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Interior Methods for Mathematical Programs with

Complementarity Constraints∗

Sven Leyffer†, Gabriel López-Calva‡and Jorge Nocedal§

July 14, 2005

Abstract

This paper studies theoretical and practical properties of interior-penalty methods for math-
ematical programs with complementarity constraints. A framework for implementing these
methods is presented, and the need for adaptive penalty update strategies is motivated with
examples. The algorithm is shown to be globally convergent to strongly stationary points, un-
der standard assumptions. These results are then extended to an interior-relaxation approach.
Superlinear convergence to strongly stationary points is also established. Two strategies for
updating the penalty parameter are proposed, and their efficiency and robustness are studied
on an extensive collection of test problems.

Keywords: MPEC, MPCC, nonlinear programming, interior-point methods, exact penalty,
equilibrium constraints, complementarity constraints.
AMS-MSC2000: 90C30, 90C33, 90C51, 49M37, 65K10.

1 Introduction

In this paper we study the numerical solution of mathematical programs with complementarity
constraints (MPCCs) of the form

minimize f(x) (1.1a)

subject to ci(x) = 0, i ∈ E (1.1b)

ci(x) ≥ 0, i ∈ I (1.1c)

0 ≤ x1 ⊥ x2 ≥ 0. (1.1d)

The variables have been divided as x = (x0, x1, x2), with x0 ∈ IRn, x1, x2 ∈ IRp. The complemen-
tarity condition (1.1d) stands for

x1 ≥ 0, x2 ≥ 0, and either x1i = 0 or x2i = 0, for i = 1, . . . , p, (1.2)

where x1i, x2i are the ith components of vectors x1 and x2, respectively.

Complementarity (1.2) represents a logical condition (a disjunction) and must be expressed in
analytic form if we wish to solve the MPCC using nonlinear programming methods. A popular
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reformulation of the MPCC is

minimize f(x) (1.3a)

subject to ci(x) = 0, i ∈ E (1.3b)

ci(x) ≥ 0, i ∈ I (1.3c)

x1 ≥ 0, x2 ≥ 0 (1.3d)

x1ix2i ≤ 0 i = 1, . . . , p. (1.3e)

This formulation preserves the solution set of the MPCC but is not totally adequate because it vio-
lates the Mangasarian-Fromowitz constraint qualification (MFCQ) at any feasible point. This lack
of regularity can create problems when applying classical nonlinear programming algorithms. For
example, sequential quadratic programming (SQP) methods can give rise to inconsistent constraint
linearizations. Interior methods exhibit inefficiencies caused by the conflicting goals of enforcing
complementarity while keeping the variables x1, x2 away from their bounds.

Modern nonlinear programming algorithms include, however, regularization techniques and
other safeguards to deal with degeneracy, and one cannot rule out the possibility that they can
cope with the difficulties created by the formulation (1.3) without having to exploit the special
structure of MPCCs. If this level of robustness could be attained (and this is a laudable goal) there
might be no need to develop algorithms specifically for MPCCs.

Numerical experiments by Fletcher and Leyffer [11] suggest that this goal is almost achieved
by modern active-set SQP methods. In [11], filterSQP [10] was used to solve the problems in
the MacMPEC collection [18], which contains over a hundred MPCCs, and fast convergence was
almost always observed. The reason for this practical success is that, even though the formulation
(1.3) fails to satisfy MFCQ, it is locally equivalent to a nonlinear program that satisfies MFCQ,
and a robust SQP solver is able to identify the right set of active constraints in the well-behaved
program and converge to a solution. Failures, however, are still possible for the SQP approach.
Fletcher et al. [12] give several examples that illustrate ways in which an SQP method may fail to
converge.

Interior methods are less successful when applied directly to the nonlinear programming for-
mulation (1.3). Fletcher and Leyffer [11] tested loqo [25] and knitro [4] and observed that they
were slower and less reliable than the SQP solvers filterSQP and snopt [14] (all codes as of
2002). This result contrasts starkly with the experience in nonlinear programming, where interior
methods compete well with SQP methods. These studies have stimulated considerable interest
in developing interior methods for MPCCs that guarantee both global convergence and efficient
practical performance. The approaches can be broadly grouped into two categories.

The first category comprises relaxation approaches, where (1.3) is replaced by a family of
problems in which (1.3e) is changed to

x1ix2i ≤ θ, i = 1, ..., p, (1.4)

and the relaxation parameter θ > 0 is driven to zero. This type of approach has been studied from
a theoretical perspective by Scholtes [24] and Ralph and Wright [22]. Interior methods based on
the relaxation (1.4) have been proposed by Liu and Sun [19] and Raghunathan and Biegler [21].
In both studies, the parameter θ is proportional to the barrier parameter µ and is updated only
at the end of each barrier problem. Raghunathan and Biegler focus on local analysis and report
very good numerical results on the MacMPEC collection. Liu and Sun analyze global convergence
of their algorithm and report limited numerical results. Numerical difficulties may arise when the
relaxation parameter gets small, since the interior of the regularized problem shrinks toward the
empty set.
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DeMiguel et al. [7] address this problem by proposing a different relaxation scheme where, in
addition to (1.4), the nonnegativity bounds on the variables are relaxed to

x1i ≥ −δ, x2i ≥ −δ. (1.5)

Under fairly general assumptions, their algorithm drives either θ or δ, but not both, to zero. This
provides the resulting family of problems with a strict interior, even when the appropriate relax-
ation parameters are approaching zero, which is a practical advantage over the previous relaxation
approach. The drawback is that the algorithm has to correctly identify the parameters that must
be driven to zero, a requirement that can be difficult to meet in some cases.

The second category involves a regularization technique based on an exact-penalty reformulation
of the MPCC. Here, (1.3e) is moved to the objective function in the form of an ℓ1-penalty term, so
that the objective becomes

f(x) + πxT
1 x2, (1.6)

where π > 0 is a penalty parameter. If π is chosen large enough, the solution of the MPCC can
be recast as the minimization of a single penalty function. The appropriate value of π is, however,
unknown in advance and must be estimated during the course of the minimization.

This approach was first studied by Anitescu [1] in the context of active-set SQP methods,
although it had been used before to solve engineering problems (see, e.g., [9]). It has been adopted
as a heuristic to solve MPCCs with interior methods in loqo by Benson et al. [3], who present
very good numerical results on the MacMPEC set. A more general class of exact penalty functions
was analyzed by Hu and Ralph [17], who derive global convergence results for a sequence of penalty
problems that are solved exactly. Anitescu [2] derives similar global results in the context of inexact
subproblem solves.

In this paper, we focus on the penalization approach, because we view it as a general tool
for handling degenerate nonlinear programs. Our goal is to study global and local convergence
properties of interior-penalty methods for MPCCs and to propose efficient and robust practical
implementations.

In Section 2 we present the interior-penalty framework; some examples motivate the need for
proper updating strategies for the penalty parameter. Section 3 shows that the proposed interior-
penalty method converges globally to strongly stationary points, under standard assumptions.
These results are then extended to the interior-relaxation approaches considered in [19] and [21].
In Section 4 we show that, near a solution that satisfies some standard regularity properties, the
penalty parameter is not updated, and the iterates converge superlinearly to the solution. Section
5 presents two practical implementations of the interior-penalty method with different updating
strategies for the penalty parameter. Our numerical experiments, reported in the same section,
favor a dynamic strategy that assesses the magnitude of the penalty parameter at every iteration.

2 An Interior-Penalty Method for MPCCs

To circumvent the difficulties caused by the complementarity constraints, we replace (1.3) by the
ℓ1-penalty problem

minimize f(x) + πxT
1 x2

subject to ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I
x1 ≥ 0, x2 ≥ 0,

(2.1)

where π > 0 is a penalty parameter. In principle, the ℓ1-penalty term should have the form
∑

i max{0, x1ix2i}, but we can write it as xT
1 x2 if we enforce the nonnegativity of x1, x2. This exact
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penalty reformulation of MPCCs has been studied in [1, 2, 3, 17, 22, 23]. Since problem (2.1) is
smooth, we can safely apply standard nonlinear programming algorithms, such as interior methods,
to solve it. The barrier problem associated to (2.1) is

minimize f(x) + πxT
1 x2 − µ

∑

i∈I

log si − µ

p
∑

i=1

log x1i − µ

p
∑

i=1

log x2i

subject to
ci(x) = 0, i ∈ E ,

ci(x)− si = 0, i ∈ I,
(2.2)

where µ > 0 is the barrier parameter and si > 0, i ∈ I, are slack variables. The Lagrangian of this
barrier problem is given by

Lµ,π(x, s, λ) = f(x) + πxT
1 x2 − µ

∑

i∈I

log si − µ

p
∑

i=1

log x1i − µ

p
∑

i=1

log x2i

−
∑

i∈E

λici(x)−
∑

i∈I

λi(ci(x)− si), (2.3)

and the first-order Karush-Kuhn-Tucker (KKT) conditions of (2.2) can be written as

∇xLµ,π(x, s, λ) = ∇f(x)−∇cE(x)T λE −∇cI(x)T λI −





0

µX−1
1 e− πx2

µX−1
2 e− πx1



 = 0, (2.4)

siλi − µ = 0 i ∈ I,

ci(x) = 0 i ∈ E ,

ci(x)− si = 0 i ∈ I,

where we have grouped the components ci(x), i ∈ E into the vector cE(x), and similarly for
cI(x), λE , λI . We also define λ = (λE , λI). X1 denotes the diagonal matrix containing the ele-
ments of x1 on the diagonal (the same convention is used for X2 and S), and e is a vector of ones
of appropriate dimension.

