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Abstract

The nuclear norm (sum of singular values) of a matrix is often used in convex heuristics for
rank minimization problems in control, signal processing, and statistics. Such heuristics can be
viewed as extensions of ℓ1-norm minimization techniques for cardinality minimization and sparse
signal estimation. In this paper we consider the problem of minimizing the nuclear norm of an
affine matrix valued function. This problem can be formulated as a semidefinite program, but
the reformulation requires large auxiliary matrix variables, and is expensive to solve by general-
purpose interior-point solvers. We show that problem structure in the semidefinite programming
formulation can be exploited to develop more efficient implementations of interior-point methods.
In the fast implementation, the cost per iteration is reduced to a quartic function of the problem
dimensions, and is comparable to the cost of solving the approximation problem in Frobenius
norm. In the second part of the paper, the nuclear norm approximation algorithm is applied to
system identification. A variant of a simple subspace algorithm is presented, in which low-rank
matrix approximations are computed via nuclear norm minimization instead of the singular
value decomposition. This has the important advantage of preserving linear matrix structure
in the low-rank approximation. The method is shown to perform well on publicly available
benchmark data.

1 Introduction

We discuss the implementation of interior-point algorithms for the nuclear norm approximation
problem

minimize ‖A(x) − B‖∗. (1)

In this problem B ∈ Rp×q is a given matrix,

A(x) = x1A1 + x2A2 + · · · + xnAn

is a linear mapping from Rn to Rp×q, and ‖ · ‖∗ denotes the nuclear norm on Rp×q. (‖X‖∗ is
the sum of the singular values of X, and is also known as the trace norm, the Ky Fan norm, and
the Schatten norm.) The techniques discussed in this paper also apply to problems with an added
convex quadratic term in the objective,

minimize ‖A(x) − B‖∗ + (x − x0)
T Q(x − x0), (2)
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and nuclear norm approximation problems with convex constraints. However, we will limit most
of the discussion to the unconstrained linear approximation problem for the sake of clarity.

The nuclear norm approximation problem is of interest as a convex heuristic for the rank min-
imization problem

minimize rank(A(x) − B),

which is NP-hard in general. The convex nuclear norm heuristic was proposed by Fazel, Hindi,
and Boyd [FHB01], and is motivated by the observation that the residual A(x)−B at the optimal
solution of (1) typically has low rank. This idea is very useful for a variety of applications in
control and system theory, including model reduction, minimum order control synthesis, and system
identification; see [FHB01, Faz02, FHB04, RFP07]. An important special case is the minimum-
rank matrix completion problem, which arises in machine learning [Sre04] and computer vision
[TK92, MK97]. In this problem the variables x are the nonzero entries of a sparse matrix A(x); the
matrix B has the complementary sparsity pattern and contains the fixed entries in the completion
problem. Another special case is nonnegative factorization, the problem of approximating a matrix
by a nonnegative matrix of low rank. This problem arises in data mining [Eld07, §9.2].

The nuclear norm of a diagonal matrix is the ℓ1-norm of the vector formed by its diagonal
elements: ‖diag(u)‖∗ = ‖u‖1 for a vector u. The role of the nuclear norm in convex heuristics for
rank minimization therefore parallels the use of the ℓ1-norm in sparse approximation or cardinality
minimization [Tib96, HTF01, CDS01, Don06, CT05, CRT06b, CRT06a, Tro06]. The renewed
interest in nuclear norm minimization is motivated by the remarkable success of ℓ1-norm techniques
in practice, and by theoretical results that characterize the possibility of exact recovery of sparse
signals by ℓ1-norm methods [Don06, CT05, CRT06b, CRT06a, Tro06]. Parts of this theoretical
analysis have recently been extended to nuclear norm methods, providing conditions for exact
recovery of low-rank matrices via nuclear norm optimization [RFP07, CR08, RXH08, CT09, CP09].

Algorithms for nuclear norm approximation This paper is concerned with numerical meth-
ods for problem (1), and for extensions of this problem that include convex contraints or regularized
objectives as in (2). It is well known that the nuclear norm approximation problem can be cast as
a semidefinite program (SDP)

minimize (trU + trV )/2

subject to

[

U (A(x) − B)T

A(x) − B V

]

� 0,
(3)

with variables x ∈ Rn, U ∈ Sq, V ∈ Sp [FHB01]. (We use Sn to denote the set of symmetric
matrices of order n.) It can therefore be solved by interior-point methods available in general-
purpose software for semidefinite programming [Stu99, TTT03, BY05b, YFK03, Bor99]. Interior-
point methods offer fast convergence (typically 10-50 iterations), robust performance across different
problem instances, and high accuracy. However, the memory requirements and the volume of
computation per iteration are often high. The SDP (3) has n + p(p + 1)/2 + q(q + 1)/2 variables
and is very difficult to solve by general-purpose solvers, if p and q approach 100. This difficulty
has limited the adoption of nuclear norm methods for rank minimization in practice. The main
contribution of this paper is to describe a more efficient interior-point method that exploits the
problem structure in (3), and is capable of solving problems with dimensions p, q on the order of
several hundred.
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Again, the parallel with ℓ1-norm optimization is instructive. The vector counterpart of prob-
lem (1) is the ℓ1-norm approximation problem

minimize ‖Px − q‖1. (4)

