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INTERIOR PENALTY PRECONDITIONERS

FOR MIXED FINITE ELEMENT APPROXIMATIONS

OF ELLIPTIC PROBLEMS

TORGEIR RUSTEN, PANAYOT S. VASSILEVSKI, AND RAGNAR WINTHER

Abstract. It is established that an interior penalty method applied to second-
order elliptic problems gives rise to a local operator which is spectrally equiv-
alent to the corresponding nonlocal operator arising from the mixed finite
element method. This relation can be utilized in order to construct precon-
ditioners for the discrete mixed system. As an example, a family of additive
Schwarz preconditioners for these systems is constructed. Numerical examples
which confirm the theoretical results are also presented.

1. Introduction

The purpose of this paper is to discuss the construction of preconditioners for the
discrete problems arising from mixed finite element discretizations of second-order
elliptic boundary value problems. In particular, we are interested in preconditioners
constructed by domain decomposition. The main observation made in this paper
is that, under suitable assumptions, there is a spectral equivalence between the
local operator which arises from the interior penalty method studied by Arnold [1]
and the corresponding nonlocal operator which is generated by the mixed method.
Hence, any reasonable preconditioner for the interior penalty operator is also a
suitable preconditioner for the corresponding mixed system. As an example of this
approach we will use the interior penalty method to generate additive Schwarz
preconditioners for the mixed system.

Let Ω ⊂ R2 be a bounded polygonal domain with boundary ∂Ω. For a given f ∈
L2(Ω) and a given measurable, symmetric, uniformly positive definite coefficient
matrix k = {ki,j(x)}2i,j=1 on Ω̄ we consider the second-order elliptic problem

−∇ · k∇p = f in Ω,
p = 0 on ∂Ω.

(1.1)

If the equation (1.1) is discretized by a conforming finite element method, a sym-
metric, positive definite discrete system is obtained. In order to design effective
iterative methods for these discrete elliptic systems, it is necessary to construct
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suitable preconditioners. If machines with a parallel architecture are to be used,
then domain decomposition preconditioners have proved to be very effective. These
preconditioners are constructed by utilizing decompositions of the solution space
into subspaces corresponding to a covering of Ω by a collection of subdomains. If
the subdomains are nonoverlapping, such that the subdomains define a coarse grid
on Ω, the complete preconditioner is defined from a composition of local problems
on each subdomain, proper continuity equations on the interior boundaries and a
suitable coarse global problem. For the discussion of nonoverlapping domain decom-
position methods for conforming finite element discretizations we refer to Bjørstad
and Widlund [6] and Bramble, Pasciak and Schatz [10, 9] and the recent survey
papers by Dryja, Smith and Widlund [20] and Xu [38]. The advantage of overlap-
ping domain decomposition methods, or Schwarz methods, is partly that there is
no need for continuity equations on the interior boundaries. Also, these methods
are more robust with respect to the choice of local solvers. Schwarz methods for
conforming finite element approximations are discussed by Lions [26], Dryja and
Widlund [19], Matsokin and Nepomnyaschikh [27], Dryja, Smith and Widlund [20]
and Xu [38].

The mixed finite element method for (1.1) can be derived from a system formu-
lation of the problem. By introducing the “velocity” u = −k∇p as a new variable,
we obtain the system

k−1u+∇p = 0,

∇ · u = f ·
When this system is discretized, using piecewise polynomial finite element spaces
with basis functions of local support, we obtain a linear system with a symmetric,
indefinite coefficient matrix of the form(

A B∗

B 0

)
.(1.2)

Here, A is weighted mass matrix, defined from k−1, while B and B∗ are matrix
representations of discrete analogs of the negative divergence and the gradient oper-
ators, respectively. In order to speed up the convergence of an iterative method for
(1.2), it is necessary to construct a preconditioner for the positive definite matrix
L ≡ BA−1B∗, i.e. the Schur complement (cf. §3 below). This operator is a discrete
analog of the second-order differential operator −∇·(k∇) which defines (1.1). How-
ever, a major difficulty with the approximation of this operator introduced by the
mixed method is that it is in general not a local operator, owing to the appearance
of the inverse of the mass matrix A. Also, if k is a nondiagonal matrix, the matrix
A cannot be easily inverted. In fact, even if k is diagonal, the matrix A can only be
easily inverted if special finite element spaces like the rectangular Raviart–Thomas
elements are chosen (cf. Ewing and Wheeler [22]).

The fact that the mixed method introduces a nonlocal approximation of the op-
erator −∇ · (k∇) has consequences for the design of preconditioners for the mixed
system. In particular, this is the case for a domain decomposition approach, since
certain discrete problems on the subdomains will be nonlocal. One way to over-
come this difficulty is to extend the discrete spaces where approximations of the
variables u and p are sought in order to localize the operator L. This is for example
done in the hybrid version of the mixed finite element method, where the conti-
nuity requirements on the discrete “velocity space” are relaxed at the expense of
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introducing Langrange multipliers on all the element edges. For a general discus-
sion of the hybrid mixed finite element method we refer to Brezzi and Fortin [15].
The development of domain decomposition preconditioners for the hybrid method
is discussed by Glowinski and Wheeler [25], Cowsar [16] and Cowsar, Mandel and
Wheeler [17].

In Rusten and Winther [32] an alternative to the standard hybrid version of
the mixed method is discussed, where the continuity requirements are only relaxed
on the edges of a coarse grid. This relaxation has the effect that the operator L
becomes local with respect to the elements of the coarse grid. In [32] this property
is used in order to define a nonoverlapping domain decomposition preconditioner
for the mixed finite element method.

In contrast to the approaches described above we shall in this paper not work with
any hybridization of the mixed finite element method. Instead of partly changing
the method in order to localize the operator L, we shall establish that this operator
is spectrally equivalent to the local operator which arises when the interior penalty
method of [1] is applied to the problem (1.1). Hence, the interior penalty method
can be used to construct preconditioners for L. Motivated by this fact, we shall an-
alyze a family of additive Schwarz preconditioners for the interior penalty method.
In this way we indirectly also develop a theory for additive Schwarz preconditioners
for the discrete systems obtained from the mixed finite element method.