The KKT conditions (2.4) can be expressed more compactly as

∇xLµ,π(x, s, λ) = 0, (2.5a)

SλI − µe = 0, (2.5b)

c(x, s) = 0, (2.5c)

where we define

c(x, s) =

(

cE(x)
cI(x)− s

)

. (2.6)

In Figure 1, we describe an interior method for MPCCs based on the ℓ1-penalty formulation.
Here, and in the rest of the paper, ‖ · ‖ denotes the infinity norm. This is consistent with our
implementation; it also simplifies the exposition, without compromising the generality of our results.

In addition to requiring that the optimality conditions (2.7) of the barrier problem are satisfied
approximately, we impose a reduction in the complementarity term by means of (2.8). For now,
the only requirement on the sequence of barrier parameters {µk} and the stopping tolerances
{ǫk

pen}, {ǫ
k
comp} is that they all converge to 0 as k → ∞. Later, in the local analysis of Section 4,

we impose further conditions on the relative rate of convergence of these sequences.
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Algorithm I: Interior-Penalty Method for MPCCs

Initialization: Let x0, s0, λ0 be the initial primal and dual variables. Set k = 1.

repeat

1. Choose a barrier parameter µk, stopping tolerances ǫk
pen and ǫk

comp

2. Find πk and an approximate solution (xk, sk, λk) of problem (2.2) with parameters µk

and πk that satisfy xk
1 > 0, xk

2 > 0, sk > 0, λk
I > 0 and the following conditions:

‖∇xLµk,πk(xk, sk, λk)‖ ≤ ǫk
pen, (2.7a)

‖Skλk
I − µke‖ ≤ ǫk

pen, (2.7b)

‖c(xk, sk)‖ ≤ ǫk
pen, (2.7c)

and

‖min{xk
1, x

k
2}‖ ≤ ǫk

comp (2.8)

3. Let k ← k + 1

until a stopping test for the MPCC is satisfied

Figure 1: An interior-penalty method for MPCCs.

We use ‖min{xk
1, x

k
2}‖ in (2.8) as a measure of complementarity, rather than xkT

1 xk
2, because

it is less sensitive to the scaling of the problem and is independent of the number of variables.
Moreover, this measure is accurate even when both xk

1i and xk
2i converge to zero.

Our formulation of Algorithm I is sufficiently general to permit various updating strategies for
the penalty parameter in Step 2. One option is to choose µk and solve (2.2) with πk = πk−1, until
conditions (2.7) are satisfied. If condition (2.8) also holds, then we proceed to Step 3. Otherwise,
we increase πk and solve (2.2) again using the same barrier parameter µk. The process is repeated,
if necessary, until (2.8) is satisfied. We show in Section 5 that Algorithm I with this penalty update
strategy is much more robust and efficient than the direct application of an interior method to (1.3).
Nevertheless, there are some flaws in a strategy that holds the penalty parameter fixed throughout
the minimization of a barrier problem, as illustrated by the following examples.

The results reported next were obtained with an implementation of Algorithm I that uses the
penalty update strategy described in the previous paragraph. The initial parameters are π1 =
1, µ1 = 0.1, and we set ǫk

comp = (µk)0.4 for all k. When the penalty parameter is increased, it is
multiplied by 10. The other details of the implementation are discussed in Section 5 and are not
relevant to the discussion that follows.

Example 1 (ralph2). Consider the MPCC

minimize x2
1 + x2

2 − 4x1x2 (2.9)

subject to 0 ≤ x1 ⊥ x2 ≥ 0,
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whose solution is (0, 0). The associated penalty problem is

minimize (x1 − x2)
2 + (π − 2)x1x2 (2.10)

subject to x1 ≥ 0, x2 ≥ 0,

which is unbounded for any π < 2. Starting with π1 = 1, the first barrier problem is never solved.
The iterates increase monotonically because, by doing so, the objective function is reduced and
feasibility is maintained for problem (2.10). Eventually, the iterates diverge. Table 1 shows the
values of x1x2 during the first eight iterations of the inner algorithm in Step 2.

Table 1: Complementarity values for problem ralph2.

Iterate 1 2 3 4 5 6 7 8

Complementarity 0.0264 0.0916 0.1480 51.70 63.90 79.00 97.50 120.0

The upward trend in complementarity should be taken as a warning sign that the penalty
parameter is not large enough, since no progress is made toward satisfaction of (2.8). This suggests
that we should be prepared to increase the penalty parameter dynamically. How to do so, in a
robust manner, is not a simple question because complementarity can oscillate. We return to this
issue in Section 5, where we describe a dynamic strategy for updating the penalty parameter. ✷

Example 2 (scale1). Even if the penalty problem is bounded, there are cases where efficiency
can be improved with a more flexible strategy for updating πk. For example, consider the MPCC

minimize (100x1 − 1)2 + (x2 − 1)2 (2.11)

subject to 0 ≤ x1 ⊥ x2 ≥ 0,

which has two local solutions: (0.01, 0) and (0, 1). Table 2 shows the first seven values of xk

satisfying (2.7) and (2.8), and the corresponding values of µk.

Table 2: Solutions of 7 consecutive barrier-penalty problems for scale1.

k 1 2 3 4 5 6 7

µk 0.1 0.02 0.004 0.0008 0.00016 0.000032 0.0000064

xk
1 0.010423 0.010061 0.009971 0.009954 0.009951 0.009950 0.009950

xk
2 1.125463 1.024466 0.999634 0.995841 0.995186 0.995057 0.995031

ǫk
comp 0.398107 0.209128 0.109856 0.057708 0.030314 0.015924 0.008365

We observe that complementarity, as measured by min{xk
1, x

k
2}, stagnates. This result is not

surprising because the minimum penalty parameter required to recover the solution (0, 1) is π∗ =
200 and we have used the value π1 = 1. In fact, for any π < 200, there is a saddle point close to
(0, 1), and the iterates approach that saddle point. Seven barrier problems must be solved before
the test (2.8) is violated for the first time, triggering the first update of πk.

The behavior of the algorithm is illustrated in Figure 2(a), which plots three quantities as a
function of the inner iterations. Complementarity (continuous line) stalls at a nonzero value during
the first ten iterations, while µk (dashed line) decreases monotonically. The penalty parameter
(dashed-dotted line) is increased for the first time at iteration 9. It must be increased three
times to surpass the threshold value π∗ = 200, which finally forces complementarity down to zero.
Figure 2(b) shows the path of the iterates up to the solution of the seventh barrier problem. There
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Figure 2: A numerical solution of problem scale1.

is a clear pattern of convergence to the stationary point where none of the variables is zero. If this
convergence pattern can be identified early, the penalty parameter can be increased sooner, saving
some iterations in the solution of the MPCC. ✷

One could ask whether the penalty parameter needs to be updated at all, or whether choosing
a very large value of π and holding it fixed during the execution of Algorithm I could prove to be
an effective strategy. In Section 5 we show that excessively large penalty parameters can result
in substantial loss of efficiency. More important, no matter how large π is, for some problems the
penalty function is unbounded outside a small neighborhood of the solution, and a bad initial point
makes the algorithm diverge if π is kept fixed (see [20] for an example).

In Section 5, we describe a dynamic strategy for updating the penalty parameter. We show
that it is able to promptly identify the undesirable behavior described in these examples and to
react accordingly.

3 Global Convergence Analysis

In this section, we present the global convergence analysis of an interior-penalty method. We
start by reviewing an MPCC constraint qualification that suffices to derive first-order optimality
conditions for MPCCs. We then review stationarity concepts.

Definition 3.1 We say that the MPCC linear independence constraint qualification (MPCC-
LICQ) holds at a feasible point x for the MPCC (1.1) if and only if the standard LICQ holds
at x for the set of constraints

ci(x) = 0, i ∈ E , (3.1)

ci(x) ≥ 0, i ∈ I,

x1 ≥ 0, x2 ≥ 0.