This problem can be solved as a linear program (LP)

minimize 1T y
subject to −y � Px − q � y,

(5)

where y is an auxiliary vector variable. Although the LP formulation requires the introduction of
a large number of extra variables, it can be shown that the cost of solving the LP by an interior-
point method is comparable to the cost of solving the least-squares counterpart, i.e., to minimizing
‖Px − q‖2. To see why, note that an interior-point algorithm typically requires 10–50 iterations,
almost independent of the problem size. Each iteration of an interior-point method applied to (5)
reduces to solving a set of linear equations

P T DP∆x = r

where D is a positive diagonal matrix with values that change at each iteration [BV04, p. 617]. This
means that the cost per iteration of a custom interior-point method for solving (4) is roughly equal
to the cost of solving a weighted least-squares problem with coefficient matrix P . In this paper we
establish a similar result for nuclear norm approximation. By exploiting problem structure in the
SDP (3), we show that the complexity of an interior-point method can be reduced to O(pqn2) per
iteration, if n ≥ max{p, q}. This is comparable to solving the norm approximation problem in the
least-squares sense, i.e., to minimizing ‖A(x) − B‖F .

As an alternative to interior-point methods one can consider methods that solve problem (1)
directly without requiring the SDP formulation. The cost function f(x) = ‖A(x) − B‖∗ is nondif-
ferentiable and convex, and can be minimized by the subgradient method [Sho85]. A subgradient of
f can be computed from the singular value decomposition (SVD) [RFP07]. Let A(x)−B = PΣQT

be the singular value decomposition of A(x) − B, with P ∈ Rp×r, Σ ∈ Rr×r, and Q ∈ Rq×r,
where r is the rank of A(x) − B. Then Aadj(PQT ) is a subgradient of f at x (Aadj is the adjoint
mapping of A). Since the main computation in each iteration in the subgradient method involves
one singular value decomposition, the time per iteration is lower, and grows more slowly with the
problem dimensions, than one iteration of the interior-point method. However, the convergence
of the subgradient method is often very slow, and the number of iterations to reach an accurate
solution varies widely, depending on the problem data and step size rule.

Another possibility is to replace the cost function with a smooth approximation and then
minimize the smooth approximation by a fast gradient method [Nes04, Nes05, Tse08]. For example,
a smooth approximation of the function ‖X‖∗ is obtained by taking the SVD, X =

∑r
i=1 σiuiv

T
i ,

replacing the singular values with

hµ(σi) =

{

σ2
i /(2µ) σi ≤ µ

σi − µ/2 σi > µ

where µ is a small positive parameter, and defining fµ(X) =
∑r

i=1 hµ(σi)uiv
T
i . It can be shown

that

fµ(X) = sup
‖Y ‖≤1

(

tr(Y T X) −
µ

2
‖Y ‖2

F

)

, (6)
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where ‖Y ‖ denotes the standard matrix norm, i.e., the maximum singular value of Y , and ‖Y ‖F

is the Frobenius norm. Therefore fµ is convex and differentiable, and its gradient is Lipschitz
continuous with constant 1/µ [HUL93, p.121]. This method applies to much larger problems than
the interior-point method, but is less accurate (see section 5).

Several algorithms have been proposed for the related problem

minimize ‖X‖∗
subject to F(X) = g,

(7)

where F is a linear mapping from Rp×q to Rm, and the optimization variable is X ∈ Rp×q. One
interesting approach is to use a factored parametrization X = LRT where L ∈ Rp×r and R ∈ Rq×r.
It can be shown that for sufficiently large r, minimizing (‖L‖2

F + ‖R‖2
F )/2 subject to F(LRT ) = g,

is equivalent to problem (7) [RFP07]. Thus the problem is transformed to a smooth, nonconvex
optimization problem. This method can be very effective if the rank of the optimal X is small.
However it is not guaranteed to find the global optimum.

Recently, a new class of first-order algorithms for the nuclear norm minimization problem (7)
has been proposed, extending Bregman iterative algorithms for large-scale ℓ1-norm minimization
[MGC, CCS08]. Again each iteration involves a singular value decomposition of X. The complexity
can be further reduced by using an approximate or partial SVD. Although these algorithms were
primarily developed for the low rank matrix completion problem, they also apply to the general
problem (7), and are particularly attractive if F and its adjoint are easily evaluated.

Our focus on interior-point methods can be explained by the applications in system identifi-
cation that motivated this work. While the optimization problems arising in this context are too
large for general purpose SDP solvers, they are still orders of magnitude smaller than the machine
learning applications that have inspired the recent work on first-order methods. As mentioned
earlier, interior-point methods offer high accuracy and robust performance across different problem
instances. (In particular, we will note that high accuracy is important if the results of the opti-
mization are used for model order selection.) Moreover they readily handle variations on the basic
problem format (1), including problems with general convex constraints. As we will see, the capa-
bilities of the specialized interior-point method described in the paper are sufficient to investigate
the effectiveness of the nuclear norm heuristic in system identification, an area where it has not
been widely investigated due to lack of adequate software.

Applications to system identification As a second contribution, we propose and test a sub-
space identification algorithm based on quadratically regularized nuclear norm minimization. This
approach has important advantages over standard techniques based on the singular value decompo-
sition, because it preserves linear (Hankel) structure in low rank approximations. Experiments on
benchmark data sets indicate that the identification method based on nuclear norm minimization
is competitive with existing subspace identification methods in terms of accuracy, and that it can
greatly simplify the selection of the model order.

Outline The paper is organized as follows. In section 2 we review some background on semidefi-
nite programming. In section 3.1 we review different semidefinite programming formulations of the
nuclear norm approximation problem and give the cost of solving them via general-purpose SDP
solvers. Section 3.2 contains the main result in the paper. We show how standard interior-point
methods for semidefinite programming can be customized to solve the nuclear norm approximation
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problem much more efficiently than by general-purpose methods. In section 4 we give numerical ex-
periments that illustrate the effectiveness of the method. Section 5 describes in detail applications
in system identification.

