 16X, )@Yy — oV5) »

(1.5) .
Yuw = ib(x, Y)(@x, — ¢x5) ,

where ¢ = ¢(u, v) belongs to C°(D) and is subject to the restriction
(1.6) o+ x4+, =0.

(b) The coefficients a(x,y) and b(x,y) occurring in (1.5) are real-valued
for |z] < + oo, and we have the estimates

(1.7 la@)| + [b@| <M, (2] < 4+ ),
(1.8) |a@) — a(@")| + |b(Z) — b(Z")| < M, |2 — 2| (2],]2"] < + ).

Lemma 2. Let z(w) e I'(My, M,, D), and let w — z,(w) = x,(w) + iy,(w)
(p =1,2,.--) be a sequence of mappings of class C'(D) with nonvanishing
jacobians such that the limit relations

(1.9) z,(w) > zw)  (p— ),

Zpu = 2y >

1.9) (P — ),

Zpy — Z,

hold uniformly in every compact subset of D. Then either J ,(w) vanishes iden-
tically, or we have J,(w) = 0 for we D.

Proof. Suppose that we have J(w,) = O at a point w, e D. Without loss of
generality we may assume that z(w,) = 0. If both x,, and y,, vanish for w = w,,
then on account of (1.5) the vector function g(w) = (x(w), y(w)) satisfies the
hypotheses of Lemma 1. Consequently, either g(w) vanishes identically or there
exists an integer p such that one of the functions x,(w), y,(w) has a vanishing
gradient at some point w,eD. Since by assumption J, (w,) does not vanish, the
second case cannot occur, and we thus have g(w) = 0; hence J(w) = 0. It
therefore remains to consider the case where x,,(w,) and y,(w,) do not vanish
simultaneously. Obviously we may assume that y,,(w,)#0. Furthermore, on
replacing ¢, a, b by —¢, —a, —b if necessary, we can achieve that ‘
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1.10) m- 2™ > ¢,
}’w(Wo

X, (Wy)
y w(wo)
C? in the interval |y| < 4 satisfying the conditions

Now observe that is real, and let f(y) be a real-valued function of class

1.11 =0, f0) = XM
(1.11) f(0) f(0) )

Choose p > 0 such that for |[w — w,| < p the inequality |z(w)| < % 6 holds,
and consider the function

(1.12) Ew) = x(w) — fOW) (W —w| < p).

In virture of (1.11) both ¢ and &, vanish for w = w,. We proceed to show
that for a suitable choice of f the function & satisfies a differential inequality of
the form

(1.13) 1§uml < M(Eu] + 16D (w —wi| < < ),

where M is a positive constant (in this regard see also [11], especially p. 691).
To this end we first observe that on account of (1.6) and (1.10) we have

(1.14) lew) — i(1 + F())*Yu| < ko180l

for |w — wy| < p, < p, where x, is a positive constant. Furthermore, on differ-
entiating (1.12) and using (1.5) we obtain the equation

Ew = ialx,y) — b(x, VI (@Y — ©Vs)
— 1" |yt — i OB, V(@6 — 0&z) -

Now (1.14) and (1.15) imply

(1.15)

Iswﬁl < ’51' &w'

(1.16)
+ [2(a(x, ) — b(x, M)f GIA + FOIN — F'O 1yl

for |w — w,| < p,, where , is a positive constant. If we choose f(y) to be a
solution of the ordinary differential equation

1.17) f'0) = 2(a(f(y), »)- — b(FG), NFGIA + F))V*

subject. to the initialr conditions (1.11), and take (1.8) into account, then the
desired inequality (1.13) follows directly. To complete the proof, let
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(1.18) &,(w) = x,(w) — fy,(w)) (w —w| < p,p>p) s

where p, is taken sufﬁciently' large. Since by hypothesis the jacobians J.,(W)
do not vanish in D, we have &,,, # 0 for |[w — w,| < p, and p > p,. Moreover,
the relations

(1.19) E W) - EW) (P ),
(1.19) P

hold uniformly in the disk |[w — w,| < p,. Applying Lemma 1, we immediately
infer J(w) = 0 for |w — w,| < p,. Hence J(w) = O proving the lemma.

Proceeding now as in [7, § 2] we can derive global estimates for the jacobians
by imposing further normalization conditions on the mappings. In what follows
B denotes the unit disk [w] < 1.

Definition 2. Let M, M, N be positive parameters. Then 2(M,, M,, N) is
the subset of functions z(w) e I'(M,, M,, B) with the following properties:

a) z = z(w) maps B topologically onto itself such that z(0) = 0.

b) We have J,(w) = 0 in B and ’

(1.20) D) = f f (zu]" + |2,P) dudv < N .

B

Lemma 3. Let z(w) € 2(M,, M,, N). Then for |w| < r < 1 we have esti-
mates of the form

(1.21) ZuF + |2F < MM N,P) < + oo,
(1.22) [7.00)] > t(My, M,,N,7) >0 .

Proof. (I) First of all, on account of (1.5)-(1.7) the function z(w) satis-
fies the differential inequality

(1.23) |4z] < 2M (|2, + [2,) -

Moreover, according to classical results (see for instance [6, Lemma 16]) the
conditions (a) and (b) of Definition 2 imply that the set Q(M,, M,,N) is
equicontinuous in B. Hence inequality (1.21) follows directly by applying
Lemma 5 of [7]. An elementary argument then shows that the functions z,, z,,
and ¢ (z € 2(M,, M,, N)) satisfy a uniform Holder condition with any exponent
less than 1/2 in every closed disk [w| < r < 1. Consequently the set £2(M,, M,, N)
is precompact in C*(T) for any compact subset 7' C B.