We denote indices of the active constraints at a feasible point x by

Ac(x) = {i ∈ I : ci(x) = 0}, (3.2)

A1(x) = {i ∈ {1, . . . . , p} : x1i = 0},

A2(x) = {i ∈ {1, . . . . , p} : x2i = 0}.
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For ease of notation, we use i 6∈ A1(x) as shorthand for i ∈ {1, . . . , p} \A1(x) (likewise for A2,Ac).
We sometimes refer to variables satisfying x1i + x2i > 0 as branch variables; those for which
x1i + x2i = 0, that is, variables indexed by A1(x) ∩ A2(x), are called corner variables.

The next theorem establishes the existence of multipliers for minimizers that satisfy MPCC-
LICQ. It can be viewed as a counterpart for MPCCs of the first-order KKT theorem for NLPs.

Theorem 3.2 Let x∗ be a minimizer of the MPCC (1.1), and suppose MPCC-LICQ holds at x∗.
Then, there exist multipliers λ∗, σ∗

1, σ
∗
2 that, together with x∗, satisfy the system

∇f(x)−∇cE(x)T λE −∇cI(x)T λI −





0
σ1

σ2



 = 0 (3.3a)

ci(x) = 0, i ∈ E (3.3b)

ci(x) ≥ 0, i ∈ I (3.3c)

x1 ≥ 0, x2 ≥ 0 (3.3d)

x1i = 0 or x2i = 0, i = 1, . . . , p (3.3e)

ci(x)λi = 0, i ∈ I (3.3f)

λi ≥ 0, i ∈ I (3.3g)

x1iσ1i = 0 and x2iσ2i = 0, i = 1, . . . , p (3.3h)

σ1i ≥ 0, σ2i ≥ 0, i ∈ A1(x) ∩ A2(x). (3.3i)

For a proof of this theorem, see [23] or an alternative proof in [20].
We note, that the multipliers σ1, σ2 are required to be nonnegative only for corner variables.

This requirement reflects the geometry of the feasible set: If x1i > 0, then x2i = 0 acts like an
equality constraint, and the corresponding multiplier can be positive or negative. Theorem 3.2
motivates the following definition.

Definition 3.3 (a) A point x∗ is called a strongly stationary point of the MPCC (1.1) if there
exist multipliers λ∗, σ∗

1, σ
∗
2 such that (3.3) is satisfied. (b) A point x∗ is called a C-stationary point

of the MPCC (1.1) if there exist multipliers λ∗, σ∗
1, σ

∗
2 such that conditions (3.3a)–(3.3h) hold and

σ∗
1iσ

∗
2i ≥ 0, i ∈ A1(x

∗) ∩ A2(x
∗). (3.4)

Strong stationarity implies the absence of first-order feasible descent directions. These are
the points that the algorithms should aim for. Although C-stationarity does not characterize the
solutions of an MPCC, since it allows descent directions if σ1i < 0 or σ2i < 0, we consider C-
stationary points because they are attractors of iterates generated by Algorithm I. One can find
examples in which a sequence of stationary points of the penalty problem converge to a C-stationary
point where descent directions exist, and this phenomenon can actually be observed in practice (see
case 1 of Example 3.1 in [17] and the comments on problem scale4 in Section 5). The reader further
interested in stationarity for MPCCs is referred to [23].

3.1 Global Convergence of the Interior-Penalty Algorithm

Many algorithms have been proposed to solve the barrier problem in Step 2; see, for example, [6, 13]
and the references therein. As is well known, these inner algorithms may fail to satisfy (2.7), and
therefore Algorithm I can fail to complete Step 2. The analysis of the inner algorithm is beyond the
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scope of this paper, and we concentrate only on the analysis of the outer iterations in Algorithm I.
We assume that the inner algorithm is always successful and that Algorithm I generates an infinite
sequence of iterates {xk, sk, λk} that satisfies conditions (2.7) and (2.8).

We present the following result in the slightly more general setting in which a vector of penalties
π = (π1, . . . , πp) is used, with the objective function as

f(x) + πT X1x2, (3.5)

and with minor changes in the Lagrangian of the problem. This allows us to extend the global
convergence result to the relaxation approach in the next subsection. For the implementation,
however, we use a uniform (i.e., scalar-valued) penalty.

Theorem 3.4 Suppose that Algorithm I generates an infinite sequence of iterates {xk, sk, λk} and
parameters {πk, µk} that satisfies conditions (2.7) and (2.8), for sequences {ǫk

pen}, {ǫ
k
comp}, {µ

k}

converging to zero. If x∗ is a limit point of the sequence {xk}, and f and c are continuously
differentiable in an open neighborhood N (x∗) of x∗, then x∗ is feasible for the MPCC (1.1). If, in
addition, MPCC-LICQ holds at x∗, then x∗ is a C-stationary point of (1.1). Moreover, if πk

i xk
ji → 0

for j = 1, 2 and i ∈ A1(x
∗) ∩ A2(x

∗), then x∗ is a strongly stationary point of (1.1).

Proof. Let x∗ be a limit point of the sequence {xk} generated by Algorithm I, and let K be an
infinite index set such that {xk}k∈K → x∗. Then, xk ∈ N (x∗) for all k sufficiently large; from
the assumption of continuous differentiability on N (x∗), and {xk}k∈K → x∗, we conclude that
the sequences {f(xk)}, {c(xk)}, {∇f(xk)}, {∇cE(xk)}, {∇cI(xk)}, k ∈ K have limit points and are
therefore bounded.

Since the inner algorithm used in Step 2 enforces positivity of the slacks sk, by continuity of c

and the condition ǫk
pen → 0 we have

ci(x
∗) = 0 i ∈ E

ci(x
∗) = s∗i ≥ 0 i ∈ I,

where s∗i = limk∈K sk
i . Therefore x∗ satisfies (3.3b) and (3.3c), and it also satisfies (3.3d) because

the inner algorithm enforces the positivity of xk. The complementarity condition (3.3e) follows
directly from (2.8) and ǫk

comp → 0. Therefore, x∗ is feasible for the MPCC (1.1).
Existence of Multipliers. Let us define

σk
1i =

µk

xk
1i

− πk
i xk

2i, σk
2i =

µk

xk
2i

− πk
i xk

1i (3.6)

and
αk = ‖(λk, σk

1 , σk
2 )‖∞. (3.7)

We first show that {αk}k∈K is bounded, a result that implies that the sequence of multipliers
(λk, σk

1 , σk
2 ) has a limit point. Then we show that any limit point satisfies C-stationarity at x∗.

We can assume without loss of generality, that αk ≥ τ > 0 for all k ∈ K. Indeed, if there were
a further subsequence {αk}k∈K′ converging to 0, this subsequence would be trivially bounded, and
we would apply the analysis below to {αk}k∈K\K′ , which is bounded away from 0, to prove the
boundedness of the entire sequence {αk}k∈K.

Let us define the “normalized multipliers”

λ̂k =
λk

αk
, σ̂k

1 =
σk

1

αk
, σ̂k

2 =
σk

2

αk
. (3.8)



10 Sven Leyffer, Gabriel López-Calva, & Jorge Nocedal

We now show that the normalized multipliers corresponding to inactive constraints converge to 0
for k ∈ K. Consider an index i 6∈ Ac(x

∗), where Ac is defined by (3.2). Since sk
i → ci(x

∗) > 0 and
sk
i λ

k
i → 0 by (2.7b), we have that λk

i converges to 0, and so does λ̂k
i .

Next consider an index i 6∈ A1(x
∗). We want to show that σ̂k

1i → 0. If i 6∈ A1(x
∗), then

xk
1i → x∗

1i > 0, which implies that xk
2i → 0, by (2.8) and ǫk

comp → 0. We also have, from (3.6), that
for any k ∈ K,

σk
1i 6= 0 ⇒

µk

xk
1i

− πk
i xk

2i 6= 0 ⇒
µk

xk
2i

− πk
i xk

1i 6= 0 ⇒ σk
2i 6= 0. (3.9)

Using this and the fact that |σk
2i| ≤ αk, we have that, if there is any subsequence of indices k for

which σk
1i 6= 0, then

|σ̂k
1i| =

|σk
1i|

αk
≤
|σk

1i|

|σk
2i|

=

∣

∣

∣

µk

xk
1i

− πk
i xk

2i

∣

∣

∣

∣

∣

∣

µk

xk
2i

− πk
i xk

1i

∣

∣

∣

=

∣

∣

∣

µk−πk
i xk

1ix
k
2i

xk
1i

∣

∣

∣

∣

∣

∣

µk−πk
i xk

1ix
k
2i

xk
2i

∣

∣

∣

=
xk

2i

xk
1i

→ 0.

Since clearly σ̂k
1i → 0 for those indices with σk

1i = 0, we have that the whole sequence σ̂k
1i con-

verges to zero for i 6∈ A1(x
∗). The same argument can be applied to show that σ̂k

2i → 0 for
i 6∈ A2(x

∗). Therefore we have shown that the normalized multipliers (3.8) corresponding to the
inactive constraints converge to zero for k ∈ K.