2 Semidefinite programming

This short section provides some necessary background on semidefinite programming.
The following optimization problems are Lagrange duals:

(P) minimize tr(CX)
subject to G(X) = h

X � 0,

(D) maximize hT z
subject to Gadj(z) � C.

(8)

The variable in the primal problem is a symmetric matrix X ∈ Sn, and the variable in the dual
problem is a vector z ∈ Rm. The coefficients in the cost functions are C ∈ Sn and h ∈ Rm. G is a
linear mapping from Sn to Rm, and Gadj is the adjoint of G, i.e., it satisfies uTG(V ) = tr(Gadj(u)V )
for all u ∈ Rm, V ∈ Sn. The inequalities denote matrix inequalities. The primal problem is often
called an SDP in standard form, and the dual problem an SDP in inequality form.

The most popular methods for solving SDPs are the primal-dual interior-point algorithms. To
estimate the cost of solving the SDPs (8) by a primal-dual interior-point algorithm of the type used
in the popular solvers [Stu99, TTT03], it is sufficient to know that the number of iterations of an
interior-point method is relatively small (usually less than 50) and grows slowly with problem size.
Each iteration requires the solution of a set of linear equations

−T−1∆XT−1 + Gadj(∆z) = R, G(∆X) = r

where T ≻ 0. The values of T and the righthand sides R, r change at each iteration. These equations
can be interpreted as linearizations of the nonlinear equations that characterize the primal and dual
central paths, and are therefore often referred to as the Newton equations.

The Newton equations are solved by eliminating ∆X from the first equation, and then solving

G(TGadj(∆z)T ) = r + G(TRT ) (9)

This is a positive definite set of equations of order m. It can be solved via a Cholesky factorization
if we first express the left hand side as a matrix-vector product H∆z. The cost is O(m3), plus the
cost of computing H. The latter part depends on the structure of G, and often exceeds the cost
of the Cholesky factorization. General-purpose software packages require that G is expressed as a
vector of inner products

G(X) = (tr(G1X), tr(G2X), . . . , tr(GmX)) . (10)

In this case, the elements of H are given by

Hij = tr(GiTGjT ), i, j = 1, . . . , m. (11)

If no sparsity in the matrices Gi is exploited, this requires O(max{mn3, m2n2}) operations, since
each matrix product GiT requires O(n3) operations, and the m2 inner products of tr(GiTGjT )
cost O(n2) each.
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3 Nuclear norm optimization via semidefinite programming

In this section we first present several semidefinite programming formulations of the nuclear norm
approximation problem (1) and examine the cost of solving the problem by general-purpose semidef-
inite programming solvers. Then we investigate the possibility of a more efficient interior-point
method implementation by exploiting the problem structure.

3.1 Standard interior-point method implementation

We already mentioned that problem (1) is equivalent to an SDP (3). This is an SDP in inequality
form, with p(p + 1)/2 + q(q + 1)/2 + n variables. Its dual is the standard form SDP

maximize tr(BT Z21)
subject to Aadj(Z21) = 0

Z11 = I
Z22 = I

Z =

[

Z11 ZT
21

Z21 Z22

]

� 0

(12)

with variable Z. The mapping Aadj : Rp×q → Rn is the adjoint of A with respect to the inner
product 〈X, Y 〉 = tr(XT Y ) on Rp×q:

Aadj(Y ) =
(

tr(AT
1 Y ), tr(AT

2 Y ), . . . , tr(AT
nY )

)

.

The large number of primal variables makes the pair of SDPs (3) and (12) very expensive to solve by
general-purpose software. If we assume for simplicity that p = O(n), q = O(n), then the complexity
per iteration grows at least as fast as O(n6), since every iteration involves the solution of a dense
set of linear equations of the same order as the number of variables.

Alternatively, we can start from the dual of the norm approximation problem (1):

maximize tr(BT Z)
subject to Aadj(Z) = 0

‖Z‖ ≤ 1.
(13)

The variable is Z ∈ Rp×q, and ‖Z‖ denotes the standard matrix norm, i.e., the maximum singular
value of Z. Problem (13) can be written as an inequality form SDP with linear equality constraints

maximize tr(BT Z)

subject to

[

I ZT

Z I

]

� 0

Aadj(Z) = 0.

(14)

The dual of this SDP gives (3), expressed as a standard form SDP with free variables,

minimize (trX)/2
subject to X21 −A(x) = −B

X =

[

X11 XT
21

X21 X22

]

� 0.
(15)
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We have pq variables in (14), which is less than the number of variables in (3). The second
formulation is therefore recommended when using a general-purpose solver. Nevertheless the cost
per iteration of a general-purpose method applied to this pair of problems is still very high. If we
assume that p = O(n), q = O(n), then the number of variables is still O(n2), and the complexity
per iteration grows at least as O(n6).

3.2 Custom interior-point method implementation

We now discuss the possibility of customizing an interior-point method to solve the SDP (3) more
efficiently than by general-purpose solvers. We assume that A has zero nullspace (i.e., the coefficient
matrices Ai are linearly independent) and that p ≥ q (since otherwise we can minimize ‖A(x)T −
BT ‖∗).