The difference between our approach and the one taken in Cowsar [16] (cf., in
particular §7 of [16]) is that we do not relate the mixed approximation to a conform-
ing approximation. We should also mention that efficient multigrid preconditioners
for the mixed systems can be derived using the techniques developed by Bramble,
Pasciak and Xu [12] (cf. also Vassilevski and Wang [35, 36]).

In §2 we give a brief review of the mixed finite element method and state the
main assumptions that will be needed in later sections. A discussion of iterative
methods and preconditioning for discrete saddle point problems is given in §3. In
this section we also derive the spectral equivalence between the mixed method and
the interior penalty method. The results for the additive Schwarz preconditioner
are derived in §4. Finally, in §5 we present some numerical experiments.

2. Preliminaries

For any function space X the associated norm will be denoted by ‖ · ‖X . If
Hm(Ω) denotes the L2-based Sobolev space of order m on Ω, we introduce the
simpler notation ‖ · ‖m instead of ‖ · ‖Hm(Ω). Furthermore, ‖ · ‖m,Ω1 will be used to
denote ‖ · ‖Hm(Ω1) when Ω1 6= Ω.

In order to introduce the mixed formulation of the problem (1.1), the space
H(div; Ω) ≡

{
χ ∈ L2(Ω)2 : ∇ · χ ∈ L2(Ω)

}
is required. The norm on this space is

defined by

‖χ‖H(div;Ω) =
(
‖∇ · χ‖20 + ‖χ‖20

) 1
2 .

Using integration by parts and having in mind the boundary condition p = 0 on
∂Ω, one obtains the following mixed formulation of (1.1):

Find u ∈ H(div; Ω) and p ∈ L2(Ω) such that

a(u, χ) + b(χ, p) = 0 for all χ ∈ H(div; Ω),
b(u,w) = −(f, w) for all w ∈ L2(Ω)·(2.1)
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Here,

a(χ, ϕ) =

∫
Ω

k−1χ · ϕ dx,

b(χ,w) = −
∫

Ω

w∇ · χ dx,

(f, g) =

∫
Ω

fg dx.

We will also use the standard inner product (χ, ϕ) for functions χ and ϕ ∈ L2(Ω)2.
We consider a quasi-uniform family of triangulation T = Th of Ω into triangles

or rectangles, where h ∈ (0, 1] is a parameter which indicates the grid size, i.e.,
h is a characteristic diameter of the elements. An adequate approximation of the
problem (2.1) can then be obtained using piecewise polynomial finite element spaces
V = Vh ⊂ H(div; Ω) and W = Wh ⊂ L2(Ω) with respect to the triangulation Th.
The space of piecewise constants with respect to Th is denoted W c

h . We assume
that W c

h ⊂ Wh. Furthermore, throughout this paper the spaces Vh and Wh are
required to satisfy the Babuška–Brezzi condition, i.e., there is a positive constant
β0, independent of the mesh parameter h, such that

β0‖w‖L2(Ω) ≤ sup
χ∈Vh

b(χ,w)

‖χ‖H(div;Ω)
for all w ∈Wh.(2.2)

In fact, we shall below state two assumptions, (A-I) and (A-II), which will, in
particular, imply (2.2). Spaces that satisfy the stability condition (2.2) are proposed
by Raviart–Thomas [30] for triangular and rectangular elements, in Brezzi, Douglas,
Fortin and Marini [13], Brezzi, Douglas and Marini [14], Douglas and Wang [18]
and can be also found in the texts of Girault and Raviart [24] and Brezzi and Fortin
[15].

The finite element discretization of (2.1) then reads as follows: Find uh ∈ Vh

and ph ∈Wh such that

a(uh, χ) + b(χ, ph) = 0 for all χ ∈ Vh,
b(uh, w) = −(f, w) for all w ∈Wh.

(2.3)

This is a discrete linear system, and condition (2.2) implies, in particular, that the
solution is unique.

We introduce the following operators A = Ah : Vh → Vh defined by

(Ahχ, ϕ) = a(χ, ϕ) for all χ and ϕ ∈ Vh;

B = Bh : Vh →Wh defined by

(Bhχ,w) = b(χ,w) for all χ ∈ Vh, and all w ∈Wh;(2.4)

and B∗ = B∗h : Wh → Vh defined by

(B∗hw,χ) = b(χ,w) for all w ∈Wh and all χ ∈ Vh·

We observe that A is symmetric and positive definite and that B∗ is the adjoint of B
with respect to the L2-inner products on Vh and Wh. Furthermore, the operators
B and B∗ are discrete analogs of the negative divergence (−∇·) and the gradient
(∇) operators, respectively.
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The discrete problem (2.3) is a linear system of the following form:(
A B∗

B 0

)(
uh
ph

)
=

(
0
−Qf

)
.(2.5)

Here, Q = Qh is the L2– projection of L2(Ω) onto the finite element space Wh. Note
that there is no continuity requirement for the finite element functions in Wh across
the element boundaries of Th. In practice, one chooses the space Wh consisting of
discontinuous piecewise polynomials. In such cases it is clear that the projection
Qh is a local projection.