To prove that {αk}k∈K is bounded, we proceed by contradiction and assume that there exists
K′ ⊆ K such that {αk}k∈K′ →∞. By definition, the sequences of normalized multipliers (3.8) are
bounded, so we restrict K′ further, if necessary, so that the sequences of normalized multipliers are
convergent within K′. Given that K′ ⊆ K, all the sequences of gradients {∇f(xk)}, {∇cE(xk)},
{∇cI(xk)}, k ∈ K′ are convergent. We can then divide both sides of (2.7a) by αk and take limits
to get

lim
k→∞,k∈K′

‖
1

αk
∇xLµk,πk(xk, sk, λk)‖ ≤ lim

k→∞,k∈K′

ǫk
pen

αk
= 0

or

lim
k→∞,k∈K′





1

αk
∇fk −

∑

i∈E∪I

λ̂k
i∇ci(x

k)−

p
∑

i=1

σ̂k
1i





0
ei

0



−

p
∑

i=1

σ̂k
2i





0
0
ei







 = 0. (3.10)

It is immediate that the first term of (3.10) converges to 0. We showed that the coefficients
(the normalized multipliers (3.8)) of the inactive constraints also converge to zero. Since the
corresponding sequences of gradients have limits (hence are bounded), all the terms corresponding
to inactive constraints get cancelled in the limit, and we have

∑

i∈E∪Ac(x∗)

λ̂∗
i∇ci(x

∗) +
∑

i∈A1(x∗)

σ̂∗
1i





0
ei

0



 +
∑

i∈A2(x∗)

σ̂∗
2i





0
0
ei



 = 0.

If the limit point x∗ satisfies MPCC-LICQ, then the constraint gradients involved in this expression
are linearly independent, and we get

λ̂∗ = 0, σ̂∗
1 = 0, σ̂∗

2 = 0.
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This result, however, contradicts the fact that ‖(λ̂k, σ̂k
1 , σ̂k

2)‖∞ = 1 for all k ∈ K′, which follows
from (3.7), (3.8) and the assumption that limk→∞,k∈K′ αk → ∞. Therefore, we conclude that no
such unbounded subsequence exists, and hence all the sequences {λk}, {σk

1}, {σ
k
2}, with k ∈ K, are

bounded and have limit points.

C-Stationarity. Choose any such limit point (λ∗, σ∗
1, σ

∗
2), and restrict K, if necessary, so that

(xk, sk, λk, σk
1 , σk

2 )→ (x∗, s∗, λ∗, σ∗
1, σ

∗
2).

By (2.7a) and (2.4) and by continuity of f and c, we have that

∇f(x∗)−∇cE(x∗)T λ∗
E −∇cI(x∗)T λ∗

I −





0
σ∗

1

σ∗
2



 = 0,

which proves (3.3a). We have already shown that the limit point x∗ satisfies conditions (3.3b)
through (3.3e). The nonnegativity of λ∗

I , condition (3.3g), follows from the fact that the inner
algorithm maintains λk

i > 0 for i ∈ I. Condition (3.3f) holds because, for any i ∈ I, if ci(x
∗) =

s∗i > 0, then since sk
i λ

k
i → 0, we must have λ∗

i = 0.
We now establish that conditions (3.3h) hold at the limit point (x∗, s∗, λ∗, σ∗

1, σ
∗
2). They are

clearly satisfied when i ∈ A1(x
∗) and i ∈ A2(x

∗). Consider an index i 6∈ A1(x
∗). If there is any

infinite subset K′′ ⊆ K with σk
1i 6= 0 for all k ∈ K′′, then, as argued in (3.9), σk

1i 6= 0⇒ σk
2i 6= 0 for

all k ∈ K′′ and

lim
k→∞,k∈K′′

|σk
1i|

|σk
2i|

= lim
k→∞,k∈K′′

∣

∣

∣

µk

πk
i xk

1i

− xk
2i

∣

∣

∣

∣

∣

∣

µk

πk
i xk

2i

− xk
1i

∣

∣

∣

= lim
k→∞,k∈K′′

xk
2i

xk
1i

= 0, (3.11)

where the limit follows from the fact that x∗
1i > 0, which implies that xk

2i → 0. {σk
2i} has a limit

and is therefore bounded. Hence, (3.11) can hold only if limk→∞,k∈K′′ σk
1i = 0 and, by definition,

σk
1i = 0 for all k ∈ K \ K′′. We conclude that σ∗

1i = 0 for i 6∈ A1(x
∗). A similar argument can be

used to get σ∗
2i = 0 if i 6∈ A2(x

∗).
To prove (3.4), we consider an index i ∈ A1(x

∗) ∩ A2(x
∗). If σ∗

1i = 0, we immediately have
σ∗

1iσ
∗
2i = 0. If σ∗

1i > 0, then for all k ∈ K large enough, σk
1i > 0. Then

µk

xk
1i

> πk
i xk

2i, ⇒
µk

xk
2i

> πk
i xk

1i,

or σk
2i > 0. Hence, σ∗

1iσ
∗
2i ≥ 0, as desired. The same argument can be used to show that, if σ∗

1i < 0,
then σ∗

2i < 0, and hence σ∗
1iσ

∗
2i ≥ 0. Therefore, condition (3.4) holds, and x∗ is a C-stationary point

of the MPCC.

Strong Stationarity. Let i ∈ A1(x
∗) ∩ A2(x

∗). If πk
i xk

2i → 0, then

σ∗
1i = lim

k∈K
σk

1i = lim
k∈K

(

µk

xk
1i

− πk
i xk

2i

)

= lim
k∈K

µk

xk
1i

≥ 0. (3.12)

A similar argument shows that σ∗
2i ≥ 0. Therefore, condition (3.3i) holds, and x∗ is a strongly

stationary point for the MPCC (1.1). ✷

The proof of Theorem 3.4 builds on a similar proof in [17], where an analogous result is derived
for exact subproblem solves. Our result is related to the analysis in [2] (derived independently),
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except that we explicitly work within an interior-method framework and we do not analyze the
convergence of the inner algorithm. In [2], stronger assumptions are required (e.g., that the lower-
level problem satisfies a mixed-P property) to guarantee that the inner iteration always terminates.

For strong stationarity, we required a condition on the behavior of the penalty parameter,
relative to the sequences converging to the corners. This is the same condition that Scholtes
requires for strong stationarity in [24]. A simpler, though stronger, assumption on the penalties is
a boundedness condition, which we use for the following corollary that corresponds to the particular
case of our implementations.

Corollary 3.5 Suppose Algorithm I is applied with a uniform (i.e., scalar-valued) penalty parame-
ter, and let the assumptions of Theorem 3.4 hold. Then, if the sequence of penalty parameters {πk}
is bounded, x∗ is a strongly stationary point for (1.1). ✷

In our algorithmic framework, the sequence of penalty parameters does not have to be monotone,
although practical algorithms usually generate nondecreasing sequences. Monotonicity is required
neither in the description of the algorithm nor in the proof. This flexibility could be exploited to
correct unnecessarily large penalty parameters in practice. For theoretical purposes, on the other
hand, this nonmonotonicity property is important for the derivation of Theorem 3.6 in the next
subsection.

3.2 Relationship to Interior-Relaxation Methods

An alternative to exact penalization for regularizing the complementarity constraints of an MPCC is
to relax the complementarity constraints. This approach has been combined with interior methods
in [19, 21]; we refer to it as the “interior-relaxation” method. The objective of this subsection is
to show that there is a correspondence between interior-penalty and interior-relaxation approaches
and that this correspondence can be exploited to give an alternative global convergence proof for
an interior-relaxation method, based on Theorem 3.4.

Interior-relaxation methods solve a sequence of barrier subproblems associated with (1.3) with
one modification, namely, the complementarity constraints (1.3e) are relaxed by introducing a
parameter θk > 0 that goes to 0 as the barrier parameter µk approaches 0. Effectively, a sequence
of problems

minimize f(x)− µk
∑

i∈I

log si − µk
p

∑

i=1

log sci − µk
p

∑

i=1

log x1i − µk
p

∑

i=1

log x2i

subject to
ci(x) = 0, i ∈ E ,

ci(x)− si = 0, i ∈ I,
θk − x1ix2i − sci = 0, i = 1, . . . , p,

(3.13)

has to be solved, where sc are the slacks for the relaxed complementarity constraints, the multipliers
of which are denoted by ξ. Let Lµk,θk denote the Lagrangian of (3.13).