The key step in each iteration of an interior-point method based on primal or dual scaling
directions, or on the Nesterov-Todd primal-dual scaling direction [NT97, TTT98], is the solution
of a set of linear equations

Aadj(∆Z) = r,

[

∆U A(∆x)T

A(∆x) ∆V

]

+ T

[

0 ∆ZT

∆Z 0

]

T = R (16)

to compute search directions ∆x, ∆U , ∆V , ∆Z. The matrices

T =

[

T11 T T
21

T21 T22

]

∈ Sp+q, R =

[

R11 RT
21

R21 R22

]

∈ Sp+q,

and the vector r ∈ Rn are given, with T11 ∈ Sq, R11 ∈ Sq. The matrix T is positive definite.
It is clear that if we know ∆Z and ∆x in (16), then ∆U and ∆V follow from

∆U = R11 − T11∆ZT T21 − T T
21∆ZT11, ∆V = R22 − T21∆ZT T22 − T22∆ZT T

21. (17)

We can therefore focus on the reduced equations

Aadj(∆Z) = r, A(∆x) + T22∆ZT11 + T21∆ZT T21 = R21, (18)

with variables ∆x ∈ Rn, ∆Z ∈ Rp×q. To simplify (18), we start by computing a block-diagonal
congruence transformation that reduces the four blocks of T to diagonal form:

[

W1 0
0 W2

] [

T11 T T
21

T21 T22

] [

W T
1 0

0 W T
2

]

=

[

I ΣT

Σ I

]

, Σ =

[

diag(σ1, . . . , σq)
0

]

with 0 ≤ σk < 1, k = 1, . . . , q. The matrices W1 and W2 can be computed as

W1 = QT L−1
1 , W2 = P T L−1

2 ,

where L1 and L2 are Cholesky factors of T11 = L1L
T
1 and T22 = L2L

T
2 , and the orthogonal

matrices P ∈ Rp×p, Q ∈ Rq×q and the diagonal matrix Σ ∈ Rp×q follow from the singular value
decomposition

L−1
2 T21L

−T
1 = PΣQT .
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If we now define ∆Z̃ = W−T
2 ∆ZW−1

1 , Ã(·) = W2A(·)W T
1 , and R̃21 = W2R21W

T
1 , then the equa-

tions (18) reduce to

Ãadj(∆Z̃) = r, Ã(∆x) + ∆Z̃ + Σ∆Z̃T Σ = R̃21. (19)

This has the same form as (18), but with T11 and T22 replaced with identity matrices, and T21 with
a positive diagonal matrix. It is important to note that the singular values σk are less than one, as
a consequence of the positive definiteness of T .

The diagonal structure in (19) makes it easy to eliminate ∆Z̃. To see this, consider the mapping

S : Rp×q → Rp×q, S(X) = X + ΣXT Σ.

The mapping S is self-adjoint and positive definite, and can be factored as

S(X) = L(Ladj(X)), (20)

where L : Rp×q → Rp×q is defined by

L(X)ij =















√

1 − σ2
i σ

2
j Xij + σiσjXji i < j

√

1 + σ2
i Xii i = j

Xij i > j,

and its adjoint Ladj : Rp×q → Rp×q by

Ladj(X)ij =























Xij i > q
Xij + σiσjXji q ≥ i > j
√

1 + σ2
i Xii i = j

√

1 − σ2
i σ

2
j Xij i < j.

Note that L is lower-triangular when represented as a pq×pq matrix that maps vec(X) (the matrix
X stored in column major order as a pq-vector) to vec(L(X)). The factorization (20) can therefore
be interpreted as a Cholesky factorization of S. The inverse mappings of L and its adjoint are

L−1(X)ij =















(Xij − σiσjXji)/
√

1 − σ2
i σ

2
j i < j

Xii/
√

1 + σ2
i i = j

Xij i > j

and

L−1
adj(X)ij =



























Xij i > q

Xij − σiσjXji/
√

1 − σ2
i σ

2
j q ≥ i > j

Xii/
√

1 + σ2
i i = j

Xij/
√

1 − σ2
i σ

2
j i < j.

These expressions provide O(q2) algorithms for evaluating S and its inverse.
Returning to (19), we can use the second equation to express ∆Z̃ in terms of ∆x as

∆Z̃ = S−1(R̃21 − Ã(∆x)). (21)
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Substituting this in the first equation gives an equation in ∆x:

H∆x = g (22)

where g = Ãadj(S
−1(R̃21))− r and H is the matrix that satisfies H∆x = Ãadj(S

−1(Ã(∆x))) for all
∆x, i.e.,

Hij = tr(ÃT
i S

−1(Ãj)) = tr(L−1(Ãi)
TL−1(Ãj)), i, j = 1, . . . , n, (23)

Since A has full rank and S is positive definite, (22) is a positive definite set of linear equations.
After solving for ∆x, we first obtain ∆Z̃ and ∆Z = W T

2 ∆Z̃W1 from (21), and then ∆U , ∆V
from (17).

Several methods can be used to solve (22). We can compute the matrix H by computing
L−1(Ãi)) for i = 1, . . . , n and forming the inner products (23), and then factor H using a Cholesky
factorization. Another method is to note that H = GT G, where

G =
[

vec(L−1(Ã1)) vec(L−1(Ã2)) · · · vec(L−1(Ãn)))
]

.

We can therefore use a QR factorization of G to factor H. This is slower (by a factor of at most two)
than the Cholesky factorization method and requires more memory. However it is also numerically
more stable because it allows us to compute a triangular factorization of the matrix H without
explicitly calculating H.