We observe that if L = Lh : Wh →Wh denotes the operator L = BA−1B∗, then
the solution ph of (2.5) solves the reduced system

Lph = Qf,

which has the unique solution ph = L−1Qf .
To be more specific, consider the following pair of spaces due to Raviart and

Thomas [30]. We denote byQr,s(D), r, s ≥ 0, the set of polynomials in two variables
of degree r in the first variable and of degree s in the second variable, restricted to
the given domain D. Also, Pr(D) denotes the set of polynomials of two variables of
total degree r restricted to D. Finally, let Pr(E), for a one–dimensional boundary
E, be the set of polynomials of one variable of degree r restricted to E. If r ≥
0 is fixed and Th defines a rectangular grid, the space Vh consists of piecewise
polynomials which for each T ∈ Th are in Qr+1,r(T )×Qr,r+1(T ), while Wh consists
of discontinuous functions in Qr,r(T ). On the other hand, if Th consists of triangles,

Vh consists of piecewise elements of Pr(T )2 ∪
{[

x1v̂0

x2v̂0

]}
, where v̂0 runs over the

homogeneous polynomials of degree r, while the elements of Wh are discontinuous
functions which are locally in Pr(T ). We observe that the requirement Vh ⊂
H(div; Ω) implies that the normal component χ · n of each χ ∈ Vh should be
continuous across every edge of Th. Here and elsewhere n is a given unit vector
normal to the given edge of the element. It is well known (cf. [30]) that the pairs of
spaces Vh and Wh constructed above satisfy the Babuška–Brezzi condition (2.2).
However, for the analysis below, more properties of these spaces are needed.

We stress that the analysis to follow is not restricted to the spaces defined above.
Also, with minor modifications it should apply to domains of higher than two
dimensions. What is important for the analysis is the validity of the assumptions
stated below.

Assumption (A-I). Each element χ ∈ Vh can be defined locally on the basis of
the following degrees of freedom:

∫
E

χ · nw dρ = FE(w), for all w|E , w ∈W (T ) and all edges E of T,∫
T

χ · ∇w dx = GT (∇w), for all w ∈W (T ).

(2.6)

Here, W (T ) and V(T ) denote the restrictions of the spaces Wh and Vh to any
element T ∈ Th, FE : L2(E) → R and GT : L2(T ) → R are given linear
functionals, while ρ denotes the arc length along E.

The assumption (A-I) will be needed in order to establish the spectral equivalence
given in Theorem 3.1 below.
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This assumption implies that there is a positive constant c, independent of h,
such that for any T ∈ Th∫

T

|χ|2 dx ≤ c
(
h
∑
E

‖FE‖2 + ‖GT ‖2
)
,(2.7)

where the sum is taken over all edges E of T . Furthermore, ‖ · ‖ denotes the norm
of FE and GT as linear functionals from L2(E) and L2(T ), respectively, to R. Note
that since w|E can be chosen from two different sides of each edge E, the stability
of the above procedure implies that the value of χ · n

∣∣
E

is specified solely on the
functionals FE , i.e., independently of GT . Also, from the continuity property of
χ · n across E it follows that if∫

E

χ · nw dρ = 0 for all w ∈W (T ),

then χ · n
∣∣
E
≡ 0.

Another consequence of the solvability of (2.6) is that the degrees of freedom of
the space {∇w : w ∈W (T )} are no more than the degrees of freedom of the space
V0(T ) ≡ {χ ∈ V(T ) : χ · n = 0 on the edges E of T}. Furthermore, there is a
constant c, independent of h and w, such that(∫

T

|∇w|2 dx
) 1

2

≤ c sup
χ∈V0(T )

∫
T χ · ∇w dx

‖χ‖0,T
(2.8)

for all w ∈W (T ).

Assumption (A-II). For any χ ∈ Vh its divergence, ∇ · χ is in Wh.

The assumptions (A-I) and (A-II) imply the Babuška–Brezzi condition (2.2). We
refer to [15] for this well-known result.

We remark that Theorem 3.1 below, which is proved by only using the main
assumption (A-I), implies a version of the Babuška–Brezzi condition in proper mesh-
dependent norms.

In order to carry out the construction of the additive Schwarz preconditioner
in §4 below, two extra technical assumptions will be needed. We will assume that
Ω̂ is a fixed convex, bounded, polygonal domain which is an extension of Ω. We
emphasize that the domain Ω̂ is only needed in theoretical arguments and does
not contribute to the construction of the computational method. Furthermore, if Ω
itself is convex we can take Ω̂ = Ω and the two assumptions below will be simplified.

An important tool in the construction of a Schwarz preconditioner is a proper
coarse grid.

Assumption (A-III). There exists a coarse family of quasi-uniform triangulations
TH of Ω, with characteristic diameter H > h, such that Th corresponds to a refine-
ment of TH . Furthermore, Th and TH can be extended to quasiuniform triangula-
tions T̂h and T̂H on Ω̂ with a corresponding refinement property.

Note that as a consequence of these extension properties we can define piecewise
polynomial spaces V̂h and Ŵh on Ω̂ such that Vh and Wh correspond to restrictions
of the extended spaces to the domain Ω.

We shall also assume V̂h and Ŵh are contained in higher-order piecewise polyno-

mial spaces V̂
1

h and Ŵ 1
h , which is a stable pair with respect to the Babuška–Brezzi
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condition (2.2), and such that the corresponding mixed method admits error esti-

mates of order h2 for solutions which are H2-regular on Ω̂. With respect to these

higher-order spaces on Ω̂ we define an operator B̂ = B̂h : V̂
1

h → Ŵ 1
h similar to the

definition of B above (cf. (2.4)). Furthermore, B̂∗ denotes the L2-adjoint of B̂. We

also let L̂ = B̂B̂∗, and Q̂ = Q̂h is the L2-projection of L2(Ω̂) onto Ŵ 1
h .

With this notation introduced the last assumption can be formulated precisely.

Assumption (A-IV). The spaces V̂h and Ŵh are contained in spaces of higher-

degree piecewise polynomials V̂
1

h and Ŵ 1
h which satisfy the assumptions (A-I) and

(A-II). Furthermore, if p̂ ∈ H2(Ω̂) ∩H1
0 (Ω̂) and p̂h = L̂−1Q̂(−∆)p̂, then

‖p̂− p̂h‖0,Ω̂ ≤ ch
2‖p̂‖2,Ω̂.

Here ∆ denotes the Laplace operator and the constant c is independent of h and
p̂.

Of the four assumptions given above, (A-III) can be satisfied by a proper con-
struction of the grid.