An approximate solution of (3.13), for some µk and θk, is given by variables xk, sk, sk
c , λ

k, ξk,
with xk

1 > 0, xk
2 > 0, sk > 0, sk

c > 0, λk
I > 0, ξk > 0, satisfying the following inexact KKT system,



Interior Methods for MPCCs 13

where ǫk
rel > 0 is some tolerance

‖∇xLµk,θk(xk, sk, λk, ξk)‖ ≤ ǫk
rel, (3.14a)

‖Skλk
I − µke‖ ≤ ǫk

rel, (3.14b)

‖Sk
c ξk − µke‖ ≤ ǫk

rel, (3.14c)

‖c(xk, sk)‖ ≤ ǫk
rel, (3.14d)

‖θke−Xk
1 xk

2 − sk
c‖ ≤ ǫk

rel. (3.14e)

Theorem 3.6 Suppose an interior-relaxation method generates an infinite sequence of solutions
{xk, sk, sk

c , λ
k, ξk} and parameters {µk, θk} that satisfies conditions (3.14), for sequences {µk}, {θk}

and {ǫk
rel}, all converging to 0. If x∗ is a limit point of the sequence {xk}, and f and c are

continuously differentiable in an open neighborhood N (x∗) of x∗, then x∗ is feasible for the MPCC
(1.1). If, in addition, MPCC-LICQ holds at x∗, then x∗ is a C-stationary point of (1.1). Moreover,
if ξk

i xk
ji → 0 for j = 1, 2 and i ∈ A1(x

∗) ∩ A2(x
∗), then x∗ is a strongly stationary point of (1.1).

Proof. We provide an indirect proof. Given sequences of variables {xk, sk, sk
c , λ

k, ξk}, parame-
ters {µk, θk}, and tolerances {ǫk

rel} satisfying the assumptions, we define sequences of parameters
{µk, πk := ξk} and tolerances {ǫk

pen := ǫk
rel, ǫ

k
comp := (θk + ǫk

rel)
1/2}; for the variables, we keep

{xk, sk, λk} only. Note that we have not changed the sequence of decision variables {xk}, so the
limit points are unchanged. We show that the sequences that we just defined satisfy the assump-
tions of Theorem 3.4. Observe that there is no reason why the sequence of multipliers {ξk} should
be monotone. This is not a problem, however, because there is no monotonicity requirement for
the sequence {πk} in Theorem 3.4, as noted earlier.

First, {µk}, {ǫk
pen}, {ǫ

k
comp} all converge to 0, by construction. Next, it is easy to see that

∇xLµk,πk(xk, sk, λk) = ∇xLµk,θk(xk, sk, λk, ξk).

This, together with conditions (3.14a), (3.14b), and (3.14d), yields (2.7).

Recall that the infinity norm is used for (2.8) (without loss of generality). Combining (3.14e)
with min{xk

1, x
k
2} ≤ xk

1 and min{xk
1, x

k
2} ≤ xk

2, we get

0 ≤ min{xk
1i, x

k
2i} ≤ (xk

1ix
k
2i)

1/2

≤ (xk
1ix

k
2i + sk

ci)
1/2 ≤ (θk + ǫk

rel)
1/2 = ǫk

comp.

Therefore, the sequence {xk, sk, λk}, with corresponding parameters {µk, πk}, satisfies condi-
tions (2.7) and (2.8) for all k. The conclusions follow from a direct application of Theorem 3.4. ✷

A similar global result is proved directly in [19], under somewhat different assumptions. The key
for the proof presented here is that there exists a one-to-one correspondence between KKT points
of problems (2.2) and (3.13), which is easily seen by comparing the corresponding first-order condi-
tions. In fact, this one-to-one relation between KKT points of relaxation and penalization schemes
can be extended to general NLPs. Such an extension is useful because some convergence results
can be derived directly for one approach only and then extended to the alternative regularization
scheme in a simple way.
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4 Local Convergence Analysis

In this section, we show that, if the iterates generated by Algorithm I approach a solution x∗ of
the MPCC that satisfies certain regularity conditions and if the penalty parameter is sufficiently
large, then this parameter is never updated, and the iterates converge to x∗ at a superlinear rate.

We start by defining a second-order sufficient condition for MPCCs (see [23]). For this purpose,
we define the Lagrangian

L(x, λ, σ1, σ2) = f(x)− λT
E cE(x)− λT

I cI(x)− σT
1 x1 − σT

2 x2. (4.1)

Definition 4.1 We say that the MPCC second-order sufficient condition (MPCC-SOSC) holds at
x∗ if x∗ is a strongly stationary point of (1.1) with multipliers λ∗, σ∗

1, σ
∗
2 and

dT∇2
xxL(x∗, λ∗, σ∗

1, σ
∗
2) d > 0 (4.2)

for all critical directions d, with ‖d‖ = 1, satisfying

∇f(x)T d = 0, (4.3a)

∇ci(x)T d = 0 for all i ∈ E , (4.3b)

∇ci(x)T d ≥ 0 for all i ∈ Ac(x), (4.3c)

min
{j:xji=0}

{dji} = 0 for all i = 1, . . . , p. (4.3d)

Notice that (4.3d) is a convenient way to summarize the following conditions, which characterize
the set of feasible directions with respect to the complementarity constraints: If x1i = 0, x2i > 0,
then d1i = 0 and d2i is free; if x2i = 0, x1i > 0, then d2i = 0 and d1i is free; and if x1i = x2i = 0,
then 0 ≤ d1i ⊥ d2i ≥ 0.

For the local analysis, we make the following assumptions.

Assumptions 4.2 There exists a strongly stationary point x∗ of the MPCC (1.1), with multipliers
λ∗, σ∗

1, σ
∗
2, satisfying the following conditions:

1. f and c are twice Lipschitz continuously differentiable in an open neighborhood of x∗.

2. MPCC-LICQ holds at x∗.

3. The following primal-dual strict complementarity holds at x∗: λ∗
i 6= 0 for all i ∈ E ∪ Ac(x

∗),
and σ∗

ji > 0 for all i ∈ A1(x
∗) ∩ A2(x

∗), for j = 1, 2.

4. MPCC-SOSC holds at x∗.

The following lemma shows that the penalty formulation inherits the desirable properties of
the MPCC for a sufficiently large penalty parameter. The multipliers for the bound constraints
x1 ≥ 0, x2 ≥ 0 of the penalty problem (2.1) are denoted by ν1 ≥ 0, ν2 ≥ 0, respectively.

Lemma 4.3 If Assumptions 4.2 hold at x∗ and π > π∗, where

π∗ = π∗(x∗, σ∗
1, σ

∗
2) = max

{

0, max
{i:x∗

1i>0}

−σ∗
2i

x∗
1i

, max
{i:x∗

2i>0}

−σ∗
1i

x∗
2i

}

, (4.4)

then it follows that
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1. LICQ holds at x∗ for (2.1).

2. x∗ is a KKT point of (2.1).

3. Primal-dual strict complementarity holds at x∗ for (2.1); that is, λ∗
i 6= 0 for all i ∈ E ∪Ac(x

∗)
and ν∗

ji > 0 for all i ∈ Aj(x
∗), for j = 1, 2.

4. The second-order sufficiency condition holds at x∗ for (2.1).

Proof. LICQ at x∗ for (2.1) follows from the definition of MPCC-LICQ.

The proof of Part 2 is similar to the proof of Proposition 4.1 in [12]. The key for the proof is
the relationship between the multipliers σ∗

1, σ
∗
2 of (1.1) and ν∗

1 ≥ 0, ν∗
2 ≥ 0 of (2.1), given by

ν∗
1 = σ∗

1 + πx∗
2 and ν∗

2 = σ∗
2 + πx∗

1. (4.5)

The result is evident when the strongly stationarity conditions (3.3) and the first-order KKT
conditions of (2.1) are compared, except for the nonnegativity of ν∗

1 and ν∗
2 . To see that ν∗

1 , ν∗
2 ≥ 0,

suppose first that i ∈ A1(x
∗)∩A2(x

∗). In that case, from (4.5), we have νji = σji, j = 1, 2, and the
nonnegativity follows directly from (3.3i). If, on the other hand, i 6∈ A2(x

∗), then (4.5) and π > π∗

imply

ν∗
1i = σ∗

1i + πx∗
2i > σ∗

1i +
−σ∗

1i

x∗
2i

x∗
2i = 0. (4.6)

The same argument applies for i 6∈ A1(x
∗), which completes the proof of Part 2.

Note that π ≥ π∗ suffices for the nonnegativity of ν1, ν2. The strict inequality π > π∗ is
required for Part 3; that is, we need it for primal-dual strict complementarity at x∗ for (2.1). In
fact, (4.6) yields primal-dual strict complementarity for i 6∈ A2(x

∗) (and a similar argument works
for i 6∈ A1(x

∗)). For i ∈ E ∪ Ac(x
∗), strict complementarity comes directly from the assumptions.

For i ∈ A2(x
∗)∩A1(x

∗), relation (4.5) shows that ν∗
ji = σ∗

ji, j = 1, 2, which is positive by Assumption
4.2 (3).