Complexity The linear algebra complexity per iteration of the custom interior-point algorithm
can be estimated as follows. The cost of computing the congruence transformation W and the
singular value matrix Σ is O(p3) (recall our assumption that p ≥ q). The cost of computing the
coefficients of the scaled mapping

Ã(x) = x1Ã1 + x2Ã2 + · · · + xnÃn,

i.e., computing Ãi = W2AiW
T
1 for i = 1, . . . , n, is O(np2q) if the coefficient matrices Ai are dense

and unstructured. Solving (22) by Cholesky factorization or QR factorization costs O(n2pq) (recall
our assumption that the A has zero nullspace, and hence n ≤ pq). If we make the reasonable
assumption that n ≥ p, we see that the overal cost is O(n2pq). If the coefficient matrices Ai are
dense, this is comparable to solving the linear norm approximation problem in the Frobenius norm,
i.e., solving a least squares problem with n variables and pq equations. More generally, if p = O(n),
q = O(n), the cost per iteration increases as O(n4), as opposed to O(n6) if we use general-purpose
software.

4 Numerical experiments

4.1 Randomly generated problems

We first consider a family of randomly generated nuclear norm approximation problems (1) with
n = p = q. The matrices Ai and B have entries independently generated from N (0, 1). The
number of variables n ranges from 20 to 350. Table 1 shows the time per iteration in seconds on a
3.0 GHz processor with 3 GB of memory. A graph of the results is shown in Figure 1. All times
are averaged over five randomly generated instances. The number of iterations ranges from 8 to
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n SeDuMi SDPT3 CVXOPT

20 0.25 0.29 0.03
50 13 4.0 0.15
75 138 33 0.34
100 0.93
150 2.7
200 8.3
275 23
350 50

Table 1: Time per iteration in seconds for two standard SDP solvers and a custom interior-point
method, for randomly generated problems with n = p = q.
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Figure 1: Graph of the results in table 1.
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15 for all experiments. Blank entries in the table indicate that the simulation was aborted due
to memory limitations. Columns 2 and 3 show the statistics for solving the problem using the
general-purpose solvers SeDuMi (version 1.1R3) [Stu99] and SDPT3 (version 4.0 beta) [TTT03] in
Matlab (version R2007a). The last column shows the results of a custom implementation of the
algorithm described in Section 3.2 using CVXOPT (version 1.0) [DV08]. CVXOPT is written in
Python (version 2.5), with critical linear algebra computations implemented in C using LAPACK
(version 3.1.1) and ATLAS (version 3.8.1). It includes an SDP solver that can be customized by
providing functions to evaluate the constraints and to solve the Newton equations.

The results clearly illustrate the effectiveness of the fast algorithm of Section 3.2 in comparison
with general-purpose solvers. Within the range of problem sizes considered here, the times per
iteration grow roughly as n5 for the general purpose solvers, and as n3 for the custom solvers. For
larger problem sizes, the times per iteration can be expected to increase as n6, respectively, n4, as
predicted by the flop count analysis at the end of section 3.2.

4.2 An open-loop control problem

The second experiment is a variation on an example from [FHB04]. The problem is to design a low-
order discrete-time controller for a plant, so that the step response of the combined controller and
plant lies within specified bounds. We denote the plant impulse response by h(t), t = 0, . . . , N , the
controller impulse response by x(t), t = 0, . . . , N , and the step input by u(t) = 1 for t = 0, . . . , N .
The impulse response coefficients x(t) are the variables in the problem, and are computed by solving
the convex optimization problem

minimize ‖H(x)‖∗
subject to bl(t) ≤ (h ∗ x ∗ u)(t) ≤ bu(t), t = 0, . . . , N,

(24)

where bl and bu are given lower and upper bounds on the step response, ∗ denotes convolution, and

H(x) =













x(1) x(2) x(3) · · · x(N)
x(2) x(3) x(4) · · · x(N + 1)

...
...

...
...

x(N) x(N + 1) x(N + 2) · · · x(2N − 1)













.

The variables are x(t), t = 0, . . . , 2N − 1.
Figure 2 shows the result for a 6th-order plant with transfer function

P (z) =
0.0158z5 − 0.00292z4 − 0.0284z3 + 0.0177z2 + 0.00816z − 0.00828

z6 − 4.03z5 + 7.4z4 − 8.06z3 + 5.57z2 − 2.31z + 0.434
,

and N = 160. The step response of the original system has a long rise time and large biased steady
state error. After solving the optimization problem (24), we obtain a second-order controller with
transfer function

X(z) =
1.58z2 − 3.06z + 1.48

z2 − 1.93z + 0.931
.

The step response with the low-order controller satisfies all the time-domain constraints as shown
in the figure. The singular values of H(x∗) at the optimal solution x∗ are plotted in Figure 3, which
clearly shows H(x∗) has rank 2.
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Figure 2: Open-loop controller design with time-domain constraints.
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Figure 3: Largest singular values of the Hankel matrix H(x∗) at the optimal solution x∗ of the
open-loop controller design example.
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The dimensions of the optimization (24) are p = 160, q = 160, n = 320, so the resulting SDP has
more than 25000 variables. The custom interior-point method implemented in CVXOPT, reduces
the relative duality gap and relative primal and dual residual below 10−6 in 15 iterations, and takes
less than 2 minutes on a 3.0 GHz processor.

5 Application to system identification

In this section we present a system identification method based on nuclear norm minimization. The
objective is to fit a discrete-time linear time-invariant state-space model

x(t + 1) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), (25)

to a sequence of inputs u(t) ∈ Rm and outputs y(t) ∈ Rp, t = 0, . . . , N . The vector x(t) ∈ Rn

denotes the state of the system at time t, and n is the order of the system model. The parameters
to be estimated are the model order n, the matrices A, B, C, D, and the initial state x(0).