For the particular Raviart–Thomas spaces introduced above, depending on a
degree parameter r ≥ 0, the three other assumptions also hold. It is well known,

and easy to verify, that (A-II) is satisfied. Assumption (A-IV) holds with V̂
1

h = V̂h

and Ŵ 1
h = Ŵh if r ≥ 1 (cf. Falk and Osborn [23] or Brezzi and Fortin [15]).

Then, since the lowest-order Raviart–Thomas spaces (r = 0) are contained in any
higher-order space (e.g. r = 1), the assumption also holds when r = 0.

The verification of (A-I) is essentially done already by Raviart and Thomas [30].
For rectangular elements (2.6) takes the form∫

E

χ · nq dρ = FE(q), for all q ∈ Pr(E) and all edges E of T,∫
T

χ · q dx = GT (q), for all q ∈ Qr−1,r(T )×Qr,r−1(T ).

These equations specify 4(r + 1) + 2r(r + 1) = 2(r + 1)(r + 2) degrees of freedom
of χ ∈ V(T ), i.e., precisely the degrees of freedom in Qr+1,r(T ) × Qr,r+1(T ).
Similarly, for triangular Raviart–Thomas elements, (2.6) reads∫

E

χ · nq dρ = FE(q), for all q ∈ Pr(E) and all edges E of T,∫
T

χ · q dx = GT (q), for all q ∈ Pr−1(T )2.

These equations specify 3(r + 1) + r(r + 1) = (r + 1)(r + 3) degrees of freedom for

χ ∈ V(T ), which are exactly the degrees of freedom in Pr(T )2 ∪
{[

x1v̂0

x2v̂0

]}
where

v̂0 runs over the homogeneous polynomials of degree r.

3. The spectrally equivalent local operator

In the rest of this paper we will usually drop the subscript h which indicates
that for example operators or spaces depend on the fine grid Th, while dependence
on the coarse grid TH will be explicitly indicated. The analysis done in this section
only relies on the assumption (A-I).

Many different approaches have been suggested in order to construct iterative
methods for systems of the form (2.5). In our computations, presented below in
§5, we have used the minimum residual method, or the SYMLQ method, originally
proposed by Paige and Saunders [28] for general symmetric, indefinite problems.
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Alternative iterative methods for saddle point systems can e.g. be found in Bramble
and Pasciak [7], Bramble, Pasciak and Vassilev [11], Verfürth [37], Elman and
Golub [21], Queck [29], Bank, Welfert and Yserentant [5], Axelsson [2], Axelsson
and Vassilevski [3, 4].

The minimum residual method generates approximations of the solution of the
linear system in the Krylov space generated by the symmetric operator(

A B∗

B 0

)
defined on the product space V × W . Therefore, only actions of this operator
have to be computed during the iterations, and, owing to the symmetry of the
operator, short recurrence relations are obtained. The convergence rate of the
minimum residual method applied to systems of the form (2.5) will depend on
spectral properties of the positive definite operators A and L = BA−1B∗. If each
of these operators are well conditioned, and they are properly scaled relative to
each other, fast convergence of the iterative procedure can be guaranteed. For
discussions on the application of the minimum residual method to systems of the
form (2.5) we refer to Rusten and Winther [31, 32], Silvester and Wathen [33] and
Vassilevski and Lazarov [34].

By the assumptions on the coefficient matrix k it follows that there are positive
constants α0, α1 > 0 such that

α0I ≤ k−1(x) ≤ α1I for all x ∈ Ω,

where I denotes the 2×2 identity matrix. Hence, the operator A is well conditioned,
independent of h, in the sense that

α0(χ, χ) ≤ (Aχ, χ) ≤ α1(χ, χ) for all χ ∈ V.(3.1)

Therefore, the performance of the minimum residual method will essentially be
governed by the operator L = BA−1B∗, which we recall is a discrete, nonlocal
analog of the differential operator −∇ · (k∇). Furthermore, since A is spectrally
equivalent to the identity operator on V, L is spectrally equivalent to BB∗, which
is a nonlocal discrete analog of the negative Laplace operator.

The stability condition (2.2) will imply that

(BB∗w,w) = sup
χ∈V

(B∗w,χ)2

‖χ‖20
≥ sup
χ∈V

b(χ,w)2

‖χ‖2H(div;Ω)

≥ β2
0‖w‖20.

Hence, the smallest eigenvalue of BB∗ is bounded below, independent of h. How-
ever, since BB∗ is a discrete analog of the negative Laplace operator, the largest
eigenvalue will grow proportionally to h−2. Consequently, a preconditioner for BB∗

is necessary in order to obtain an efficient iterative method.
Following the ideas from [32], we introduce a positive definite operator N on W

and consider the preconditioned system(
A B∗

N−1B 0

)(
uh
ph

)
=

(
0

−N−1Qf

)
,(3.2)

which is equivalent to (2.5). Furthermore, the coefficient operator is symmetric
if the L2-inner product on W is replaced by (N ·, ·), and, if the preconditioner N
is chosen such that the condition number of N−1BB∗ is independent of h, the
minimum residual method applied to (3.2) converges with a rate independent of h.
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We remark that in order to compute the action of the coefficient matrix of (3.2) we
need to compute the action of N−1, while the action of N is never required.

We should emphasize here that every effective iterative method for the system
(2.5) requires a preconditioner for the operator L, or BB∗. Hence, our discussion
of preconditioners is not limited to the minimum residual method. For a discussion
of the relations between several of the suggested iterative methods for saddle point
problems we refer to Bramble and Pasciak [8].

The main purpose of the present paper is to construct a family of domain de-
composition preconditioners for the discrete Laplace operator BB∗, i.e., precondi-
tioners constructed by solving corresponding problems on overlapping subdomains.
However, if we apply this approach directly to the nonlocal operator BB∗, the sub-
domain problems will be nonlocal, which obviously is not desirable. However, we
will show below that BB∗ is spectrally equivalent to a local operator. This local
operator will then be used to define the preconditioners.

Let E denote the set of all edges of elements in T . For each edge E ∈ E let
n = nE(x) be a fixed unit vector normal to E, and for w ∈W let [w](x) = [w]E(x)
denote the jump of w, i.e.