For Part 4, Assumption 4.2 (3) implies that the multipliers of the complementarity variables
satisfy ν∗

1i +ν∗
2i > 0 for all i ∈ A1(x

∗)∩A2(x
∗), which, together with π > π∗, constitutes a sufficient

condition for SOSC of the penalty problem (2.1); see [20] for details. Therefore, SOSC hold at x∗

for (2.1). ✷

We note that Assumption 4.2 (3) can be weakened and still get SOSC for the penalized problem
(2.1). In [20], two alternative sufficient conditions for SOSC of (2.1) are given. The first involves
ν∗
1i + ν∗

2i > 0 for all i ∈ A1(x
∗) ∩ A2(x

∗) (which is called partial strict complementarity in [22])
and π > π∗. The second condition involves a possibly larger penalty parameter and shows how the
curvature term of the complementarity constraint xT

1 x2 can be exploited to ensure the penalized
problem satisfies a second-order condition. We state the result here for completeness (the proof
can be found in [20]).

Lemma 4.4 Let MPCC-SOSC hold at x∗, and assume that one of the following conditions holds:

1. π > π∗ and ν∗
1i + ν∗

2i > 0 for all i ∈ A1(x
∗) ∩ A2(x

∗);

2. π > max{π∗, πSO}, for a (possibly higher) value πSO defined in [20],

then SOSC holds at x∗ for (2.1). ✷
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We now show that an adequate penalty parameter stabilizes near a regular solution and super-
linear convergence takes place.

We group primal and dual variables in a single vector z = (x, s, λ). Given a strongly stationary
point x∗ with multipliers λ∗, σ∗

1, σ
∗
2, we associate to it the triplet z∗ = (x∗, s∗, λ∗), where s∗ = cI(x∗).

We also group the left-hand side of (2.5) in the function

Fµ(z; π) =





∇xLµ,π(x, λ)
SλI − µe

c(x, s)



 . (4.7)

At every inner iteration in Step 2 of Algorithm I, a step d is computed by solving a system of the
form

∇Fµ(z; π)d = −Fµ(z; π). (4.8)

Note (2.7) is equivalent to ‖Fµ(z; π)‖ ≤ ǫpen.

The following theorem shows that there are practical implementations of Algorithm I that,
near a regular solution x∗ of the MPCC and for a sufficiently large penalty parameter, satisfy the
stopping tests (2.7) and (2.8) at every iteration, with no backtracking and no updating of the penalty
parameter. Using this fact one can easily show that the iterates converge to x∗ superlinearly. To
state this result, we introduce the following notation. Let z be an iterate satisfying ‖Fµ(z; π)‖ ≤ ǫpen

and ‖min{x1, x2}‖ ≤ ǫcomp. We define z+ to be the new iterate computed using a barrier parameter
µ+ < µ, namely,

z+ = z + d, with Fµ+(z; π)d = −Fµ+(z; π). (4.9)

Theorem 4.5 Suppose that Assumptions 4.2 hold at a strongly stationary point x∗. Assume that
π > π∗, with π∗ given by (4.4) and that the tolerances ǫpen, ǫcomp in Algorithm I are functions of µ

that converge to 0 as µ→ 0. Furthermore, assume that the barrier parameter and these tolerances
are updated so that the following limits hold as µ→ 0:

(ǫpen + µ)2

ǫ+pen
→ 0, (4.10a)

(ǫpen + µ)2

µ+
→ 0, (4.10b)

µ+

ǫ+comp
→ 0. (4.10c)

Assume also that

µ+

‖F0(z; π)‖
→ 0, as ‖F0(z; π)‖ → 0. (4.11)

Then, if µ is sufficiently small and z is sufficiently close to z∗, the following conditions hold:

1. The stopping criteria (2.7) and (2.8), with parameters µ+, ǫ+pen, ǫ+comp and π, are satisfied at
z+.

2. ‖z+ − z∗‖ = o(‖z − z∗‖).
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Proof. By the implicit function theorem, Assumptions 4.2, the condition π > π∗, and Lemma 4.3,
it follows that, for all sufficiently small µ, there exists a solution z∗(µ) of problem (2.2); see, for
example, [13]. If, in addition, z is close to z∗, then

L1µ ≤ ‖z∗ − z∗(µ)‖ ≤ U1µ, (4.12)

L2‖Fµ(z; π)‖ ≤ ‖z − z∗(µ)‖ ≤ U2‖Fµ(z; π)‖. (4.13)

(Condition (4.12) is Corollary 3.14 in [13], and (4.13) is Lemma 2.4 in [5].) Here and in the rest of
the proof Li and Ui denote positive constants; recall that ‖ · ‖ denotes the infinity norm (without
loss of generality). By standard Newton analysis (see, e.g., Theorem 2.3 in [5]) we have that

‖z+ − z∗(µ+)‖ ≤ U3‖z − z∗(µ+)‖2. (4.14)

We also use the inequality
‖z+ − z∗(µ+)‖ ≤ U4(ǫpen + µ)2, (4.15)

which is proved as follows:

‖z+ − z∗(µ+)‖ ≤ U3‖z − z∗(µ+)‖2 (from (4.14))

≤ U3

(

‖z − z∗(µ)‖+ ‖z∗(µ)− z∗‖+ ‖z∗ − z∗(µ+)‖
)2

≤ U3

(

U2‖Fµ(z; π)‖+ U1µ + U1µ
+
)2

(from (4.13) and (4.12))

≤ U4 (ǫpen + µ)2 ,

where the last inequality holds because z satisfies (2.7) with µ, ǫpen, π and because µ+ < µ.
We now show that (2.7) holds at z+, with parameters µ+, ǫ+pen, π, as follows:

‖Fµ+(z+; π)‖ ≤ L−1
2 ‖z

+ − z∗(µ+)‖ (from (4.13))

≤ L−1
2 U4(ǫpen + µ)2 (from (4.15))

= L−1
2 U4

(ǫpen + µ)2

ǫ+pen
ǫ+pen

≤ ǫ+
pen (from (4.10a)).

To see that x+
1 > 0, we can apply (4.15) componentwise to get

|x+
1i − x∗

1i(µ
+)| ≤ U4(ǫpen + µ)2,

from which we have that
x+

1i ≥ x∗
1i(µ

+)− U4(ǫpen + µ)2. (4.16)

If x∗
1i = 0, we have by (4.12) and the positivity of x∗

1i(µ
+) that x∗

1i(µ
+) ≥ L1µ

+. Therefore

x+
1i ≥ L1µ

+ − U4
(ǫpen + µ)2

µ+
µ+ (from (4.12))

≥ L5µ
+ (from (4.10b)).

If, on the other hand, x∗
1i > 0, then from (4.12) and (4.16), we get

x+
1i ≥ x∗

1i − U1µ
+ − U4(ǫpen + µ)2

= x∗
1i − U1µ

+ − U4
(ǫpen + µ)2

µ+
µ+

> 0 (from (4.10b)).
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Similar arguments can be applied to get x+
2 > 0, s+ > 0, λ+

I > 0.
To prove that x+ satisfies (2.8), we first observe that

‖z+ − z∗‖ ≤ ‖z+ − z∗(µ+)‖+ ‖z∗(µ+)− z∗‖

≤ U4(ǫpen + µ)2 + U1µ
+ (from (4.15) and (4.12))

= U4
(ǫpen + µ)2

µ+
µ+ + U1µ

+

≤ U5µ
+ (from (4.10b)). (4.17)

Let i ∈ {1, . . . , p}, and assume, without loss of generality, that x∗
1i = 0. Then,

|min{x+
1i, x

+
2i}| = min{x+

1i, x
+
2i} (because x+

1 > 0, x+
2 > 0)

≤ x+
1i = |x+

1i − x∗
1i|

≤ U5µ
+ (from (4.17))

= U5
µ+

ǫ+comp
ǫ+comp ≤ ǫ+

comp,

where the last inequality follows from (4.10c). Since this argument applies to all i ∈ {1, . . . , p}, we
have that (2.8) is satisfied. This concludes the proof of Part 1 of the theorem.

For Part 2, we have that

‖z+ − z∗‖ ≤ ‖z+ − z∗(µ+)‖+ ‖z∗(µ+)− z∗‖

≤ U3‖z − z∗(µ+)‖2 + U1µ
+ (from (4.14) and (4.12))

≤ U3

(

‖z − z∗‖+ ‖z∗ − z∗(µ+)‖
)2

+ U1µ
+

≤ U3

(

2‖z − z∗‖2 + 2‖z∗ − z∗(µ+)‖2
)

+ U1µ
+

≤ 2U3‖z − z∗‖2 + 2U3(U1µ
+)2 + U1µ

+ (from (4.14))

≤ U6

(

‖z − z∗‖2 + µ+
)

.

This implies that

‖z+ − z∗‖

‖z − z∗‖
≤ U6

(

‖z − z∗‖+
µ+

‖z − z∗‖

)

.