Subspace algorithms [Lar90, Ver94, OD94, Vib95] use the singular value decomposition (SVD)
of matrices constructed from observed inputs and outputs to estimate the system order, and to
compute low-rank approximations from which the model parameters are subsequently determined.
Nuclear norm minimization offers an alternative method for computing low rank matrix approxi-
mations. An advantage of this approach is that the matrix structure (for example, the block Hankel
structure common in subspace identification) can be taken into account before the rank or model
order is chosen. As a consequence the minimum nuclear norm approximation typically provides a
more clear-cut criterion for model selection than the SVD low-rank approximation.

5.1 Input-output equation

Suppose we are given a sequence of inputs and outputs u(t), y(t), t = 0, . . . , N . If we define block
Hankel matrices

Y =













y(0) y(1) y(2) · · · y(N − r)
y(1) y(2) y(3) · · · y(N − r + 1)

...
...

...
...

y(r) y(r + 1) y(r + 2) · · · y(N)













and

U =













u(0) u(1) u(2) · · · u(N − r)
u(1) u(2) u(3) · · · u(N − r + 1)

...
...

...
...

u(r) u(r + 1) u(r + 2) · · · u(N)













,

we obtain from (25) the equation
Y = GX + HU (26)

where

G =

















C
CA
CA2

...
CAr

















, H =

















D 0 0 · · · 0
CB D 0 · · · 0

CAB CB D · · · 0
...

...
...

. . .
...

CAr−1B CAr−2B CAr−1B · · · D

















,
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and
X =

[

x(0) x(1) x(2) · · · x(N − r)
]

.

In the equation (26), the matrices G, H, and the state sequence X are unknown. We are given the
matrices U and Y , or noisy approximations of them, and the goal is to estimate the system order,
a system model A, B, C, D, and the initial state x(0).

5.2 Subspace identification algorithm

An early idea in the subspace identification literature is to multiply (26) on the right with a matrix
U⊥ whose columns span the nullspace of U [DMVV88]. This gives

Y U⊥ = GXU⊥. (27)

If the input and output measurements are exact, then the matrix Y U⊥ has rank n, provided X has
rank n persistent excitation and there is no rank cancellation in the product XU⊥. Both properties
hold generically if the input sequence is chosen randomly. Assuming exact data, we can therefore
determine a system realization as follows. We first compute a matrix Ĝ whose columns form a basis
for the range of Y U⊥. From (27) we have Ĝ = GT where T is a nonsingular matrix. Therefore

Ĝ =













Ĝ0

Ĝ1
...

Ĝr













=













C
CA
...

CAr













T,

i.e., Ĝ is the extended observability matrix for the system

x̂(t + 1) = Âx̂(t) + B̂u(t), y(t) = Ĉx̂(t) + D̂u(t),

with Â = T−1AT , B̂ = T−1B, Ĉ = CT and D̂ = D. This model is equivalent to (25) and differs
only by a change of coordinates x(t) = T x̂(t). Given Ĝ, we find Ĉ as the first block of Ĝ, i.e.,
Ĉ = Ĝ0. The matrix Â can be computed from the equation













Ĝ1

Ĝ2
...

Ĝr













=













Ĝ0

Ĝ1
...

Ĝr−1













Â. (28)

Once Ĉ and Â are available, the matrices B̂, D̂, and the initial state x̂(0) follow from the linear
equations

ĈÂtx̂(0) +
t−1
∑

k=0

ĈÂt−kB̂u(k) + D̂u(t) = y(t), t = 0, . . . , N. (29)

If the outputs or inputs are subject to error, the procedure outlined above can be used to es-
timate an approximate model. By examining the singular values of Y U⊥, we estimate the system
order n. Truncating the singular value decomposition after n terms gives an estimate of the gen-
eralized observability matrix Ĝ. This estimate does not possess the shift structure of the extended

14



observability matrix, so the overdetermined set of equations (28) is not solvable. As an approximate
solution we can take Ĉ = Ĝ0, and compute a least-squares solution Â to (28). Similarly, we can
compute a least-squares solution of the overdetermined set of equations (29) to find estimates B̂,
D̂ and x̂(0). We refer to [Lju99, Section 10.6] for more details.

5.3 Identification by nuclear norm optimization

We now present a variation on the algorithm of the previous section based on nuclear norm mini-
mization. We will use y(t), t = 0, . . . , N , as optimization variables, and distinguish the computed
outputs y(t) from the given measurements ymeas(t). As before, the matrix Y will denote the Hankel
matrix constructed from y(t). The proposed method is based on computing y(t) by solving the
convex optimization problem

minimize ‖Y U⊥‖∗ + γ
N
∑

t=0

‖y(t) − ymeas(t))‖
2
2 , (30)

for a positive weighting parameter γ. This gives a point on the trade-off curve between the nuclear
norm of Y U⊥ (as a proxy for rank(Y U⊥)), and the deviation between the sequences y(t) and
ymeas(t). From the optimal solution y(t) of (30), we can compute the singular value decomposition
of Y U⊥, and proceed as in the method of section 5.2.

Obviously, many variations on this idea exist. For example, we can move the deviation between
measured and computed output to the constraints, and solve

minimize ‖Y U⊥‖∗
subject to ‖y(t) − ymeas(t)‖ ≤ ǫ, t = 0, . . . , N.

We can also use a weighted norm to measure the deviation, as in

minimize ‖Y U⊥‖∗ +
N
∑

t=0

‖Wt(y(t) − ymeas(t))‖
2
2 .