[w](x) = w(x + 0n)− w(x− 0n).

Note, that by extending w by zero outside Ω, [w] is also defined on boundary edges.
We define the bilinear form A = Ah on W ×W by

A(w, φ) =
∑
T∈T

∫
T

∇w · ∇φ dx+
∑
E∈E

h−1

∫
E

[w][φ] dρ.

We observe that this bilinear form corresponds to the interior penalty discretization
of the negative Laplace operator with a homogeneous Dirichlet boundary condition
(cf. [1]). Note also that since the boundary of Ω is included in E , the form A is
positive definite on W . Furthermore, the bilinear form A, and hence the associated
operator, is local with respect to w and φ. For convenience, we will also let A
denote this associated operator on W , i.e., A : W 7→ W is the positive definite
operator

(Aw, φ) = A(w, φ) for all w, φ ∈W.
The following equivalence result will be established.

Theorem 3.1. There exists a positive constant γ0, independent of h, such that

γ−1
0 A(w,w) ≤ (B∗w,B∗w) ≤ γ0A(w,w) for all w ∈W.(3.3)

Proof. Let w ∈ W be given. We first establish the right inequality. To do this, we
let χ = −B∗w, use the definitions of B∗ and b(·, ·), and an integration by parts to
obtain

(B∗w,B∗w) =
∑
T∈T

∫
T

w∇ · χ dx = −
∑
T∈T

∫
T

χ · ∇w dx +
∑
E∈E

∫
E

χ · n[w] dρ.

Repeated use of the Cauchy-Schwarz inequality implies

∑
T∈T
−
∫
T

χ · ∇w dx ≤
∑
T∈T
‖χ‖0,T ‖∇w‖0,T ≤ ‖χ‖0

(∑
T∈T
‖∇w‖20,T

)1/2
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and ∑
E∈E

∫
E

χ · n[w] dρ ≤
∑
E∈E
‖χ · n‖0,E‖[w]‖0,E

≤
(∑
E∈E

h‖χ · n‖20,E

)1/2(∑
E∈E

h−1‖[w]‖20,E

)1/2

.

Furthermore, the inverse inequality h‖χ · n‖20,E ≤ c‖χ‖20,T , where E is an edge of
T , gives ∑

E∈E
h‖χ · n‖20,E ≤ c‖χ‖20.

Hence, since χ = −B∗w we have shown that there is a constant c, independent of
h, such that

‖B∗w‖20 ≤ c‖B∗w‖0A(w,w)1/2,

and this implies the right inequality of (3.3).
Next, we establish the left inequality of (3.3). First we bound the sum over the

elements, then the sum over the edges. Let T ∈ T be given. Note that by extending
elements of V0(T ) = {χ ∈ V(T ) : χ · n = 0 on ∂T} by zero outside T , this space
can be identified with a subspace of V. Using (2.8) and integration by parts, we
obtain

‖∇w‖0,T ≤ c sup
χ∈V0(T )

b(χ,w)

‖χ‖0,T
= c sup

χ∈V0(T )

(χ,B∗w)

‖χ‖0,T
≤ c ‖B∗w‖0,T

and the desired result follows by summing over the elements.
Finally, we bound the sum over the edges. By (2.6), for any given w ∈ W , we

can define χ ∈ V, element by element, such that∑
E∈E

∫
E

χ · n[v] dρ−
∑
T∈T

∫
T

χ · ∇v dx =
∑
E∈E

∫
E

[w][v] dρ for all v ∈W,

and (2.7) implies that

‖χ‖20 ≤ c
∑
E∈E

h

∫
E

[w]2 dρ.(3.4)

Using the definition of B∗, integration by parts, and the properties of χ, we obtain

−(B∗w,χ) = −b(χ,w) =
∑
E∈E

∫
E

[w]χ · n dρ−
∑
T∈T

∫
T

χ · ∇v dx =
∑
E∈E

∫
E

[w]2 dρ.

However, together with (3.4), this implies that

∑
E∈E

h−1

∫
E

[w]2 dρ ≤ c‖B∗w‖0

(∑
E∈E

h−1

∫
E

[w]2 dρ

) 1
2

,

and the desired result follows.

The mesh-dependent norm associated with the form A will be denoted | · |1,h,
i.e.,

|w|1,h =
√
A(w,w).
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Observe that Theorem 3.1 implies a Babuška–Brezzi condition of the form

γ−1
0 |w|1,h ≤ sup

χ∈ V

b(χ,w)

‖χ‖0
for all w ∈W.

Observe also that the proof of the theorem above only depends on assumption (A-

I). Hence, if (A-II)–(A-IV) hold, the proof also applies to the operator B̂∗ defined

from the spaces V̂
1

and Ŵ 1. In particular, the following corollary will be useful
below.

Corollary 3.1. Assume that the additional assumptions (A-II)–(A-IV) are satis-

fied. Let v ∈ W , and let v̂ ∈ Ŵ ⊂ Ŵ 1 be the extension of v by zero outside Ω.
Then the two norms

|v|1,h and ‖B̂∗v̂‖0,Ω̂
are equivalent, independently of h.

4. The additive Schwarz method

In the rest of this paper we assume that all the four assumptions (A-I)–(A-IV)
hold.

It follows from Theorem 3.1 above that the interior penalty method can be used
to construct effective preconditioners for the mixed system (2.5). As an application
of this result we shall in this section define and analyze an additive Schwarz pre-
conditioner based on the local form A. The analysis relies on the construction of a
specific coarse space WH . We remark that part of the analysis below is rather sim-
ilar to what is done in the analysis of Schwarz preconditioners for conforming finite
element methods. However, the analysis related to the coarse space, cf. Lemma 4.2
below, has additional difficulties caused by the nonconformity of the spaces.