We apply the left inequality in (4.13), evaluated at z and with barrier parameter 0, to get

‖z+ − z∗‖

‖z − z∗‖
≤ U6

(

‖z − z∗‖+
1

L2

µ+

‖F0(z; π)‖

)

. (4.18)

Note that, from (4.13), if ‖z − z∗‖ is sufficiently small, so is ‖F0(z; π)‖, which in turn, by
(4.11), implies that the second term in the right-hand side is also close to 0. Hence, if ‖z − z∗‖
is sufficiently small, it follows that the new iterate z+ is even closer to z∗. Moreover, by applying
(4.18) recursively, we conclude that the iterates converge to z∗. From the same relation, it is clear
that this convergence happens at a superlinear rate, which concludes the proof. ✷

Many practical updating rules for µ and ǫpen satisfy conditions (4.10a)–(4.11). For example, we
can define ǫpen = θµ with θ ∈ [0,

√

| I | ). In this case, it is not difficult to show [5] that (4.10a),
(4.10b), (4.11) are satisfied if we update µ by the rule

µ+ = µ1+δ, 0 < δ < 1.

The same is true for the rule

µ+ = ‖Fµ(z; π)‖1+δ, 0 < δ < 1.

A simple choice for ǫcomp that ensures (4.10c) is µγ , with 0 < γ < 1.
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5 Implementation and Numerical Results

We begin by describing two practical implementations of Algorithm I that use different strategies
for updating the penalty parameter. The first algorithm, Classic, is described in Figure 3; it updates
the penalty parameter only after the barrier problem is solved, and provided the complementarity
value has decreased sufficiently as stipulated in Step 3. We index by k the major iterates that satisfy
(2.7) and (2.8); this notation is consistent with that of Section 2. We use j to index the sequence of
all minor iterates generated by the algorithm Classic. Since γ ∈ (0, 1), the tolerance ǫk

comp defined

in Step 1 converges to 0 slower than does {µk}; this is condition (4.10c) in Theorem 4.5.
In the numerical experiments, we use γ = 0.4 for the following reason: The distance between

iterates xk and the solution x∗ is proportional to
√

µk, if primal-dual strict complementarity does
not hold at x∗. By choosing the complementarity tolerance to be ǫk

comp = (µk)0.4, we ensure that
the test (2.8) can be satisfied in this case. All other details of the interior method are described
below.

Algorithm Classic: A Practical Interior-Penalty Method for MPCCs

Initialization: Let z0 = (x0, s0, λ0) be the initial primal and dual variables. Choose an initial
penalty π0 and a parameter γ ∈ (0, 1). Set j = 0, k = 1.

repeat (barrier loop)

1. Choose a barrier parameter µk, a stopping tolerance ǫk
pen, let ǫk

comp = (µk)γ and let

πk = πk−1.

2. repeat (inner iteration)

(a) Let j ← j + 1 and let the current point be zc = zj−1.

(b) Using a globally convergent method, compute a primal-dual step dj based on the
KKT system (2.4), with µ = µk, π = πk and z = zc.

(c) Let zj = zc + dj .

until conditions (2.7) are satisfied for ǫk
pen.

3. If ‖min{xj
1, x

j
2}‖ ≤ ǫk

comp, let zk = zj , set k ← k + 1;

else set πk ← 10πk and go to Step 2.

until a stopping test for the MPCC is satisfied.

Figure 3: Description of the Algorithm Classic.

The second algorithm we implemented, Dynamic, is described in Figure 4. It is more flexible
than Classic in that it allows changes in the penalty parameter at every iteration of the inner algo-
rithm. The strategy of Step 2(c) is based on the following considerations: If the complementarity
pair is relatively small according to the preset tolerance ǫk

comp, then there is no need to increase

π. Otherwise, we check whether the current complementarity value, x
jT
1 x

j
2, is less than a fraction

of the maximum value attained in the m previous iterations (in our tests, we use m = 3 and
η = 0.9). If not, we increase the penalty parameter. We believe that it is appropriate to look back
at several previous steps, and not require decrease at every iteration, because the sequence {xjT

1 x
j
2}

is frequently nonmonotone, especially for problems in which primal-dual strict complementarity is
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violated (see, e.g., Figure 6(a)). Note that the algorithms Classic and Dynamic are both special
cases of Algorithm I of Section 2.

Algorithm Dynamic: A Practical Interior-Penalty Method for MPCCs

Initialization: Let z0 = (x0, s0, λ0) be the initial primal and dual variables. Choose an initial
penalty π0, parameters γ, η ∈ (0, 1), and an integer m ≥ 1. Set j = 0, k = 1.

repeat (barrier loop)

1. Choose a barrier parameter µk, a stopping tolerance ǫk
pen and let ǫk

comp = (µk)γ .

2. repeat (inner iteration)

(a) Set j ← j + 1, let the current point be zc = zj−1, and let πj = πj−1 .

(b) Using a globally convergent method, compute a primal-dual step dj based on the
KKT system (2.4), with µ = µk, π = πk and z = zc.

(c) If ‖min{xj
1, x

j
2}‖ > ǫk

comp and

x
jT
1 x

j
2 > η max

{

x
jT
1 x

j
2, . . . , x

(j−m+1)T
1 x

(j−m+1)
2

}

, (5.1)

then set πj ← 10πj , adjust λj and go to Step 2.

until conditions (2.7) are satisfied for ǫk
pen.

3. If ‖min{xj
1, x

j
2}‖ ≤ ǫk

comp, let zk = zj and k = k + 1

else set πk ← 10πk and go to Step 2

until a stopping test for the MPCC is satisfied

Figure 4: Description of the Algorithm Dynamic.

We implemented these two algorithms as an extension of our matlab solver ipm-d. This
solver is based on the interior algorithm for nonlinear programming described in [26], with one
change: ipm-d handles negative curvature by adding a multiple of the identity to the Hessian of
the Lagrangian, as in [25], instead of switching to conjugate-gradient iterations. We chose to work
with ipm-d because it is a simple interior solver that does not employ the regularizations, scalings,
and other heuristics used in production packages that alter the MPCC, making it harder to assess
the impact of the approach proposed in this paper.

In our implementation, all details of the interior-point iteration, such as the update of the
barrier parameter, the step selection, and the choice of merit function, are handled by imp-d. The
main point of this section is to demonstrate how to adapt an existing interior-point method to solve
MPCCs efficiently and reliably.

We tested the algorithms on a collection of 74 problems, listed in Table 3, where we report the
number of variables n (excluding slacks), the number of constraints m (excluding complementarity
constraints), and the number of complementarity constraints p. These problems are taken from the
MacMPEC collection [18]; we added a few problems to test the sensitivity of our implementations
to bad scalings in the MPCC. All the methods tested were implemented in ipm-d, and since this
matlab program is not suitable for very large problems, we restricted our test set to a sample of
problems with fewer than 1,000 variables. We report results for four methods, which are labeled in
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Table 3: Test Problem Characteristics.

Name n m p Name n m p

bar-truss-3 29 22 6 bard1 5 1 3

bard3 6 3 2 bilevel1 10 9 6

bilevel3 12 7 4 bilin 8 1 6

dempe 4 2 2 design-cent-1 12 9 3

design-cent-4 22 9 12 desilva 6 2 2

df1 2 2 1 ex9.1.1 13 12 5

ex9.1.3 23 21 6 ex9.1.5 13 12 5

ex9.1.6 14 13 6 ex9.1.7 17 15 6

ex9.1.8 14 12 5 ex9.1.9 12 11 5

ex9.1.10 14 12 5 ex9.2.1 10 9 4

ex9.2.2 10 11 4 ex9.2.4 8 7 2

ex9.2.5 8 7 3 ex9.2.6 16 12 6

ex9.2.7 10 9 4 ex9.2.8 6 5 2

ex9.2.9 9 8 3 flp2 4 2 2

flp4-1 80 60 30 gauvin 3 0 2

gnash10 13 4 8 gnash11 13 4 8

gnash12 13 4 8 gnash13 13 4 8

gnash14 13 4 8 gnash15 13 4 8

gnash16 13 4 8 gnash17 13 4 8

gnash18 13 4 8 gnash19 13 4 8

hakonsen 9 8 4 hs044-i 20 14 10

incid-set1-16 485 491 225 incid-set2c-16 485 506 225

kth1 2 0 1 kth2 2 0 1

kth3 2 0 1 liswet1-050 152 103 50

outrata31 5 0 4 outrata32 5 0 4

outrata33 5 0 4 outrata34 5 0 4

pack-comp1-16 332 151 315 pack-comp2c-16 332 166 315

pack-rig1c-16 209 148 192 pack-rig2-16 209 99 192

pack-rig3-16 209 99 192 portfl-i-2 87 25 12

portfl-i-6 87 25 12 qpec-100-1 105 102 100

ralph1 2 0 1 ralph2 2 0 1

ralphmod 104 0 100 scale1 2 0 2

scale2 2 0 2 scale3 2 0 2

scale4 2 0 2 scale5 2 0 2

scholtes1 3 1 1 scholtes2 3 1 1

scholtes3 2 0 2 scholtes4 3 2 2

scholtes5 3 2 2 tap-09 86 68 32
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the figures as follows:

NLP is the direct application of the interior code ipm-d to the nonlinear programming
formulation (1.3) of the MPCC.