(II) In order to estimate the jacobian we observe that on account of the
equicontinuity of 2(M,, M,,N) we can determine a fixed positive quantity
R < 1 such that
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(1.24) f f 17,(w)| dudv > ’;_2

lwI<RE

holds for all mappings w — z(w) belonging to 2(M,, M,, N). Now assume that
(1.22) is false. Then from the facts hitherto established it follows that there
exists a sequence of mappings w — z,(w) (k = 1,2, - . .) of class 2(M,, M,, N)
such that the relations

(1.25) z;(w) — z(w) (k- ),
(1.26) S S o
Ly — 3y

hold uniformly on every compact subset of B, where the limit mapping w — z(w)
belongs to I'(M,, M,, B) and has a vanishing jacobian at some point w* e B.
According to Lemma 2 this entails J,(w) = 0, hence J, (W) — 0 (k — co) uni-
formly in every closed disk |w| < r < 1, contradicting (1.24). This completes
the proof of our lemma.

2. The main results

In this section we study the partial differential equation (1), where H = H(x,y)
is a given function in the disk |z — z)| < R< + oo satisfying a Lipschitz condi-
tion

2.1 |[HZ) — HZ)| < M|z — 77|.

If we note that equation (1) can also be written in the divergence form

22 2@ = %(ﬁ) + %(ﬁ) = 2H(x,y) ,

then some elementary conclusions can be drawn at once. First of all, on inte-
grating (2.2) over the disk |z — z)| < R’ < R and passing to the limit (R’ — R)
we obtain (see [5, p. 452])

2.3) ‘ f f H(x,y)dxdy| < =R ,
|z2—=z0l <R
which implies, in virtue of (2.1),
2.9 |H(x,y)| < 1/R + 2RM  (|z — z| < R) .

Suppose now that in addition we also have an upper bound for the modulus of
1, say,
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2.5 fx, N <r (z—2z|<R).

Then on multiplying (2.2) by f and integrating by parts we deduce an inequality
of the form (see [2, p. 198] for the case H = 0)

2.6) [ [ vT+TriTasdy < o® M) <+ .

lz=2z9I<R

Obviously we can extend H(x,y) to the whole R? such that (2.1) and (2.4)
hold everywhere in R®.
We are now prepared to establish the principal results of this paper.
Theorem 1. Let f = f(x,y) be a solution of the equation ¥(f) = 2H in the
disk |z — z,| < R, which belongs to C*, where H = H(x, y) satisfies the Lipschitz
condition (2.1). Furthermore, let

@.7 [ [ vTFTriandy <4< +oo.

12~z I<R

Then we have an estimate of the form
(2'8) lVf(xO,yo)ISQ(MyA:R) < + oo .

Proof. 1t evidently suffices to prove our assertion for the case z, = 0 and
R = 2. Then according to a well-known differentiability theorem for elliptic
equations due to E. Hopf [9] (see also [1], especially p. 344) the function f
belongs to C***(0 < a < 1) for |z] < R’ < 2. Consequently, in virtue of the
uniformization theorem, there exists a homeomorphic map w — z(w) = x(w)
+ iy(w) of B onto itself, which belongs to C*(B) and has a positive jacobian,
such that the equation

2.9 ds’ = dx* + dy* + df* = p|dw}

holds in B. The mapping can be normalized such that z(0) = O.
Now consider the vector function

(2.10) X(w) = (x(w), yw), f(x(w), yW))) ,
where w e B. An elementary computation yields the differential equations

@.11) X5 = —iHEQX, A X3) ,
(2.12) X, =0

for w e B, where A\ denotes the cross product of two vectors in R®. From (2.12)
we infer



156 ERHARD HEINZ

, e XZ + X2
2.13 1 2 z=2(w) — e T )
( ) . {*/ + 7 P eczam 27.(w)
(2.14) 1Zuf + 12, < X% + X2 < 2(z,F + |2 -

On integrating (2.13) over B and using (2.7) and (2.14), we obtain
(2.15) ' D(z) <24 .

Putting now a(x,y) = —H(x,y), b(x,y) = H(x,y) and ¢ = f, it is obvious
from (2.11)—(2.12) that z(w) is a solution of the system (1.5)-(1.6). The esti-
mates (2.1), (2.4) and (2.15) then show that the mapping w — z(w) belongs to
21 + 8M,2M,2A4). Now combining (2.13) and (2.14) and using Lemma 3,
we obtain

1740, 0)] < {'i%ﬂ}

A1 + 8M,24,0)
< 24,0 _ 9., 4) < ,
«(1 + 8M,2M, 24, 0) (M, A) < o0

(2.16)

which implies the conclusion of our theorem.

Applying a result of Nirenberg [12, Theorem IV]) and the Schauder esti-
mates, we easily deduce from Theorem 1 the following proposition:

Theorem 2. Let & = % (M, 1, D) be the set of solutions of the differential
equation ¥ (f) = 2H in a domain D C R?, where H and f satisfy the inequalities
(2.1) and (2.5) in D, respectively. Then % is precompact in CXT) for any
compact subset T C D.

Added in proof. After this paper had been submitted to this Journal for
publication, there appeared the joint paper by O.A. Ladyzhenskaya & N.N.
Ural’tseva, Local estimates for the gradients of solutions of nonuniformly ellip-
tic and parabolic equations, Comm. Pure Appl. Math. 23 (1970) 677-703, in
which the authors used completely different methods to establish interior gradient
estimates for a hypersurface z = f(x,, - - -, x,), » > 2, in terms of the gradient
bound of its mean curvature and the maximum norm of f.
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