Let {Ωj}Jj=1 be the elements of the coarse triangulation TH . By extending each
Ωj to a larger domain Ω′j , we obtain an overlapping covering of Ω. The domains
Ω′j are also assumed to be mesh domains, i.e., the boundaries consist of element
edges. We assume throughout the paper that there is a constant β1, independent
of H, such that

dist(∂Ω′j , ∂Ωj) ≥ β1H for j = 1, 2, . . . , J.(4.1)

This condition expresses that the overlap is sufficiently large. On the other hand, we
also need to limit the maximum number of overlaps. Let κj denote the characteristic

functions on Ω
′′

j , where Ω
′′

j is the union of Ω′j and all its neighbor elements in Th,
and let

κ =
J∑
j=1

κj .

We then assume that

sup
x∈Ω

κ(x) ≤ β2,(4.2)

where β2 is independent of H. In practice, β2 can usually be taken to be 4.
We define subspaces Wj of W by

Wj = {v ∈W : supp v ⊂ Ω
′
j} for j = 1, 2, . . . , J.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



458 TORGEIR RUSTEN, PANAYOT S. VASSILEVSKI, AND RAGNAR WINTHER

Furthermore, the projection of W onto Wj with respect to the form A is denoted
by Pj , i.e., Pj : W 7→Wj is determined by

A(Pjv, w) = A(v, w) for all w ∈Wj .

As is the case for conforming finite element methods, the construction of a Schwarz
preconditioner also requires a proper coarse space. Recall that W c denotes the
subspace of W consisting of piecewise constants with respect to T . Also, let SH ⊂
H1

0 (Ω) be the conforming finite element space associated with the triangulation TH
of piecewise linear (or bilinear) polynomials. The coarse space WH is defined by

WH = {Qcψ : ψ ∈ SH},
where Qc is the L2–projection onto the space W c. Furthermore, PH : W 7→ WH

is the projection onto WH with respect to the form A. Frequently below we will
write P0 instead of PH .

Let P = PH +
∑J
j=1 Pj =

∑J
j=0 Pj and define the preconditioner N−1 : W 7→W

by
N−1 = PA−1.

Then the action of N−1 can be computed by solving a global problem on WH and
a sequence of possible parallel local problems. Furthermore, the operator N−1A,
which essentially determines the convergence properties of the minimum residual
method, is equal to P .

The following result shows that the condition number of P is bounded indepen-
dently of h and H.

Theorem 4.1. There exists a positive constant γ1, independent of h and H, such
that

γ−1
1 A(v, v) ≤ A(Pv, v) ≤ γ1A(v, v) for all v ∈W.(4.3)

Proof. We first establish the upper bound of (4.3). First use the Cauchy–Schwarz
inequality

A(Pv, v) ≤ |Pv|1,h|v|1,h.(4.4)

Then, if we let κ0 ≡ 1, we obtain by the Cauchy–Schwarz inequality again

A(Pv, Pv) =
J∑

i,j=0

∑
T∈T

∫
T

∇Piv · ∇Pjv dx+
J∑

i,j=0

∑
E∈E

h−1

∫
E

[Piv][Pjv] dρ

≤
J∑

i,j=0

∑
T∈T

∫
T

κ2
j |∇Piv|2 dx+

J∑
i,j=0

∑
E∈E

h−1

∫
E

κ2
j [Piv]2 dρ

≤ (1 + β2)2
J∑
i=0

A(Piv, Piv) = (1 + β2)2A(Pv, v).

Together with inequality (4.4), this implies the desired uniform upper bound.
In order to show the lower bound of (4.3) we need two lemmas, which will be

established below.

Lemma 4.1. For any v ∈ W there exists a decomposition v =
∑J
j=1 vj , vj ∈ Wj,

satisfying

J∑
j=1

A(vj , vj) ≤ c(H−2‖v‖20 +A(v, v))(4.5)

for some positive constant c independent of h and H.
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Lemma 4.2. There exists a proper decomposition of any v ∈ W of the form v =
(v − vH) + vH where vH ∈WH satisfies the properties

‖v − vH‖0 ≤ cH|v|1,h(4.6)

and

|vH |1,h ≤ c|v|1,h,(4.7)

where the constant c is independent of h and H.

From these two lemmas the desired lower bound follows by standard arguments
(cf., e.g., Lions [26], Matsokin and Nepomnyaschikh [27] or Dryja and Widlund
[19]). By applying Lemma 4.2 to an arbitrary element v ∈W and thereafter using
the decomposition of Lemma 4.1 on the element v − vH , we obtain

v = vH +
J∑
j=1

vj ,

where vH ∈WH , vj ∈Wj and

A(vH , vH) +
J∑
j=1

A(vj , vj) ≤ A(vH , vH) + c(H−2‖v − vH‖20 +A(v − vH , v − vH))

≤ cA(v, v).

From the Cauchy–Schwarz inequality we then derive

A(v, v) = A(v, vH) +
J∑
j=1

A(v, vj)

= A(PHv, vH) +
J∑
j=1

A(Pjv, vj)

≤

A(vH , vH) +
J∑
j=1

A(vj , vj)

 1
2
 J∑
j=0

A(Pjv, v)

 1
2

≤ c(A(v, v))
1
2 (A(Pv, v))

1
2 .

This shows the lower bound of (4.3). In order to complete the proof of Theorem
4.1 we have to establish the Lemmas 4.1 and 4.2. This will be done below.

Proof of Lemma 4.1. Let v ∈ W be given. The desired decomposition of v is con-
structed by a standard argument which is similar to what is used for conforming
methods (cf. Dryja and Widlund [19] or Dryja, Smith and Widlund [20]). Because
of the properties of the covering {Ω′j}Jj=1 of Ω given above, there exists a partition

of unity of smooth functions on Ω, {θj}Jj=1, such that

J∑
j=1

θj = 1, 0 ≤ θj ≤ 1 in Ω;

supp θj ⊂ Ω
′
j ;

‖∇θj‖L∞(Ω) ≤ cH−1,(4.8)

where c is independent of H.
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Let Ih be a local interpolation operator defined for piecewise continuous functions
(with respect to the elements of T ) into the space W . Such an operator will have
the restriction property

Ih(v)|T = v|T if v ∈W (T ),(4.9)

and satisfy

‖Ih(f)‖L∞(T ) ≤ c ‖f‖L∞(T ),(4.10)

where the constant c is independent of h. We now define vj ∈Wj by vj = Ih(θjv).