Fixed is a penalty method in which ipm-d is applied to (2.1) with a fixed penalty of
104. The penalty parameter is not changed.

Classic is the algorithm given in Figure 3, implemented in the ipm-d solver.

Dynamic is the algorithm given in Figure 4 implemented in the ipm-d solver.
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(b) Initial π based on gradient norm.

Figure 5: Performance of 4 methods for solving MPCCs.

In Figure 5 we report results for these four methods in terms of total number of iterations
(indexed by j). The figures use the logarithmic performance profiles described in [8]. An important
choice in the algorithms Classic and Dynamic is the initial value of π. In Figure 5(a) we show
results for π0 = 1, and in Figure 5(b) for π0 = ‖∇f(x0)‖ (the latter rule is also used, for example,
in the elastic phase of snopt [14]). Note that every time π is updated, a new barrier subproblem
has to be solved, where the initial point is the current iterate and the barrier parameter is the
current value of µ. The discrepancy in initial conditions when π is reset explains the difference in
performance of the choices π0 = 1 and π0 = ‖∇f(x0)‖, for both Classic and Dynamic.

Comparing the results in Figure 5, we note that the direct application of the interior method,
option nlp, gives the poorest results. Option Fixed (dashed curve in Figure 5(a)) is significantly
more robust and efficient than option nlp, but it is clearly surpassed by the Classic and Dynamic
methods. Option Fixed fails more often than Classic and Dynamic, and it requires, in general, more
iterations to solve each barrier problem. In extreme cases, like bar-truss-3, Dynamic (with π0 = 1)
solves the first barrier problem in 15 iterations, whereas Fixed needs 43 iterations. Moreover, we
frequently find that, near a solution, the algorithms Classic and Dynamic take one iteration per
barrier problem, as expected, whereas Fixed keeps taking several steps to find a solution every time
µ is updated.

Classic and Dynamic perform remarkably well with the seemingly naive initial value π0 = 1
(Figure 5(a)). Both algorithms adjust π efficiently, especially Dynamic. The choice π0 = ‖∇f(x0)‖,
on the other hand, attempts to estimate the norm of the multipliers and can certainly be unreliable.
Nonetheless, it performed very well on this test set. We note from Figure 5(b) that the performance
of both algorithms improves for π0 = ‖∇f(x0)‖.
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(a) ralph2: Classic (top) vs. Dynamic (bottom).
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Figure 6: Evolution of penalty and complementarity values (log10 scale).

The MacMPEC collection is composed almost exclusively of well-scaled problems, and ralph2

is the only problem that becomes unbounded for the initial penalty (with either initialization of
π). As a result, Dynamic does not differ significantly from Classic on this test set. We therefore
take a closer look at the performance of these methods on problems ralph2 and scale1 discussed
in Section 2. We believe that the results for these examples support the choice of Dynamic over
Classic for practical implementations.

Example 1 (ralph2), revisited. Figure 6(a) plots the complementarity measure (xjT
1 x

j
2) (con-

tinuous line) and the value of the penalty parameter πj (dashed line) for problem (2.9) (using a
log10 scale). The top figure corresponds to Classic and the bottom figure to Dynamic; both used
an initial penalty parameter of 1. Recall that π = 1 gives rise to an unbounded penalty problem.
The two algorithms perform identically up to iteration 4. At that point, the Dynamic algorithm
increases π, whereas the Classic algorithm never changes π, because it never solves the first barrier
problem. Classic fails on this problem, and complementarity grows without bound. ✷

Example 2 (scale1), revisited. Problem (2.11) requires π ≥ 200 so that the penalty problem re-
covers the solution of the MPCC. We again initialize Dynamic and Classic with π = 1. Figure 6(b)
plots the complementarity measure and the penalty parameter values for both implementations.
The two algorithms increase π three times (from 1 to 10, to 100, to 1000). While the Classic imple-
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mentation (top figure) is performing the third update of π, the Dynamic implementation (bottom
figure) has converged to the solution. The Dynamic algorithm detects earlier that complementarity
has stagnated (and is not sufficiently small) and takes corrective action by increasing π. Not all
plateaus mean that π needs to be changed, however, as we discuss next. ✷
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(a) Problem bard3.
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(b) Problem bilin.

Figure 7: Illustration of the Dynamic updating strategy.

To study in more detail the algorithm Dynamic, we consider two other problems, bard3 and
bilin, from the MacMPEC collection (we initialize the penalty parameter to 1, as before).

Example 3 (bard3). Figure 7(a) shows the results for problem bard3. The continuous line plots
x

jT
1 x

j
2, and the dashed-dotted line plots 0.9 times the maximum value of xiT

1 xi
2 over the last three

iterations. Note that the complementarity measure increases at the beginning and does not decrease
during the first 20 iterations. However, Dynamic does not increase the value of π (dashed line)
because the value of complementarity is small enough, compared to the threshold µ0.4 (dotted line).
This is the correct action because, if the algorithm increased π simply because the maximum value
of complementarity over the last three iterations is not decreasing, π would take on large values
that would slow the iteration and could even cause failure. ✷

Example 4 (bilin). A different behavior is observed for problem bilin; see Figure 7(b). The
value of complementarity (continuous line) not only lies above the line that plots 0.9 times the
maximum complementarity over the last three iterations (dashed-dotted line), but is also above the
line plotting (µj)0.4. Thus the penalty parameter is increased quickly (dashed line). The sufficient
reduction condition is satisfied at iteration 3 but is then again violated, so π is increased again,
until complementarity finally starts converging to zero. ✷

These results suggest that Dynamic constitutes an effective technique for handling the penalty
parameter in interior-penalty methods for MPCCs.

We conclude this section by commenting on some of the failures of our algorithms. All imple-
mentations converge to a C-stationary point for problem scale4 (which is a rescaling of problem
scholtes3). We find it interesting that convergence to C-stationary points is possible in practice
and is not simply allowed by the theory. We note that convergence to C-stationary points cannot
be ruled out for SQP methods, and in this sense interior-point methods are no less robust than
SQP methods applied to MPCCs. Another failure, discussed already, is problem ralph2 for the
algorithm Classic.
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The rest of the failures can be attributed to various forms of problem deficiencies beyond the
MPCC structure. All implementations have difficulties solving problems for which the minimizer is
not a strongly stationary point, that is, problems for which there are no multipliers at the solution.
This is the case in ex9.2.2, where our algorithms obtain good approximations of the solution but
the penalty parameter diverges, and for ralphmod, where our algorithms fail to find a stationary
point. These difficulties are not surprising because the algorithms strongly rely upon the existence
of multipliers at the solution. SQP methods also fail to find strongly stationary solutions to these
problems, and generate a sequence of multipliers that diverge to infinity.

Test problems in the groups incid-set∗, pack-rig∗ and pack-comp∗ include degenerate con-
straints other than those defining complementarity. Our implementations are able to solve most
of these problems, but the number of iterations is high, and the performance is very sensitive to
changes in the implementation. In some of these problems our algorithms have difficulty making
progress near the solution. Problem tap-09 has a rank-deficient constraint Jacobian that causes
difficulties for our algorithms. All of these point to the need for more general regularization schemes
for interior methods that can cope with both MPCCs and with other forms of degeneracy. This
topic is the subject of current investigation [15, 16].

6 Conclusions

Interior methods can be an efficient and robust tool for solving MPCCs, when appropriately com-
bined with a regularization scheme. In this article, we have studied an interior-penalty approach
and have carefully addressed issues related to efficiency and robustness. We have provided global
and local convergence analysis to support the interior-penalty methods proposed here. We have
also shown how to extend our global convergence results to interior methods based on the relaxation
approach described by [19, 21].

We have presented two practical implementations. The first algorithm, Classic, is more flexible
than the approach studied in [2, 17], which solves the penalty problem (2.1) with a fixed penalty
parameter and then updates π if necessary. The approach in [2, 17] has the advantage that it can
be used in combination with any off-the-shelf nonlinear programming solver; the disadvantage is
that it can be very wasteful in terms of iterations if the initial penalty parameter is not appropriate.
The second algorithm, Dynamic, improves on Classic by providing a more adaptive penalty update
strategy. This can be particularly important in dealing with unbounded penalty problems and also
yields an improvement in efficiency when the scaling of the problem complicates the detection of
complementarity violation. The numerical results presented in this paper are highly encouraging.
We plan to implement the penalty method for MPCCs in the knitro package, which will allow us
to solve large-scale MPCCs.

The penalty methods considered here are designed specifically for MPCCs. However, lack of
regularity other than that caused by complementarity constraints often occurs in practice, and a
more general class of interior-penalty methods for degenerate NLPs is the subject of current research
[15, 16]. Some of the techniques proposed here may be useful in that more general context.
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