The method can also be extended to cases where the inputs are subject to error.
The idea outlined above is related to subspace algorithms based on structured total least squares

[MWV+05, De 94]. In these methods a low rank constraint on a structured matrix A(x) is imposed
via nonlinear equality constraints A(x)y = 0, yT y = 1. The resulting nonconvex optimization
problem is solved locally via nonlinear optimization.

5.4 Experimental results

We have implemented the algorithm proposed in section 5.3 and tested it on ten benchmark prob-
lems from the Daisy collection [DDDF97]. A brief description of the data sets is given in table 2.
NI is the number of data points used in the identification experiment, and NV is the number of
data points that will be used for model validation. This includes the NI data points used in the
identification.

We first apply the method of section 5.3, based on the nuclear norm minimization problem (30).
Figures 4–8 show the singular values of Y U⊥ for the ten examples, where Y is the solution of the
optimization problem (30) with N = NI . The parameter γ was selected by examining different
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Data set Description Inputs Outputs NI NV

1 96-007 CD player arm 2 2 200 600
2 98-002 Continuous stirring tank reactor 1 2 250 700
3 96-006 Hair dryer 1 1 150 400
4 97-002 Steam heat exchanger 1 1 400 1000
5 99-001 SISO heating system 1 1 400 800
6 96-009 Flexible robot arm 1 1 100 300
7 96-011 Heat flow density 2 1 400 1000
8 97-003 Industrial winding process 5 2 250 600
9 96-002 Glass furnace 3 6 150 400
10 96-016 Industrial dryer 3 3 250 600

Table 2: Ten benchmark problems from the Daisy collection [DDDF97]. NI is the number of data
points that will be used in the identification experiment. NV is the number of points used for
validation.
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Figure 4: Largest singular values of YmeasU
⊥ (‘original’) and Y U⊥ (‘optimized’) in example 1

(left) and example 2 (right). Ymeas and U are block-Hankel matrices constructed from the input-
output data. Y is a block-Hankel matrix constructed from the optimal solution of the optimization
problem (30).
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Figure 5: Largest singular values of YmeasU

⊥ (‘original’) and Y U⊥ (‘optimized’) in example 3 (left)
and example 4 (right).
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Figure 6: Largest singular values of YmeasU
⊥ (‘original’) and Y U⊥ (‘optimized’) in example 5 (left)

and example 6 (right).
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Figure 7: Largest singular values of YmeasU

⊥ (‘original’) and Y U⊥ (‘optimized’) in example 7 (left)
and example 8 (right).
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Figure 8: Largest singular values of YmeasU
⊥ (‘original’) and Y U⊥ (‘optimized’) in example 9 (left)

and example 10 (right).
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Nuclear norm method N4SID default N4SID
n eI eV n eI eV n eI eV

1 3 0.17 0.18 10 0.15 0.24 3 0.16 0.19
2 3 0.23 0.23 7 0.22 0.20 3 0.26 0.23
3 4 0.069 0.12 3 0.079 0.13 4 0.080 0.13
4 6 0.12 0.20 2 0.21 0.47 6 0.22 0.38
5 4 0.02 0.085 2 0.038 0.094 4 0.032 0.090
6 4 0.028 0.038 7 0.046 0.075 4 0.13 0.26
7 8 0.14 0.14 1 0.18 0.17 8 0.14 0.13
8 3 0.17 0.17 10 0.17 0.18 3 0.18 0.17
9 5 0.21 0.36 10 0.31 0.47 5 0.54 0.59
10 6 0.28 0.27 10 0.31 0.32 6 0.37 0.26

Table 3: Identification results for the ten benchmark problems. For each of the three methods, n is
the estimated system order, eI is the relative estimation error on the identification data, and eV is
the relative prediction error on the validation data. ‘Nuclear norm method’ refers to the algorithm
described in section 5.3. The results under ‘N4SID default’ were obtained by the Matlab command
n4sid with default values of the parameters. The results under ‘N4SID’ were obtained by n4sid

with a specified model order.

points on the trade-off curve, and choosing the value that gives approximately the smallest value
of identification error. The singular values are normalized so that the largest singular value is one.
As can be seen, in most cases the nuclear norm optimization provides a Hankel matrix Y with
Y U⊥ very close to low rank, and the singular value plots suggest a distinct value for the model
order. When this is not the case (as in example 9), we take n equal to the number of singular
values greater than 10−3 times the first singular value. The figures also show the singular values
of YmeasU

⊥, where Ymeas is the Hankel matrix constructed from the output data. These singular
values typically do not indicate a clear choice for the model order.

Columns 2–4 of table 3 summarize the results of the identification based on the nuclear norm
approximation. n is the estimated system order. eI and eV are the identification error and validation
error, computed as

eI =

(

∑NI−1
t=0 ‖ymeas(t) − ŷ(t)‖2

2
∑NI−1

t=0 ‖ymeas(t) − ȳI‖2
2

)1/2

, eV =

(

∑NV −1
t=0 ‖ymeas(t) − ŷ(t)‖2

2
∑NV −1

t=0 ‖ymeas(t) − ȳV ‖2
2

)1/2

, (31)

respectively, where ymeas(t) are the given output data,

ȳI =
1

NI

NI−1
∑

t=0

ymeas(t), ȳV =
1

NV

NV −1
∑

t=0

ymeas(t),

and ŷ(t) is the output of the identified state-space model, starting at the estimated initial state. In
table 3 we also give the results obtained with the subspace identification algorithm implemented in
the Matlab Identification Toolbox. The results under ‘N4SID default’ are for the models computed
by the Matlab command n4sid with the default settings (including the feedthrough matrix D).
The results under ‘N4SID’ are from n4sid with a specified model order, equal to the order used in
the nuclear norm method. We note that the identification errors for the nuclear norm optimization
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Figure 9: Trade-off between the identification/validation error (eI/eV ) and the nuclear norm
‖Y U⊥‖∗ in example 1.

algorithm are comparable or slightly lower than n4sid. The main advantage of the nuclear norm
technique appears to be that it makes the selection of an appropriate model order easier.