From (4.9) it follows that v =
∑J
j=1 vj . Hence, it remains to establish the inequality

(4.5).
Define for convenience the sets of triangles Tj = {T ∈ T : T ⊂ Ω′j} and the

sets of edges Ej = {E ∈ E : E ⊂ Ω
′
j}. Since vj ∈Wj , we obviously have

A(vj , vj) =
∑
T∈Tj

∫
T

|∇vj |2 dx+
∑
E∈Ej

h−1

∫
E

[vj ]
2 dρ.

We estimate now each term in this expression separately. Let T ∈ Tj be fixed, and

let θ̂j be the average value of θj on T . We then have∫
T

|∇Ih(θjv)|2 dx ≤ 2

∫
T

|∇Ih((θj − θ̂j)v)|2 dx+ 2

∫
T

θ̂2
j |∇v|2 dx,

where we have used (4.9). From (4.10) we derive∫
T

|∇Ih((θj − θ̂j)v)|2 dx ≤ c‖Ih((θj − θ̂j)v)‖2L∞(T ) ≤ c‖(θj − θ̂j)v‖2L∞(T ).

Since, by the approximation property of the mean value and (4.8),

‖θj − θ̂j‖L∞(T ) ≤ ch‖∇θj‖L∞(T ) ≤ chH−1

and

‖v‖L∞(T ) ≤ ch−1‖v‖0,T ,

we obtain the local estimate∫
T

|∇vj |2 dx ≤ c(H−2‖v‖20,T +

∫
T

|∇v|2 dx).(4.11)

The edge integrals are estimated similarly. Let E ∈ Ej and let T+ and T− be the
two neighboring elements in T . By arguments similar to the ones given above we
easily establish

h−1

∫
E

[vj ]
2 dρ ≤ c(H−2‖v‖20,T+∪T− + h−1

∫
E

[v]2 dρ).(4.12)

The desired estimate (4.5) follows by summing up the local estimates (4.11) and
(4.12). For convenience we introduce the set T ′j = {T ∈ T : T is a neighboring ele-
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ment to E ∈ Ej}. We then have

J∑
j=1

A(vj , vj) ≤
J∑
j=1

∑
T∈Tj

∫
T

|∇vj |2 dx+
∑
E∈Ej

h−1

∫
E

[vj ]
2 dρ


≤ c

J∑
j=1

∑
T∈T ′

j

(H−2‖v‖20,T +

∫
T

|∇v|2 dx) +
∑
E∈Ej

h−1

∫
E

[v]2 dρ


≤ c(H−2‖v‖20 +A(v, v)).

Here the final constant c is independent of h and H, but it depends on the number
of overlaps β2.

Proof of Lemma 4.2. Let ŜH ⊂ H1
0 (Ω̂) be the conforming finite element space as-

sociated with the triangulation T̂H of piecewise linear (or bilinear) polynomials.
Hence, by extending elements of SH by zero outside Ω, SH can be identified with
a subspace of ŜH . Let Ẑ be the set of interior nodes corresponding to the triangu-
lation T̂H , and let {ψz}z∈Ẑ be the corresponding nodal basis of ŜH such that any

φ ∈ ŜH has the representation

φ(x) =
∑
z∈Ẑ

φ(z)ψz(x).

If Z ⊂ Ẑ denotes the set of interior nodal points in TH , we define a “restriction
map” RH : ŜH 7→ SH by

(RHφ)(x) =
∑
z∈Z

φ(z)ψz(x).

By utilizing the equivalence between the L2-norm and the discrete normH2
∑
z∈Ẑ

φ2(z)

1/2

on ŜH , we obtain the estimate

‖φ−RHφ‖0,Ω̂ ≤ c‖φ‖0,Ω̂\Ω,(4.13)

which will be useful below. By a similar equivalence between the H1(Ω̂) norm and
a corresponding discrete finite difference norm obtained from the nodal values we
also obtain

‖RHφ‖1 ≤ c(‖φ‖1,Ω̂ +H−1‖φ‖0,Ω̂\Ω).(4.14)

We introduce the L2-projection of L2(Ω̂) into ŜH which will be denoted by Q̂H .
Let v ∈ W be given. In order to define the desired element vH ∈ WH , we first

let v̂ ∈ Ŵ ⊂ Ŵ 1 be the extension of v by zero outside Ω. Recall that L̂ = B̂B̂∗ :
Ŵ 1 7→ Ŵ 1 is an approximation of the negative Laplace operator on Ω̂. Note, in
particular, that it follows from Corollary 3.1 that

‖B̂∗v̂‖0,Ω̂ ≤ c|v|1,h(4.15)

and hence, by an inverse inequality,

‖L̂v̂‖0,Ω̂ ≤ ch
−1|v|1,h.(4.16)

Here the constant c is independent of h.
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Since Ω̂ is convex and L̂v̂ ∈ L2(Ω̂), it follows from elliptic regularity that there

is a unique p̂ ∈ H2(Ω̂) ∩H1
0 (Ω̂) such that

−∆p̂ = L̂v̂ in Ω̂.(4.17)

Furthermore, from (4.16) we derive that there is a constant c independent of h such
that

‖p̂‖2,Ω̂ ≤ ch
−1|v|1,h.(4.18)

By multiplying (4.17) by p̂ and utilizing that L̂v̂ = ∇ · (B̂∗v̂), we also obtain from
(4.15) that

‖∇p̂‖0,Ω̂ ≤ c|v|1,h.(4.19)

Note that it follows from (4.17) that v̂ = L̂−1Q̂(−∆)p̂. Hence, by assumption
(A-IV) and (4.18),

‖v̂ − p̂‖0,Ω̂ ≤ ch
2‖p̂‖2,Ω̂ ≤ ch|v|1,h.

Then we also get the estimates in the subdomains Ω and Ω̂ \ Ω,

‖v − p̂‖0,Ω ≤ ch|v|1,h,(4.20)

and, since v̂ = 0 outside Ω,

‖p̂‖0,Ω̂\Ω ≤ ch|v|1,h.

Define now vH = QcRHQ̂H p̂. In order to derive the proper estimates for ‖v− vH‖0
and |vH |1,h, we first observe that it follows from (4.19) and the approximation

property of ŜH that

(4.21) ‖Q̂H p̂‖0,Ω̂\Ω ≤ c(‖p̂‖0,Ω̂\Ω + ‖(I − Q̂H)p̂‖0,Ω̂\Ω)

≤ c(‖p̂‖0,Ω̂\Ω +H‖∇p̂‖0,Ω̂) ≤ c(h+H)|v|1,h ≤ cH|v|1,h,

where c is independent of h and H. Hence, we derive from (4.13) and (4.14), and

by using the approximation property of ŜH and (4.19) once more, that

‖p̂− vH‖0 ≤ ‖p̂− Q̂H p̂‖0,Ω̂ + ‖(I −RH)Q̂H p̂‖0,Ω̂ + ‖(I −Qc)RHQ̂H p̂‖0
≤ c(H‖∇p̂‖0,Ω̂ + ‖Q̂H p̂‖0,Ω̂\Ω)

≤ cH|v|1,h.

However, together with (4.20) this implies the estimate (4.6).
Finally, we have to show (4.7), i.e.,

|vH |1,h = |QcRHQ̂H p̂|1,h ≤ c|v|1,h.

From (4.14), (4.19), (4.21) and the fact that Q̂H is uniformly bounded in H1 it
follows that

‖RHQ̂H p̂‖1 ≤ c(‖Q̂H p̂‖1,Ω̂ +H−1‖Q̂H p̂‖0,Ω̂\Ω) ≤ c|v|1,h.

Therefore, it is enough to show that

|Qcφ|1,h ≤ c‖φ‖1,(4.22)
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for any φ ∈ SH . However, from the quasi-uniformity of Th, and since Qcφ is
piecewise constant, we have

|Qcφ|21,h =
∑
E∈E

h−1

∫
E

[Qcφ]2 dρ ≤ c
∑
E∈E

[Qcφ]2.

Furthermore, for any E ∈ E and any φ ∈ SH we obtain, by adding and subtracting
values of φ on E,

[Qcφ]2 ≤ ch−4(

∫
T+

φ(x) dx−
∫
T−

φ(x) dx)2 ≤ ch−4(

∫
T+∪T−

e(x) · ∇φ(x) dx)2,

where |e(x)| is the distance from x to E and T+ and T− are the two neighboring
elements sharing E as a common boundary. Since∫

T+∪T−
|e(x)|2 dx ≤ ch4,

we obtain from the Cauchy–Schwarz inequality that

[Qcφ]2 ≤ c
∫
T+∪T−

|∇φ|2 dx,

and hence (4.22) is obtained by summing this inequality over all E ∈ E . This
completes the proof of Lemma 4.2.

5. Numerical results

The purpose of this section is to present some results of numerical experiments
which seem to conform the theoretical results derived in this paper.

Throughout this section Ω will be taken to be the unit square, (0, 1) × (0, 1).
Furthermore, the spaces V and W will be the rectangular Raviart-Thomas spaces
of order zero. The triangulations Th and TH are uniform and consist of rectangles
of size h×h and H ×H, respectively, while the overlapping domains Ω′j are of size
2H.

In the examples below we will apply the preconditioned minimum residual meth-
od to the discrete system (2.5). The additive Schwarz preconditioner N is con-
structed as indicated in §4 above. In particular, we shall be interested in the
number of iterations required to reach the tolerance

‖rk‖/‖r0‖ ≤ 10−4,(5.1)

and the condition number of the operator N−1BB∗. Here, rk is the residual in
iteration k and, with rk = (χ,w),

‖rk‖ = (‖χ‖20 + (Nw,w))1/2.

Example 5.1. In the first example we choose k = I, where I is the 2× 2 identity
matrix, and f = 1. In this case α0 = α1 = 1 in the inequalities (3.1). In Table 1
(next page) we list the number of iterations needed to reach the tolerance (5.1)
for different choices of h and H. Also, an estimate of the condition number of the
operator N−1BB∗ is given in parentheses. The condition numbers are estimated
using the conjugate gradient method. The table indicates clearly that the condition
number of N−1BB∗ is bounded independently of h and H. In fact, the eigenvalues
of the operator N−1BB∗ are contained in the interval [0.95, 4], hence we expect
that the number of iterations of the preconditioned minimum residual method is
uniformly bounded. The iteration counts in Table 1 confirm that this is the case.
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Table 1. Iteration counts and condition numbers for Example 5.1

h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128

H = 1/4 14 (4.0) 16 (4.0) 18 (4.0) 16 (4.0) 16 (4.1)
H = 1/8 14 (3.7) 14 (4.0) 16 (4.0) 16 (4.0)
H = 1/16 12 (4.0) 14 (4.0) 14 (4.0)
H = 1/32 12 (3.7) 12 (4.0)

Table 2. Iteration counts for Example 5.2

h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128

H = 1/4 70 84 90 92 92
H = 1/8 85 91 93 94
H = 1/16 90 96 97
H = 1/32 93 95

Example 5.2. In the second example we choose

k(x) =

(
1 + 4(x2

1 + x2
2) 3x1x2

3x1x2 1 + 11(x2
1 + x2

2)

)
.

Here the inequalities (3.1) hold with α0 = 1 and α1 = 25. We use the same precon-
ditioner as in Example 5.1. Hence, we do not take the variation of k into account
in the construction of the preconditioner. We observe that the preconditioned min-
imum residual method requires more iterations to converge, cf. Table 2. However,
the number of iterations still seems to be uniformly bounded. We remark that
the actual number of iterations would be reduced if the variable coefficient k was
included in the preconditioner.
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