Figures 9 and Figure 10 provide some further illustration of the identification algorithm. Fig-
ure 9 shows the trade-off between the identification/validation error (eI/eV ) and the nuclear norm
of Y U⊥, for the first example. The trade-off curves were computed by solving problem (30) for
a range of different values of γ. eI and eV are calculated using (31) based on the predictions of
the identified state-space model. In Figure 10 we compare the measured outputs with the model
predictions for example 1. The first NI = 200 points were used for the identification.

5.5 Comparison with first-order method

In this section we compare the speed and accuracy of the interior-point method with a first-order
method. We use Nesterov’s optimal gradient method of 1983 [Tse08, Algorithm 2] to minimize a
smooth approximation of the problem (30), obtained by replacing the nuclear norm by the smooth
matrix function (6). The problem data are from example 1, and the problem dimensions are p = 81,
q = 80, and n = 400. We use three different values of the smoothing parameter µ, and a fixed step
size t in the gradient steps (selected for best performance by trial and error).

The left plot in Figure 11 shows the relative accuracy versus the number of iterations. The
relative error in this plot refers to the original, nonsmooth problem, i.e., it is defined as (f (k) −
f⋆)/f⋆, where f (k) is the objective value of (30) after k iterations and f∗ is the optimal value. (This
explains why the error levels off at a relatively high value.) For the same problem, the interior-
point method reaches an accurate solution in ten iterations. However the average CPU time per
iteration of the interior-point method is 2.4 seconds, and is much larger than the 0.02 seconds of the
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Figure 10: Measured and identified outputs in example 1.
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Figure 11: Convergence of interior-point method and a fast gradient method applied to a smooth
approximation, with smoothing parameter µ. The parameter t is the step size in the gradient
method.
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Figure 12: Normalized singular values from the fast gradient method and interior-point method.

gradient method. The right plot in Figure 11 shows the relative accuracy versus elapsed CPU time.
The figure shows that when µ is sufficiently large, the first-order method can reach a moderate
accuracy faster than the interior-point method. For larger problems, the difference will be even
more pronounced. Figure 12 shows the singular values of the solutions for each value of µ. Here we
note that the gap between zero and nonzero singular values rapidly decreases when the smoothing
is increased. In combination, these three plots illustrate the trade-off between the quality of the
smooth approximation and the complexity of solving it. The experiment also demonstrates the
importance of the robustness and high accuracy of interior-point methods when the results of the
nuclear norm minimization are used for model order selection.

6 Conclusion

We have described techniques for improving the efficiency of interior-point methods for nuclear
norm approximation. By exploiting problem structure in the linear equations that form the most
expensive part of an interior-point method, we were able to reduce the cost per iteration to O(n2pq)
operations, where n is the number of variables, p and q are the matrix dimensions, and we assume
that n ≥ max{p, q}. The techniques can be used in combination with standard primal-dual interior-
point algorithms of the type implemented in the general-purpose solvers SDPT3 and Sedumi. This
results in algorithms with the same robustness and high accuracy as the state-of-the-art SDP solvers,
but with a much lower computational cost. The cost can be further reduced by exploiting structure
in the mapping A(x). For example, some of the techniques developed for linear matrix inequalities
with Hankel and Toeplitz structure in [GHNV03, RV06] extend to the problem considered here.

As an application, we implemented and tested a subspace algorithm for system identification
based on nuclear norm approximation. The experimental results on benchmark data sets suggest
that the quality of the models obtained by this method is comparable with state-of-the-art subspace
identification software. An important advantage of the nuclear norm method for computing low
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rank approximations is that, unlike the SVD, it preserves linear matrix structure. It also provides
a less equivocal criterion for the selection of the system order.

We have not discussed the implementation of interior-point methods for the least-norm prob-
lem (7) or its SDP formulation

minimize (trU + trV )/2

subject to

[

U XT

X V

]

� 0

F(X) = g.

(32)

This SDP includes extra matrix variables U , V , and is therefore also very expensive to solve
via general-purpose solvers. However the steps required for a custom implementation are more
straightforward than for the nuclear norm approximation problem considered in the paper. The
Newton equations for (32) take the form

T

[

0 Fadj(∆z)T

Fadj(∆z) 0

]

T −

[

∆U ∆XT

∆X ∆V

]

=

[

R11 RT
21

R21 R22

]

, F(∆X) = r,

where

T =

[

T11 T12

T21 T22

]

is a positive definite scaling matrix. By eliminating ∆U , ∆V , ∆X from the first equation we obtain
a smaller (and usually dense) system H∆z = r̃ where H is the matrix defined by

Hu = F
(

T22Fadj(u)T11 + T21Fadj(u)T T21

)

.

The key to improving the efficiency is then to exploit structure in F when assembling the matrix
H. Properties that can be exploited are sparsity or low rank-structure (in the coefficients Fi, if we
express F as F(X) = (tr(F T

1 X), . . . , tr(F T
mX))). These techniques are straightforward extensions

of similar techniques in standard semidefinite programming [BY05a, FKN97, RV06].
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